Time Dependent Methods in
Spectroscopy

* What do spectra tell us about dynamics?
* How can we easily calculate spectra?

* (Case studies
* MIME effect (with F Zink)
* Benzophenone (with Jobn Frederick)

o Scars

Madison 2003



In the beginning (Schrodinger) ...

ihawéf’t) = Hy(x,t)



Many years of focus on
stationary states followed
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Semiclassical Eigenstate, Integrable case:
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The focus on stationary states
was understandable...

* low energy Laldlil
* high resolution “line” spectra

* i.e. evidence of individual eigenstates
predominated



Franck-Condon formula
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Time dependent version
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Exact! not semiclassical



It’s begging a
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Thawed gaussian approximation
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Other gaussian wavepacket
propagation schemes

Frozen (Gaussians

Off-center guiding



The dream: provide a physically motivated
basis set for chemical dynamics

* semiclassical Gaussian wavepackets are locally
correct solutions to the time dependent
Schroedinger equation

* they are a complete set - expand in semiclassical
(Gaussian basis

* they individually are guided by and act like
classical trajectories; easy to run in many degrees
of freedom



Many strategies and variants....

* Thawed Gaussians, frozen gaussians, Herman-
Kluk, variational (Huber - EJH), off center guiding

(Tomsovic - EJH), Jackson & Metiu (B.O. surface
crossing), van Vleck cellular dynamics,...

* Promising recent work:, Ben-Nun & Martinez
(spawning, surface crossing); Child & Shlashilin
(variational swarm), H-K by many workers, van
Voorhis & EJH (nearly real), Rossky & Co, Batista

* Related work by Miller & Co, Makri & Co,
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Time-Frequency Correspondence
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Wavepacket, autocorrelation, spectrum

Eigenstates by Fourier Transform
T
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Wavepacket, autocorrelation, spectrum, eigenfunction




o(w) = / dt ¢ (] a (1))



From a spectrum to dynamics

L[,
(@al@a(l)) = o / e "“o(w)dw  correlation function
Po(t) = [{¢alda(t))| survival probability
T

P(ala) = lim [ P,(t) dt  measure of phase space flow



Measuring ergodicity with one state
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Eigenstate Projections
an = (Enla)  pn=[{Byla)

po measures the tendency of an eigenstate to be
large in a certain region of phase space. Since

[(Enla)[* = [(Enla(t))],

such regions of large overlap are correlated (O’Connor,
EJH).

Time averaged phase space transport o e
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Quantum Ergodicity:
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Another view of absorption/emission from a
time dependent viewpoint
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Extreme quantum control!
Using perfect phasing to build

an eigenstate.
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A note on quantum control....

A c.w. laser...

is just a pulsed femtosecond laser...

-

with a high repetition rate!



Semiclassical

Methods
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M. Sepulveda, EJH |
J.Chem. Phys.
101,8004 (1994).
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A note on many degrees of
freedom, decoherence



MIssing Mode Effect
(MIME)

* A partially resolved spectrum gives a very
evenly spaced set of peaks, but the spacing is
not near any normal mode frequency of the
molecule



Separable Morse oscillators - local mode
Hamiltonian with normal mode “pluck”
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Case study: benzophenone

1 1
V(z,y) = —w2z® + —wiy* + \zy
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1 1
Viz,y) = —w?z? + —w?y* + \zy
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Mathieu stability

.\ 1:1 resonance
1 \zone (unstable)
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Theory
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\ Spectral

Hierarchy

Signature of twist-twist
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Benzophenone Twist Modes
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Reduced dimensionality

High energy needed to excite some high frequency degrees of freedom
can lock them out
Examples: Benzophenone

350¢
300¢

By A ],

Symmetric Twist Asymmetric Twist 200 400 600 800 1000

String theory:Living in 4 dimensions instead of 11!!









What determines Raman spectral
intensities?

e Kramers-Heisenberg-Dirac
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Good luck: 10°(18) states m to sum over!

Instead: run wavepacket for a short time!

50 2

Top(w) = / e (Gplba(t)) dt

0

So0-Y. Lee and Eric J. Heller, “Time Dependent Theory of Raman Scattering”, J. Chem.
Phys. 71, 4777-88 (1979).



What determines Raman spectral intensities?

If the wave packet does not return, for whatever reason,
(dissociation, decoherence, lost in a big phase space, etc.) then
the short time propagation gives the Raman intensities of
individual lines even on resonance.

o0 2 A separate projection
Ip(w) = / ety da(t)) dt onto another final state

5 for each line strength.
R%) = / e o (1)) dit “Raman wave function”

0

Iop(w) = |{¢p| RE)|?



What determines Raman spectral intensities?
(polyatomics)

The story is more interesting for
polyatomics-the direction of initial
motion clearly determines what states the
Raman wavefunction will overlap

Ratio of line intensities of two modes:

I. _ wm <8V/8xn>2
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Time dependent
Semiclassical:

van Vleck Green’s function;

vV, Morette, 1940’s

G(q,q0;t) ~ Gse(q,qo;t)

_ 1 d/QZ Det 0°S;(q, qo; t)
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first full Van Vleck
implementation - early 90’s!
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Oftf-center guided thawed (Gaussians
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Idea: Instead of

use a sum over thawed gaussian propagators

O(E,t) = ) G )Y (E,0)
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off-center guiding orbit
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Homoclinic orbits
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Getting the whole emission spectrum
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Raman wavefunction propagated
on the 7nstial surface

“Simple Aspects of Raman Scattering”

Example: On resonance quantum yield of
fluorescent (Raman) photons in Iodine
photodissociation about the same as typical
pre- resonant yield in polyatomics



Incoherent neutron scattering
e.g. molecules in solution
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Thus far we have learned...

* Time dependent theory is driven by the
requirements of condensed phase systems and
large molecules, whether the experiment is
time dependent or not.

* Ironically, the very shortest time information
about chemical dynamics is often best
obtained from the frequency domain



Perspectives on Quantum
Tunneling

* Decoherence and tunneling
* tunneling when you least expect it
* dynamical tunneling

* molecular spectra and tunneling



Barrier penetration: role of coherence
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Quadratic vs. Linear buildup
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Finite temperatures and decoherence do not
eliminate tunneling; rather, they eliminate
coherent enhancement of tunneling.



Symmetric tunneling made to behave like
bound —free tunneling by decoherence



1. Comment on coherence and tunneling
—> 2. Standard and nonstandard examples of tunneling
3. Surface jumping (not hopping)
(with B. Segev, S. Kallush, A. Sergeev)
4. Ultracold sticking (A. Mody, J. Doyle)



Two Kinds of “Ordinary” Tunneling

Above barrier reflection

Below barrier tunneling

Both have analogs in “Dynamical Tunneling”



Penetration/retlection-use WKB?
<
)
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.ow Barrier

)

Causes problems for both barrier
tunneling and reflection. Cannot
use semiclassical action-too small!

Solution: use perturbation theory



WKB Perturbation Theory

(1) what potential ~ VWEB(3) makes ¢pWEB

exact?
(2) Do perturbation theory on  [V(z) - V"*5(x)]
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e N.T .Maitra and E.J.Heller, “Semiclassical perturbation approach to quantum reflection
Phys. Rev. A, 54,4763 (1997).



Dynamical Tunneling Examples

dissociation Overtone

van der Waals

Pink- above barrier tunneling
Green- below barrier tunneling



O vertone transition:
dynamical tunneling

4. H3,t
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| / 0,H4, +
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Q uantize the field mode: M orse + harmonic
+ linear coupling. Classically forbidden




Dynamical Tunneling Examples

dissociation Overtone

van der Waals










Dynamical Tunneling Examples

dissociation Overtone

van der Waals







C-C mode chosen so
as not to shake carbon 1

>

IVR takes place

and is probably
classically forbidden

Smalley 1981
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Resonance Theory

Consider a Hamiltonian in action-angle form

H(J,0) = Ho(3) + V(3,6)

The potential term V (J,#) is conveniently expressed as a Fourier series.

V(3,0) =X Y Vinn(J1, J2) cos(m 6y —n 65)

m,n

For example we might have
H=aJi+BJo+7yJ7/2+8 J5/2+ pJy Jo+ X Jiy/J2 Y cos(m 6y —n 6s)

This is always valid because everything is periodic in the angle variables.
Now the frequencies are gradients of the Hamiltonian (from Hamilton’s equations of motion):

: OH(J

0 =wi(J) = 8J( ):oz—|—’yJ1—i—,uJ2—i—)\\/JQZCos(m6’1—n92)
1

: OH (J) J1

92:(4}2(.]): 8J2 :ﬁ—f—d,]l +/,LJ2+)\2\/J_2;COS(m 31—77,(92)

and the rest of Hamilton’s equations of motion are

OH

A
: 00,

= ZVm,n(Jl, J2) m sin(m 61 —n 6s)

n,m



Then
n
¢1 =01 — 2 s; 2 = 02
mo

Ji=11; Joa=1y— ﬂh

mo
and
H = Hy(I1, I, - —11 Zwmo tno (I) cos(mg £ ¢)
Note that ¢- is missing in H, thus we have
- OH
Ib=———=0
R
OH 0
a7 mo,€n I
¢2 812 8I2Zw OE O( )COS(m0£¢1>
and
- OH ,
LH=——=- Zvﬁmo,ﬁno (I)mg £sin(mg £ ¢1)
96 2
= —— = - — AT mo,én I
¢1 811 w1 motdz + 811 ;va 0,0 0( )COS(mo 14 ¢1)

Note that the I1, ¢ system is autonomous because the ¢, dependence vanishes and I, is a constant.
Therefore,

H (1, ¢1) = Ho(Iy, I} — ——71 )+ ZVemo tno (I) cos(mo £ ¢1)



As a further approximation, we expand about I7¢*:

Heff ~ HO(IIes’ ges . @II&S) + (w{es . mwgeb’) 511_|_
mo mo

1 %_ ng Owq o Ows n n% Ows 572
2 8J1 mo 5?J2 mo 8J1 m% &]2 1

+ Z Wmo,hbo (IreS) COS(mOE qbl)
4

1 res
= Hy + §G 617 + ; Veme .o (I7¢%) cos(mol ¢1)

where we have used (wi® — 2w3*®) = 0. If the lowest (¢ = 1) Fourier component is the most important
we can write

1
HeI T — Hy + 5G 617 + Vino.mo (X7¢%) cos(mg ¢1)

This is recognized as a pendulum Hamiltonian. The reduction of a resonance to a pendulum Hamiltonian
is an old trick in analysis of Hamiltonian systems with resonances. It is now a simple matter to find the
fixed points (stable and unstable) and estimate the resonance width. One just takes the above Hamiltonian
literally and finds the separatrices and stable islands. For example for the case

3wi & 2ws

2
F(Q,I) = ((91 — § (92) Il + 92]2

Then

2
¢1 =01 — 592; o = 02

2
Ji=11; Jy=1y — 511



On the surface of section, suppose that the green and red dashed tori are both
EBK quantized, predicting a degeneracy. In fact, the states will be split, by
dynamical tunneling. It may be shown that

(s " |H - Elbgy ™) ~ (s Vil )

where V5% is the classical resonance interaction “responsible” for a 4 : 3

resonance zone lying between the two tori.

P

Uzer, Noid, Marcus; Ozorio de Almeida; Jaffe, Reinhardt; EJH



Reflection above the barrier Narrow resonance islands

+ +
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WKB-Distorted wave Born Approximation to the
"reflection” (dynamical tunnelling) amplitude R:

Poincare' S.O.S.
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Avoided crossings increase
spectral complexity
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Evidence for dynamical tunneling in
molecules of moderate size and energy:
fractionation in high resolution spectra

at 0.01-0.05 cm’!

JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 11 15 SEPTEMBER 1998

Intramolecular vibrational energy redistribution in the acetylenic C—H
and hydroxyl stretches of propynol

Evan Hudspeth, David A. McWhorter, and Brooks H. Pate
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901

Received 12 December 1997; accepted 12 June 1998!

The high-resolution infrared spectra of the acetylenic C—H and O-H stretches of propynol have
been measured using an electric-resonance optothermal molecular beam spectrometet. Both
spectra display extensive fragmentation of the hydride-stretch oscillator strength characteristic of
the intramolecular vibrational energy redistribution (IVR)process. The IVR lifetime is strongly
mode-specific. The IVR lifetime of the acetylenic C—H stretch is approximately 400 ps, with a slight
increase in the lifetime with increasing values of the K, quantum number. The lifetime of the O—H
stretch is 60 ps and is independent of the rotational quantum numbers. The experimental upper limit
for the anharmonic state densities are 30 and 40 states/cm?! for the acetylenic C—H and O-H
stretches, respectively. These values are in good agreement with the values obtained by a direct state
count ~9 and 32 states/cm? ', respectively!l. The measured density of states increases with an
approximate (2J+ 1)-dependence. These results indicate that all energetically accessible states are
involved in the IVR dynamics. However, neither the acetylenic C—H nor the O—H stretch shows a
decrease in lifetime as the total angular momentum (J) increases. This result shows that Coriolis
coupling of these two hydride stretches to the near-resonant bath states is much weaker than the
anharmonic coupling. For the O-H stretch, we are able to obtain the root-mean-squared ~ms!
matrix element for the Coriolis coupling prefactor, 0.0015 cm?. The rms anharmonic coupling
matrix element is 0.03 cm®. For the low J values measured in the O—-H spectrum, the
Coriolis-induced IVR rate is much slower than the initial redistribution rate resulting from the
stronger anharmonic interactions leading to an IVR process with two distinct time scales. 1998
American Institute of Physics. @0021-9606-98!01835-2#




Experiments by J. Nesbitt, K. K. Lehmann, B. H. Pate, G. Scoles,

J. MacDonald, and many others have shown unassignable fractionation

of spectra at the ca. 0.05 cm (-1) level in small polyatomic (5-10 atom)
molecules at 1000 to 4000 cm (-1). This is a signature of [IVR.

IVR is the mechanism responsible for fractionation of high resolution
spectra (and thus revealing eigentates of strongly mixed, unassignable
parentage). (IVR == unassignable fractionation)

Claim:

Some IVR is due to dynamical tunneling, and dynamical tunneling
may even dominate the IVR.



Tunneling Tier Model-
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Iraditional perturbation theory.
H=H+V

anharmonic coupling

Suggested new perturbation theory.
H=H dlassicallyallowed T V,

tunnding
Vi

=

nneing



Brooks Pate:

Nondeflection of larger
molecules in an

inhomogeneous field




"IVR" can be tunneling. Candidates:high resolution propyne, acetylene;
anticrossing spectra, alkylbenzenes, etc. The tunneling can lead to complete
mixing of states in a narrow energy band and lead to spectral clumps with
some (but not all) random matrix characteristics.

Nature's Ho: Quantum mechanics without the dynamical tunneling. We
are learning how to turn the dynamical tunneling on and off.

Narrow mediating resonance zones far outnumber global and large
resonance zones; they dominate the tunneling and can be treated
perturbatively but not by classical paths (i.e. they are essentially diffractive).

There may be a localization transition (Logan-Wolynes) as a function of the
falloff of the direct tier tunnel coupling. Molecules could live on either side
of the transition.

e E. J. Heller. “Dynamical Tunneling and Molecular Spectra”, J. Phys. Chem., 99, 2625
(1995).

e E. J. Heller, book chapter “Spectroscopy and Dynamics in the Wings”, in “Molecular Dy-
namics and Spectroscopy by Stimulated Emission Pumping”, Hai-Lung Dai and R. Field, ed.,
(World Scientific 1995).

e E. J. Heller, “The Many Faces of Tunneling”, J. Phys. Chem. 103 10433 (1999).



