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1.  Overview of density functional theory

2.  Fast methods for Fock matrix formation

3.  The diagonalization problem

4.  Excited states and time-dependent DFT

Moore’s Law drives computational sciences

supercomputers

workstations

Chemistry and mathematics

“Every attempt to employ mathematical methods in the
study of chemical questions must be considered
profoundly irrational and contrary to the spirit of
chemistry.  If mathematical analysis should ever hold a
prominent place in chemistry—an aberration which is
happily almost impossible– it would occasion a rapid
and widespread degeneration of that science.”

Auguste Comte, 1830.

Quantum mechanics and chemistry

“...in the Schrodinger equation we very nearly have the
mathematical foundation for the solution of the whole

problem of atomic and molecular structure”

but…

“… the problem of the many bodies contained in the atom
and the molecule cannot be completely solved without a
great further development in mathematical technique.”

G. N. Lewis, J. Chem. Phys. 1, 17 (1933).

Desiderata

• Minima on potential energy surfaces, V(R1,R2…)
• Equilibrium structures (1% precision)
• Relative energies (to about 1 kcal/mole)
• Describes structure and thermodynamics

• Saddle points connecting minima
• Transition structures
• Barrier heights
• Link to reaction mechanisms

• Molecular properties, spectroscopy
• Chemical insight
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Complexity

• Many-body Schrödinger equation is a partial differential
equation in 3n unknowns– the positions of the electrons.

• Exact (brute force) solution will scale approximately
exponentially with the number of electrons.

• When done in a given basis of 1-electron expansion
functions, this is “full configuration interaction” (FCI).

• Largest FCI’s involve many-body expansions containing
billions of terms, for molecules with 2 or 3 of atoms (!).

• Approximations are imperative.  Accuracy vs feasibility.

Fundamental approximations

• (1) The one-body problem (“atomic orbital basis”)
• One-electron functions are expanded in a finite basis.
• We use atom-centered functions with some maximum

angular momentum (L) on atoms of a given period.
• Standardized basis sets of increasing L are available.

• (2) The n-body problem (“electron correlation method”)
• More about this in a minute… mean field is the simplest

possible treatment.

• Well-defined electronic structure models are completely
specified by these two approximations.

Branches of the family tree

• Wavefunction-based electronic structure theory:
• Minimize the energy by varying the wavefunction
• Tremendously complicated unknown function:

• Modeling the wavefunction yields “model chemistries”

• Density functional theory
• The unknown is very simple:
• Hohenberg-Kohn theorem guarantees that:
• True functional is unknown and probably unknowable
• Modeling the functional gives DFT model chemistries.

A brief overview of density functional theory

• First Hohenberg-Kohn theorem (1965):
• 1:1 mapping between ground state electron densities and Hamiltonians.

• Proof by contradiction: let H1 and H2 have the same ρ(r)
• Use Ψ2 as trial function in H1 problem
• Use Ψ1 as trial function in H2 problem

•         Contradiction:

A brief overview of density functional theory

• First Hohenberg-Kohn theorem (1965):
• 1:1 mapping between ground state electron densities and Hamiltonians.
• Ground state energy E is determined directly from the Hamiltonian
• Hence E is given in terms of the density, ρ(r).

• A formal construction exists for the exact functional,
• Constrained search over all wavefunctions yielding ρ(r) (!!!)

• So, in practice the functional must be modeled.
 
• Given a functional, and an external potential (nuclear field) ρ(r)

is found by minimizing over allowed densities.

Construction of model density functionals

• Need to model kinetic, exchange and correlation functionals.

• Largest energy contribution is the kinetic energy.
• No satisfactory kinetic energy functional yet exists.

• Kohn-Sham framework (a beautiful sidestep):
• Use the kinetic energy of a non-interacting system with the same electron

density (a Hartree-Fock type wavefunction).
• This leaves exchange and electron correlation (XC) to specify.
• Kohn-Sham computational cost: similar to mean-field Hartree-Fock.
• Still cheap enough to apply to large systems.
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Modern Kohn-Sham density functionals

• Local density approximation (LDA): 1960’s, 1970’s

• Functional depends only on the density at each point, ρ(r)
• LDA overbinds as much as Hartree-Fock (mean field) underbinds!

• Generalized gradient approximations (GGA’s): 1988

• Functional depends on density ρ(r) and its gradients ∇ρ(r) at each r
• Greatly improved results! 4-6 kcal/mol error for BLYP, PW91, PBE etc.

• Exact exchange mixing (adiabatic connection): 1992

• Mix some Hartree-Fock exchange with GGA’s (Becke)
• Best yet! 2-3 kcal/mol error for B3LYP

Computational steps in DFT calculations

(1) Given a guess at the density matrix, P, (describing the arrangement of the
electrons), make the Hamiltonian matrix describing their effective
interactions, F=F(P).

• Electron-electron, electron-nuclear and kinetic energy terms
• Electron-electron terms are computationally dominant: A2

• Includes Coulomb, (sometimes) exact exchange, and exchange-correlation
(XC) terms.

(2) Diagonalize the effective Hamiltonian to obtain the eigenvalues and
eigenvectors, and use them to make P.

• Computational effort proportional to A3

(3) If the new P is different to the old P, go back to (1).

Convergence with atomic orbital basis set

• Depends on the highest angular momentum (L)…

• Hartree-Fock (& DFT)
• Roughly exponential convergence with L… rapid.
• Still need at least f functions (on C,N,O…) for B3LYP thermochemistry

• Wavefunction-based correlation methods.
• L-3 convergence… very slow.
• Cost increases approximately as 24L… very fast.

• Achieving chemical accuracy feasibly is challenging.
• Particle number and angular momentum bottlenecks.

Summary of present status of DFT

• The only method in large-scale use for electronic structure studies in
condensed matter (using plane-wave expansions)

• The predominant method in use for electronic structure studies of molecules,
surfaces, and nanomaterials

– Basis set expansions are usually Gaussian “atomic-orbital-like” functions
– Standardized Gaussian basis sets are available for virtually all elements.

• Strengths of DFT:
– It is the sweet spot between accuracy and feasibility (already)

• Weaknesses of DFT:
– Not systematically improvable
– Computational cost is still high relative to empirical methods

Specific deficiencies of present-day DFT

• Self-interaction.

• An electron can literally interact “with itself” to a non-zero extent
• A defect of the exchange energy (seen in 1-electron systems)

• Complete absence of long-range dispersion forces.

• No Van der Waals!
• A defect of the “correlation energy”

• Why?

• Due to spatial locality in density functionals
• Exchange, correlation energy density at r depend only on properties of the

density at r.

B3LYP dissociation of H2
+ (0.65Å to 3Å)

3Å 0.65Å 
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B3LYP dissociation of H2
+ (3Å to 13Å)

3Å 13Å

Dispersion interactions and DFT

• Dispersion interactions
– Familiar in force fields as van der Waals interactions
– Determines stacking interactions & affects conformational energies
– DFT does not do dispersion!
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Prospects for significantly better functionals?

• How to make progress without destroying the simplicity of present-day density
functional methods?

– The functionals are (mostly) local in space

• Find local quantities which in some sense are diagnostics for cases where
delocalized exchange holes exist

– Quantities which depend on the kinetic energy density, and/or density hessians
– To date, the improvements over B3LYP are not sufficient to be useful.

• Eliminate self-interaction using the optimized effective potential (OEP).
– Exchange potential is now that which is due to the Kohn-Sham orbitals
– Requires the development of new correlation functionals, which are non-local.
– Not yet ready for chemistry

Outline

1.  Overview of density functional theory

2. Fast methods for Fock matrix formation
• Gaussian basis sets and matrix elements
• Coulomb interactions -- short and long-range
• A mention of exchange and correlation

3.  The diagonalization problem

4.  Excited states and time-dependent DFT

Computational steps in DFT calculations

(1) Given a guess at the density matrix, P, (describing the
arrangement of the electrons), make the Hamiltonian matrix
describing their effective interactions, F=F(P).

• Electron-electron, electron-nuclear and kinetic energy terms
• Electron-electron terms are computationally dominant: A2

• Includes Coulomb, (sometimes) exact exchange, and exchange-
correlation (XC) terms.

(2) Diagonalize the effective Hamiltonian to obtain the eigenvalues
and eigenvectors, and use them to make P.

• Computational effort proportional to A3

(3) If the new P is different to the old P, go back to (1).
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Linear scaling evaluation of Coulomb interactions

• We divide Coulomb energies and gradients into:
– (1) short-range (near-field) terms from overlapping functions
– (2) long-range (far-field) terms from nonoverlapping functions

• For the far-field, we employ the Continuous Fast Multipole
Method (CFMM):

• The CFMM collectivizes long-range interactions into multipole and
Taylor expansions, with control over numerical error.

• Generalizes Greengard and Rockhlin’s FMM to include “extent”
• C.A.White, B.G. Johnson, P.M.W. Gill, MHG: Chem. Phys Lett. 230,

8 (1994); 253, 68 (1996)

• For the near-field, we use an analytical J-matrix engine
• Energies: Y. Shao, MHG, Chem. Phys. Lett. 323, 425 (2000)
• Forces:  Y. Shao, MHG, C.A. White, J. Chem. Phys. 114, 6572 (2001)

One-particle basis sets in quantum chemistry

• Gaussian atomic orbitals are most commonly used:
• Analytical matrix element evaluation is efficient

• Un-normalized primitive Gaussian basis function:

• Contracted Gaussians:
– Degree of contraction K (e.g. 1-6)

• Basis sets are standardized.  The 3 lowest levels:
• Minimal basis set (STO-3G) (5 functions per C)
• Split valence basis (3-21G) (9 functions per C)
• Polarized split valence basis (15 per C)

Shells and shell-pairs

• For efficiency, basis sets are composed of shells
• A shell is a set of basis functions having common angular

momentum (L), exponents and contraction coefficients
• s shell (L=0)
• p shell (L=1): {x,y,z}
• d shell (L=2): {xx,yy,zz,xy,xz,yz}

• Shell pairs: are products of separate shells
• The shell-pair list is a fundamental construction
• One electron matrix elements involve the shell pair list
• Two-electron matrix elements involve the product of the

shell pair list with itself (Coulomb interactions).

The significant shell pair list

• If there are O(N) functions in the shell list, then, naively,
• The shell pair list is O(N2) in size
• The two-electron integral list is O(N4) in size

• The product of Gaussian functions is a Gaussian at P

• Pre-factor dies off with separation of the product functions, so:
• In a large molecule, there are only O(N) shell pairs

• There are a linear number of one-electron matrix elements
• There are O(N2) two-electron integrals (the Coulomb problem)

Two-electron integrals in DFT calculations

• The effective Hamiltonian (Fock operator) is:

• One-electron integrals (H) are very cheap*
• Exchange-correlation (XC) is a 3-d numerical quadrature,

which can be evaluated in linear scaling effort.
• Two-electron integrals arise in the Coulomb (J) matrix:

• And in the exact exchange (K) matrix:

Short-ranged density matrices

• The K-matrix is needed in hybrid DFT methods such as B3LYP.
• K is short-range, if the density matrix, ρ, is also short-range:

• A non-zero contribution to K is only obtained if:
• (1) The function pair (µλ) is significant
• (2) The function pair (νσ) is significant
• (3) The density matrix element (λσ) is significant

• This forces all 4 centers to be in the same region (linear scaling!)
• Schwegler & Challacombe, Burant & Scuseria, Ochsenfeld, MHG
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Fast multipole method (FMM)

• An O(N) method for summing O(N2) r-1 interactions
– L.Greengard, V.Rokhlin, J. Comput. Phys. 60, 187 (1985)
– L.Greengard, “The Rapid Evaluation of Potential Fields in Particle

Systems” (MIT Press, 1987).

– Innumerable subsequent contributions by many groups.  I shall follow our
own presentation here:

– C.A.White, MHG, J. Chem. Phys. 101, 6593 (1994)
– C.A.White, MHG, J. Chem. Phys. 105, 5061 (1997)
– C.A.White, MHG, Chem. Phys. Lett. 257, 647 (1996)
– M.Challacombe, C.White, MHG, J. Chem. Phys. 10131 (1997)

FMM fundamentals

• Based on the multipole expansion of r-1:

• Define chargeless multipole-like and Taylor-like moments:

• The expansion of an inverse distance is now simply:

Objective of the FMM

• The FMM is based on collectivizing interactions by
translating expansions to common origins and summing.

• It is a framework in which the collectivization is done
automatically in linear scaling work with bounded error.

• This is accomplished by:
• Developing operators to translate and interconvert

multipole and Taylor expansion coefficients
• Applying these operators to a division of space into boxes

as a binary tree structure.

A,B,C’s of the FMM

• Operator A translates the origin of a multipole expansion

• Operator B converts a multipole expansion about a local center
into a Taylor expansion about a distant center

• Operator C translates the origin of a Taylor expansion

• The scaling with angular momentum is clearly O(L4)

FMM step A: form and translate multipoles

• Use a 1-d example…

• Scale coordinates to [0,1]

• Divide space in a binary tree

• Place particles in finest boxes
– Make multipoles in those boxes

• Pass the multipoles up the tree
– Translate to center of parent box
– Sum contributions to parent box

1

2

3

4

A A A A A A A A

Pass 1

FMM step B: external to local translation

• Well-separated (ws) boxes:
– ws=1: beyond nearest neighbor
– ws=2: beyond next-nearest
– (preferred for high accuracy)

• External to local translation
– On each level of the tree
– Do this as high up as possible

• Bottleneck of the algorithm
– Constant work per box
– Number of boxes grows linearly

B
B

B
B

B B

1

2

3

4

Pass 2

B
B

B

B

B

B
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FMM step C: assemble local Taylor expansions

• For each parent box:
– Translate Taylor expansion
– To the center of each child
– Sum at each common center

• Repeat going down the tree

• At the end, at lowest level
– Taylor expansion is complete
– All well-separated interactions

• C

1

2

3

4

C C C C

Pass 3

FMM final step D: assemble potential

• “Far-field” contributions
– Represent the effect of all “well-separated” charges
– Come from the lowest level Taylor expansions in each box

contracted with the lowest level multipoles in this box

• “Near-field” contributions
– Are the explicit interactions from non-well-separated charges
– Are evaluated explicitly
– Linear scaling if the number of particles per box is constant.

• Doubling the number of particles hence adds 1 tier

Thinking about linear scaling in the FMM

• Imagine doubling the spatial extent of the system and the number
of particles (in 1-d).

• To keep the number of particles per lowest level box constant, we
must have twice as many lowest level boxes
– Increases the depth of the tree by 1 level (1 more subdivision)
– This doubles the number of boxes in the system

• (1-d, 3 tiers gives 1+2+4=7 boxes, 4 tiers gives 7+8=15)

• For steps A, B, C of the FMM, total work scales with the number
of boxes for the translations.

• For steps A, and D on the finest level, total work scales with the
number of particles, if this number is constant per box
– In step D, the work scales with the number of non-well-separated charges

(per charge) multiplied by the number of charges

Accelerating the translation operators

• The L4 scaling of the translations can be reduced to L3

by choosing special axes such that translation is along
the quantization axis, z (ie. θ=0; φ=0).

• The translation operators then simplify to:

• δ functions means O(L3)

• Modified translations:
– Rotate to special axes
– Translate along z
– Rotate back to original axes

Continuous fast multipole method (CFMM)

• Generalize the FMM to charge distributions with extent.
• C.A.White et al, Chem. Phys. Lett. 230, 8 (1994)
• C.A.White et al, Chem. Phys. Lett. 253, 268 (1996)
• See also CFMM-related work by Scuseria et al (1996--).

• Many other efficient alternatives exist
• Tree code work by Challacombe (1996--).
• Other multipole-based methods (Yang, Friesner, etc)
• Direct Poisson solvers; etc.

• The extent, rext, of a distribution is defined such that 2
distributions separated by the sum of their extents behave as non-
overlapping to target precision.

Well-separatedness and extent

• The extent of a distribution affects what other
distributions it may interact with via multipoles.

• Before, well-separatedness (WS) was a global parameter
• Now it cannot be because charge distributions may have

greatly varying extents, rext.
• We modify the definition of well-separateness to apply

to each charge distribution.  For box length l:

– For rext < l, WS=2, while for rext < 2l, WS=3, etc.
– WS values for a distribution depend on depth in the tree (via l)
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Extent of Gaussian charge distributions

• The Coulombic interaction of two spherical Gaussian
charge distributions can be represented in closed form as

• The erf factor rapidly approaches 1 with increasing r,
and the two distributions then interact as point charges.

• The CFMM achieves linear scaling by finding the point
at which two distributions interact as point multipoles.

– Absolute (right) rather than relative (left) precision is OK

Charge distributions in DFT calculations

• Two-electron interactions are between the shell pair list
• This generates a very large number of charges, very

roughly on the order of 100 times the number of basis
functions, which itself may be on the order of hundreds
to thousands.

• The significant shell pair list must have their extents
determined.

• We now need to sort these shell pairs by their position
and also by their extent.  The extent will determine what
other distributions they can interact with.

• This requirement adds another dimension to the tree.

Generalized CFMM tree structure

2

2 4

A     C     C     A A     C     C     A
2 4 6 8

161412108642

A   C C   A A   C C   A A   C C   A A   C C   A

Operation of the generalized tree structure

• Branch each level of the tree according to WS values
• Step A: form and translate multipoles

– Place distributions according to position and WS value in the
lowest level of the tree, and make multipoles

– Pass distributions up the tree, halving the WS value at each tier

• Step B: external to local translation
– Perform external to local translation on each level of the tree.
– Determine well-separateness as the average of the WS values

of the branches to decide whether or not to translate.

• Step C: translate Taylor expansions
– Pass Taylor coefficients down the tree to every branch

Final step (D) of the CFMM

• Evaluation of “far-field” contributions
– Use the Taylor moments in the lowest level box with the

appropriate WS value…

• Evaluation of the “near-field” contributions
– We now have a definition of the near-field interactions that

must be evaluated explicitly.
– This can be done via conventional two-electron integral

evaluation, or by specialized methods that are more efficient.
– We now turn to a discussion of this problem before showing

timings for representative systems.

Applying CFMM to the (far field) Coulomb force

• Consider displacement of an atomic center A:
• By definition, the far-field contribution is unaltered…
• Good news! Local Taylor expansions remain the same (ie.

Steps A,B,C are unaltered)
• Changes in the finest level multipole moments (to be

contracted with the unaltered Taylor expansions) occur
in 3 ways due to displacement of A:

• The shell pair pre-factor changes
• Pre-processed density matrix elements change (because

they depend on the AB distance)
• The effective center P itself changes

• But this only affects the last step (D), and is inexpensive
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2-electron repulsion integrals (ERI’s)

• Consider the simplest integral (no angular momentum)

– We recall (and see) this is an interaction between 2 shell pairs
– It may be evaluated as m=0 (note generalization to auxiliary

index, m, that will be used to add angular momentum) from:

Adding angular momentum: simplest way

• Angular momentum can be added analytically by differentiating
the fundamental ssss integral repeatedly.  Each differentiation
adds one quantum of L.

• If you really want to see an explicit example, consider:

– This process is tedious, error-prone and may be inefficient (one may redo
similar derivatives for different integrals).

Adding angular momentum by recursion

• To permit re-use of intermediates, recurrence-based formulations
are natural.  Our previous example can be re-cast in this way as:

• Obviously the recurrences become more complicated when higher
angular momentum is involved… a variety of efficient schemes
exist (McMurchie-Davidson, Obara-Saika and offshoots, Prism).

Explicit evaluation of J-matrix contributions

• The Coulomb contribution to the Fock matrix:

• Consider contributions from individual shell quartets
• E.g. 1296 dddd integrals for a dddd shell quartet contribute

to 36 elements of the J matrix (a single dd shell pair)
(Cartesian d functions)

• Objective: minimize the cost of this computation.

J matrix engine approach

• The 2-electron integrals are (bulky) O(L8) intermediates
leading to a (small) set of O(L4) J-matrix contributions.

• Is it possible to find a more suitable set of intermediates
for the specific purpose of producing the J-matrix?

• A different path through the recurrence relations?
– Reduce intermediates by early contraction with density.

• Completely eliminate much of integrals evaluation?
– Move work from shell quartet to shell pair loops

– C.A.White and MHG, J. Chem. Phys. 104, 2620(1996).
– Y.Shao and MHG, Chem. Phys. Lett. 232, 425 (2000).

A McMurchie-Davidson J Engine (Yihan Shao)

• Consider a primitive shell quartet [ab|cd]:
• P (Gaussian product center of bra functions A and B ), and

Q (center of ket functions C and D) are its natural centers.

• McMurchie-Davidson recurrence relations permit
efficient build-up of angular momentum at P and Q.

• Transfer relations to move angular momentum to/from
center P and centers A and B are independent of the ket.

• Work associated with these steps can be removed to shell-
pair loops (Ahmadi and Almlof, 1995)
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A McMurchie-Davidson J Engine (Yihan Shao)

• Pre-processing (shell pair loops: free)
• Preprocess density matrix to center Q from C and D

• Shell quartet loop calculations of near-field J-matrix:
• Build the fundamental [0](m) integrals.
• Create angular momentum at Q only.
• Contract with the preprocessed density matrix at Q
• Create angular momentum at P.

• Post-processing (shell pair loops: free)
• Post-process J-matrix from center P to centers A and B.

Floating point operation counts (Yihan Shao)
(expressed per J matrix contribution)

 present HGP 

(pp|pp) 28.1 160.2 

(dd|dd) 69.3 792.3 

(ff|ff) 141.4 2630.3 

(gg|gg) 226.2  

 

 

HGP is J-matrix evaluation from the two-electron integrals.

Generalization to the Coulomb force (Yihan Shao)

• The algorithm can be generalized for the Coulomb force.
– Y.Shao,C.A.White, MHG, J.Chem. Phys. 114, 6572 (2001).

• Floating point operation counts for several shell quartets:

present HGP ratio

(pp|pp) 509 8,030 15.7

(dd|dd) 4,105 154,030 37.5

(ff|ff) 18,504 1,284,000 69.4

Computer timings: one-dimensional alkanes

Timings: 3-d close-packed diamond-like clusters Linear scaling K (LinK) for exact exchange

• Linear scaling K (LinK) method is used for the exact exchange
part of the Fock matrix and for analytical gradients.

• LinK uses locality of the density matrix to obtain linear scaling of exact
exchange, as needed in B3LYP and HF

• Linear scaling is achieved for good insulators, but performance
degrades for small gap systems

• Exchange cost, even for good insulators, is higher than the Coulomb
cost (because the J-engine cannot be used for exchange).

• C. Ochsenfeld, C.A.White, MHG, J. Chem. Phys. 109, 1663 (1998)
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Linear scaling quadrature for exchange-correlation

• Exchange-correlation (XC) functionals are complicated functions that depend
on:

• Matrix elements of these XC functionals cannot be analytically evaluated (by
contrast with ordinary operators)

• We use the “standard grids” (SG0 and SG1) of Gill et al, which are atom-
centered grids (~103-104 points per atom).

• Locality of the basis functions permits linear scaling evaluation of the
quadrature for these matrix elements.

– Substantial improvements in Q-Chem due to Shawn Brown, Jing Kong, using an
“incremental” approach…

Density functional methods: typical timings

– BLYP/6-31G** (25 functions per water)
– Timings in minutes on a 500MHz Alpha (you’ll do better!)

Calculations performed by Yihan Shao (Berkeley)

Outline

1.  Overview of density functional theory

2.  Fast methods for Fock matrix formation

3.  The diagonalization problem
• Short-ranged nature of the density matrix
• Curvy steps and Chebyshev polynomials

4.  Excited states and time-dependent DFT

Solving for the energy and density matrix

• The objective is to minimize the energy.   The tight-binding
problem represents one SCF iteration:

• The density cannot be minimized without constraints.  There are
two types:

• Idempotency (purity): ensures that the density matrix derives from a
single Kohn-Sham determinant

• Electron number.

Density matrix locality in real space (Roi Baer)

• R. Baer, MHG, JCP 107, 10003 (1997)

• For ordered systems, density matrix elements decay exponentially
with distance.

• The range (for 10−D precision) is bounded by:

• Decay length proportional to inverse square root of gap.
• Electronic structure of good insulators is most local

⇔  occupied orbitals can be well localized.
• Metals and small gap semiconductors are more nonlocal

⇔  occupied orbitals cannot be well localized.

Number of significant neighbors versus precision
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Computational implications

(1) Only a linear number of density elements are significant on
length scales longer than the decay length.

(2) When the linear scaling regime is reached depends on the
effective dimensionality, d, going roughly as nd

10 significant neighbors ⇒ 10, 100, 1000 atoms in 1,2,3-d

(3) An ansatz will be required to develop effective fast methods on
systems below the linear scaling regime.

(4) We must work directly in a localized basis to reflect real space
locality in sparse matrices.

General approaches to linear scaling

A good review: S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

How do we avoid N3 diagonalization & get linear scaling?

(1) Solve directly for the density matrix
LNV, canonical purification, Chebyshev, etc.

(2) Solve for localized orbitals via domain conditions

(3) Divide and conquer by splitting the system

We shall discuss our most recent work on the first approach…

Curvy step approach

• If we are given a valid guess density matrix…

• Then unitary transforms preserve idempotency and electron count

• How should we parameterize the unitary transform?
– Products of 2-by-2 Jacobi rotations?
– Cayley form?
– Exponential of an antisymmetric matrix?

P
0
P
0
= P

0
tr(P

0
) = n

U
†
U = 1 P = U

†
P
0
U

PP = (U
†
P
0
U)(U

†
P
0
U) = U

†
P
0
P
0
U = U

†
P
0
U = P

tr(P) = tr(U
†
P
0
U) = tr(P

0
UU

†
) = tr(P

0
) = n

Curvy steps are geodesic displacements

0! =

( )!P

tangent vector
parametrized by Δ

geodesicP(0)

P(!) = e
"!#

P(0) e
!#

• Unitary transformations:
– A subset of square matrices
– Defines an embedded hypersphere
– Best directions will be great circles

• Great circles (geodesics):

– Δ is an antisymmetric matrix.

– See Edelman et al.,
SIAM J. Matrix Anal. Appl.,20, 303 (1998)

U = e
!

Geometric direct minimization (Troy Van Voorhis)

• Directly minimize SCF energy, on the curved manifold
– Apply preconditioning to sub-space BFGS
– Parallel transport old vectors
– Robust convergence
– Troy Van Voorhis and MHG,

Mol. Phys. 100, 1713 (2002).

Parallel transport of 
tangent vector Δ

Geometrically-correct conjugate gradient

Sparse multi-atom blocking (Saravanan, Shao)

• Exploit structure of matrices
– Local atom-centered atomic orbitals

• Grouping by atom is thus possible
– Explored by Challacombe
– Blocks are still small (~2-15)

• Instead seek multi-atom blocks

F
IJ

< thresh
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Sparse multi-atom blocking (Saravanan, Shao)

• There will be an optimal block size due to trading off:
• Sparsity -- decreases with larger blocks
• Efficiency (indexing, LAPACK) -- increases with block size
• Saravanan, Shao, Baer, Ross, MHG

J. Comput. Chem. 24, 618 (2003)

Newton curvy steps for linear scaling SCF

• Perform minimization of the pseudo-energy:

– Equivalent to diagonalization (if fully converged).  Combine with DIIS.
– We use a sliding convergence criterion

• We experimented with conjugate gradients and Newton steps.
– Solve for the Newton step by conjugate gradients.
– We find taking just a single Newton step is optimal.
– Perform all linear algebra in the Cholesky orthogonalized basis (avoids

metric problems of the AO basis and retains sparsity)

• See: Shao, Saravanan, MHG, White, JCP 118, 6144 (2003)
MHG, Shao, Saravanan, White, Mol. Phys. 101, 37 (2003).

E
SCF

= tr(FP)

Curvy steps approach achieves linear scaling

• Timings below for 2-dimensional water sheets.
– Timings are much better for 1-d systems, much worse for 3-d.
– Competitive with canonical purification
– Shao, Saravanan, MHG, White, JCP 118, 6144 (2003)

canonical
purification

curvy steps

diagonalization

The Chebyshev polynomial method

• Diagonalization with constraints can be written as:

• The step function is not analytic.  It is often written as the zero-T limit of the
Fermi-Dirac distribution:

• But we could equally well use T > 0 (β < ∞), as long as the HOMO is 100%
occupied and the LUMO is 100% empty…

– Raising temperature… smoothes the step function… which allows use of finite
order polynomial expansions…

– Developed by Goedecker et al, Baer et al, Scuseria et al, and others
– But too many matrix multiplies to be competitive with best alternatives.

Matrix polynomial evaluation

• Clearly the rate-determining step in Chebyshev approach
– Is it done done with optimal efficiency?  NO!

• Consider a polynomial of order p:

• Simple evaluation requires p-1 matrix multiplies because all
powers of X are required.  Build up powers order by order, and
increment the sum.

• Let’s focus on a specific example: p=24 (23 multiplies)

Horner form of the non-binary subdivision

• Subdivision of the polynomial by a number approaching √p…
– Arrange the matrix powers in Horner form for greatest efficiency

• 8 multiplies if I count right… still same number of additions

• This algorithm was (first) discovered by Paterson & Stockmeyer
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Matrix multiplies and saved intermediates

– p is the degree of polynomial.
– M is number of matrix multiplies.  Savings tends to ½√p
– S is the number of saved matrices.  The number tends to √p

39

31

17

15

10

S

781600

621024

35336

30256

21128

Mp

CPU times for dense matrix polynomial evaluation

• CPU times (in sec.) for evaluating matrix polynomials of degree p
for a dense matrix of side length 422

131331024

862480

533256

423180

t(fast)t(conventional)p

Chebyshev polynomials

• Order p Chebyshev polynomial is a polynomial of degree p.  The
polynomials are defined by:

• Our polynomial results generalize to Chebyshev polynomials.
The only difference is that the coefficients change in the
resummed series, by simple recurrences.
– See J. Chem. Phys. 119, 4117 (2003).

Accelerating the Fermi Operator approach

• (1) We use the fast matrix polynomial summation methods to
evaluate the high order expansions that arise from representing
the smoothed step function.

• For degree p, the number of matrix multiplies is reduced towards 2√p
• This will make a dramatic difference!

• (2) We test whether other forms of the smoothed step function
permit use of lower order polynomials (for given precision) than
the Fermi-Dirac distribution.

• This also turns out to make a difference!
• Complementary error function approaches 0 and 1 more smoothly,

permitting smaller polynomial length for given accuracy.

Alternative forms of the smoothed step function

• They change at different rates between 1 and 0.
• Thus different beta values are needed for given precision
• And different degrees polynomials are needed
• Leading to different numbers of matrix multiplies

Polynomial degrees and matrix multiplications

• Test example is C60H122, BLYP/STO-3G
– Error is the deviation in the energy (a.u.) vs diagonalization.
–  p is degree of polynomial, M is number of matrix multiplies

2.8×10-639412exp

1.1×10-631269tanh

1.1×10-631269FD

1.2×10-621129CEF

errorMpfunction
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Polynomial degrees and matrix multiplications

• Test example is C60H122, BLYP/STO-3G
– Error is the deviation in the energy (a.u.) vs diagonalization.
–  p is degree of polynomial, M is number of matrix multiplies

2.8×10-639412exp

1.1×10-631269tanh

1.1×10-631269FD

1.2×10-621129CEF

errorMpfunction

Comparison of methods: 2-d water clusters

• CPU times (sec) for water clusters made of cells each with 8
waters via CEF versus diagonalization.

8026746-31G**(H2O)128

1112116-31G**(H2O)72

91.742.4STO-3G(H2O)288

40.121.1STO-3G(H2O)200

11.010.5STO-3G(H2O)128

1.43.4STO-3G(H20)72

t(diag)t(CEF)basissize

Numbers of matrix multiplies: 2-d systems

• Water clusters with STO-3G:
– 27 MM’s via CEF

• Water clusters with 6-31G**
– 43 MM’s via CEF

• Compare against about 10 or so for dense matrix
multiplication.

Outline

1.  Overview of density functional theory

2.  Fast methods for Fock matrix formation

3.  The diagonalization problem

4. Excited states and time-dependent DFT
• A sketch of the theory
• Charge-transfer excited states
• Application to non-photochemical quenching

Wavefunction picture of ground and excited states

• Ground state:
• Zero order picture is mean-field theory… electrons paired

up in molecular orbitals
• Mathematically this is Hartree-Fock theory
• Brillouin theorem: HF determinant is uncoupled from

single excitations.  Leading ground state correction is
doubles.

• Excited states:
• Zero order picture is mixtures of single excitations… since

they are Hamiltonian-uncoupled from the ground state
• Mathematically this is single excitation CI (CIS).

Time-Dependent Density Functional Theory for
Excited States.

• Hohenberg-Kohn and Kohn-Sham theorems
– Runge, Gross, PRL 52, 997 (1984)

• First numerical tests on closed shell molecules
– Bauernschmitt, Ahlrichs CPL 256, 454 (1996)
– Jamorski, Casida, Salahub, JCP, 104, 5134 (1997)

• Limitations for Ryberg states, higher excited states
– Casida, Salahub et al, JCP 108 4439 (1998)
– Tozer, Handy JCP 109, 10180 (1998).
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Sketch of Time-Dependent DFT

• Begin with the Kohn-Sham equation of motion:

• Apply time dependent perturbation, and look for natural
resonances in the linear response.  The result is:

• TDDFT looks like RPA with a dressed response matrix,
and the dressing is formally exact.

• Tamm-Dancoff approximation (B=0) simplifies TDDFT
to have the form of CIS with dressed response:

• So Hirata, MHG, CPL 314, 291-299 (1999)

TDDFT versus Exact Excited States

• TDDFT is formally exact, but…

• in practice, 2 severe approximations are required:
• Inexact ground state exchange-correlation functional
• Adiabatic approximation for response.
• TDDFT does not involve adjusting any parameters using

experimental excitation energies!

• Numerical tests are essential to assess the validity of
TDDFT within these approximations.

Significance of dressing the response matrix:

• Consider partitioning the exact response matrix:
←⎯  singles
←⎯  everything else

• Solve for an effective response matrix in a subspace

• This dressed matrix is very complicated, because it is
energy dependent:  Aeff = Aeff(ω)

• By contrast, the TDDFT in the adiabatic approximation
yields a very simple dressing: no energy dependence...

Aeff a =ω a

Naphthalene+•: TDDFT vs CASPT2 (So Hirata)

State CIS TDDFT CASPT2 Expt. 

2B1u 2.20 1.05 0.99 0.73 

2B2g 2.49 2.16 1.89 1.9 

2B3g 3.53 2.78 2.70 2.7 

2Ag 5.71 2.92 --- (2.7) 

2B1g 5.70 2.97 --- (2.7) 

2B3g
 3.83 3.53 3.24 3.25 

2B2g
 4.25 3.75 3.98 4.02 

2B2u
 --- 3.87 --- --- 

2B1u
 4.60 4.19 4.03 --- 

2B2g 6.23 4.33 4.44 4.55 
 

Zn bacteriochlorin - bacteriochlorin interactions

• Phenylene-linked

• Model complex

Lowest TDDFT excited state is 1.33 eV

• charge transfer state: pure HOMO → LUMO transition

• LUMO

• HOMO
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A 1.33 eV charge-transfer excited state?

• If true, non-radiative quenching of fluorescence from
the Q states could occur into this state (and the others).

• But, it is impossible, based on simple electrostatics!

IP(ZnBC) = 5.6 eV
EA(BC) = − 0.4 eV
r ≈ 5.8 Å

!
CT

r( ) > IP
ZnBC

+ EA
BC

"1 / R

ωCT  > 2.7 eV

TDDFT BLYP/6-31G* excited states (model)

Vary r

CT states
do not show

Coulomb
attraction!

Why is the Coulomb attraction missing?

• Present-day TDDFT suffers from “self-interaction” error.
• An electron can artificially see itself

• Exact exchange is essential to get the Coulomb interaction
associated with charge transfer…

• CIS

• TDDFT

• The kernel is local in standard density functionals, so this
vanishes when i and a do not overlap…

A.Dreuw, J.Weisman, MHG, JCP 119, 2943 (2003), JACS 126, 4007 (2004)

Why are the charge transfer states much too low?

• In Hartree-Fock theory, (εa− εi) is an estimate of the CT
excitation energy

• Unlike Hartree-Fock theory, the same potential is used
to obtain occupied and virtual eigenvalues in DFT.
– LUMO is hence more strongly bound than by Hartree-Fock

• This is a self-interaction error which is not correctly
cancelled by the exchange potential.

A work-around to calculate charge transfer states

• CIS is free of the self-interaction problem… but does not properly
describe correlation and relaxation…

• A hybrid CIS/DFT approach for charge-transfer states.
– Get lowest CT state at large separation by ground state DFT
– Compute the same state at the same separation (r0) by CIS.
– The difference defines a “correlation+relaxation” offset, by

which the full CIS potential curve can be shifted.

– Combine with regular TDDFT for intramolecular excitations
• A.Dreuw, MHG, JCP 119, 2943 (2003), JACS 126, 4007 (2004)

!
CT

r( ) =!
CT

CIS
r( ) + !

CT

DFT
r
0( ) "!CT

CIS
r
0( )#$ %&

Excited states via the hybrid TDDFT/CIS approach
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Non-photochemical quenching (NPQ)

• Non-photochemical quenching (NPQ) is the partial shutdown of
light-harvesting under high-light conditions in green plants.

• Correlates with production of the carotenoid zeaxanthin (Zea)
from violaxanthin via the xanthophyll cycle.

• What is the mechanism of energy relaxation from an excited
chlorophyll (Chl) molecule?

• Could a dimer between Zea and Chl be involved?

• Calculations in collaboration with Graham Fleming’s group.

Carotenoid-chlorophyll interactions

• Zeaxanthin
11 conjugated bonds

• Violaxanthin
9 conjugated bonds

• Chlorophyll a
(simple model)

Zea-Chl Dimers (Andreas Dreuw)

Cofacial-middle

Vertical-middle

TDDFT again fails for charge transfer (CT) states

• TDDFT/TDA BLYP/3-21G calculations
• Lowest CT state is unphysically low (error  ⎯→ 3 eV)

(We calculate IP(zea) = 4.96 eV, EA(chl) = −1.25 eV)
• CT states do not show Coulomb attraction at long distances !!

Zea-Chl excited states (Andreas Dreuw)

S1 state is lower than Qy:
singlet-singlet excitation 
energy transfer is possible,
at all separations. 

At r < 5.5 Å a CT state is
also lower than Qy:
electron-transfer quenching
becomes possible.

A.Dreuw, G.R.Fleming & MHG, J. Phys. Chem. B 107, 6500 (2003)

A.Dreuw, G.R.Fleming & MHG, Phys. Chem. Chem. Phys. 5, 3247 (2003)

Charge transfer state (Andreas Dreuw)

attachment-detachment
density plots

Molecular orbitals

HOMO

LUMO

A

D
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Orientational dependence of zea-chl excitations Violaxanthin-Chlorophyll dimer

S1 is lower than Qy state:
singlet-singlet excitation 
energy transfer is not 
possible. 

At r < 4.8 Å a vio-to-chl 
CT state is lower than Qy:
electron-transfer quenching
is possible.

Violaxanthin is the precursor to zeaxanthin– 2 double bonds shorter
What do Vio-Chl dimer excited states look like?

Conclusions

• Continued testing and development of TDDFT is needed
• Charge-transfer states fail with standard functionals

• Charge-transfer states may play a significant role in NPQ
• An experiment looking for transient absorption from the Zea radical

cation is a signature of the dimer…
• This appears to require complex formation– relatively close approach

of zea and chl in the favored orientation.

• Resonant energy transfer between Chl and Zea is also possible.
Differences between Zea and Vio account for NPQ.

Q-Chem 2.0: A review of features and capabilities

J.Kong, C.A.White, A.I.Krylov, C.D.Sherrill, R.D.Adamson, T.R.Furlani,
M.S.Lee, A.M.Lee, S.R.Gwaltney, T.R.Adams, C.Ochsenfeld,

A.T.B.Gilbert, G.S.Kedziora, V.A.Rassolov, D.R.Maurice, N.Nair,
Y.Shao, N.A.Besley, P.E.Maslen, J.P.Dombroski, H.Daschel, W.Zhang,

P.P.Korambath, J.Baker, E.F.C.Byrd, T.Van Voorhis, M.Oumi,
S.Hirata,

C.-P.Hsu, N.Ishikawa, J.Florian, A.Warshel, B.G.Johnson, P.M.W.Gill,
M.Head-Gordon, J.A.Pople.

Journal of Computational Chemistry (2000) 21, 1532
(Special issue on ab initio methods for large molecules)


