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Preface

This text is intended for a one-quarter or one-semester course at the first- or
second-year graduate level. It discusses how symmetry concepts, orbital nodal
patterns, and molecular topology can be used to make statements about
energetics in chemical reactions. It also differs from commonly used texts that
only consider how orbital-symmetry constraints allow or forbid various reac-
tions in its more rigorous approach. Introductory chapters explain the physical
origins of orbital-, configuration-, and state-correlation diagrams, Jahn-Teller
instability, internal conversion, and intersystem crossing. These sections are
for students who desire a rigorous understanding of the physical origins of
these concepts as they relate to thermal and photochemical processes. These
discussions are not unduly long, however, and they contain sufficient physical
interpretations to make them valuable reading for graduate students and
researchers in all areas of chemistry. Following the introduction of the
physical principles, applications to explicit thermal and photochemical reac-
tion problems show the practical uses of these tools. These examples, which
are written in a tutorial style, should appeal to all students of chemistry.

Most one-semester introductory courses on quantum chemistry and two-
quarter combined courses on quantum chemistry and spectroscopy should
provide adequate background to understand the material in this text. Some
concepts of group theory also appear; more advanced topics are taught in the
text as needed. General ideas of Hartree-Fock molecular orbital theory
sometimes come into use, but only to the extent that they are absolutely
necessary. Little is said about numerical application of molecular orbital
methods; instead, emphasis is placed on the conceptual use of orbitals and
their symmetries in chemical reactions. Three appendixes are provided for the
reader to review or to learn the requisite background material dealing with ab
initio molecular theory, molecular-point-group symmetry methods, and the
photon absorption process that prepares molecular reactants for subsequent
photoreaction. For the reader who wishes to test his or her mastery of the
material, two sets of problems are provided.

This text is the result of a one-quarter graduate course taught to first-year
graduate students in physical, organic, and inorganic chemistry at the Univer-
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sity of Utah. I wish to thank the students who have contributed to its develop-
ment. I also wish to acknowledge much helpful input provided by several of
our graduate students and postdoctoral fellows—David Chuljian, Judy Ozment,
Ron Shepard, and Ajit Banerjee—as well as the support and advice given by
my colleagues Poul Jgrgensen, Bill Breckenridge, and Josef Michl.

June 1983 Jack Simons
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Part 1

Underlying
Physical Principles

In the first three chapters of this text we show how to express, in quan-
titative terms, certain concepts that are widely used in a qualitative man-
ner in chemical education and research. Specifically, we analyze how
one defines potential energy surfaces and reaction coordinates, and we
examine the conditions under which these concepts break down. By
observing how the reaction coordinate varies as the reaction proceeds
from reactants, through one or more transition states, to products, the idea
of symmetry conservation is developed. In Chapter 3 we discuss the con-
cepts of orbitals, electronic occupancies (configurations), and electronic
states, and we show why symmetry conservation applies at each of these
three levels.

The ultimate goal of this text Is to permit the reader to predict whether
any postulated chemical reaction should experience a large activation
energy barrier and, thereby, be forbidden. To make such predictions, one
must be able to visualize the reactant molecules moving on a potential
energy surface that Is characteristic of elther the ground state or an ex-
cited electronic state. Such qualitative visualization can be carried out
only after one has achleved a good appreciation of the electronic struc-
tures (l.e., orbital shapes and energies, and orbital occupancies) of the
reactants, products, and likely transition states. The first three chapters of
this text develop these important tools.

The level of presentation in these first three chapters Is substantially
more sophisticated than in most other books that deal with symmetry in
chemical reactions (for example, Pearson, 1976; Woodward and Hoffmann,
1970; Borden, 1975; or Fleming, 1976). This level Is especially relevant to
physical chemists whose research requires a quantitative interpretation of
experimental data—modern research In chemical dynamics and spec-
troscopy often demands the use of such theoretical tools. Likewise, it Is
important also that researchers who wish to make qualitative use of sym-
metry ideas be aware of the origins and limitations of such concepts.
Therefore, although the vast majority of the examples treated in later



chapters make only qualitative use of the theoretical machinery covered
in Chapters 1-3, it Is essential that all modern researchers be well founded
in the physical origins of these valuable symmetry tools. It is recommended
that readers who are not familiar with the foundations of molecular orbital
theory and point-group symmetry read Appendixes A and C before at-
tempting to master these first three chapters.




Chapter 1

Potential Energy Surfaces

As will become clear shortly, a potential energy surface is merely a construct of
one’s imagination. It is an idea that has proved to be of immense value for
conceptualizing chemical reactions but that loses its rigorous content in certain
circumstances. Within its range of approximate validity, a potential energy
surface can be thought of as the topographical map describing the terrain on
which the reactant molecules must move on their route to a transition state and
then onward toward the geometrical arrangement of the product molecules.
To understand better what these potential energy surfaces are, it is useful to
examine how they arise in the quantum mechanical treatment of the motions
of the nuclei and the electrons that comprise the reactant molecules.

The Hamiltonian function describing motion of a collection of nuclei of
masses M, and charges Z,e and electrons of mass m and charge —e is

e 45 ﬁ ZZ;,e
i E[ M, ,; IR, Rﬂ]
g e’ Z.e?
+;[ 2mvi+2 E [ri =1y Zu; |ri =Ra| |’ 1)

where (R,, r;) refers to a coordinate system that is fixed in space and not on

the molecule.

It is convenient to rewrite the Hamiltonian in terms of molecule-fixed
coordinates instead of absolute coordinates. Two such coordinate transforma-
tions might be used. First, one could introduce the fofal center of mass

= ﬂi{r[zn: M,R, + ): mr}.

. in which M is the total mass of all nuclei and electrons and coordinates relative
to R. This is a good and natural choice but one that is not convenient once the
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idea of clamped nuclei, which we will use repeatedly, is introduced. If the
nuclei are held fixed and the electrons move, the center of mass, which is the
coordinate origin, could move; as a result, what was ascribed to electronic mo-
tion would include some center-of-mass motion. As will become clear shortly,
our desire to think of the nuclei as fixed is important; the clamped-nuclei con-
cept rests at the center of our ideas of potential energy surfaces.

A second transformation uses the center of mass of the nuclei to define a
molecule-fixed coordinate origin

R=2 ¥ MR;M =1 M.

Because the electrons are so light, this position will almost be the true center of
mass, and this location will remain fixed if we later clamp the nuclei. Upon ex-
pressing the positions of the nuclei and electrons as R plus internal or relative
position vectors (for which we now use R,, r;), the above Hamiltonian can be
written, for a diatomic molecule,

”=?[(-ﬁ )-E 125 e Vg r,|]

Z.Z,e? #?
+ ﬁT zpv"“ R~ E L[ e
a = Iy

(1.2)

in which p, the reduced mass of the nuclei is M, M, /M. Pack and Hirschfelder
(1967) show the details of how both this transformation and the total-center-
of-mass transformation mentioned above are carried out. For a more com-
plicated molecule, only the fourth and fifth terms would differ; the fourth
would be

Z,Z,
E |R. — ;al

and the fifth would be the internal kinetic energy operator, which we label Ay,
describing the vibrations and rotations of the nuclei. As an example, consider
a triatomic molecule ABC. For such a molecule 3N — 3 = 6 such coordinates
are needed, and these could be the vectors R- — Ry and R, — R or the lengths
|Rc—Rg|, |Rs — Rg|, and the angle 6,pc and three Euler orientation angles.
The choice is up to you and should be made to simplify the treatment of the
vibration/rotation problem, which Wilson, Decius, and Cross (1955) treat in
elegant detail. The seventh term in equation 1.2, the motion of the nuclear
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center of mass, separates exactly. Hence, this motion is uncoupled from the in-
ternal electronic and vibration/rotation motion and will therefore be assumed
to have been removed from further consideration (by separation of variables).

The first four terms and the sixth term in equation 1.2 are usually combined
and called the electronic Hamiltonian (h.) because they contain differential
operators only for the r; coordinates. Notice that the electronic energy will
then contain the repulsion of the nuclei, so the potential energy curves will
become infinitely repulsive as two nuclei approach one another. The sixth
term, sometimes called the mass-polarization term, usually has small effects
because it is multiplied by the inverse of the total nuclear mass M (a small fac-
tor) in contrast with the electronic kinetic energy term, which has a h*/2m
multiplier (a large factor). Hence, it is common (but not necessary) to ignore
this term in writing A.. See Pack and Hirschfelder (1968) for further justifica-
tion of this idea.

In seeking eigenstates y of H = h, + hy, it is usual to introduce the eigen-
functions of 4, as a basis for expressing the r; dependence of . What does this
mean? Since h, is a Hermitian operator in r; space (which also contains
reference to the locations of the nuclei), the eigenfunctions ¢, of A,

he(rl‘] Ra)¢k(ri | Ru) = Ek(R¢)¢k(r!‘ | Ra) (1.3)

form a complete set of functions of r,. Note that A, depends on R, even though
it is not an operator in the R, space. Hence, the E, and ¢, will vary as R,
varies. However, for any specific R,, the set of {¢,} is complete in r; space.
Hence, because it describes motion of electrons and nuclei, the fofal wave
function ¢, which depends on r; and R,, can be expanded to yield

¥, R = Y oa(ri| R)Xk(R,) (1.9)
k

in which, for now, the Xx(R,) can be viewed as ‘‘expansion coefficient func-
tions’’ that are to be determined from the equation Hy = EY.

Substituting the expression for ¢ in equation 1.4 into the fotal Schrodinger
equation, premultiplying by ¢(r;|R,), and integrating over the electronic
coordinates {r;}, we obtain for a diatomic molecule (analysis of polyatomic
molecules is more tedious but gives rise to no new features)

ﬂl
E s (@] [h DXk — EdaXy — A (DxV Xk + Xa Vi
k
(1.5
+2Vl¢,.°VRX;,)]dr1dr2. . .dl‘N =0
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in which the symbol R is now used for the internuclear distanceR = |R, —R,]|.
Recall that the center-of-mass motion has been removed. Using equation 1.3
and the orthonormality of the {¢.], this equation reduces to

& "2 #?
E:—E—z_ﬂvn X,=-!-¥ ;vk¢kdfx1¢§’;

2
+3 %‘- j ¢}'Vn¢kdr-vnx*]. (1.6)

The primary fact to notice in equation 1.6 is that there is coupling between
the electronic states ¢, and ¢, caused by the fact that ¢, and ¢, depend upon
R, and, hence, vary as R, moves. Thus, the ¥ function of equation 1.4 cannot
be expressed as a single product ¢,.X, but requires all of the electronic wave-
functions to describe even a single fotal state wavefunction. Faced with the
problem that it is not possible to express the exact solution as an electronic
wavefunction multiplied by a vibration/rotation function, an approximation
is needed. Two approximations are described in the following section.

1.1. Born-Oppenheimer and Adiabatic Approximations

In the Born-Oppenheimer approximation, al/l of the terms on the right-hand
side of equation 1.6 (including the ¢, = ¢, term) are ignored. This procedure
is equivalent to assuming that y can be approximated as ¢,X; and that ¢; does
not vary (strongly) with R,. Then, equation 1.6 is the Schrodinger equation for
the motion (vibration/rotation) of the nuclei in the potential energy field
E/(R,) = Vi, namely,

ﬁl
(— 5 Vit V,)x, = EX,. | .7

This equation states that the electronic energy, which certainly depends on
where the nuclei are located, provides the potential energy surface on which
the nuclei move. (Note that this potential surface is different for different elec-
tronic states labeled by /.) Thus, equation 1.7 is nothing but the vibration/
rotation (V/R) problem and X, is one of the V/R wavefunctions for the /th
state. In other words, X; = X,,;and E = E,,;; v and J are the vibration and
rotation quantum numbers.

In the adiabatic approximation, the k& = [/ terms on the right-hand side of
equation 1.6 are retained. As a result, the potential surface felt by the nuclei
also includes the terms
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#? fi?
S o! (— % Vﬁdn) dr and S 7 (— = Vg(b;)dr‘vk.

The V/R wavefunctions X; then also depend upon these ‘‘non-Born-Oppen-
heimer (BO) correction terms.’”’ Very few calculations in the literature have
included such corrections. In the nonadiabatic approximation one attempts to
keep all, or at least the most significant, terms in equation 1.6, but ab initio
calculations at this level have been done only on very small systems (see Kolos
and Wolniewicz, 1963, 1964, 1965).

Whenever we have two or more surfaces (E; and E;) that come close
together, we must consider the coupling of their electronic and nuclear mo-
tions. The usual way to think of this is to assume that the two unperturbed
problems (ignoring the right-hand side of equation 1.6) for ¢,X$,; and ¢,X3,, ;.
have been solved. Then we attempt to represent the true y as a combination of
these two most important terms with unknown coefficients. The resulting 2 x 2
secular problem has diagonal elements E$,; and E,.;.; for specific choices of
vJ and v’J’ these elements can be nearly degenerate. The off-diagonal terms
are

ﬁz
g (01X3,s | (VEd2)X3, s + 2(Vrd2) VeX3yu-)-

These non-Born-Oppenheimer coupling matrix elements, which determine the
splitting between the two potential surfaces, will be large in regions of R-space
in which the electronic wavefunctions are expected to undergo large changes in
their bonding characteristics (for example, when changing from ionic to
covalent bonds or when breaking old bonds and forming new bonds).
Although it might not be important to be able to perform quantitative ab
initio quantum calculations that include non-Born-Oppenheimer terms, it is
important to understand when such terms are likely to be large, because it is
under these circumstances that the concept of the separate or uncoupled poten-
tial energy surfaces (V;) breaks down. Alternatively, the idea of potential
energy surfaces can be kept, and the coupling terms on the right-hand side of
equation 1.6 can be viewed as giving rise to transitions from one surface to
another. Such so-called radiationless transitions become important when the
potential energy surfaces of the electronic states ¢, and ¢, approach or in-
tersect one another. This problem of the rate of transitions among surfaces
will be treated in more detail later (Chapters 5 and 6), when photochemical
processes in which a molecule is prepared in an excited state are considered.
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1.2. Intersections of Potential Energy Surfaces

In section 1.1 reference was made to electronic potential energy surfaces that
intersect. Let us now briefly examine the circumstances in which two surfaces
actually can “‘cross’’ one another. Consider a pair of approximate electronic
wavefunctions ¢, and ¢, that might correspond to two different electronic
configurations (e.g., Na*, CI” and Na-, Cl) of the same molecule. Alternatively,
one could be referring to the coupling of zeroth-order Born-Oppenheimer
wavefunctions to yield the full non-Born-Oppenheimer v, as discussed above.
In the former case, the 2 X 2 secular problem that results from using these two
functions as a basis for approximating the correct electronic wavefunctions ¢,
and ¢, has energy levels given by the expression

E, = .;—[h,, + haa £ V(hy — ha)* + 4hf,] (1.8)
in which
y= Sé?h,du dr. (1.9)

To make the two energy levels E, equal (for surface intersection) it is necessary
that h,; = hy; and hy; = 0 at the same geometrical point(s). For a diatomic
molecule, the elements A, are functions of R only, so it is not generally possible
to find R-values at which borh of the above conditions are met. As a result,
potential energy curves of diatomic molecules do not cross (unless ¢, and ¢,
have different symmetry and h,, is identically zero for all R). For a general
molecule with N atoms, there are 3N — 5 (linear) or 3N — 6 (nonlinear) vibra-
tional degrees of freedom upon which E, can depend. By insisting that
hyy = hyy and hy; = 0, the dimension of the space in which E, can intersect is
reduced to 3N — 7 or 3N — 8 (for two states of the same symmetry for a non-
linear molecule). Hence, states of the same symmetry can cross, though they
cross on a surface whose dimension is two less than that of the potential energy
surfaces on which the molecule is moving. As a result, the molecule does not
frequently encounter such crossing geometry, so the fact that the surfaces may
actually cross at special points is not particularly important. The essential
point is that when surfaces approach one another closely (e.g., in the neighbor-
hoods of crossings), transitions are likely to occur. (The rates of these transi-
tions are discussed in Chapter 6.) The extension of the above analysis to
intersections among more than two surfaces is nontrivial and has been given by
Alden Mead (1979).

In summary, the potentral energy surfaoes upon which chemists usually

' ~nd whatnacrhamical
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Figure 1-1

Potential energy surface of X'L ground-state HCN as a function of the location of the H atom for
fixed CN bond length. The minimum on this surface is located at the linear (§ = 180°) geometry
with the H atom bonded to the C atom.

reactions can be thought of as solutions to the Born-Oppenheimer version of
the electronic Schrodinger equation (equation 3). The dependence of these
electronic energy levels {E;} on the internal coordinates of the molecule is what
generates the potential surfaces that are depicted in many texts (for example,
see Eyring, Walter, and Kimball, 1944; Pearson, 1976). This concept is il-
lustrated in Figures 1-1 and 1-2 by contour graphs of the potential energy sur-
faces of the ground (X‘E) and nr* exc:ted (C A’) states of HCN as functions

Y s I Y Falil 2 LR b PR B
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Figure 1-2

Potential energy surface of the C'A’ state of HCN as a function of the location of the H atom for
fixed CN bond length. Note the potential well at an HCN angle near 140 ° and the barrier at 180°.
Dashed contours are lower in energy than the solid contours.




Chapter 2

Symmetry and
Potential Energy Surfaces

In this chapter two points are considered: (1) the information provided by the
shape and topology of a surface and (2) how the shape of the surface makes the
nuclei (molecular framework) move in a way that might lower the symmetry of
the molecule.

In general, a potential energy surface is a function of 3N —5 or 3N -6
internal coordinates. For example, for HCN these coordinates could be rcy, rens
and Oycn. At local minima on the energy surface small displacements of any of
these internal coordinates [.X;} increase the electronic energy. (Note that more
than one minimum might be present, as, in the case of HCN and HNC.) Hence,
at the local minima, the slopes or gradients vanish,

& &

and the curvatures are positive, that is,

3’E
(a—[‘,‘z)m > 0, 2.2)
and
9’E
det (GX‘BXJ) i > 0. (2.3)

An alternative statement is that the gradients vanish and the eigenvalues of the
Hessian matrix (32E/dX.3X;) are positive. Notice that it is possible that
although equations 2.1-2.3 are obeyed, the potential well located at this
minimum may not be deep enough to hold a bound vibrational state (if the
zero-point vibrational energy is greater than the dissociation energy of the well).

At an activated complex or transition state, equation 2.1 is still valid for
all coordinates, but along one special direction (which generally will be some
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HtH,

Figure 2-1

Schematic plot of potential surfaces for the exchange reaction H + H; — H; + H. The central
point is symmetric H3, which is at a maximum in energy. The dashed lines are the reaction coor-
dinates actually followed.

combination of all of the X;—that is, Q, = L a,.X)) the curvature is negative,
3%E/3Q? < 0, with all other curvatures belng positive. This direction is called
the reaction coordinate. If this direction is followed away from the transition
state, the slope dE/3Q, becomes nonzero. In particular, if we move along Q,
in a manner that maintains all other slopes at zero, namely dE/3dX; = 0 and
32E/aX? > 0, then it is said that one is ‘“‘walking along a reaction path.”’
There may, of course, be more than one reaction path and more than one tran-
sition state on the potential energy surface of a molecule, which simply means
that there is more than one reaction event that this molecule (or ‘‘super’’
molecule) can undergo. By super molecule is meant the total system consisting
of all atoms involved in the reaction. For example, H,CO can undergo decom-
position to yield either H, + CO or H + HCO. Hence, H,CO, H, + CO, and
H + HCO all consist of the same super molecule.

From the above discussion, we see that the reaction coordinate Q, traces
out the *‘valley floor,’”’ defining the reaction path that connects the reactants
to the activated complex (where even dE/3Q, = 0). Because a ‘‘mountain
pass’’ such as that described above for the activated complex has only one
direction of negative curvature, it cannot connect more than two valleys, and
hence the reaction coordinate Q, must be nondegenerate at the activated com-
plex. Figure 2-1 illustrates this situation; it should be clear that the top of the
mountain cannot be an activated complex. Lower-energy pathways exist for
getting from one valley to another, and along these lower-energy paths there
are nondegenerate motions with negative curvatures that have a point at which
9E/0Q, =

Tt ic nat trna thot the cnardinatec of 2 molecule actuallv move only along
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potential surface; the internal motion of a molecule depends both upon the
surface and upon how the collision occurs (initial molecular orientations,
velocities, etc.). However, it is still useful to learn how to follow the reaction
coordinate from local minima characterizing reactants through the activated
complex to products. If this path can be followed, one might be able to predict
whether the energy of the activated complex is high (i.e., if a large activation
energy is expected). Hence, even though we are primarily interested in energetics
(in contrast to the actual dynamics that the molecule undergoes on the surface),
knowledge of the shape of the potential surface is important. To carry out
dynamic studies of reaction mechanisms requires knowledge of the potential
energy surface(s) at all geometries that are energetically accessible—not only
along Q.. Although such studies are becoming common in modern research in
chemical dynamics, we shall focus on considerations of energetics and hence
be satisfied to walk along or near Q,.

From the slopes and curvatures of a potential energy surface at some
starting geometry [R?}, automated algorithms (Cerjan and Miller, 1981;
Simons, Jgrgensen, Taylor, and Ozment, 1983) can be used to walk along Q,
from {RY) to some new geometry {R2). Continuing this step-by-step procedure, a
transition state can eventually be reached. Further walking leads to the product
state determined by this particular transition state. Such step-by-step walks are
now routinely carried out in theoretical studies of chemical reactions. In this
book, such walks will be conceptualized but not performed quantitatively.

The concepts just described relating to the shape of a potential energy sur-
face can be used to determine whether an electronic wavefunction ¢,, which
has energy E, at a starting geometry {Qf}, corresponds to a local minimum
(e.g., stable conformer), to a transition state, or to some point lying along the
reaction coordinate. These conclusions can be made more quantitative. To do
so, the dependence of the electronic Hamiltonian, which determines the energy
surfaces, on the internal coordinates of the molecule must be examined.

The only term in A(r;|R,) that is an electronic operator and depends on
R, is the electron-nuclear coulomb interaction

Vi = — Y Z.e%|r, — R, |7\

Consider now how this interaction energy would change if some geometrical
coordinates were changed by a small amount. The coordinate Q that is changed
may be some combination of the x, y, and z position coordinates of each of the
nuclei (Q = EC,'R,). The change in V_, caused by a small change in Q can be
expressed as *

Wa _ S 1. (9Ra) 7 4)
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The derivative Vi V., is a vector containing the X,, Y,, and Z, derivatives of
V... For example,'

“_a—h Ven el Ezaez‘ r;— Rﬂ l _3(Xl' i Xu)s (2°5)
X, - .

in which X; and X, are the x coordinates of the ith electron and the ath
nucleus, respectively, Notice that dV_,/d X, has X-symmetry as an operator in
the space of the electrons, so Vi V,, is a vector whose three components have
x, y, and z symmetry as electonic operators. The dR,/dQ term is nothing but
the change in R, accompanying a unit change in Q. The reaction coordinate
can also be written as a linear combination of the elementary nuclear coor-
dinate displacements. In fact, the elementary displacements, which are 3N -6
or 3N — 5 in number, can be combined (see Wilson, Decius, and Cross, 1955)
to give an equal number of symmetry coordinates (Q,):

Q: = Y CyR,, 2.6)
E

in which the {R;} are the x, y, or z displacement coordinates. Conversely, it is
also possible to express the displacements in terms of the symmetry coordi-
nates, namely,

R; = (€™ Q2.7

As will be seen shortly, only distortions that are totally symmetric con-
tribute to the slope of the potential energy surface when one is on the reaction
coordinate. Hence, for motions along the (symmetric) reaction coordinate Q,,
the derivative term appearing in equation 2.4 can be related to the symmetry
coefficients C,;,

g
'é__iQr" = (C ). (2.8)

That is, dR;/9Q, is merely the element of the inverse transformation matrix.
For example, in H,O there are two stretching coordinates

Q. = }5 (@rom, % Aroy,). 2.9)
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The inverse transformation is

Arop,, = ;713 Q.+ Q). (2.10)
Hence,
3Aronm W62 0 @.11)
0. 2’ :

since Q, is the reaction coordinate (at the equilibrium geometry of H,0), these
derivatives are the values needed in equation 2.4. For the treatment of more
complicated symmetry coordinates, see Wilson, Decius, and Cross (1955).

An important point is that dV_,/dQ has the same symmetry (when con-
sidered to be an electronic operator) as Q itself has (when considered as a func-
tion of nuclear positions). How is this fact useful? Let us assume that we have
an electronic wavefunction, which from now on we denote as y,, that obeys
the relation

h.(r:| R0 = EoR)Wo (2.12)

(i.e., the electronic Schrodinger equation at a geometry RY = Q°). Perturba-
tion theory will first be used to compute the change in the electronic energy Eo
that accompanies a small change in some coordinate Q. The perturbation is the
change in A, brought about by a small movement in the Q direction

h(ri|Q) = h(ri| Q)+ Gh/IQIAQ +5-@*h/IQHAQ? + - - -

= WO+ V. (2.13)

' The change in the electronic energy E, can be expressed (through second order
in AQ) using conventional perturbation theory (Eyring, Walter, and Kimball,
. 1944) as

V|¥0)eo!?
Eo(Q) = Eo(Q%) + (Wo| V|Vo)go + L ¥ V] ¥0)gol

2 Eo(Q%) - ExQY) s

AT

e

_in which the ¥, are the other eigenfunctions of 4. at Q°.
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2.1 Slope of the Energy Surface: First-Order Jahn-Teller Effect

Clearly the only term that is linear in AQ appears in the (Y| V| o) g factor
and gives our approximation to the siope of the potential surface along the Q
direction

(3Eo/3Q)g0 = (Yo|dh./3Q|¥0)gr
= Y (0R./3Q) (Vo |— Y Z.e*/|ri — Ra|(r; — RJ)| ¥o)
a i

+LOR./30)° T —Réﬁ;—l,— ®, - R.) @.15)

The second term in equation 2.15 comes from taking the derivative with
respect to Q of the nuclear-nuclear coulomb repulsion terms (F,,) that were
also included in A, (these terms are not functions of the electronic coordinates).
Because ¥, is a totally symmetric function of the nuclear positions (i.e., it
displays the symmetry of the nuclear framework), any distortion Q that is not
totally symmetric yields a¥,,/dQ = 0. For example, the antisymmetric stretch-
ing coordinate of H,O does not change V., since it moves one H atom closer to
the O while the other moves farther away (the H—H distance remains constant).
Thus, ¥, contributes to the slope of the surface only for totally symmetric
distortions.

What about the symmetry effects in 1,,? We saw earlier that d¥,,/3Q has
the same symmetry as Q. If y, is nondegenerate (i.e., not symmetry
degenerate), the product ¥y, is totally symmetric, and thus the integral
(Vo |0V¥../3Q| Vo) will vanish unless 3¥,,/3Q, and hence Q, is also totally sym-
metric. Therefore, for nondegenerate states only totally symmetric distortions
contribute to the slope of the potential surface; other kinds of motion auto-
matically yield 3¥,,/3Q = 0 and (Yo |3V./3Q|¥e) = 0. At a minimum or at
a saddle point, even the symmetric distortions give a total slope of zero, since

IVn/3Q = —(Yo|3Vea/ 3Q|V¥0)

at these special points. From the definition of Q,, the reaction coordinate has
to be totally symmetric if ¥, is nondegenerate, because the slope of the poten-
tial surface along Q, is assumed to be nonzero except at local minima or at ac-
tivated complexes.

What if y, is degenerate? In this case, the symmetry of Y3y, contains at

least one elemcnt that is not totally symmetric and that itself may or may not
1 i o P S W ir a rimnle and waell.lbnnwn reenlt that is treated in

8 L als Bls
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(Vo|dV/3Q|¥o) (but not to 3¥,,/3Q) is also possible. Moreover, motion
along such nonsymmetric directions (in one or the other + sense) will lower
the electronic energy, so such degenerate points on the surface are generally
not activated complexes (since the slope is nonzero at degenerate points).
Hence we conclude that a degenerate state will generally be unstable to distor-
tion along a nonsymmetric direction (which thereby lowers the overall sym-
metry of the molecule). If this nonsymmetric distortion is itself degenerate
then, though some of the original symmetry of the molecule may be lost, it is
possible that not all of the symmetry is broken (by these linear (Yo |3V,,/3Q| Vo)
terms). Molecules for which these slope terms are nonvanishing for degenerate
states are said to be unstable with respect to first-order Jahn-Teller (FOJT)
distortion. Of course, the symmetry of gy also contains A4, (the totally sym-
metric element), so symmetric distortions also give rise to nonvanishing slopes
for degenerate states. However, such symmetric distortions will generally
preserve the degeneracy of the state yo.

At this stage of the analysis of movement along the reaction coordinate,
the following points have been established about the potential surface: (1) At
the activated complex, Q, cannot be degenerate because a mountain pass can
connect only two valleys; that is, the surface can have only one direction of
negative curvature. (2) If y, is nondegenerate, Q, must be totally symmetric.
(3) If a point is reached at which y, is degenerate, a nonsymmetric motion will
distort the molecule, thereby lowering its energy (remaining in the valley) and
lowering its symmetry (so this motion is now symmetric in this lower-
symmetry point group). This behavior of the reaction coordinate—that is,
totally symmetric—makes the symmetry of y, unchanged (except when v is
degenerate) and leads to the concept of connecting states by symmetry (sym-
metry conservation).

2.2 Surface Curvature: Second-Order Jahn-Teller Effect

The effects of terms that determine the slope of the potential energy surface
have just been described; now, curvature terms—those quadratic in Q,—will
be examined.

The quadratic terms are mainly of concern in regions of the potential sur-
face at which the slopes are zero but at which the system might be unstable
because it is at a saddle point—for example, at the activated complex. Equa-
tion 2.8 has two such terms. The first term

(o |3*V/3Q7| Yoy g

concerns the recsnonse of the “frazan?’® chareoe dencitvy ~f . ta n ~hnnas in



18 CHAPTER 2

symmetry), and 3>V/dQ? has the same symmetry as Q2. Hence, the term
(¥0|3*V/ dQ%| yo) is generally nonzero; in fact, it is also positive. This can be
seen by evaluating 32V/3Q%

3’V __ 0R,
E aQ "3R.9R, Q0 -’ (1%

aQ’
Recall that V contains ¥, and ¥, terms. Because
d*/dx?|x—y|™ = —4xé(x—y),

(see page 69 of Arfken, 1970) the expression can be evaluated. For ¥,,, note
that Z,Z,|R, — R,| ™" contains R, — R, in a symmetrical fashion; thus,

3/0Ry|R, —Ry|™" = —3/0R.|R, —Ry|™".

Therefore,
Ve _ 4y Y7.2,6%R. - Ry @17
aR,IR, -

and
W _ 4r7.7,6*5R. —Ry),fora # b. (2.18)
dR,0R, : : !

Since the nuclei never are located at the same position, these & functions
vanish.

Using the above 8-function identity, 32¥,,/8Q? can be evaluated as

Ve 3V,

m = ;(-Zaez)(““ﬂ')&(fi —R,) and _afi:éiT = 0.
Thus,
%ZQz EE(aR./aQ)’4=re‘Z.6(n R,). (2.19)
i

The expectation value of this term gives the first term in the curvature, namely,

Vol(@*¥n/3Q% W0 = Y 47Z.e*(3R./3Q)*p(R.) (2.20)
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in which p(R,) is the electron density in state Y, at the nucleus at R,,. Clearly,
this contribution tv the curvature is always positive and will be nonzero for
any symmetry of o, since 32V/3Q? is totally symmetric. The negative cur-
vature of the surface at an activated complex is a result of a second contribu-
tion to the curvature. This is given by

Y1 ¥kl @V/3Q| Yo | 2(Eo — EN)"

k#0

and is always negative (if |, is the ground state) because E, — E} is negative.
Earlier, it was shown that 3V /3dQ has the same symmetry as Q. Therefore, if Q
is totally symmetric (as it is along the reaction coordinate where y, is
nondegenerate), the excited state y; must have the same symmetry as . On
the other hand, if Q is not symmetric, which might occur at a minimum or
maximum point at which all dE/3dQ = 0 (and hence consideration of the
quadratic terms in Eo(Q) becomes essential), or if o were degenerate, so that
Q leads to distortion of the molecule, then the symmetry of y, is dictated by
the direct product of the Q and v, symmetries. Notice that because the slope of
E, is zero at the activated complex, the energy variation is now dictated by the
quadratic terms, which can now allow Q, to be nonsymmetric.

Clearly, for these negative curvature terms to become important (and
even dominant, as they are at an activated complex), the symmetry of y, must
be correct and the energy splitting E, — E; must be small. This situation occurs
when a chemical bond is broken. For example, at large internuclear distances
the ¢ and o'0*! configurations of HCI are reasonably close together in energy.
Because dV/dQ is a one-electron operator, the excited states ¥, that can couple
" most strongly with ¢ are those that are singly excited relative to y, (Condon
and Shortley, 1957; Cook, 1978). As a result, negative curvature along the
reaction path should be possible when there are low-lying excited states that in-
volve single promotions of electrons from bonding orbitals in , to antibond-
ing orbitals in ;.

To gain more insight into why ¥ and y, should be related in this anti-
bonding/bonding manner, recall that we are looking (using perturbation theory)
at the response of the system (Yo, Eo) to a small displacement of the nuclei
(Jgrgensen and Simons, 1981). The energy response has already been discussed
above. The change in the wavefunction caused by the perturbation V is given by

Vo— Yo+ E(lt'ﬂ VIYo)(Eo — Ex) " Yi (2.21)
K20

(Eyring, Walter, and Kimball, 1944). Thus, the electron density y gy, changes
(through first order in the chanee in M hv an amonnt
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Y20 80n (Vx| 3V/3Q| Vo) (Eo — E)™ = Y 5pox. 2.22)
k#0

k#0

Where épox is positive, the electron density increases as the motion along Q
occurs; where it is negative, electron density decreases. The symmetry (i.e., the
nodal pattern) of §pox can be determined by looking at the symmetry of ygys.
If Yo and ¥, are approximated by Slater determinants (Cook, 1978) that differ
by a single orbital replacement (¢ — ¢1), the nodal pattern is that of the orbital
products ¢g¢x. The positive nuclei will move to regions at which dpox is
positive (i.e., in which electron density piles up) and will leave regions in which
&pox is negative.

Consider, for example, the H,O molecule at its equilibrium geometry.
Since Y is nondegenerate, all of the slope terms vanish. What about the cur-
vatures? Excitation of an electron from the bonding @, OH orbital to its anti-
bonding a, partner gives a g, pattern of the form

e

which is consistent (according to the above analysis of the integrals arising in
the curvature terms) with a symmetric stretch distortion. The bonding b, to
antibonding b,6pox also looks like

F e

which is also consistent with a symmetric stretch. On the other hand, the
a; — b, or b, — a, excitations have a pox of the form

FI

which is consistent with an antisymmetric b, stretch. Of course, we do not ex-
pect any of these excitations to give rise to large (negative) contributions to the .
curvatures in this particular (H,0) case. Their excitation energies, which occur *

sies dnmee Are arars Inrea gince thev involve
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excitations are more than outweighed by the positive contributions arising
from the terms shown in equation 2.20. This is, of course, expected here, since
we are considering H,O at its equilibrium geometry and negative curvature is
not anticipated.

Before proceeding to the application of the ideas presented in the first two
chapters, it is useful to review the facts that have been established about the
reaction coordinate, the activated complex, and the slope and curvature of the
surface along Q,. Remember that the goal is to be able to use this information
to move along Q, from reactions, through an activated complex, to products
in order to estimate the activation energy for a reaction. As this path is taken,
the symmetry of the wavefunction remains conserved except when the state
becomes degenerate (first-order Jahn-Teller) or when low-lying singly excited
states come into play and give rise to second-order Jahn-Teller distortions.




Chapter 3

Review of
Molecular Orbital and
Configuration-Mixing Ideas

Chapters 1 and 2 describe what a potential surface is and how a reaction path
moves along the surface. In this chapter we discuss briefly how to obtain such
surfaces. Knowledge of the procedure is important because it relates to the ac-
tual numerical evaluation of potential energy surfaces and, furthermore,
because it makes one think about those electronic configurations that are likely
to be important in describing chemical reactions. These ideas are presented
more thoroughly in Appendix A.

Consider again the hypothetical dissociation of H,O. At its equilibrium
geometry this molecule has molecular orbitals with a,, b,, and b, symmetries.
The 159, 0oy, 0&4, and lone pair orbitals in the molecular plane all have a, sym-
metry. Another ooy and o3, orbital pair has b, symmetry, and the p, orbital
directed perpendicular to the molecular plane has b, symmetry. As we saw
above, the ooy — 03y, @y — b, or b, — a, orbital excitations of H,O may play
important roles in the asymmetric dissociation to give OH + H. Hence, we expect
that the 1a32a71b33a?1b3, 1ai2ai1b,3a}1bi4a,, and 1a32a,1h33a21632b, con-
figurations should be important in describing this fragmentation. Although
the orbitals having a, and b, symmetry can only be labeled as @’ once the C,,
symmetry is broken (b, becomes a”), we can immediately tell that the first con-
figuration above cannot possibly describe OH + H because all orbitals are
doubly occupied, whereas the radical fragments OH + H have two singly oc-
cupied orbitals. The other two configurations do have the correct orbital occu-
pancy to describe OH + H. However, at the equilibrium geometry of H,O,
this first configuration dominates the electronic wavefunction because it has
two pairs of bonding electrons. Hence, as H,O fragments, a substantial
change in the electronic structure is expected to occur when moving from one
dominant configuration to another.

Before proceeding further to specific examples, one must learn how to
construct wavefunctions whose energies give us the desired potential energy
surfaces. In the conventional molecular orbital model of electronic structure
(Cook, 1978; Pilar, 1968) there are three levels of analysis of wavefunctions:
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the orbital, configuration, and state-function levels. The electronic wavefunc-
tion of a given state is usually expressed as a linear combination of configura-
tions, each of which is expressed in terms of Slater determinants over
molecular orbitals (see Appendix A). In some circumstances, the state
wavefunctions of the reactants and products may be smoothly connected (cor-
related) by way of the reaction coordinate, though the orbitals or orbital occu-
pancies (configurations) of reactants and products may not correlate smoothly.
Recall that we are directed to correlate or to connect orbitals, configurations,
or states by the observation that Q, is totally symmetric (except where vy, is
degenerate or when second-order Jahn-Teller effects dominate), and hence,
movements along Q, cannot change the symmetry of Y.

3.1 Molecular Orbitals: Symmetry of the Fock Operator

Let us recall from Chapter 1 how Hartree-Fock (HF) molecular orbitals, which
are probably the most widely used orbitals, are obtained. (For those readers
who wish to review the fundamental steps involved in ab initio molecular or-
bital calculations, a brief overview is provided in Appendix A.) A Fock
operator can be constructed from a particular orbital occupancy that is assumed
to dominate the true wavefunction at the geometry at which one is located [we
now write the operators in atomic units as in Pilar (1968)]:

Fim Vz E |l. + E 54"“2) v P"i ®u(r2) dra 3.1)

in which p extends over all of the spin orbitals that appear in the presumed
dominant electronic configuration. Clearly, the first two terms in F commute
with the symmetry operations of the molecule because they depend on R, in a
symmetrical manner. If the ¢, are nondegenerate and symmetry-adapted (this
will often be true in so-called symmetry-restricted HF calculations), ¢(r2)$,(r2)
is totally symmetric: therefore, even the coulomb part of the last term in F will
commute with all symmetry operations. To show that the exchange part is also
symmetric is more difficult.

Consider the commutator of the exchange operator X with any symmetry
operation ¢

[o, K1é(r) = o(r) S K(r, r2)¢(rz) drz — SK (r, r2)o(r2)é(r2) dra  (3.2)

in which the kernel K(r, r;) is defined as

-~ i L .
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Now using the fact that symmetry operators are unitary (¢* = ¢~*), we obtain

S K(r, r2)o(r2)¢(rz) dra = S [U_‘(TZ)K(I" r2)]é(r2) dr, 3.4
and hence
[o, K]o(r) = S [o(r) — o' (®)IK (r, r2)o(r2) dr.. (3.5)

From equation 3.3 it should be clear that K(r, r;) contains r and r, in a sym-
metrical manner. Moreover, for abelian point groups (those with no degener-
ate representations; see Cotton, 1963), o' = 0. Therefore, o(r) — o7'(r2)
operating on K(r, r,) would give zero, and the commutator [¢, K] vanishes.
For nonabelian groups ¢! is no longer 0. However, if the sum over occupied
spin orbitals {0,} has equal occupancy for sets of (degenerate) orbitals that are
related to one another by symmetry (i.e., o¢, = ¢,.), then the overall sum
arising in o(r)K(r, r;) will be the same (although not term-by-term) as that in
o '(r2)K(r, r;) and again [o, K] = 0. The main point is that [o, F] = 0 im-
plies that the eigenfunctions of F, which are the Hartree-Fock molecular or-
bitals, will also be eigenfunctions of ¢ and, hence, will be symmetry adapted.
As a result, all of the rules for correlating states (Yo, ¥x) that are discussed
above immediately apply also to these Hartree-Fock orbitals since F has all of
the same symmetry as A.. This means that symmetry conservation applies to
orbitals and to total wavefunctions.

Now let us review how the Hartree-Fock equations are solved for the
molecular orbitals. First, an atomic-orbital basis set coumstmg most likely of
orbitals of the Slater {r"" ~try,.) or the Gaussian (x°y®z¢™>"") type is chosen.
These basis functions generally are located on each of the nuclei in the molecule
being studied. Minimal, double-zeta, or extended bases including polarization
functions are common choices, Tabulations of good basis sets are available for
the ground-state normal chemical-valence states of most first- and second-row
atoms as they occur in molecules. For example, good Gaussian bases are given
by Huzinaga (1965) and by Dunning (1970, 1971). If the state of interest has
unusual behavior (i.e., ionic states, Rydberg states, or many low-lying excited
L states), it is necessary to explore the effect of adding more and more atomic
basis functions. The importance of this basis-set selection step cannot be over-
¢ emphasized; without a good basis, one has little chance of achlevmg meaning-
. ful results.

. Once an atomic basis is obtained, all one-electron (kinetic energy, over-
£ lap, and electron-nuclear interactions) and two electron ((ab [cd)) mtegrals are

evaluated farith A ~Aamerntesdy A ihie bon iy the <nl-
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symmetry-adapted functions {X;} and to generate the one- and two-electron in-
tegrals over these symmetry functions.

The matrix elements of the Fock operator are then constructed (Roothaan,
1951) within the symmetry-adapted basis. This is done symmetry-by-symmetry
since F is block-diagonal. To construct each block of F all (i.e., those belong-
ing to all symmetries) of the occupied spin orbitals [¢,] must be available.
However, these Hartree-Fock molecular orbitals are not yet known, so an
iteration process is used (Cook, 1978). With the aid of a computer one can
guess the form of the occupied molecular orbitals; this is done by specifying
the expansion coefficients (C,;} of ¢, in the symmetry-adapted basis:

T T e o (3.6)

The guess can be made either on chemical grounds (e.g., ¢, = lso for H,0)
or, as in most computer programs, by first solving the equation

Fo, = €,0, (3.7

ignoring the coulomb-and exchange contributions to F. The orbitals that result
from the latter procedure are usually not chemically reasonable because they
respond to only the isolated nuclei—no electron repulsion (screening) effects
were included. Nevertheless, these initial orbitals can be used to construct a
new F operator whose matrix elements (in the symmetry-adapted basis) are
defined by

Fop = <Xc ---E-V,z

+ 10 Y CuaCul (Xexal XXr) = (XeXa| XrX5)s,5.]s (3.8)
u df

- Eyliglo)

(Roothaan, 1951) in which g runs over the occupied spin orbitals and 65”,& in-
dicates that the spin (o, ) of ¢, must match that of x. for the exchange term
to contribute. The form of the Fock matrix given in equation 3.8 is ap-
propriate for performing a spin-unrestricted Hartree-Fock (UHF) calculation.
There are two different F matrices for the o and 8 spin orbitals. Therefore, the
molecular orbitals computed for o and B spin generally differ. Numerous
techniques exist that attempt to overcome this somewhat inconvenient fact
(different orbitals for different spins), so a single Fock matrix can be used to
generate Spatial orbltals that are appropnate for both o and B spins. We will

L P il PV da o amnhaciza tha
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of their solutions for special cases. These are treated in a clear manner by
Cook (1978).
Having formed F (using the crude {C, 4}), we solve

FC, = ¢,8C,. (3.9)

in which § is the overlap matrix, for a new set of [C,} coefficients that are then
used to form a new F and, subsequently, a new set {C,]. This iterative self-
consistent-field (SCF) procedure is continued until the {C,] no longer vary
from iteration to iteration.

The results of such an SCF calculation are a set of occupied and unoc-
cupied (virtual) orbitals {¢,] and orbital energies {e.}. For example, for a
double-zeta basis of H,0, there are fourteen x. functions (eight s and six p).
Hence, F is a 14 x 14 matrix having fourteen eigenvalues and fourteen
eigenvectors. Of the fourteen SCF orbitals, only five are occupied in the
ground state (1a32a?1b33a$1b}); nine are virtual or unoccupied orbitals. Keep
in mind that the words occupied and virtual only refer to the occupancy which
you guessed to start the SCF procedure. We saw earlier that as H,0 is pulled
apart to give OH + H, the occupancy changes. Thus, for OH + H it would be
more natural to use the ‘““open shell’’ configuration to define occupancy.

3.2. When Can Orbital Energies be Added?

Before closing this discussion of orbitals, let us review (Cook, 1978; Pilar,
1968) the expression for the total electronic energy Ey in the Hartree-Fock
approximation:

Eg = Y, “-%—E(uuiﬁ‘ﬁ), (3.10)

in which x and » run over the occupied spin orbitals and {u»| %) represents the
coulomb interaction integrals minus the exchange integrals (Cook, 1978) over
the Hartree-Fock molecular orbitals. It is important to note that the sum of the
occupied orbital energies does not give Ey;, because, through F, each ¢, con-
tains interactions between ¢, and all other ¢, orbitals. Hence, the sum L e,
doubly counts the electron-electron interactions. As a result, the second term
in equation 3.10 is needed. Although Ey: + 3 L. (Z.Z,/R ;) is not equal to
the sum of orbital energies plus the nuclear repulsion energies, the changes in
this energy accompanying molecular distortion can, for neutral molecules,
often be approximated well by the changes in L, ¢,. This approximation works

) A R
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on different centers. That is, the subtracted electron-electron repulsions in-
volving orbitals on different atoms cancel the repulsions of the corresponding
nuclei (at least at large bond length). This cancellation does not occur for ions
because there are ‘‘extra’’ or ‘‘missing’’ electrons whose repulsions are not
cancelled. One more thing must be stressed at this time: even though the shape
of the HF-level potential energy surface might be well represented by the shape
of L, e, the entire Hartree-Fock picture rests on a guess of the dominant elec-
tronic configuration occupancy and the assumption that y, and E¢ could be
accurately represented by a single determinant wavefunction. If the guess is
wrong, or if the correct electronic wavefunction requires more than one con-
figuration to describe reality qualitatively (e.g., in H,O as it fragments into
OH + H), the shape of the Hartree-Fock surface will probably not be correct.

3.3. Configuration Construction and Mixing

In the preceding sections the means by which molecular orbitals are defined,
calculated, and correlated by symmetry along the reaction coordinate have
been described. This information is not, however, sufficient to allow a statement
about how the wavefunctions are to be symmetry-correlated—other information
is needed about how the orbitals are occupied in the state wavefunction .
This amounts to specifying the electronic configurations that are important in
describing y, throughout the entire range of the reaction coordinate. Many
sophisticated ab initio computer programs (Shavitt, 1978) have configuration-
selection subroutines that choose those configurations of the proper symmetry
whose energies (expectation values) are low in order to represent the ground or
low-lying excited states accurately.

In most chemical reactions, by using information about the orbital energy
variations and estimates of electron repulsion energies, we can guess those few
configurations likely to dominate y,. For the asymmetric fragmentation of
H,0, we expect both the (1-4)(a’)?*(1a”)? and the (3a’)?> — 3a’5a’ configura-
tions to be important. The former configuration dominates Y, near the
equilibrium geometry of H,0, whereas the latter dominates for OH + H. For
the OH + H geometry the (1-4)(@’)*(1a”)? configuration corresponds to
OH™ + H*. At the equilibrium geometry of H,O, the (3a’)*— 3a’5a’ con-
figuration describes a singly excited state of H,O that has one OH bond
broken (i.e., 03,001 -08u-).

In general, we first consider how the orbitals of the reactants and prod-
ucts symmetry-correlate along the reaction coordinate. This is done by simply
ordering the orbitals of reactants and products by their energies and by con-
necting the orbitals of the same symmetry by ‘‘correlation lines.”’ Then we at-
tamnt tn writa Aason all acennancies (configurations) of these orbitals that are
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electronic energy. From this list of dominant configurations, a qualitative dia-
gram can be drawn displaying their energies (expectation values) as functions
of the reaction coordinate. This diagram is referred to as a configuration-
correlation diagram (CCD); it is the configuration-space analog of the orbital-
correlation diagram (OCD).

The step of constructing the configuration-correlation diagram brings us
closer to the goal of predicting how the total electronic energy varies along the
reaction coordinate. However, we still must consider the fact that configurations
of the same symmetry must be combined (in the configuration interaction step)
to give the correct electronic wave functions. In quantitative calculations done
on modern computers, the Slater-Condon rules (see Condon and Shortley,
1957, or Cook, 1978) are used to evaluate the Hamiltonian matrix elements

Hy = (®:|H|®;) @3.11)

between the important configurations {&®,} whose overall space and spin sym-
metry is correct. The eigenvalues of the H matrix then give the rofal electronic
energies of those states that arise from the configurations {®;}. These total
state energies, when plotted as functions of the reaction coordinate, generate
the state-correlation diagram (SCD), which finally allows something to be said
about the shape of the potential energy surfaces along the reaction coordinate—
in particular, whether large or small reaction barriers are expected.

If ab initio calculations are not being done on a computer, a qualitatively
correct picture of the state-correlation diagram can still be achieved by using
the configuration-correlation diagram. The reasoning is that, when the
energies of two configurations cross on the configuration-correlation diagram,

. the states that arise from the mixing of these two configurations will have
energies that aviod one another because of configuration interaction (see
- Shavitt, 1977). Thus, simply by converting all of the crossings that occur in the
. configuration-correlation diagram to avoided crossings, an approximate state-
. correlation diagram is obtained.
Before considering how a state-correlation diagram for a chemical reac-
# tion is used, it is valuable to review the essential characteristics of the reaction
f coordinate. It is a totally symmetric motion on the potential surface, except
£ when y, is degenerate or when low-lying excited states of another symmetry

N T o e e A
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& are present that can couple ({yx|3V/3Q| Vo)) to Yo, in which cases the reac-
g tion coordinate becomes symmetric once the symmetry is lowered. The impor-
f tant point is that, by labeling the wavefunctions with only those symmetry
 elements that are preserved along the entire reaction path, the reaction coor-
 dinate is a/ways symmetric and, hence, the symmetry of ¥, remains constant.
£ This means that whenever we guess a reaction coordinate, the symmetries of
‘the orbitals, configurations, and states should be labeled ncine anly thaca cvm
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sidering the C,, insertion of an atom (say Mg) into the bond of H,, only the
elements of the C,, point group must be used, which means that the 'S, 3P, , o,
and 'P states of Mg must be labeled according to how they transform under
C,,. Being able to do this is crucial to the use of symmetry correlation concepts
as a tool for understanding reactivity.

3.4. Approximate Symmetry

In this section one more point concerning the preserved symmetry elements
will be made. The symmetries of the active orbitals (those orbitals involved in
the bond-breaking and bond-forming process) are determined by the potential
energy field influencing the electrons in these orbitals. This field depends in
turn upon how the nuclei and the passive-occupied orbitals are arranged in
space. However, those nuclei and passive orbitals that are spatially far from an
active orbital will have little influence on the potential field at this active site.
As a result, the shape (nodal characteristics and symmetry) of this active orbital
will be little influenced by nuclei and orbitals that are far from it. For example,
we do not expect the carbonyl r and »* orbitals of H,CO (formaldehyde) to be
qualitatively different from those of (H3C),CO (acetone) or even H3;C(CO)H
(acetaldehyde). In fact, we expect the = and =* orbitals to maintain their odd
character under reflection through the plane containing the C(CO)H group to
a very high extent. Certainly the quantitative nature of the = orbital, which is
more highly localized on the oxygen, and the =* orbital, which is polarized
toward the carbon, will be differently influenced by substituents. However,
the basic orbital nodal characteristics, which is really the most important
aspect of symmetry used, remains largely intact. Thus, approximate /ocal sym-
metry is almost as good as true overall molecular symmetry.




Part 2

Applications to
Thermal Reactions

In Chapters 1-3 the theoretical foundations were laid that are needed to
understand the energetics of reactions taking place on a single potential
energy surface. It would be quite difficult to apply those concepts in a
rigorous quantitative fashion to any reaction involving a potential energy
surface having more than a few degrees of freedom. The process of walk-
ing along the reaction coordinate requires that the potential surface be
explored and that the precise nature of the reaction coordinate Q, be
determined. Although such calculations have recently become feasible
for systems contalning three or four atoms, one almost never knows exactly
how to walk along Q, for reactions of more complicated molecules.
Therefore, In most applications of symmetry-conservation concepts, a
reaction path Is postulated, and one attempts to explore how the orbital,
configuration, and state energles vary along this path. One hopes that,
by choosing a path that gives rise to favorable overlap of the important
orbitals of the reactant species, the postulated path Is close to the true
reaction coordinate.

Another problem is that, In addition to being able to know the reac-
tion coordinate precisely, reaction pathways other than those chosen
may be avallable. For example, if the one-step four-center reaction of H;
with |, to produce 2HI were examined, a reasonable conclusion would be |
that the reaction has a high activation energy. However, this conclusion
does not eliminate the possiblility that HI can be formed by some other |
mechanism, so it Is Important to explore all pathways that might yleld the
desired products. The symmetry methods lllustrated In this chapter and |
those for photochemical reactions in Chapter 7 can be used to analyze
any single reaction step that Involves breaking old bonds and simulto-
neously forming new product bonds. If a proposed reaction path causes
reactants to give rise to producits in a single step, the reaction Is termed
concerted. The symmetry rules can be applied to the single step of such
concerted reactions to predict directly whether the reaction would have a
large activation energy. For stepwise reaction mechanisms, the symmetry




rules must be applied to each step. If any step in the reaction Is predicted
to have a large activation energy, the overall reaction would not be ex-
pected to proceed with great speed.

It is suggested that readers who have not recently made use of point-
group symmetry tools such as character tables, direct products, and
projection operators read Appendix C before beginning the examples
treated in Chapter 4.




Chapter 4

Examples for Analyzing
Ground-State
Thermal Processes

Tt L e e L A

In this chapter several examples of applications of the symmetry arguments are
presented.

4.1. Simple Predictions from Orbital-,
Configuration-, and State-Correlation Diagrams

~ The thermal addition reaction of a nitrogen molecule and a hydrogen molecule
to yield cis-diimide is a straightforward problem.

H

H H H

ra e

N N=——=N

N

1. An orbital-correlation diagram is drawn for the proposed reaction path.

2. A hypothesis is made for the likely (energetically favorable) configura-
tions, and a configuration-correlation diagram is constructed.

3. The state-correlation diagram is made and is then used to determine
whether the reaction is thermally allowed along this reaction path.

£ If we assume that the reaction coordinate involves the C;, approach as
t shown in Figure 4-1, the active orbitals are the bonding and antibonding oy
fand myy orbitals. Notice that we are not trying to deduce the reaction coor-
| dinate but merely proposing a reaction coordinate and observing whether a
k high barrier to that reaction is expected. The basic approach is to try all reac-
¢ tion pathways that we believe to be likely for good bond formation. If we then
# assume that the potential energy surface can be smoothly interpolated between
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Figure 4-1
Cis addition path.
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Figure 4-2
Orbital-correlation diagram for cis addition.

these postulated pathways, which have some symmetry, then a qualitative pic-
ture of the full surface can be obtained.

Since nitrogen is more electronegative than hydrogen, the expected energy
ordering of the N, and H, orbitals is that shown in Figure 4-2. The spacing be-
tween the bonding and antibonding H, orbitals is larger than for the N, »
bond energy. In more complicated situations, one often resorts to using infor-
mation about valence ionization potentials to provide, via Koopmans’ theorem
(Pilar, 1961), the ordering of the orbital energies for reactants and products.
Figure 4- 2 also yields the symmetrles of the orbitals of both N, + H, and cis-
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. Figure 43

Configuration-correlation diagram and state-correlation diagram for cis addition,

reaction N, + H, — HNNH is forbidden (remember that only cis-HNNH is
being treated here because we assume C,, symmetry); we still have to look at
the configuration-correlation diagram and the state-correlation diagram.
Since the ground electronic states of N, and H, possess double occupancy
 of the bonding myy orbital and the bonding oy orbital, the 7{yofy configura-
_ tion, which has (a?a}) = 'A, symmetry, should be important. At the other
end of the assumed reaction coordinate is ciss-HNNH, which should be
- dominated by the (02, )(07n,) = (@})(b3) = 'A, configuration. The fact that
" these two configurations do not correlate is shown in Figure 4-3, which also
- shows the avoided configuration crossing that gives rise to the state-correlation
- diagram. Notice that configurations are correlated according to the sym-
metries of the orbitals that are occupied in the configurations rather than by
their overall space-spin symmetry. The steepness of the two configuration
. energy lines shown in Figure 4-3 is determined by the relative energies of the
two dominant configurations at the extremes of the reaction coordinate. For
example, the w202, configuration, which correlates to 02,032, is expected to
- be very high in energy (since both NH bonds are broken) on the diimide side of
the reaction. Based upon the ahove state-correlation diagram, a substantial
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mk(0) —— ——0y"-03 (b)

E
(D) 0y -0 (b)
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Np+ Ho NzH, (trans)
Figure 4-4

Orbital-correlation diagram for trans addition.

We must also consider whether the interaction between the two configura-
tions that cross would be large enough to produce such strongly avoided cross-
ings that the state-correlation diagram would show no barrier. This is not likely
because the configuration coupling is caused only by the r;;' terms in A, (since
the configurations differ by two orbitals as discussed in Appendix A), and
these electronic interaction terms are usually quite small. Hence, configuration
pairs that differ by two orbitals relative to one another should display weakly
avoided crossings. Notice that the orbital crossing (noncorrelation) leads to the
configuration noncorrelation, from which a high barrier is predicted. The
above analysis shows that this reaction is thermally forbidden. The word ther-
mal is employed because the molecular orbitals are occupied in a way that is
appropriate to the ground states of reactants and products, and the system is
considered to move on this ground-state surface. The reaction is forbidden only
because a large symmetry-imposed activation barrier to this thermal reaction
should be present,

We now consider the reaction N, + H, — HNNH(trans). The relevant
point group is now C, (where the C; rotation axis is perpendicular to the plane
of the molecule, and the orbital correlation diagram is given in Figure 4-4.
Now the orbital symmetries correlate differently, so that the configuration-
correlation diasram (Figure 4-5) does not involve configuration crossing (i.e.,
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2_2
OHH NN
(01-03) (07+03)2
Ny +H, NoH, (trans)
Figure 4-5

Configuration-correlation diagram and state-correlation diagram for trans addition.

Tanonu correlates directly with oRy,ofy,). Hence, the formation of trans-
HNNH via a C; reaction coordinate should involve no significant symmetry-
. imposed barrier. Thus, N,H,4 should thermally fragment via a trans reaction
coordinate, and H, should attack N, in a trans manner. This latter prediction
is based upon symmetry considerations alone, and it does nof mean that such a
i trans attack would occur easily—for example, in a collision. In fact, such a
. collision is not likely to be successful, since the bond length of the H, molecule
_ is so short that a great deal of energy would be required just to stretch the H,
. sufficiently to make formation of the two new NH bonds feasible.

The above symmetry considerations include nothing about geometrical
factors or the overall reaction thermodynamics (such as bond strengths of the
. reactant and product); symmetry only makes requirements on the nodal pat-
* terns of the important orbitals. It is essential to keep this point in mind in all
. subsequent problems.

_ Notice also that, because the C,, point group has no degenerate represen-
. tations, nowhere (except at infinite separation) along the hypothetical reaction
path do any orbitals or states become degenerate. Hence, questions involving
£ first-order Jahn-Teller instability do not occur in this example.

Only two possible reaction paths have been considered, and it is reasonable
‘to wonder whether collisions that are slightly non-C,, can yield cis-diimide,
3.._'. because in the C, point group, which would rigorously pertain to such a colli-
¢ sion, the a, and b, orbitals both have a’ symmetry. As a result, the rigorous
. orbital-correlation diagram would nof include an orbital crossing and, hence,
. the configuration-correlation diagram and state-correlation diagram would

not predict a forbidden reaction. However, this rigorous analysis is incorrect!
" The concept of near symmetry alea allawe ne ta annlr camalictaes o 1,

g i
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C,, symmetry analysis to collisions that involve near-C,, geometries. That is,
near the C,, geometry that was analyzed, a symmetry-imposed barrier, whose
precise shape and height will vary somewhat as one moves further from C3,
geometry, will still be present. As will be seen in later examples, it is not the
rigorous symmetry that actually gives rise to orbital symmetry nonconserva-
tion but the nodal characteristics of the orbitals. These nodal patterns remain
even when rigorous symmetry is lost.

4.2. An Example of Unimolecular Decomposition

This example makes use of more quantitative data on ionization energies to
order the molecular orbitals. If such data is available, it is certainly wise to use
it, because then one can make more quantitative predictions about the thermal
and photochemical behavior of a system. As an example, the thermal decom-
position of formaldehyde to carbon monoxide and a hydrogen molecule

H,CO—H,; +CO

is analyzed. A minimum-basis molecular-orbital calculation has been carried
out (Cook, 1978; Pilar, 1968; Schaefer, 1971) and has yielded the orbital
energies (in eV) given in Table 4-1. We begin by postulating a reaction coor-
dinate, by assuming that C,, symmetry is preserved during the decomposition,
and proceed through the following steps:

1. The symmetry of the molecular orbitals of the formaldehyde molecule,
the hydrogen molecule, and carbon monoxide are classified according
to the point-group symmetry that is preserved during the reaction path.

2. An orbital-correlation diagram for this reaction path is drawn.

3. A configuration-correlation diagram is constructed, and the state-
correlation diagram is used to determine whether the thermal decom-
position of formaldehyde is allowed.

The irreducible representations of the formaldehyde molecular orbitals
given in Table 4-1 determine the coordinate system to be used. The la, and 2a,
molecular orbitals are the 1s orbitals on oxygen and carbon, respectively. All
a, orbitals have the symmetry of the z coordinate axis. The 1b, orbital is unique
among the occupied molecular orbitals and, hence, must represent the =
molecular orbitals of the carbonyl group that are aligned along the y axis, lying
perpendicular to the plane of the formaldehyde molecule (Figure 4-6). The
symmetry labels that can thus be attached to the active molecular orbitals are
the following:

The hydrogen molecule. 1aa,), 10,(b2)
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TABLE 4-1

OreiTaL ENERGIES IN eV For
ForMALDEHYDE, CARBON MONOXIDE, AND

HyYDROGEN
Formaldehyde Carbon monoxide Hydrogen
(C;.,) (Cmv) (Dﬂﬂi)
la, -—553.4 lo —553.3 lo, —17.51
2a, -302.8 2¢ -302.7 lo, 20.05
3a, -36.52 3o -35.82
4a, -23.02 40 -19.92
1b, ~18.48 Ir —15.78
S5a, -—15.09 5¢ -—13.09
1b, -—12.22 2x 7.07
2b; —10.28 60 25.36
6a, 3.9
2b,y 7.10
Ta, 19.75
3b, 23.07
/H H
H H
Figure 4-6

Decomposition of formaldehyde.

Carbon monoxide. All of the ¢ and lone-pair orbitals transform as a,; the
7 orbitals transform as b, and b,; the =* orbitals also transform as b, and
b,.

Formaldehyde. The CO o and one of the CH o bonds transform as a,, the
other CH o bond as b,, the nonbonding orbitals on oxygen as a, and b,,
and the CO = and =* orbitals as b,.

The orbital-correlation diagram that results from simply connecting the
orbital lists of H,CO and H; + CO is given in Figure 4-7. Notice that several
orbital crossings are present, so the possibility exists that an activation barrier
will be predicted. By using the 16 electrons to occupy the lowest 8 molecular
orbitals of H,CO (since we are considering the thermal or ground-state reaction)
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Orbital-correlation diagram for decomposition of formaldehyde.

the 2b2 part of the resulting configuration correlates with a 2x* occupancy
of CO (i.e., double occupancy of an antibonding =¥, orbital). The 2= orbital of
the ground state of CO is not doubly occupied. The crossing of the 5a, and 1b,
orbital energies is not relevant, for both of these orbitals are doubly occupied
in the ground states of both the reactant and the product.

The configuration-correlation diagram shown in Figure 4-8 results when
the lowest 8 orbitals of CO + H; and of H,CO are occupied by the 16 electrons.
The two configurations that cross do have the same overall symmetry (!A4)), so

they can mix to gwe the state-correlation dlagram also shown in Figure 4-8 by
L3 T PP L R letciia A the Arhital
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(1bg)2(501)2 (154 )2 (6 01)2 R,
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E
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(1b2)? (5a,)? (1b,)? (b2 —— — (10g)? (1m)* (50
H, CO CO+H,

Figure 4-8

Configuration-correlation diagram and state-correlation diagram for decomposition of formalde-

hyde.

thermal reaction. Since the two configurations that cross differ with respect to
one another by two electron occupancies, only the electron-electron interac-
tion terms (r7') in A, couple them together. Hence, the barrier predicted by the
configuration crossing should not be substantially lowered in going to the
state-correlation diagram.

Because of the low point-group symmetry (C,,), degenerate representations
are not possible; therefore, first-order Jahn-Teller effects do not come into
play. Notice also that if the reaction were to occur along a path that preserves
only the one plane of symmetry (C, point group), then both b, and a orbital
become a’. Consequently, the reaction becomes orbitally allowed (since now
the orbitals of reactants and products correlate) and, hence, allowed in the
configuration- and state-correlation diagrams. Thus, the high barrier predicted
for the C,, path will probably be reduced when moving away from the C,,
path. However, the barrier should not suddenly disappear when moving slightly
away from the C,, symmetry because approximate symmetry is still present. In
contrast, if we imagine distortions of H,CO that make the molecule nonplanar
but preserve the plane of symmetry bisecting the HCH bond angle, the crossing
of the 2b, and 6a, orbitals would still occur, since these twa arhitale have dif.
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4.3. A Degenerate Case with Jahn-Teller Effects

In this section a case in which degenerate orbitals can occur is examined. We
ask whether the = orbital structure of the cyclopropenyl radical (C3;H3) favors
an equilateral triangular structure. The (CaH3)* or (C3H3)™ forms will also be
considered. At the equilateral-triangle geometry, the p, orbitals on the three
carbon atoms can be combined to yield one orbital having a; symmetry (Cs,
point group)

a; = PA+PB+PC

and two degenerate orbitals of e symmetry

Aaltiten)
ZPB—PA—PC

These symmetry-adapted orbitals can be generated by applying the projectors
(see Appendix C or Cotton, 1963)

P, = L Y xR)R
& R

to the individual atomic basis orbitals (P,, Ps, Pc), in which X,(R) is the
character of irreducible representation i. The two degenerate e orbitals that
would be obtained are not orthogonal. After orthogonalization the two e
orbitals given above are obtained. The a,orbital is bonding between all three

carbon atoms, whereas the e orbitals are antibonding. Because only the effects

of the = orbitals are examined here, all of the factors that determine the shape
of C3H; are not considered. If the o-bonding effects are sufficiently strong
(i.e., if the o force constants are large enough), the r-orbital effects treated
here will be negligible. However, they are still interesting and instructive to
study.

What predictions can be made within these limitations? First, (CsH;)*
should be stable at the equilateral-triangle geometry, since it would have both
of its = electrons in the bonding @, orbital; thus, y, would be nondegenerate.
Second, C3H; should be first-order Jahn-Teller unstable, since the configura-
tion (1)’ is degenerate. The kind of vibration that will distort the equilateral-
triangle geometry is predicted (by forming the direct product of y gy, (Cotton,
1963) from the first-order Jahn-Teller matrix element-( yo|dh./dQ| o) to
have (e X e = a, + e + a;) or e symmetry (for this point group, a, is a rotation

AarnAd A~ A i ateie —lan et artiaa that svanld mat heansts thh o 1nmnnppract ~F 0\

T ks s L B it T
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groups away from the other two. Consequently, equilateral triangle C3Hj is
unstable and cannot even be a true transition state (since it has a nonzero value
of slope). Third, (C3H3)~ should not be stable at the equilateral-triangle
geometry for two possible reasons: (1) it has two electrons in the antibonding e
orbitals that would ‘‘cancel’’ any = bonding due to the two a, electrons (but
the o bonds would remain intact). (2) The configuration (e)> might be Jahn-
Teller unstable. The (e)? configuration has symmetry components ‘A, +
34, + 'E, of which, by Hund’s rules, the 4, would be the lowest energy state.
This triplet state is not spatially degenerate and is therefore not first-order
Jahn-Teller unstable.

The above symmetry- and spin-term symbols for C3H;™ are obtained by
forming, for the singlet states (which have antisymmetric two-electron spin
functions), the symmetric direct product (e X e).; for the triplet (which has an
even spin function), one forms the antisymmetric direct product (e X e)-. The
characters (x.) for these two kinds of direct products are given in terms of the
characters (x) of the e representation of the individual orbitals appearing in the
e? configuration as

X.(R) = TIXR) + xR,

Within the C;, point group,

| E 2C; 3o,
X+ 3 0 1
X- 1 1 -1

Then, the x, are decomposed into their individual representations using the
projections (Cotton, 1963)

1 = LY X R)x.(R)
T

(g is the group order 6, and the x, are the characters of irreducible representa-
tions), which indicate the number of times (n,) representation i occurs in x, . It
is important to use these symmetric and antisymmetric direct products when
dealing with two equivalent electrons. If the electrons were in different sets of
degenerate orbitals (le, 2¢), then they are nonequivalent and you can use the
usual direct product (Cotton, 1963).

The lowest energy state of (¢)%(°A4,) is nondegenerate; thus, (CsH3)™ is
not unetahle hv a first-order Tahn-Teller distortion. Its unstable nature is an
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did not have different spin symmetry from the 34, ground state, then
quadratic terms in the Jahn-Teller theory should come into play through the
{¥o|0h./dQ| ¥x)factors. The distortion that should contribute would have
either A, X A, = A, or A, X E = E symmetry. The Cs,-character table shows
that the molecule has no A4, vibration, though it does have an E vibration.
Hence, an E distortion should occur. Of course, this analysis is nothing but an
exercise in futility because the different spin symmetries of the 4, and (!4, 'E)
states would make the (yo|dh./3Q| ¥+ ) integrals vanish—unless spin orbit ef-
fects were very large—and this is not likely for (CsH3j)™.

4.4. The Bond-Symmetry Rule—Another Jahn-Teller Case

In this section we consider whether two ethylene molecules will combine to
give cyclobutane if they collide in a D,,-symmetry manner (in a head-on
fashion such that their = orbitals bump into one another directly) and then
examine the analogous exchange reaction H, + D, — 2HD.

The orbital-correlation diagram for both of these reactions is shown in
Figure 4-9, in which each orbital is labeled according to its D5, symmetry (and
according to the the D, symmetry that appears once the four hydrogen atoms
are equivalently located in the latter reaction). Notice, for H; 4+ D,, that the
b,, and b3, orbitals cross at Dy, symmetry where they are symmetry-degenerate
(e.). These orbitals also cross in the case of ethylene, but not at D, symmetry.
As a result of these orbital crossings, the ethylene x*x*(a2b3,) and o®0*(a2b3.)
configurations also cross one another—they do not correlate (Figure 4-10).
The corresponding configurations also cross in the case of H, and D,. Since
both of these configurations have '4, symmetry, the state-correlation diagram
will show an avoided crossing once they mix to give rise to two 'A4, state wave
functions. A substantial barrier (an avoided crossing) to both of these reac-
tions should be present, but it should be weakly avoided because the two par-
ticipating configurations differ by two orbitals, so only the r; can couple them.

If the D4, geometry were proposed as a possible transition state for the
hydrogen-exchange reaction, several kinds of motion that might be important
in distorting this geometry must be considered. At Dy,, the configuration
aj,el—through the symmetric direct product for this singlet reaction—gives
rise to Ay, + 'By, + 'B,, electronic states. Quantum chemical calculations
indicated that the 'B,, state is the lowest singlet state. Thus, this Dy,'B,, state
is not first-order Jahn-Teller unstable, and we cannot conclude that the slope
of the surface is nonzero along any nonsymmetric direction. Hence, it is pos-
sible that the square geometry is a transition state. Furthermore, quadratic
Jahn-Teller effects involving {'B,,|3h./dQ|'A4,;) could give rise to a

R. ~ 4'__ —_ R Aetmrtinan AT the mmalassla
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Orbital-correlation diagrams for (a) dimerization of ethylene and (b) H;-D; exchange.

The other distortion B,, X B, = A,, cannot occur because the Dy, point
group has no A,, vibration (Cotton, 1963). Thus a D,,H, transition state

ial
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Figure 4-10
Configuration-correlation diagram for dimerization of ethylene.

vibration. The term pseudo-Jahn-Teller is used rather than second-order Jahn-
Teller, because the excited state (yx = 'A,,) arises by electron rearrangement
between the two degenerate e, orbitals (analogous to the atomic orbital con-
figuration p? giving rise to *P, D, and 'S states) and not from electron promo-
tion into an excited orbital. One cannot conclude that the square geometry is
definitely pseudo-Jahn-Teller unstable because, from what has been said, it is
not clear whether the negativecurvature terms caused by coupling of the B,
and 'A,, states are larger in magnitude than the positive-curvature terms de-
scribed in equation 2.20—more quantitative information about these coupling
matrix elements is needed to make this prediction.

This example—two ethylenes combining to give cyclobutane—illustrates
the concept called the bond-symmetry rule (Pearson, 1976). This rule states
that a reaction will be orbitally forbidden—that is, involve orbital crossing
problems—unless the symmetries of the bonds plus lone pairs broken in the
reactants match the symmetries of bonds plus lone pairs formed in the prod-
ucts. For example, the rearrangement of benzene—which has one occupied
a,b, and b, orbital (see Cotton, 1963, and section 7.5)—to give dewarbenzene

D
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(which has two occupied a, orbitals and one occupied b, orbital) is forbidden.
Also the C;, decomposition of

H
X =0
H
to give
H
I + :C =0
H

is forbidden, since the reactant has two a, and two b, orbitals (CH bonds and
oxygen lone pairs), whereas the products have one b, orbital (the CO = bond)
and three a, orbitals (HH and the :CO: lone pairs).

The addition of a halogen to the 1 position of dewarbenzene

X

reduces the symmetry from C,, to C,. As a result, the reactant has two a’ and
one a” orbitals, as does the halobenzene. Thus, the reaction becomes allowed,
though the reaction rate is still very low (Pearson, 1976, p. 90). The reason is
that the halogen does not have a strong influence on the active orbitals, so C,,
symmetry (in which the reaction is forbidden) is approximately valid.

The bond-symmetry rule is, or course, nothing but a short cut for
recognizing when nonconservation of occupied-orbital symmetry will occur.
Whenever the symmetries of the occupied orbitals of reactants and products
do not match, the orbital-correlation diagram will display a crossing of occu-
pied and unoccupied orbitals, which then causes nonconservation of symmetries.

Use of this (or any other) symmetry rule requires that only symmetry
elements that are preserved along the full reaction path are used to label the
orbitals. Only for these symmetry elements is the reaction coordinate Q, sym-
metric, and this is necessary if the orbital, configuration, and state symmetries
are to remain constant (i.e., be correlated by symmetry) along the reaction
path. For example, in considering the opening of

17— >2



50 CHAPTER 4

to give

LA

two possible “‘reaction paths’’ are commonly examined (Woodward and Hoff-
man, 1970). Two kinds of ring opening—conrotatary and disrotatary—must
be considered. In conrotatory opening, both CH, groups are twisted in the
same direction (e.g., clockwise). When this motion is used as a reaction coordi-
nate, the only symmetry element preserved throughout the reaction is a C; axis

icz

The occupied ¢ and 7 orbitals of the reactant and the two occupied = orbitals
in the 1,3-butadiene product are even and odd, respectively, with respect to
this C, axis. Hence, the bond-symmetry rule indicates that conrotatory ring
opening is orbitally allowed.

In disrotatory opening, the two CH, groups move in opposite directions.
Such motion preserves a reflection plane ¢, that runs down the middle of the
molecule

Oy

Under this symmetry element the ¢ and = orbitals of the reactant are both
even, whereas the = orbitals of the product are even and odd. Hence, disrota-
tory ring opening is orbitally forbidden.

The two different reaction paths (conrotatory and disrotatory) preserve dif-
ferent symmetry elements and therefore lead to different symmetry predictions.

4.5. Breaking of Single Homonuclear and Heteronuclear Bonds

Before considering more sophisticated examples, we return for a moment to
the most elementary reactions—those in which only a single bond is
fragmented, as in the dissociation of H; and HCIl. These simple bond-breaking
reactions serve as an excellent test of our concepts, for if these ideas are valid,
they must certainly apply for these reactions. In these cases, only one active
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correlation diagram are the bonding and antibonding orbital pairs (o, and o,
for H,, o and ¢* for HCI). These pairs of orbitals never cross, so such bond
breaking cannot be orbitally forbidden. It is important to note that not being
forbidden does not mean that the bond breaking costs no energy but instead
that symmetry constraints do not impose an additional energy barrier to such
reactions beyond simple thermochemical energy requirements. In general, the
meaning of the symmetry rules forbidding or not forbidding a reaction is only
the presence or absence, respectively, of an additional energy barrier. The
overall thermodynamic stability of reactants and products, which has nothing
to do with symmetry, must always be included when one attempts to guess
total reaction activation barriers.

So far, we have concluded that for breaking (or forming) simple bonds, an
orbital-symmetry-related activation barrier will not exist, because the bonding
and antibonding orbitals do not cross. We now consider the configuration-
correlation diagram for such a reaction, treating the homonuclear and
heteronuclear molecules separately. For H,, the available orbitals (o, and o,,)
can be occupied in several different ways-—a: and o2 give 'L ¢ configurations,
and 0,0, can give '"’L,,. Since the ground state of H, has 'L, symmetry, only
the o7 and o2 configurations can play a role. The energies of these two con-
figurations differ greatly for internuclear distances (R) near equilibrium, but
they become degenerate when R — oo. Therefore, a strong configuration inter-
action should exist between o and ¢ for large values of R.

We now analyze the behavior of the o? and o2 configurations at large R to
see why they become degenerate. Using the facts that the unnormalized
molecular orbitals can be expressed in terms of the 1§ atomic orbitals as

Og = ISA'F 1SB

Oy

IS,\ TR lSB

for large R, the two relevant Slater-determinant wavefunctions can be written
as (Pilar, 1968)

|62 = 0,(1)04(2)(aB — Ba)2™*/2
= [1SA1S, + 155185 + 15,185 + 1S1S,](af — Bo)2™"/2

and
62| = [1SALS, + 15518, — 15,18, — 1S51S,](eef — Be)2-""2.

Notice that, at large R, both of these configurations contain equal mixtures of
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properly describes 2H at R — oo; they both attempt to describe 1 [2H +H*, H,
whose energy lies above that of 2H by one-half the ionization potential of H
minus the electron affinity of H. However, at large R the configuration-
interaction function (1/v2)[|oZ| — |02|] would contain only covalent (2H)
terms and its orthogonal partner (1/v2)[|02| + |02|] would describe (H™, H*).
Recall that o,0, could not contribute because it has the wrong symmetry.
Thus, the breaking of a single homonuclear bond has no symmetry-caused
activation energy and requires mixing of o2 and (¢*)? configurations that are
doubly excited relative to one another and that mix very strongly because the ¢
and o* orbitals are degenerate for large R.

For heteronuclear bonds the situation is somewhat different. For example,
in HCI the bonding (¢) and antibonding (¢*) orbitals do not cross, and at large
R they do not become degenerate. However, the o? configuration and the oo*
(singlet) configurations do cross as R varies. Near the equilibrium value of R,
o? represents the o bond of HCI, whereas oo* describes a dissociative excited
state. At large values of R the o orbital becomes 3p Cl and ¢* becomes 1s H, so
o? describes (H*, C17) and oo* represents (Cl, H). Therefore, a configuration
interaction should be important in describing breakage of the HCI bond. Notice
that, in contrast with the homonuclear case, singly excited configurations play
the dominant role. As a result, the operator dh./dQ can effectively couple the
o? and oo* configurations and thereby produce a smooth (barrier-free) transi-
tion from HCI to H+ Cl as the reaction coordinate varies. In both cases, a
strong configuration interaction (¢ and oZ for H, and ¢?, g0* for HCI) yields
a smooth potential energy curve that displays no symmetry-imposed barriers.
Symmetry barriers arise only when more than one electron pair undergoes
changes in a reaction, since it is only in this more complicated case that orbital
crossings (which then produce avoided configuration crossings) can exist along
the reaction coordinate.

4.6. The Use of Bonding-Antibonding Orbital Mixing
to Predict the Reaction Coordinate

In section 4.4 we showed that, as far as being symmetry-allowed, cyclobutene
could open by means of a conrotatory motion to yield 1,3-butadiene. In that
example, a reaction path was guessed and then tested for orbital-symmetry
conservation. That reaction can also be viewed in a different way. In section
4.5 we showed that breaking bonds utilizes mixing of configurations having
antibonding- and bonding-orbital partners. Cyclobutene has, in C,, sym-
metry, doubly occupied a,(¢) and b;(w) active orbitals and corresponding
empty ba(c*) and a,(7*) orbitals. If we proposed to add in configurations
(through (Yo |3h./3Q0|¥+)) that include one or both of the excitations a, — b,
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symmetry of the direct product of its singly occupied orbitals. On the other
hand, a, — a; (c — 7*) and b, — b, (7 — ¢*) excitations could be caused by a
distortion of @, symmetry. The CH, twisting motions of cyclobutene, which
are needed to break the o bond between the carbon atoms 1 and 4, have b,
(disrotatory) and a, (conrotatory) symmetry (Cotton, 1963); b, motion would
be an in-plane deformation of the carbon ring, not a twisting motion. Hence,
the conrotatory motion produces proper bonding-to-antibonding orbital mix-
ing and this causes bond breakage. This reaction, in which a new = bond is
formed from the termini of a conjugated = system, is called an electrocyclic
reaction.

Notice that in this example knowledge of the symmetry of the molecular
orbitals of the product molecule was not used. Instead, mixing of bonding and
antibonding orbitals of the reactants was the approach employed. Conse-
quently, the technique can only predict the kind of motion that can break cer-
tain bonds and is independent of the bonds that form. This idea of mixing the
bonding molecular orbital of one fragment with the antibonding molecular or-
bital of the other fragment (e.g., ¢ — 7*, * — ¢*) is very important. This mix-
ing allows charge density to flow from the old bonds into regions of space (or-
bitals) that allow these bonds to break while new bonds form. Recall from in-
troductory quantum chemistry (Cook, 1978; Shavitt, 1979; Appendix A) that
singly excited configurations are used to describe orbital polarization or or-
bital relaxation. That is, an excitation of the form o?x% — ow’x* gives rise to
polarization of the ¢ orbital in a way that mixes in some =* character. If this
polarized orbital (o + x7*) looks like a bonding orbital of the product, the
reaction is favored. Earlier in this book the change in charge density L4 .06pxo
caused by mixing singly excited configurations was considered, and it was seen
that nuclei move to regions of space in which I, ,06pxo is positive. Hence, in
order to propose that nuclei move from one part of a molecule to another
(e.g., when conrotatory and disrotatory openings of cyclobutene were ex-
amined), it is necessary to look for single excitations that give positive values
of L ,00 pxo for those regions of the molecule. If these same single excitations
also give rise to L .00pxo patterns that allow the ‘‘new’’ bonds to form as the
‘“‘0ld’’ bonds are being broken, the concerted reaction should be symmetry-
allowed. Hence, for cyclobutene, when we mix the o272 configuration with the
onln* and o%wo*, we are trying to allow electron density to flow from o to 7*
and from = to ¢*, respectively. Clearly, these excitations (orbital polarizations)
allow the o and 7 bonds of the reactants to rupture. Moreover, flow of charge
into the x* orbital produces electron density in an orbital of the form
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whereas, after the conrotatory rotation, the ¢* orbital appears to be

Notice that these orbitals have the same nodal patterns (phase relations) as the
two occupied molecular orbitals of the product 1,3-butadiene:

AN, .,
‘ . and ‘ ‘

Syl Vi
g ile G

Thus, the same excitations that lead to rupture of the reactant bond also form
the product bond. We shall make use of the idea of charge flow from the
highest occupied molecular orbital (HOMO) to the lowest unoccupied
molecular orbital (LUMO) again. In still other examples, it will be seen that
orbitals other then the HOMO and LUMO can play important roles. What is
important is that low-energy single excitations are present that permit new
bonds to form as old bonds break—this is the essence of the concerted reac-
tions we are studying.

4.7. Electrocyclic Reactions
by Occupied-Orbital Following

Another feature of chemical reactions can be seen by again considering the
opening of a four-membered ring but with a heteroatom present. The (hypo-
thetical) opening of

to give
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of the barrier to disrotatory opening of cyclobutene—the true origin of sym-
metry barriers is the noncorrelation of nodal patterns among the reactant and
product orbitals (Pearson, 1976). Such nodal-pattern noncorrelation is ex-
amined in this section.

By applying a disrotatory motion to the two occupied orbitals of

/T

one obtains

DIS

s = DIS (o)

L e

[in which DIS(0) denotes the effect of the disrotatory opening on the o orbital].

In the product

the occupied = orbitals look like

® @ ® £

0 b 0 0
S T AE Q
0\ 0y 0 0

Notice that although DIS(s) has the same nodal pattern (phase relationship)
between the atomic orbitals as occurs in orbital a,, the DIS(7,3) orbital does
not match in its phase relationship with b,. Thus, such ring opening is forbid-
den. It is important to keep in mind that we are examining the effect of the DIS
opening on the occupied reactant orbitals to see whether the occupied product
orbitals result—exactly what is done when constructing an orbital-correlation

Ebz.
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On the other hand, a conrotatory (CON) motion applied to the occupied
active orbitals of cyclobutene gives

CON (o) =

and CON(w3;) is identical to DIS(w23). The phases of CON(,3) and CON(0)
agree with those of the product a, and b, orbitals, respectively, so for this mo-
tion the occupied orbitals correlate. For disrotatory motion they do not.

This kind of orbital-following works equally well on the hypothetical
reaction involving aza-substituted cyclobutene. The phase relationships of the
occupied reactant orbitals are followed as the molecular deformation of in-
terest takes place. Only the occupied molecular orbitals need to be considered
because of the bond-symmetry rule discussed in section 4.4. By ignoring the
unoccupied molecular orbitals, work is reduced, but the opportunity is lost to
guess how large a symmetry barrier is expected, because to know how steeply
uphill the configuration-correlation diagram should be drawn, the relative
energies of the excited orbitals must also be known.

We now examine another electrocyclic reaction

=
0 -1
x
and ask whether CON or DIS motion is allowed. Disrotatory motion is con-
sidered first. To simplify the diagrams in this and several of the following ex-

amples, the symbols + and — are used to indicate whether positive -orbital
components project up or down from the plane of the page. Thus, for

disrotatory motion,
[ =0
+ +
DIS (m)
+

DIS (o)

Il
I

and
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The occupied 7 orbitals of the product are described by

+ - -

+ + + = = +
+ + + o * +
+ * o

' ] '

The orbitals can be correlated according to their phase relationships as
DIS(7y) — 74
DIS(0) — 73
DIS(m2) — 72,

so disrotatory ring opening is allowed. In contrast, for conrotatory motion,

oo = (5] = O
+

which could correlate with =3 but then DIS(7;) would have no product orbital
with which to connect. Hence, conrotatory motion is forbidden. Note that the
motion (CON or DIS) that is allowed varies, depending upon the length of the
conjugated m network connecting the two termini (Woodward and Hoffman,
1970).

These electrocyclic reactions can also be treated by the HOMO-LUMO
mixing concept. For example, in the disrotatory opening of

\

\

the reaction coordinate preserves the ¢, phase running through the molecule.
As a result, the HOMO-LUMO single excitations y;, must have the same sym-
metry under o, as Yo for (Y0|dk./3Q|¥x) to be nonvanishing. This means that
the HOMO and LUMO themselves must have the same symmetry under o,.
The relevant HOMO’s are

[ )
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- +
+
Clearly o and n* have the same symmetry as = and ¢*, and the HOMO-LUMO

excitations give rise to patterns that allow the new bonds to form. Thus, this
reaction is also allowed according to the LUMO-HOMO mixing criterion.

4.8. Cycloaddition Reactions by Orbital Following

The cycloaddition reaction

2 H,C = CHp —

considered in section 4.4 is now reexamined by using the orbital-following pro-
cedure. The fragmentation F of the two ¢ bonds in

gives

FO‘2= F

=

Nds il

Here, for example, Fo, is used to represent the result of fragmentation on the
gy orbital.

Fo, has the same phase properties as the bonding » orbital of one ethylene
fragment. However, Fo, looks like an antibonding #=* orbital of the other

ethylene fragment, so this fragmentation is forbidden, in agreement with the
results of section 4.4.
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Notice that the symmetry-combined o orbitals, o, and 02, were used
because orbitals were needed that, on bond rupture, would have amplitude on
both atoms of the resultant ethylene molecule. If we had considered

g
L

we would achieve no phase information, because two or more pieces of a
wavefunction or orbital are needed to make a statement about phase.

The above cycloaddition reaction is labeled [2, + 2,]. The 2’s denote the
conjugation lengths of both fragments; the subscripts s show that fragments
react in a suprafacial manner. The term suprafacial refers to an attack on the
same face of the = system; antarafacial (subscript a) means that the newly
formed or broken bonds occur on opposite faces of the 7 system.

We now consider the [2, + 2,] cycloaddition of two ethylenes. To indicate
the fact that the one ethylene is bonded in a suprafacial manner and the other
in an antarafacial manner, cyclobutane is drawn as follows:

in which the + and — signs again indicate the directions of the orbital lobes
participating in the bonding. The fragmentation results in the following orbital
mappings:

The fragmented orbitals with the lowest-energy nodal pattern that results have
been chosgen to correlate. For examnle,
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5%

is not drawn in the first case. These fragmented orbitals have the proper phase
relationships to correlate with the bonding = orbitals of both ethylenes; hence,
the [2, + 2,] reaction is allowed.

The retrograde Diels-Alder reaction

O= 1N v

0—0

2

is a more difficult example. The fragmentation process gives rise to the follow-
ing orbital mappings:

i 0 0
) - 13
0—0 0—0

ey -

These three fragmented orbitals have the same phase patterns as in the three

occupied active orbitals of
P

hence, the retrograde Diels-Alder reaction is allowed via a [4,+ 2]
mechanism. Notice that the lengths of the conjugated r systems in the two ene
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systems determine whether the cycloaddition reaction is allowed via the supra-
supra mechanism (Woodward and Hoffman, 1970).

The above reaction can also be examined by the HOMO-LUMO method.
The relevant HOMO's of the o and = moieties are

Q o

and the LUMO’s are

4 o

Q—9 0—0

As the fragmentation of the two carbon-oxygen bonds begins, the oc, and 7*
can be combined to form a new 7 bond in the diene

ST

Al
i
(D

and ¢, and 7 can combine to give the = bond on O,
+ +
R—®
v

Thus, the [4, + 2,] reaction is allowed.
The fragment HOMO’s and LUMO’s could also be chosen to refer to the

| /7

product molecules. In this case, the O, HOMO

53

has good overlap with the diene LUMO
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(<D
CxD
L

V;
)
and the O, LUMO

58

overlaps favorably with the diene HOMO

again leading to the prediction that the Diels-Alder reaction is symmetry-
allowed.

In section 4.4 the four-center concerted-addition reaction typified by the
dimerization of ethylene to give cyclobutane was shown to be thermally for-
bidden. However, in some circumstances, products can still be formed. For ex-

ample,

can dimerize to give 1,5-cyclooctadiene

What makes this reaction occur so easily (i.e., with low activation energy),
when the analogous ethylene dimerization has a very large activation barrier, is
the availability of a two-step reaction path. By first combining two reactant
molecules to give the radical intermediate

-

-
-
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and, in a subsequent step, coupling the two allyl radicals, one obtains

prm———

which can then rearrange via an allowed Cope rearrangement (Pearson, 1976)
to give the final product 1,5-cyclooctadiene. The stability of the well-known
allyl radical intermediates make this reaction path thermally favored. This
path does not contribute to the ethylene dimerization because the 1,4-biradical

L]

is very unstable. In contrast, perfluoroethylene F,CCF, can thermally
dimerize via the radical pathway because of the strong radical-stabilizing in-
fluence of the electron-withdrawing fluorine atoms. These examples illustrate
the point made in the introduction to Part 2. The symmetry analysis can be ap-
plied to any single reaction step, but if that step is predicted to be forbidden,
one must keep in mind that other pathways might be available and even
favorable.

4.9. Sigmatropic Migrations via HOMO-LUMO Overlaps

-4

utilizes the [1,5] suprafacial shift of a hydrogen atom. If the product were

i

if would be a [1,5] antarafacial migration. This class of reaction can be ex-
amined by considering HOMO-LUMO charge-flow interactions (i.e., a singly
excited configuration interaction caused by (Vo|dh./3Q|y¥x)): The HOMO’s
of the two relevant fragments are

ot
= ¥ O & : "
TG ) ik @

The reaction
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@, 90
« _ -0 O o* = - §>
1?- )

As the hydrogen atom is moved from the right carbon terminus to the left ter-
minus, both the o and #* orbitals and the 7 and o* orbitals develop substantial
o- and w-bonding overlap. If ¢* were drawn

g %

the singly excited configuration o?x¢* would still give rise to bonding interac-
tions, because this configuration would simply enter into the perturbation
description of .« (or 6pxo) With an opposite sign (relative to the sign it has with
o* drawn as originally drawn.) Another way to say this is that

/E and /?

are equivalent descriptions of the same orbital. An overall sign change never
has any influence on the physical content of an orbital (or a wavefunction)—it
is only the internal relative phases that are important.

Based on this analysis, the [1,5] suprafacial shift is allowed according to
the criterion of HOMO-LUMO overlap criterion. The antarafacial shift is for-
bidden because the orbital of the hydrogen atom attaches to the bottom of the
P~ orbital of the left carbon terminus. As a result, the o and =* orbitals and the
= and ¢* orbitals no longer have tofally favorable overlap for the product
molecules (they have some favorable and some unfavorable overlap):

. 90 ; V. v
(%) and JE O )
X ot =X OR) 5

o
(D)

In contrast, the [1,3] antarafacial migration

AN = N

is allowed because the relevant HOMQ's

o%/\ “/X\Q)
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and LUMO’s

develop good overlap (¢ — n* and 7 — ¢*) as the hydrogen moves to the bot-
tom of the left terminus. The [1,3] suprafacial shift is forbidden because the
feature that determines which reaction (antara or supra) is allowed is the phase
pattern of the x orbital of the reactant (Woodward and Hoffmann, 1970).

Fukui (1971) has extended the idea of good fragment HOMO-LUMO
overlap to predict where in a molecule the reaction is most likely to occur. For
example, in the reaction

Cl—CH; + CI" — CI” + H3;C—Cl
the HOMO of the attacking ClI” is

o

and the LUMO of CICH; is

H
€0 (O
H

The other HOMO-LUMO pair is very high in energy because it involves the ex-
cited state of Cl°; hence, it contributes little to the charge flow. Attack of the
Cl1™ should occur either on the back end of the CICH3, where the LUMO has
large amplitude, to give CI” + H3CCl, or on the Cl end of CICH; to give
CICl + "CH;. The former reaction is thermodynamically favored because of
the differences in bond strengths (C™Cl > CI"Cl) and electron affinity
(Cl >> CH3). The fundamental point in using the Fukui method is to identify
the HOMO and LUMO pairs of the fragments and then to let them interact in
a way (i.e., along some molecular distortion) that allows them to overlap max-
imally.

4.10. A Topology-Based Method

In this section, a final technique for predicting whether a reaction is allowed is
Aecrrihad Thic mathad ar Jdeacalamad e Zloamarmans (IO L0 1o Thagine
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approach, the energy is governed by the aromatic or antiaromatic nature of the
transition state. By concentrating on aromaticity, this tool is limited to reac-
tions that pass through a cyclic transition state—a class of reactions called
pericyclic (Woodward and Hoffman, 1970). The primary advantage of this
technique is that it requires knowledge of only the fopology of the transition
state and of the number of active electrons—it is not necessary to examine in-
dividual molecular orbitals, HOMO’s, or LUMO’s.

To implement this method, one begins by assigning phases to the atomic
orbitals involved in the cyclic transition state in order to give positive overlaps—
as far as possible—as one walks along the bonds being broken and the bonds
being formed throughout the transition state. It may not be possible to have
positive overlap throughout, for one or more interorbital sign inversions may
be forced by the nature of the afomic orbitals being used. If an odd number of
such sign inversions occurs, the transition state is said to be Mébius; no inver- |
sions or an even number of inversions give rise to a Hiickel transition state, A
Hiickel transition state is said to be stable if it contains 4n + 2 electrons and
unstable if it contains 47; Mobius transition states are stable if they contain 4n
electrons. 1

Let us use this method to determine whether the reaction Mg (3s%) + §
H, — MgH; (*4,) is allowed. For C,, symmetry, 3sy, is @, and H;0, is a,, but |
the MgH o bonds are a; and b,; thus, the bond-symmetry rule indicates that
the reaction is forbidden. The HOMO-LUMO overlap criterion yields the }
same result, namely, :

H;o, = LUMO and 3smg = HOMO.

In the Dewar-Zimmerman topology-based method the atomic orbitals are :
assigned phases as follows to permit no sign changes: L

@-®

+

i
]

This is a Hiickel system containing 4n = 4 active electrons; hence, its tra
tion state is unstable and the reaction is forbidden. In contrast, :

Ni (45s23d"*°) + H, — NiH,

is allowed if Ni uses its d orbitals, since the system is now Mabius,
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| oo @@
O ay
;5 &5

. and contains 4n = 4 active electrons (only the two electrons from H, and the
- two electrons from the one active d orbital count.)

The suprafacial addition of H; to H;CCHj; is a 4-electron Hiickel system.

Y
e

It is forbidden, just as would be found viaa LUMO-HOMO or full-symmetry-
forrelation treatment. The antarafacial addition reaction is allowed, since it
a four-electron Mobius transition state. The antarafacial attack diagram
LAl be constructed by walking along the new-bond-old-bond cycle as follows
! g with the top hydrogen and moving to the neighboring carbon)

{ /
O
____/

"':;shows one phase change, or alternatively, by walking from the top
Fogen to the bottom hydrogen
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l /
s
®—__—/

where again one inferorbital phase change results. Hence, this reaction is
Mobius and contains four electrons. Note that this method applies only to
those systems having (proposed) transition states that are cyclic. Other
methods that we have talked about (in particular, full orbital diagrams,
configuration-correlation diagrams, and HOMO-LUMO interactions) can be
used to solve any problem as long as some symmetry exists or as long as one
can identify the proper HOMO and LUMO of the fragment.

It would be good practice for the reader to go back through sections
4.4-4.9 and apply all of the Dewar-Zimmerman, HOMO-LUMO, symmetry-
correlation, and orbital-following techniques. This would help one to see rela-
tionships among the methods. In particular, it is important to observe that
most of the techniques that we have covered are closely interrelated. Each
attempts to determine whether the occupied orbitals of the reactant (where
electronic configuration information appears) evolve smoothly into occupied
orbitals of the products. In the methods of the orbital-correlation diagram and
the bond-symmetry rule, this is achieved by matching symmetries of occupied
orbitals. In the orbital-following technique, one concentrates on phase rela-
tions of these orbitals. The HOMO-LUMO method monitors the evolution of
the occupied orbitals by looking for low-energy virtual orbitals that can be
mixed with the occupied orbitals of the reactant to generate product-occupied
orbitals. Although the Dewar-Zimmerman method emphasizes the aromatic or -
nonaromatic nature of the cyclic transition state, even these properties are |
directly related to the occupied-orbital nodal patterns. [

B L

Problems

1. Consider the reaction

HC HaCx
H.C Hye T
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The products could be those shown, or the cyclohexane could have the opposite
stereochemistry, that is,

H H
© 8
R A
CH3
Which of these reactions is thermally allowed? Use HOMO-LUMO, the bond-

symmetry rule, and Zimmerman-Dewar methods.

~ 2. Which of the ketones shown below should be thermally unstable with respect to CO
loss to give the diene and cyclotriene, respectively?

0]
; ; >
3 Use orbital-correlation diagrams, configuration-correlation diagrams (using the two

mirror planes of symmetry), and orbital-following to predict whether the reaction
given below is thermally allowed.

E and absolute configurations. What are the two products if n is even? What are they if
i@ is 0odd? You may assume that steric factors are unimportant in formulating your
answer. Use the Zimmerman-Dewar method to answer this problem.

ven though the [1,3] suprafacial hydrogen shift

0
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is forbidden, the corresponding methyl-group migration is allowed. Why? What
products (including absolute and geometrical isomer considerations) are expected in
the [1,3] suprafacial migration of the Rs, R¢, R substituted methyl group in

You may neglect steric factors.

. Ammonia NH; is known to have C,, symmetry. The bonding in this molecule can be

explained by using the 25 and 2p orbitals of nitrogen and the 1s orbital of hydrogen.

a.

b.
c.

Use symmetry projectors to combine the 1sy orbitals to form symmetry-adapted
orbitals. What are the symmetries of the resulting orbitals?

Repeat step (a) for the 25y and three 2py orbitals.
Show in a qualitative orbital-energy-level diagram how the N and H atomic or-
bitals combine to produce bonding, nonbonding, and antibonding molecular or-

bitals of NH;. Label the orbitals. Assume that the 1sy orbitals are lower in energy
than the 2py orbital but higher than the 2sy orbital.

For use in the following questions, seven molecular orbitals are labeled in order of
increasing energy ¢, . . . ¢7.

d.

Consider the singlet excited state that can be generated by exciting an electron
from ¢; into the lowest available molecular orbital. Is this excited state stable,
first-order Jahn-Teller unstable, or second-order Jahn-Teller unstable? If it is
Jahn-Teller unstable, what symmetry of vibration would be expected to distort
the molecule (NH; has 24, and 2E vibrations)?

Repeat step (d) for an excitation out of ¢; into the highest-available-valence
molecular orbital.



Part 3

Theory and Applications
Pertaining to
Photochemical Processes

Chapters 1-4 treated thermal reactions. In Chapters 5 and 6 the theoretical
concepts needed to understand photochemical reactions are explained.
Chapter 5 begins by reviewing the qualitative experimental features that
characterize most photochemical processes. The purpose of this review is
to focus attention on those aspects of particular excited-state potential
energy surfaces that play cruclal roles in rate-determining processes
because the slow rate-determining steps determine the outcome of
photochemical reactions. An important principle Is the Kasha rule (Kasha,
1950) that radiationless transitions among excited singlet states usually
occur very quickly compared either o fluorescence or to a chemical
reaction. Thus, it Is only necessary to consider the lowest-excited-singlet-
state potential energy surface, since it is on this surface that the system
may eventually undergo chemical reaction. Chapter 5 also shows that
the strategy for using symmetry concepts to probe photochemical prob-
lems is very much the same as for thermal reactions. It is still necessary to
seek symmetry-imposed activation barriers in the appropriate (excited)
potential energy surface. In addition, avoided (or real) crossings of the
excited- and ground-state surfaces must be sought, since the system yields
the commonly observed ground-state products through these funnels.
Chapter 6 presents a quantitative analysis of the rates of internal con-
version and intersystem crossing. This treatment will provide understand-
ing of how such rates depend upon the shapes and energy spacings of
the potential energy surfaces between which the radiationless process
takes place, though the treatment does not provide the mechanics to
compute the rates from first principles. This analysis will show that radia-
tionless rates will be rapid when the surfaces approach one another
closely with similar slopes and when there are high frequency vibrational
modes available for digesting the excess electronic energy. In the case of
intersystem crossing, considerations of orbital angular momentum favor
certain transitions [e.g., '(mn*)—*(nn*)] over others ['(nn*)—3(Nn*)]. Know-
ing how these radiationless rates depend upon physical characteristics




of the ground and excited states of the molecule enables one to design
molecules with particular photochemical behavior and to interpret ex-
perimental data from many photoreactions.

In Chapter 7 the principles introduced in the Chapters 5 and 6 will be
applied In a qualitative manner to several photoreactions.

Readers not entirely familiar with the Franck-Condon principle and
other concepts relating to photon-absorption processes should read Ap-
pendix B before beginning Chapters 5-7.




Chapter 5

Intfroductory Remarks
cbou'r Photochemical Reactions

5.1. Nature of Low-Energy Excited States

Electronic excitation arising from the absorption of one or more photons
usually gives rise to an excited state having the same spin symmetry as the ab-
sorbing (ground) state. Transitions that do not conserve spin are more likely
when the absorbing molecule contains one or more heavy atoms that allow the
various spin states to be mixed via spin-orbit coupling (Turro, 1978). Excited
states of different spin symmetry can also be populated via collisional energy
transfer from an excited sensitizer molecule or atom (e.g., benzophenone or
mercury).

The vast majority of stable compounds that can easily be used as reaction-
starting materials have closed-shell singlet ground states (So). Therefore, for
most of the material in this chapter we assume that the ground state is a
singlet. However, most of the conclusions are valid also for molecules having
other types of ground states.

One-electron excitations arising from one-photon transitions can give rise
to either singlet (S;, Sz, . . .) or triplet (Ty, T3, . . .) excited states. By conven-
tion these states are ordered on an electronic energy basis when assigning the
labels S;, T, and so on. Usually the triplet state arising from a given orbital
transition (e.g., nw* or w=x*) lies below its corresponding singlet state. The
most common explanation for this arrangement is that the triplet state con-
tains two electrons of the same m, value and this lowers the energy by exchange
interaction relative to the singlet—that is, the two electrons of the triplet state
are kept apart by the Pauli exclusion principle. However, this explanation is
not complete. For excited states in which a bonding-to-antibonding orbital
transition occurs, the charge distribution character of the singlet and triplet
states can differ significantly, and this difference in electron distribution must
also be considered.

Singlet (w7*)"' excited states can be represented approximately by Slater
determinant wavefunctions of the form
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é[i...'}mr*ﬂl—i...fﬁr‘al] (5.1)

(Cook, 1978; Pilar, 1968; Turro, 1978). Using the following (approximate)
representations of the = and =* orbitals in terms of the individual atomic or-
bitals (£, and Py) and the amplitudes (x and y) on each atom,

r=xP+yPp (5.2)
7* = yP, — xP, (3.3)

to express the active electron parts of the Slater determinants in terms of their
atomic components, we find

(x7%)! = (2[BP, — PoPyl + (72 — x))[Py P — PPy} ‘“B%"’ . 6.4

The same analysis of the triplet state determinant gives
(rr*)® = |. . . wamtal = [P+ Y)PP - BRI T - (5.5)

In writing equations 5.4 and 5.5, the last two columns of appropriate Slater
determinants are simply expanded; the other columns contain the passive or-
bitals, which need not be explicitly addressed here. For = bonds that are not
extremely polar x = y, in which case the (vx*)' state is dominated by the ionic
terms (P\P, — Py R), whereas the (xn*)® state contains only radical or covalent
terms (Py P, — P,P). This strong difference in the two charge densities plays an
important role in making the wx* triplet state lower in energy than the singlet
(which has both electrons in the same region of space).

The description of the relative energetics of the singlet and triplet states
just given has been simplified by assuming that the = and =* orbitals can be ex-
pressed in terms of the same atomic orbitals. More sophisticated ab initio
calculations on singlet wx* states indicate that it is more correct to think of the
= and =* orbitals as having different radial extent or size (McMurchie and
Davidson, 1977). However, detailed investigations of this problem indicate
that the formulation in terms of the ionic and covalent charge-density picture
is qualitatively correct. It is important to keep in mind that, as a result of the
large difference in electron distribution, these excited states may have physical
and chemical properties that are very different from those of the ground state
and that depend upon spin multiplicity (Pearson, 1976; Turro, 1978).



INTRODUCTORY REMARKS ABOUT PHOTOCHEMICAL REACTIONS n

5.2. Energy Redistribution in the Singlet Manifold

We now consider what happens to the energy that has been stored in the elec-
tronic framework of the system after an excited state is formed. In an isolated-
molecule gas-phase system (Rice, 1971) the total energy must be conserved
within the degrees of freedom of the electronic-and-nuclear motion (vibration,
rotation, translation) of the molecule. In condensed media, it is possible even-
tually (on time scales appropriate to vibrational relaxation, ~ 107'2-107'° sec)
for energy to be dissipated to the surrounding medium.

Two experimental observations indicate the processes that occur with the
highest rate (those fast enough to lead to observed phenomena). First, it is
observed that fluorescence (S, — So + A») almost never occurs from higher
singlet states (S,, n > 1) (however, see Beer and Longuet-Higgins, 1955).
Even when S;, S3, . . . are excited from Sp, the fluorescence usually comes
from §,, a fact known as Kasha’s rule (1950). This rule states that when S,, S;
. . . are excited, some of this electronic energy must be digested (on a time
scale that is fast with respect to fluorescence, namely, < 107°-107'° sec) by the
degrees of freedom associated with nuclear motion, since in this isolated
molecule the fotal energy must remain constant. This process of digesting elec-
tronic energy (S,+1 — S,) is called internal conversion; its physical origin will
be explored in more detail in the following chapter.

A second important observation is that the products of most photo-
chemical reactions of molecules that contain more than a few (~ 5) atoms need
not be electronically excited. Thermal and photochemically induced chemi-
luminescent reactions do occur, but they are exceptions. Most photochemical
reactions yield directly (without much fluorescence) a high fraction of the
products in their ground (S,) state. This experimental fact indicates that
photoreactions do not occur entirely on an excited-state potential energy sur-
face (most likely, S;) followed by radiative decay (fluorescence) of the prod-
ucts; rather, the excited-state reactants often end up on the ground-state
potential energy surface of the product molecule(s). How then can an excited-
state reaction ever be symmetry-forbidden if the ground-state energy of the
products lies below the energy of the photochemically prepared state? To
answer this question it is necessary to understand how internal conversion oc-
curs. A more detailed analysis of internal conversion will show that, if the S,
and S, potential energy surfaces vary with some reaction coordinate (geometri-
cal distortion) as in Figure 5-1, then the initially excited S; molecules will have
a good chance to react and to yield ground-state (So) products by hopping from
the S, surface to S, near the close approach of Sp and S,. In Chapter 6 it will be
shown that the rate of hopping depends on the number of internal degrees of
freedom that the molecule can use to digest the electronic energy. Near the
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Figure 5-1
A typical arrangement of So and S, surfaces that results in an allowed excited-state reaction.

avoided crossing, there is little electronic energy to be digested, so internal con-
version is facilitated at these geometries. For small molecules with low den-
sities of internal states (vibration, rotation, translation) the rate of hopping is
slower and the system is more likely to remain on S;. Remember that, in gas-
phase radiationless transitions, total energy must be conserved. Therefore, the
system gains internal energy even though the diagram in Figure 5-1 shows the
system hopping from S; to So, thereby losing electronic energy. This internal
energy can be vibrational motion along Q,, or it can be vibration or rotation
along degrees of freedom orthogonal to Q, (not shown in the figure). The
larger the number of vibrational modes, the less likely it is for the energy to re-
main for a substantial length of time in the Q, degrees of freedom. In condensed
media, the excess vibrational-rotational energy can also be dissipated to sur-
roundings in 107'°-107"% sec. :

On the other hand, if the S, and S, surfaces have the properties shown in
Figure 5-2, the initially prepared S; molecules will have to overcome an addi-
tional activation barrier for reaction to occur. Such S; surfaces would then
lead to photochemically forbidden reactions: the excited molecule will be
trapped on the reactant side of the barrier. If the photon energy placed the
system high enough on the S, surface to overcome the barrier, the S; molecule
may undergo internal conversion to S, near an avoided crossing or actual in-
tersection of Sy and S,. As will be seen later, the excited S; molecules can most
efficiently hop (undergo internal conversion) to Sy at such near crossings of So
and S, (Michl, 1972, 1974, 1975). After reaching the S, surface, the system can
either yield products or the reactants can be restored. The quantum yields for
these two processes will depend upon both the precise shape of the S; and S,
surfaces and the photon energv. The nature of the dictartian ~nnrdinatas ¢hae
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Figure 5-2
A typical arrangement of S, and S, surfaces that results in a forbidden excited-state reaction.

coordinate is obtained, it is necessary to seek symmetry-imposed reaction bar-
riers that arise on the S, surface between the reactant geometry (as determined
by the Franck-Condon principle; see Herzberg, 1966, and Appendix B) and the
funnel geometry through which the reaction proceeds. As in Chapter 1-3, this
again means finding where the potential surface (S,) passes through extrema
(barriers and minima) as a result of avoided crossings.

Appendix B outlines the theory of an electronic transition in which a
ground-state (So) molecule absorbs a photon and moves to an excited surface
S, (n = 1). Both the common Franck-Condon approach and a partly classical
picture are presented; these tools allow one to guess the geometry at which a
molecule will enter an excited-state (S,) potential energy surface. These entry
geometries must be known before walking along the S, surface as outlined
above can be undertaken.

5.3. Processes Involving Triplet States

Thus far, our attention has been restricted to processes that take place on the
singlet-state manifold. If spin-orbit effects were entirely negligible, the triplet
states would not become populated after the primary photochemical event,
and these spin-forbidden states could be ignored. However, triplet excited
states are important because even a small amount of spin-orbit coupling can
cause intersystem crossings (S, — T,,), especially when the S, and T, surfaces
approach or intersect. Moreover, the excited triplet states can also be directly
populated in the primary event either by using electron impact on the neutral
So or by formmg the doublet amon of S.;. (So) and subsequenlly detaching an

P PR ES Pl | R % AV, T TINEA O
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When a triplet state becomes populated, it can undergo several processes.
Higher triplet states (7,,, n > 1) usually decay in a radiationless manner to T,
on a time scale that is very fast relative either to backward intersystem crossing
—T; — S; or So—or to radiative decay (phosphorescence)—T,, — S, + hv—
both of which are slow spin-forbidden events. After undergoing internal con-
version (T, — T;), the T,-state molecules usually live for 107-10 sec. During
this time, which is much longer than the radiative lifetime of the S, state
(107'°-107 sec), the triplet molecules can undergo chemical reaction or decay
radiatively or by intersystem crossing to So. Since T; usually lies below S, it
can no longer return to the excited singlet manifold. We will make this point
clearer in the next chapter. The longer lifetime of the T, state plays an impor-
tant role in its chemical reactivity—namely, time is available for reagents to
arrange themselves in a geometrically favorable manner for initiation of reac-
tion. The lifetime gives rise to one of the distinguishing features of triplet
molecules—namely, the tendency to undergo two-step radical reactions rather
than the concerted one-step reactions characteristic of singlets. For a reagent
in the triplet state to react with a closed-shell (singlet) molecule and yield a
closed-shell product—for example,

P9
02(32) + HzCCHz o H;C—CH;)

requires intersystem crossing. Such reactions are usually described by two steps.
First, a triplet reagent bonds to the singlet molecule to form an intermediate
triplet radical, for example,

o
H,C—CH,

which slowly undergoes intersystem crossing to become a singlet radical that
finally allows the two radical fragments to close and form a bond.

When an excited molecule in a singlet or triplet state reaches the lowest T
state, the factors that determine whether it will react to form products and the
products that will be formed are the same as those used in analyzing the fate of
the S,-state molecules. The two preceding figures can be employed to explain
the allowed and forbidden triplet reactions to yield singlet products by simply
replacing S, by T, and making two modifications. First, the possibility for the
T, and S, surfaces to intersect in a (3N — 7)-dimensional space (for nonlinear
molecules) must be considered; S, and S, can intersect in, at most, a (3N — 8)-
dimensional space. Second, when examining the rate of hopping from T, to
So, spin-orbit coupling effects must be included. The rates of S, — S, internal
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conversion and T; — S, intersystem crossing are much different because the
physical factors that govern these rates are different.

To predict whether a triplet-state reaction is allowed, one proceeds in the
following way. First, the Franck-Condon principle is used to select those
regions of nuclear configuration space that, upon the primary (So + hy — S,,)
event, are likely to be populated. The internal conversion (S, — S;) then occurs
rapidly to give S,. Then, likely molecular deformation coordinates are sought,
along which S; and T, approach closely or intersect and along which no high
symmetry-imposed barriers on the S, surface occur. The intersystem crossing
(51 — T,) funnels will determine the molecular geometries at which 7, is
formed. Finally, starting at this point on the potential energy hypersurface at
which T, is formed, additional deformations are sought, such that 7, and S,
intersect or approach closely and along which no high barriers exist on the T,
surface. These T, — S, funnels can yield either ground-state reactants or
ground-state products, depending on the detailed nature of the 7; — S, funnel
or intersection.

Note that the approach in studying photochemical processes is similar to
that for thermal reactions. Minima in S, and 7T, are sought because these
minima often indicate where the excited surfaces (S; and T;) come closest to
So. Although it is indeed possible for S, and T, to intersect S,, emphasis
should not be placed on these crossing geometries; they contribute a subspace
of smaller dimension than the dimension of So, 77, or S,. The regions of space
in which §; or T, comes close (within striking distance for the non-Born-
Oppenheimer terms in the total Hamiltonian) are of higher dimension and thus
more important. In addition to finding minima in S, or T;, the points at which
Sy and T; can cross or come close must be determined, and possible barriers in
S: and 7'; must be sought.

Before proceeding to examples of photochemical reactions, it is necessary
to explore further the physical mechanisms by which radiationless processes
such as internal conversion and intersystem crossing occur. This knowledge is
important because it will permit us both to predict when these events will be
likely (occur at competitive rates) and to understand how isotopic substitution,
heavy atoms, and vibrational state densities can be used to alter the rates at
which they occur. This is the subject of Chapter 6.



Chapter 6

Internal Conversion
and Intersystem Crossing

6.1. The States Between Which Transitions Occur

To understand the mechanisms by which a molecule can undergo a radiation-
less transition (Yardley, 1980; Lin, 1980) from one potential energy surface to
another, the Schrodinger equation for combined electronic and nuclear motion
given in Chapter 1 is needed. The electronic wavefunctions {¢.(r|R)] corre-
sponding to the two interacting states between which transitions occur obey
the equations

he¢50 = ESQ(R)¢SU (6'1)
and

h. = EAR)¢, (x = S, 0or Ty). 6.2)
Within the Born-Oppenheimer approximation, the internal (vibrational-
rotational) wavefunctions belonging to the S, and excited potential surfaces
obey the equations

(D% + Es)X? = €2x? (6.3)

and

(D& + E)X;:

Xy, (6.4)

in which D3 is the kinetic energy operator for all of the nuclear vibration and
rotation. The energies €? and € are the fotal Born-Oppenheimer energies of
b sox?. and ¢,X3., respectively. e) can be decomposed into the electronic energy
at the minimum of the S, surface plus the X internal energy (e?)

€2 = Es, (min) + e?. ' 6.5)
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An analogous expression can be written for €
er = E, (min) + e; (6.6)

where E, (min) is the electronic energy at the minimum of the excited-state sur-
face. E,(min) — Es (min) gives the adiabatic electronic energy difference for
the S, — X excitation; e? and e? are simply the vibration/rotation energies
(labeled by the quantum number v) on the S and x surfaces, respectively.

In the approximation that the internal vibrations and rotations may be
uncoupled, the functions X2, and X} consist of products of appropriate rota-
tional functions and of 3V — 6 vibrational wavefunctions—one for each of the
normal or local vibrational coordinates (Yardley, 1980) including the reaction
coordinate Q,. As pointed out in Chapter 1, motion along coordinates ortho-
gonal to Q, can often be thought of as involving approximately harmonic
vibration. However, the components of X2 and XZ. that describe motion along
Q, cannot be approximated by harmonic motion except near local minima. In
regions of Q, space in which S, has negative curvature, the Q, component of
x°looks like a continuum wavefunction rather than a bound vibrational wave-
function.

We now consider the transitions used when a molecule hops from S, or T;
to So. The S, or T, state has been populated by the mechanism So + hv —
S, — (S1, T1). In the Born-Oppenheimer approximation, the wavefunction of
this excited state is given by

V. = o.(r| R)XJ(R). 6.7)

The vibrational energy level ;- may be high or quite low (e.g., in condensed-
phase situations). Although €. also contains rotational and, perhaps, relative
translational energy, we will, for brevity, speak of this energy as being vibra-
tional. If the density of states (states per cm™" of energy) in the So manifold is
high at this energy level (¢}), it is likely that there is a state of the S manifold

Yo = ¢s5,(r| RIXAR) (6.8)

that is nearly degenerate with y,. These two zeroth-order states will be coupled
by the terms in the true Hamiltonian that give rise to non-Born-Oppenheimer
corrections. This coupling will be strong if the off-diagonal matrix elements
(Vx| H|yo) are nonnegligible when compared to the energy difference e} — €
(Yardley, 1980). Therefore, in this situation the non-Born-Oppenheimer
coupling is said to give rise to transitions between V. and ¥, and these transi-
tions are the hopping that has been discussed. If the excited state is a triplet,
the non-Born-Oppenheimer terms alone would not couple ¥, and y,o; H must
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6.2. Rates of Transitions

To evaluate rates of such transitions, the conventional Fermi ‘‘golden rule”
can be used (Yardley, 1980; Lin, 1980); this rule states that transitions starting
in ¢,X}. and going to q&sox.? and caused by the non-Born-Oppenheimer parts of
H — h, occur at a rate given in sec™" by

i % E 1<¢Sox?|H_. he|¢.\'x:')|za{fe_ Eﬁ')- (6'9)

The 6 function guarantees that the states ¢, X7 contributing to the total radia-
tionless transition rate have the same Born-Oppenheimer energy as ¢.X;..
When many vibrational or rotational modes are present, there may be many X;
functions, each having the same energy 2. The number of such states is referred
to as the density of states p at this total energy (3]

pler) = Y 8(ed— €X). (6.10)

If there is reason to believe that all of the states {¢5,X?} in this degenerate
manifold couple to the same extent with the initial state ¢.X7-, then the sum
over v in the above expression for W can be replaced by the appropriate state
density

W= zﬁi K5 Xo| H — | ;X5 2p(e2) 6.11)

in which X}. is any one of the degenerate states. Modern research on the
behavior of electronically excited molecules indicates that, even for systems
with high state densities, often only a small fraction of the modes play an ac-
tive role in the radiationless transition. As a result, it may not be wise to use
equation 6.11 when trying to understand radiationless transition rates; it is
probably more appropriate to think in terms of equation 6.9.

Internal Conversion Rates

We now consider how equation 6.9 depends on the electronic energy difference
and the vibrational wavefunctions X° and x*. for the internal conversion case
in which ¢, is a singlet state. The terms in H — A, that couple the initial state
¢s,X; to the final state ¢5 X} are the non-Born-Oppenheimer terms, and the
off-diagonal coupling matrix element described in Chapter 1 is

P L G 2 et S Ut e 8 U L [ 7 B e SRR T T S I o T (6 1M
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As discussed in Chapter 1, the second term in this expression is usually larger
than the first (except when the second term vanishes, owing to symmetry);
hence, the analysis will proceed using only this term. The analysis of the first
term can be performed in analogous fashion (Berry, 1966); to do so would not
shed further light on the physical origins of internal conversion.

An expression for the above coupling matrix element that is more
physically useful can be obtained by applying the Dy operator to the Born-
Oppenheimer Schrodinger equation, which ¢, obeys:

Dgr(heps, — Es,¢s,) = 0. (6.13)

Multiplying on the left by ¢, and integrating over the electronic coordinates
only yields

(bs,| Drhe| ¢s,) + (bs,|h. Drebs,) — DrEs, (s, |9s,)
— Es5,($s,| Drds,) = 0. (6.14)

Equation 6.14 can be solved for (¢s, | Drés,), which can then be used to reex-
press the coupling matrix element and, therefore, to write the transition rate as

W= 2%‘-’ Y 82— €2)

[{X?|[Es, = Es)] " ($s, | Drhe| bs,) 2D X5 )|? 6.15)

This analysis shows that W is likely to be large if regions of nuclear con-
figuration space (R) exist for which the electronic energy gap is small
(Es,(R) = Es (R)) and the product XJ(R)DgX:.(R) is nonvanishing.
Therefore, molecular deformations that bring the two singlet-state potential
surfaces close to one another should be sought. If X2 and DgXZ. have ap-
preciable overlap in the region in which Es, = Ej,, then internal conversion is
likely. However, the electronic force matrix element (#s,| Drh.|ds,) must also
be substantial; this integral will be large if (in the orbital-following sense in-
troduced in Chapter 4) the distortion tends to evolve the orbital structure of
és, into that of ¢5,. Where symmetry is present, the direct product of the S,
and §; symmetries must match that of Dgh,. For example, in H,CO, the nr*
state is achieved by excitation from an occupied b,(n) orbital to the vacant
b(w*) orbital. The kind of motion that is symmetry-consistent with b, x b, is
a,. H,CO does not have any vibration with a, symmetry. As a result, the
(¢bs,| Drh.|¢s,) matrix element should be small for nx* states in C,, sym-
metry. In contrast, r7* S, states have b, X b; = a, symmetry and, hence, Dy

ran ha g, heranes € de alea » IT N hac theae 4 cihentiac o foypamanteia OTT
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Figure 6-1
Energy surfaces that do not approach closely.

pected to have the largest effect on mapping the «* orbital into the = orbital
because the nature of these two orbitals is affected by the distance from C to O.

Let us review the procedure developed so far. If a coordinate exists along
which Ej, approaches Es,, the hopping rate for internal conversion is increased.
Near this avoided crossing or near approach of the Sy and S, surfaces, one con-
siders whether symmetry or physical force are likely to make (¢s,| Drh.|®s,)
significant for deformations either along Q, (Dr = Dg ) or along some direc-
tion perpendicular to Q,. Directions in which both this electronic force matrix
element is large and the vibrational product X% DX} is substantial will play
important roles as modes that digest the excess electronic energy Es, — Ef,.
That is, the direction along which E5, and E5, come close is important because
this motion brings the molecule to the funnel geometry. Once the molecule is
near the funnel, it can use other degrees of freedom (orthogonal to Q,) to
digest the excess electronic energy.

Energy-Digesting Modes

Two extreme cases of how the Es, and E, surfaces might appear may be
distinguished. The first case pertains to situations in which Es, and E, do not
approach one another closely—in other words, within an energy gap that is ap-
proximately equal to a non-Born-Oppenheimer matrix element. The shapes of
two such surfaces are shown in Figure 6-1. Efficient internal conversion may
still be possible by transfer of electronic energy to internal vibrational energy.
To analyze the rates of such processes in this case, note first that the energy-
denominator factor in equation 6.15—[Es (Q)— ESI(Q)]"—is small and
never undergoes rapid growth near some critical geometry as it would, for ex-
ample, in the near-crossing situations (a second special case that will be treated
shortly). Therefore, Es, — Es, is approximated as a part that depends on the
reaction coordinate Q,, plus a part that describes the (approximately har-
monic) motion perpendicular to Q,:



88 CHAPTER 6

Furthermore, the shapes of Es (R) and Es (R) are assumed to be sufficiently
similar that E5 (R) — Es(R) can be neglected relative to the presumed large
value of E5(Q,) — Es,(Q,) splitting.

To continue the analysis, two additional assumptions are made: (1) Only
one mode, whose spatial coordinate is R, plays an active role as an energy ac-
ceptor (Yardley, 1980). (2) In the initial S, state, the active mode is in its
v’ = 0level. Assumption 2 is by no means fully justified or even necessary. In
condensed media situations, it might be more justified, since vibrational
energy would probably have been dissipated to the surroundings prior to the
internal conversion process. This assumption is made only so the resulting in-
tegral containing XJ(R,) and Dg X3(R.) can be physically interpreted more
easily. We will then argue that essentially the same physical picture would be
obtained, after more tedious algebraic manipulation, if the more general
(v’ # 0) case were analyzed (see Yardley, 1980). Under the above outlined
limitations, the rate expression (equation 6.15) becomes

W= %’I Y 8(e2 — €3) [ {XAQIIEs,(Q,) — Es,(@))'X34Q.))

(TTCXE1%33) s, | D el 65,0 20X,

bza

Dg | X3 )2 (6.17)

Here the product I1, extends over all modes other than Q, and the active R,
and gives rise to simple Franck-Condon overlap factors for the passive modes.
If these modes are fully passive, then the shapes of the Sy and §; surfaces
along these directions should be identical, in which case the (XJ, | ;) overlap
factors would reduce to products of simple é-functions I, é,, ;. In writing the
above expression for W, we assumed that the electronic force matrix element is
rather insensitive to R,. Consequently, <¢s° |Dg h.| o S.) was evaluated at the
equilibrium value of the S, state of R, (R, = RZ), which was denoted by the
subscript ‘‘eq’’ in this integral. The vibrational quantum numbers appearing in
€2 and €l are underlined because they contain the quantum numbers of all
modes (for example, v = vg , Vo, vis b =1...).
With all of these observations, W reduces to

W = gﬁi Y. (el + Es,(min) + e}, — e, — Es,(min) — e))

VaVeVe

| (X2 (Q) | [Esy(Q)) = Es (@17 X352 |
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Figure 6-2
Energies relevant to internal conversion.

~ in which e)_and e}, are the internal energies in the Q, mode in the two states.
The energy-conservation é-function requires that the excess energy

Esy(min) — E5 (min) + ) — e}, = AE,,

which is equal to an adiabatic electronic energy difference plus the amount of
energy along Q, that has to be ‘‘digested,”’ is balanced by the change in vibra-
tional energy of the energy-accepting mode. This modified energy gap is shown
in Figure 6-2.

If X7 and X}, are approximated by simple harmonic oscillator functions
having identical frequencies w but equilibrium bond lengths that differ by
AR,, the evaluation of the XJ |Dg_|X3. integral is straightforward. For the
case of v, = 0 (Yardley, 1980)

.| D, X6} = «/%[ﬁ/% (= VX)) (v — 1))V2
5 —v"; L (= X)"(v, + 1)!)““]exp(—X/2) (6.19)

is obtained. in which X = /(A R?2. Substitution of this resnlt into equa-
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W = 4_;;12 l(d?SoIDR_hel(bS.)mll

vV,

(XS (QIIEs,(Q.) — Es (QI17'X:(Q.)) |2

s AE? 172
I RiAAE, — fiw)
AE, — hw ( AE, — hw ]
- I 4 )
cxp[ == (In( 22— 1) (6.20)

in which AE, is the excess energy or gap defined earlier.

Notice that A E, depends upon e — eZ., the energy change along the mode
Q.. Since for this special case E5(Q,) — Es,(Q,) does not become small for
any value of Q,, the element (X3,| (Es,—Es)™"| x:;) is likely to be small unless
xf_ and X have very similar shapes. This will not be the case if AE, = 0, since
then x‘,’r would correspond to a wave packet having high kinetic energy and a
short de Broglie wavelength (as in Figure 6-2). This function could have little
overlap with any low-energy Xj.. Hence, the dominant contribution is for
v, = 0 and small v,, and therefore it is reasonable to set v/ = v, = 0 in
equation 6.20.

Notice that equation 6.20 leads to the conclusion that high frequency
vibrational modes should be most effective in digesting the excess energy. For
such modes, (AE, —fiw)/fiw is as small as possible. The exponential depen-
dence of W on the energy gap AE, is thought to give rise to the observations
leading to the Kasha rule. For most molecules the S, — S, spacing (near the S,
equilibrium geometry populated in the Franck-Condon absorption process) is
larger than the S; — S;, S; — S3, . . . splittings. Hence, internal conversion
from S, to S, is slower than between higher states, since AE, is larger for the
S§; — Sy transition.

Equation 6.20 also shows that if experimentally one desired to modify the
rate of internal conversion by isotopic substitution, the high frequency varia-
tions should be modified. For example, substitution of deuterium for hydro-
gen should produce substantial changes in the rate of internal conversion.

In the other extreme case (see Figure 6-3) in which E; (Q)— Es,(Q)
becomes small along Q, (of the order of magnitude of the non-Born-
Oppenheimer matrix elements), we assume for motion along directions
perpendicular to Q, that Es, — Es, can be written as two components—one
consisting of motion along Q, and a second comprised of harmonic segments
(having the same geometries and frequencies). These harmonic potentials are
assumed to be identical on S, and S; and, hence, cancel yielding

Fe —Ec = F-(OY-F_.(N) e
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Figure 6-3
Energy surfaces that do approach closely.

In this case, Q, itself is the energy-digesting mode.
The treatment in this section of the special case in which Es, and E, do

not approach closely can also be made for this case in Figure 6-3 to the point at
which

W = Zﬁfw Ea(ESDI(min) +e) — Eg (min) — e};)

4|(X0, | (Eso(Q0) — Es,(Q.)) ' s, | Do e | 65,) Dr | X3;) | (6.22)

Because (Es, — J’:?.«;.)'l enhances contributions to the integral over Q, near the
point of closest-approach Qf, the electronic force matrix element and the
energy difference can be approximated by their values at Qf to obtain

W= %i-’f Y 8(Es,(min) + e, — Es,(min) — e%,)

r

|[Eso(Q7) — Es,(QI172[{¢s0| Do, hc| #51) | 2(X?, | Do, | X3, )|* (6.23)

Unfortunately, an energy-gap law is not easily obtained for this case because
the (x? |Dg |X3.) integral does not include two bound harmonic oscillator
functions; X, describes free (unbound) motion along the S, surface. However,
transitions will be favored if the electronic energy gap Es (Q7) — Es,(Q7) is
small and the electronic-force matrix element is large. Moreover, the kinetic
energy of motion along Q, in the product Sy state is Eg,(min) + e7, — E5 (Q7),

at Q = Q.

The Landau-Zener Point of View

Before discussing the rates of intersystem crossing, it is useful to point out the
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looking at rates of surface hopping (Eyring, Walter, and Kimball, 1944), a
method that pertains only to the second case treated above (the close approach
of So and S, depicted in Figure 6-3). In the Landau-Zener approach the near
crossing of the So and S, surfaces is parameterized by the slopes (fo and f;) of
the surfaces near their avoided crossing and the closest-approach energy
2¢10 = 2(Es,(Q7) — Es,(Q7)). The probability of a surface hop (per vibration
along Q,, as dictated by X3.) is then expressed as

P = 1—exp[—@xelo)ho|fo—f1])7"] (6.24)

in which v is the velocity of the nuclei as they pass through the avoided-
crossing region. The dependence of P on the vibrational level (X3.) of the initial
S, state comes from this velocity—if v, is large, the velocity is high. Equation
6.24 shows that three things—a close approach (small ¢,,), fast-moving nuclei
(high frequency vibration), and a small difference in slope (small change in
force)—favor surface hopping. This influence of the change in slope (which is
the change in the forces felt by the nuclear framework of the molecule along
the Q, direction) is obscured somewhat in the earlier expression for W (equa-
tion 6.23). This force effect is contained in the X{ (Q,) Dg XX,(Q,) factor. If So
and S, have very different slopes near Q7, the wavefunctions X and X;, will
have greatly different /ocal de Broglie wavelengths in this region, and X} and X},
are not likely to have large local overlap. In contrast, similar slopes of So and
S, near Qs will lead to large overlap of X and Xj; (i.e., similar shapes in X)
and X:;).

6.3. Intersystem Crossing Rates

In intersystem crossing rates the electronic wavefunctions ¢, and ¢, are singlet
and triplet, respectively. However, the spin-orbital operator

2 —P. -
B o %{E ,ZT X P)S, + Y [QJ':'—)""‘L]-S.-} (6.25)

w8 ief Fij

couples ¢ and ¢, to give perturbed wavefunctions ¢, and &, that contain both
singlet and triplet components. Intersystem crossing is viewed as occurring be-
tween these perturbed functions by a mechanism similar to that just discussed
for internal conversion. The perturbed electronic wavefunctions are approx-
imated by

650 = ¢s, + (¢’so|hsot¢rl) (Es, — ET,)-1¢‘T| (6.26)
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and
ér, = b1, + @1, | hso| bs)(Er, — Esy) ' ds, 6.27)

(Eyring, Walter, and Kimball, 1944; Pilar, 1968). These functions can now be
used in the Fermi golden-rule formula to evaluate W for intersystem crossing.
In doing so, the electronic-force matrix element (or even the second non-Born-
Oppenheimer factor ($s,|Dgh.|ér,) that was not analyzed earlier) is
modified because ¢s, and ¢, are now of mixed spin character:

(@s,|Doh.|b7r,) = (bs,| Doh.|dr,)
+ <ps,| Doh.| ¢s.,)@n | Asol ¢so>(Erl ~ )
+ (5ol hso| 1,) {b1,| Dohe| b1, (Es, - Ex))”™"
+ terms second order in Ag,. (6.28)

The first term vanishes because of spin orthogonality since Dgh, contains no
spin-dependent terms. The other two terms contain electronic-force expecta-
tion values, Es, — Er, energy denominators, and spin-orbit matrix elements.
When squared and substituted into the expression for W (equation 6.23), these
integrals give an expression for the rate of intersystem crossing. The treatment
of digesting modes other than Q, (if So and T remain far apart) and the treat-
ment of the case of Q, accepting the excess energy (when S¢ and T, cross or
come very close) proceed in the same way as that for intersystem crossing;
therefore, we need not repeat the analysis of the dependence of this radiation-
less rate on the energy gap, accepting-mode frequencies, and so forth.

The primary difference between the expressions for internal conversion
(W,c) and intersystem crossing (Wgc) is contained in the spin-orbit integrals
{bs,|hso| 1,y whose squares enter into W;sc. These integrals require further
discussion (Turro, 1978). The spin-orbit operator Ao, consists of the dot prod-
uct (L+S- + L_S: + 2L,S,) of a spatial electronic angular-momentum operator
and an electric spin operator. Clearly, it is the spin-operator components (S,
S-, but not S,) that map the triplet spin function into the singlet spin function
in the (s, | hso| b7, integral. When operating on ¢r,, the corresponding spatial
angular-momentum operator components can alter the angular characteristics
of the spatial wavefunction in ¢,. More specifically, since the components L,,
L, L,(orL,,L.,L,)of theangular-momentum operator transform like rota-
tion operators under point-group symmetry (see Appendix C or Cotton, 1963),
the direct product of the spatial symmetries of ¢, and ¢, must match that of



94 CHAPTER 6

at least one of the components L,, L, or L, for the spin-orbit matrix element to
be nonvanishing. This is another important factor to keep in mind when decid-
ing when intersystem crossing is likely to occur. For example, in H,CO, the in-
tersystem crossing transitions (xx*)! — (nx*)® or (nx*)®> — n? are spin-orbit
Jfavored because they utilize transitions between w(b,;) and n(b;) orbitals or
x*(b,) and n(b;) orbitals whose direct product a; has the symmetry of a rotation
about the symmetry axis of the molecule. Pictorially, this is represented by
noting that a 90° rotation of the n(b,;) orbital maps it into a =-like b, orbital.
Likewise, the intersystem crossing rates (rx*)' — (x7*)? and (n7*)' — (n7*)?
should be smaller because they are forbidden by first-order perturbation analysis
—that is, the molecule has no rotation having b, x b, = a, or b, X b, = a,
symmetry.

In the Landau-Zener method, which applies only to two surfaces (7; and
So) that intersect or approach closely, the probability of intersystem crossing is
given as before (equation 6.24) except that now the energy splitting 2¢,, is caused
by the spin-orbit coupling and is given by

€01 = (Ds,|hso| br,)0s- (6.29)

Hence, the same conditions that favor internal conversion also favor inter-
system crossing, except that the rate of intersystem crossing also includes the
spin-orbit matrix element in a multiplicative manner. This element will be small
unless heavy atoms are present and the two states can be connected by any of L,,
L, orlL,.



Chapter 7

Examples of
Photochemical Reactions

In this chapter six photochemical reactions will be analyzed by the methods of
Chapter 6.

7.1. Dimerization of Two Ethylenes

From the treatment of ground-state thermal reactions (Chapter 1-3) the four-
center concerted dimerization of two Sp ethylene molecules is forbidden by
symmetry. Recall that in C,, symmetry the orbital-correlation diagram for this
reaction is that shown in Figure 7-1. If the ground state (rv*x2, ¢%¢?) and singly
excited (r*n*m, 0®0*0) configurations of reactants and products and the con-
figurations with which they correlate are included, the configuration-correlation
diagram shown in Figure 7-2, in which the C,, symmetries of these configura-
tions are also indicated, is obtained. Not all of the configuration correlations
are shown because it is important to examine first in more detail the type of
photochemical event we wish to simulate. Following this examination, certain
of these configurations can be eliminated.

Photochemical dimerization of ethylene might be viewed as a collision
between (x7*)" excited ethylene molecule and a ground-state #2 ethylene under
C,, symmetry. Analysis of the reaction requires expressing this localized (non-
symmetry-adapted) excited species in terms of symmetry orbitals. Using the
reverse of the transformation from a localized orbital to a symmetry-adapted
orbital, the proposed experimentally prepared =2(7x*)} state (in which A and
B refer to the two isolated ethylene molecules) can be expressed as follows:

g = Wa, + Thys TA = Wa, — Mo,
and
*

i LT * %
Mg = Wp, + Wa,, A = Mp, — Wa,

from which the localized (ethvlene + ethvlene*) confieuration can he written
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Figure 7-1

Orbital-correlation diagram for dimerization of ethylene.

TA(TT*)s = (W0, — p,)(Ta, — o) [(Ta, + 7o, )75, + 721"

Keeping in mind that a singlet (wx*)" state is represented by a combination of
two Slater determinants, these orbital occupation patterns represent Slater
determinant wavefunctions. This property of the wavefunctions, combined
with the Pauli principle, allows one to eliminate the =,, 7., 7., and 73, pieces of
this wavefunction; however, this local-orbital description still contains many
symmetry pieces (e.g., rﬁl‘frb,ﬁ, has A, symmetry). The analysis of the various
symmetry pieces of this localized function is analogous to decomposing the six
2p states of Na* into four *IT and two 2L states when Na* collides with H; in
C;, symmetry.

The goal of this analysis is to determine whether there exists at least one
photochemically accessible path for the reaction. An answer could be obtained
by first analyzing the symmetry elements that are in the w(x=x*)) state, then
constructing a// configuration-correlation diagrams consistent with a// of these
symmetries, and looking for symmetry-imposed barriers arising on any of
these surfaces. This procedure would be exceedingly tedious but can be
simplified by the following method.

The orbital configuration diagram in Figure 7-1 shows that an excitation
from the b, orbital to the b, 7* orbital would have the best chance of produc-
ing an energetically downhill reaction surface because the b, and b, orbitals
undergo a crossing (which incidentally causes the thermal reaction to be for-
bidden). Certainly this b, — b, excitation is a part of the local-orbital wave-
function described earlier (in that the 72(xx*)§ function contains a a?b,b,
component. This component is the one most likely to lead to stable products.
Thus a conf"guranon correlatlon diagram is constructed that contalns only

Ll PO UL Ay . LT M | r, w

l"'lr'
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Figure 7-2

Configuration-correlation diagram for dimerization of ethylene.

b, x by = A, symmetry that arise from the b, — b, excitation. Those con-
figurations having B, and B, symmetry are eliminated from the configuration-
correlation diagram in Figure 7-2. These eliminated configurations include
b, — a; and a, — b, excitations that do not promote an electron from an or-
bital whose energy is increasing into an orbital whose energy is decreasing. The
resulting simplified configuration-correlation diagram, which is nof meant to
be quantitatively accurate, is shown in Figure 7-3. If experimental data for the
«w* and oo* excitation energies of ethylene and cyclobutane and for the ther-
mochemical AE for this reaction were available, the configuration-correlation
diagram could be made more quantitative.

Because of the (b2, b,) orbital crossing, the four configurations drawn in
the configuration-correlation diagram would be degenerate at this crossing
geometry at the level at which interelectron repulsion effects are ignored.
However, the electron repulsions are not negligible and split the four con-
figurations into four resulting states. At the crossing geometry, the triplet state
is probably lowest in energy. The excited state, which is formed in the primary
photochemical event, is—because of the forbidden nature of So + hv — T,
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Figure 7-3

Simplified configuration-correlation diagram for dimerization of ethylene.

these requirenients, though this state may only be the one most reactive com-
ponent of the 7% (wx*)s local-orbital excitation state.

After formation of the 'A4, state, internal conversion can occur near the
point enclosed in the box in Figure 7-3. As the two ethylenes collide, via an a,
accepting-mode distortion, internal conversion to the upper 'A, state can be
followed by “‘hopping”’ to the lower 'A, surface at the funnel (labeled F),
thereby giving either reactant or product molecules in their '4,0* ground
state! The precise amount of ground-state reactant and 'A4, and 'A4, products
depends upon the quantitative nature of the potential surfaces. Nowhere along
the path from '4; to A to ' A4, is a reaction barrier encountered. The S, sur-
face may be thermodynamically uphill if the o®00** state of cyclobutane lies
above the =2x=*" state of the ethylene dimer. In such a case, an appreciable
quantum yield of product would not be expected until the photon energy used
to populate the S, state is sufficient to exceed the energy gap between the
(x7*)" absorption threshold and the point at which the S, state intersects the
upper 'A, curve. The crucial element in making this reaction photochemically
allowed is the excitation of an electron from an orbital that moves uphill along
O, to a downhill moving orbital. Notice that the purpose in constructing the
configuration-correlation diagram was to see whether the system can efficiently
(through internal conversion or funnels) get from the 'A, surface (at the
Franck-Condon-populated reactant geometry) to the product ground-state

evirfaca e |fhn||! Amemmnmtarineg antr cvmmotrr imanced hareiaes nat to Fallan
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internal conversion will be sufficiently fast that the product molecules need not
be formed on the 'A4, surface.

What would happen if the >4,(x7*) state were populated in the primary
excitation event by triplet sensitization? If the configuration-correlation
diagram in Figure 7-3 is quantitatively accurate, the T; surface moves downhill
from reactants to products, and some phosphorescence from the 34 ,(s0*)*
state of cyclobutane is expected (assuming that the species does not first
decompose to yield another product). In regions of Q, space in which the A4,
surface intersects the lower ' A, surface (Figure 7-3), it is also possible that in-
tersystem crossing could lead to the formation of ground-state reactants,
because the lower 'A, surface is intersected on its reactant side. Recall that this
intersystem crossing will be efficient only if one of the rotations R, R,, and R,
has the same symmetry as the direct product 4, X A, = a,. Because the C,,
point group does have a rotation with a, symmetry, intersystem crossing
should be efficient. In summary, from the intersection of T, with S, on the left
side, intersystem crossing should give ground-state reactant molecules. From
the right-hand intersection of T; and So, products will form. Phosphorescence
of products will also occur. The quantum yields for each of these three proc-
esses will depend upon the exact values of the radiative and intersystem cross-
ing rate constants—such quantitative evaluations cannot be made from
symmetry-based arguments.

7.2. Closure of 1,3-Butadiene to Cyclobutene

The orbital-correlation diagrams for the disrotatory (DIS) and conrotatory
(CON) paths for closure of 1,3-butadiene are shown in Figure 7-4, in which e
and o indicate even and odd symmetry under ¢, or C,. In Chapter 4 the CON
pathway for the thermal reactions was shown to be allowed and the DIS path
to be forbidden. It will be seen in this section that the allowed pathway for the
photochemical reaction differs. We begin by constructing a configuration-
correlation diagram that includes only the most important configurations—
namely, the ground state and the state most likely to lead to photoreaction.
The fact that the energetically favorable = — #* excitation has 0 — e symmetry
for the DIS path is used next. For this reaction coordinate, the configuration-
correlation diagram, which is not necessarily quantitatively accurate, is shown
in Figure 7-5. If the relative-energy scale were correct in this figure—which
depends on the strengths of the o and 7 bonds and the strain energy of the
cyclobutene—excitation of butadiene to the singlet = (xr*)" state would not
yield cyclobutene at excitation energies near the =x*! threshold. Absorption of
photons of higher energy might cause a reaction if the excess internal energy
were maintained in the reaction coordinates. The reaction is nnf cvmmetry-
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Figure 7-4
Orbital-correlation diagrams for CON and DIS closure of 1,3-butadiene.
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Figure 7-5
Configuration-correlation diagram for DIS closure,

amount to intersect with the upper totally symmetric surface. In contrast, the
reverse S, photoreaction should occur readily because the x*(xx*)* state can
cross to the upper totally symmetric (o?7*?2) surface and thereby permit funnel-
ing to the ground-state surface. The funneling can then produce either reactants




EXAMPLES OF PHOTOCHEMICAL REACTIONS 101

=]
~n
’QA
q
==

me(oco*
1
w2(rw®)
#2§1r w*)3
o2(rw* .
o2(rm*)’> r2ww)
-u'z!v 1!"')3
e

CON

Figure 7-6
Configuration-correlation diagram for CON closure.

The CON reaction path, which is thermally allowed, is photochemically
forbidden when the excitation includes promotion of an electron from the sec-
ond orbital of the butadiene to the lowest r* orbital. The relevant configuration-
correlation diagram for the CON path is shown in Figure 7-6. It shows that in
addition to the fact that reaction along the S, state of the butadiene to produce
cyclobutene is endothermic—as was the case for the DIS process—an addi-
tional symmetry-imposed barrier to reaction on this S, surface is also present.
Because no funnel route connecting S, to Sy is present, it is unlikely that the
system will return to S, at a geometry that characterizes cyclobutene; it is much
more likely that the molecule will either fluoresce or return to S, via internal
conversion near the reactant geometry, because it cannot move away from this
geometry when it is on S;. The thermal reaction is allowed in the CON case, as
shown by the S, surface not moving uphill along Q,. The same behavior of S,
also makes the excited-state reaction to yield Sy products forbidden. For the
same reasons, excitation of the triplet #*(wrx*)* butadiene should also fail to
form cyclobutene. ;

The Dewar-Zimmerman rules can also be applied to certain photochemical
reactions if the resonance stahilitv rmles are simplv reversed (Pearson. 1976).
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so this reaction is thermally forbidden and photochemically allowed. Analo-
gously, the suprafacial [1,3] sigmatropic migration of a hydrogen atom is a
4-electron Hiickel system

and would also occur photochemically. These simple rules cannot be universally
valid because they do not contain references about the orbital into which the
electron is excited. The range of applicability of the Dewar-Zimmerman
prediction is limited to situations in which the occupied and virtual orbitals
participating in the excitation are energy ordered, either as

——‘><——— DRSS e e
“— — H— —

7.3. HOMO-LUMO (SOMO) Overlap
for the Diels-Alder Reaction

In using the criterion of HOMO-LUMO overlap to study thermal reactions,
the HOMO and LUMO orbitals for each of the two reactant species are ex-
amined. For a Diels-Alder reaction, the orbitals are the diene 7, and =3 or-
bitals (Figure 7-7a) and the ene = and n* orbitals (Figure 7-7b). The energy of
the ordering of these orbitals and the ground-state reactant orbital occupations
are depicted in Figure 7-7c. These diagrams show that = — #* and = — 73 ex-
citations include favorable HOMO-LUMO interactions in that the low-energy
excitations produce a charge flow that allows the o/d bonds to break as the new
bonds form. Hence, the thermal Diels-Alder reaction is allowed.

To use the HOMO-LUMO overlap tool for the photochemical reaction,
the orbitals are first occupied in a manner appropriate to the excited state. For
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Figure 7-7
(a) Diene x; and =, orbitals. (b) Ene = and x* orbitals. (c) Energy ordering of the orbitals in (a)
and (b).

singlet configuration r2(w,73)" is considered. The orbitals 7, and 75 are now
singly occupied molecular orbitals (SOMO) that can act either as electron
donors or acceptors in the HOMO — LUMO excitation sense. Although a//
possible single excitations should be considered when determining how elec-
tron density can flow between two reactants to break old bonds and make new
bonds, orbital energy differences (according to perturbation theory) influence
the contributions to the overall electron density flow, and thus indicate that
the * — m, and w; — #* excitations are probably more important. A 7, — =
excitation wonld mit three electranc in the r arhital fwhirh ic not allawed hy
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higher energy. The 7 — 73, w3 — w2, and = — =* orbital promotions do not
cause charge to flow between reactants, but they are entirely intrafragment ex-
citations. Notice that, analogous to the perturbation treatment of charge flow
in the ground state, here these orbital promotions are analyzed with respect to
their producing useful electron flow starting from an excited state. Examina-
tion of the energetically favored =*— 7, and =; — 7* orbital excitations
shows that these orbital-promotion pairs do not produce a favorable overlap
that allows new product bonds to form. Hence, the photochemical reaction
should be forbidden. Certainly all of the orbital excitations have some in-
fluence on the charge flow that accompanies this reaction, but the most signifi-
cant factor is whether there are low-energy single excitations that form new
bonds as old bonds break. '

The same conclusion would be reached if the ene had been excited rather
than the diene. The orbital occupancy would then be given by x2(x7*)', and
the relevant energetically favored excitations would be #* — 7% and 7, — =,
both of which lead to unfavorable overlap and, hence, a forbidden reaction—
that is, no formation of new bonds.

7.4. Excited Reactants Can Correlate
Directly with Ground-State Products

By promoting an electron from a doubly occupied orbital whose energy is in-
creasing along the reaction coordinate to one whose energy decreases, an S,
surface might be obtained that has no symmetry-imposed barriers. In such a
case, the system moves from the S, surface to the S, surface of products by in-
tersystem crossing at the point where the S, surface intersects So (or the upper
cone of Sp) in a manner favoring product formation.

However, cases are known in which internal conversion is not needed.
Consider, for example, the photochemical abstraction of a hydrogen atom
from an alkane by an excited carbonyl group

N _.Q* el ‘O_"f.'H ~cZ
/c_& 3 B @8 + Cc\

Treating the active orbitals as the CO x and n*, the O p-like lone pair (no), and
the H—C o and o* orbitals, the orbital-correlation diagram shown in Figure
7-8 can be made, in which only the approximate symmetry plane of the H,CO
moiety is used to label the orbitals. The orbitals on the C and O of the product

that lie perpendicular to the COH plane are labeled #. and 7. This symmetry
label is onlv correct while the carhonvl eronn remaing nlanar
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Figure 7-8
Orbital-correlation diagram for H-atom abstraction by carbonyl.
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because when this radical becomes nonplanar, the orbitals no longer have pure
w symmetry, o becomes a lone pair on oxygen, and n. becomes a radical or-
bital on carbon having a mixed p and s character.

The orbital-correlation diagram in Figure 7-8 seems to indicate that the
thermal reaction is allowed. However, notice that the o2y, 2,12 configuration
correlates with the o3y 73 0%z, configuration of the products and that the prod-
uct configuration also corresponds to the ionic products H,COH* and C"R;.
Clearly, these ionic species could not be the ground state of the products unless
extreme solvation effects were present. (We shall not consider how solvation
can affect the S, and T, surfaces; this is a separate, but very important, topic
that is beyond the scope of the present work.) Hence, the orbital-correlation
diagram does rnot predict that ground-state reactants can smoothly give rise to
ground-state (radical) products.

The various low-energy configurations that can arise by occupying the
reactant and product molecular orbitals in various ways are shown in the
singlet configuration-correlation diagram shown in Figure 7-9. Notice that this
diagram is different from those that have been encountered in that the sinelet
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Figure 7-9
Configuration-correlation diagram for H-atom abstraction by carbonyl.

(nw*)" excited configurations of the reactants directly correlate with the
ground-state configuration of the product. This means that an efficient direct
mechanism is available for bringing about the reaction

So + hv — S, (reactants) — S, (products).

No internal conversion or funneling is needed, and photochemical excitation
of a (nx*)' 'A, reactant can lead directly to ground-state radical products.

Had we included the triplet (n7*)* configuration of the reactants on this
configuration-correlation diagram, it would have correlated directly with the
triplet o?x%ox state of the product. Thus, triplet sensitized carbonyls should
also abstract hydrogen atoms from alkanes as long as the triplet (n7*)? state of
the reactants is above the ground (singlet or triplet radical) state of the prod-
ucts (Turro, 1978).

7.5. Benzene Photochemistry

In this example, three rearrangements of benzene shown in Figure 7-10 are
considered. The dewarbenzene and prismane are drawn both in their proper
three-dimensional structures and symbolically as valence isomers of planar
benzene to emphasize the bonding relationships among these species. We begin
the analysis by proposing reaction coordinates for each of the above reactions
that preserve C,, symmetry and by labeling and ordering the active orbitals of
the three species.

| In order of increasing energy from left to right, for benzene (see Cotton,
1 1963), the = molecular orbitals are
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Valence isomers of benzene.
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in which the + and — signs label the relative signs of the (p,) atomic orbitals.

The ¢ and = orbitals of dewarbenzene are

g%;ooog@

and the three o orbitals of prismane are

-co- -eow -eoo =0
-eo- -coo -ee»- -qp-

120 byzoc g so b=0 b, =c* a, =0

These sets of orbitals lead to the orbital-correlation diagram shown in Figure
7-11. The diagram is not drawn to be quantitatively accurate but indicates that
o bonds are stronger than w bonds; furthermore, the orbital-correlation
diagram contains no information about the strain energy of 1,4-dewarbenzene
or prismane. Construction of a configuration-correlation diagram appropriate
for the ground and low-lying singler excited states of these three valence
isomers is begun by listing the configurations expected to be most important,
indicating the essential configurations for each of the three species and the cor-

ralatinne amane thacra and Athas camflanratiane (MTahla T 13
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CHAPTER 7
TABLE 7-1

CoRrRELATION OF EssenTiaL CONFIGURATIONS FOR BENZENE VALENCE ISOMERS
Configuration Dominant species Correlates with
albla} Prismane x*x*? benzene and o?x*x*? dewarbenzene
atbla,b, Prismane* =*x* benzene and o*x?x*? dewarbenzene
atb3b? Benzene a*0*? prismane and o?x*x*? dewarbenzene
atb3b,a, Benzene* o%0* prismane and o*x?x*? dewarbenzene
alalb? Dewarbenzene o*0*? prismane and »*x*? benzene
alalb,b, Dewarbenzene® a%0* prismane and x*x*? benzene
ala,bib, Dewarbenzene* o*0*? prismane and x5x* benzene

Note: The * indicates an electronically excited molecule or orbital.

:

a2 o
o* bz /b_zzcr'

»*

b o

" 02
™ b2
T b
T G
o q1 0_1/0-
bz, o
.0
Dewarbenzene Prismane Benzene
Figure 7-11

Orbital-correlation diagram for rearrangements of benzene.
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Figure 7-12

Configuration-correlation diagram for benzene and prismane.

This information is then used to construct configuration-correlation
diagrams for the three reactions (Figures 7-12, 7-13, and 7-14). Since the
lowest energy orbitals of all three systems have a; symmetry and are doubly
occupied, the two electrons in these orbitals are neglected in constructing the
configuration-correlation diagrams. In each diagram the configurations that
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A, b3b: —
'B, b39,b, !
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A atb; —

2 2 |
— b3ay A,

Prismane

1 242
Ay agby —

Dewarbenzene

Figure 7-13
Configuration-correlation diagram for dewarbenzene and prismane.

contribute to S, of reactants or products and those that give rise to low-lying
singly excited states are displayed. Arrows directed steeply upwards indicate
that the particular configuration correlates with a doubly or more highly ex-
cited configuration on the other side of the diagram.

These configuration-correlation diagrams indicate that the 'B, excited
state of benzene would not lead to dewarbenzene for photon energies near the
'B, absorption threshold; although the process is not symmetry-forbidden, it

is a very uphill process that leads to the doubly excited b3a,b, state of
dﬂwarhpnvenp_ Alane the nrhill mavement the 1R, enrfacs ~ragees the 1R
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Dewarbenzene
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Figure 7-14
Configuration-correlation diagram for benzene and dewarbenzene.

surface. If the photon energy were sufficient to place the system high enough
on the 'B, surface, the system could hop—by a vibration of b; X b, = a,
symmetry—to the 'B, surface. The system might then move on this '_, sur-
face, eventually crossing again to the 'A4, ground-state surface. Since the
'B,-to-'A, surface crossing occurs on the reactant side of the A4, surface,
ground-state benzene should be the main product.

Alternatively, this same benzene-excitation process could yield either
ground-state benzene or prismane because the 'B, surface crosses the 'A4, sur-
face along the reaction coordinate connecting benzene and prismane. On the
other hand, one of the benzene 'B, configurations correlates directly with a
low-lying 'B; configuration of dewarbenzene and should thus give an allowed
reaction that might yield some S, dewarbenzene (but no prismane), the relative
amounts depending on the exact values of quantum yields. If the '4; S, sur-
face is intersected by the 'B, surface on the benzene side, then intersystem

rraccine will mnct likele laad ta orannd_ctate henzene Min the ather hand if



142 CHAPTER 7

the top of the S, surface lies below the ' B, surface, formation of ground-state
dewarbenzene is equally likely.

Excitation to the lowest A, state of dewarbenzene should yield an ap-
preciable amount of ground-state prismane, since the lowest ' 4, configuration
of each species correlates directly and crosses the funnel region of the 'A4,
ground state. At higher photon energies, excitation of a 'B, state of
dewarbenzene can give rise to formation of ground-state benzene; this is the
reverse of the reaction just discussed.

The number of events that might occur when a photon is absorbed is quite
large even for a system having few low-energy excited states. A small number
of occupied orbitals out of which an electron can be excited and a small
number of low-energy virtual orbitals can give rise to a large number of singly
excited states. Moreover, a number of geometrical distortions (that is, proposed
reaction coordinates) may have to be considered in following reactant states
through to various product states (as in the case just discussed). The crossings
of the excited potential-energy curves having low energy among one another
and with the ground state (So) surface along the possible reaction coordinates
determine the quantum yields of the numerous available reactive, radiative,
and radiationless pathways. Although the symmetry and nodal-pattern tools
do not allow a quantitative prediction of the yields of the competing events,
they allow one to guess the events that are likely and those that are not likely
because of symmetry-imposed barriers.

7.6. C+H,;— CH,

In this example, the reactions '4,CH, — H, + C and *B,CH, — H; + C are
investigated in an assumed C,, reaction pathway. To form the appropriate
correlation diagrams the following information is needed (all energies are in
kcal/mole):

C(P)—~C (‘D) AE = 29.2
C ('D)—('S), AE = 32.7
C P)+ H, — CH; (°B)), AE = -178.8
C (‘D) + H, — CH;, (‘4,), AE = -97.0.

Using the coordinate system shown in Figure 7-15, the hydrogen ¢, and o,
orbitals and the carbon 2s, 2p,, 2p,, and 2p, orbitals are labeled as either a;,
b, or b,, as are the o, a, ¢*, ¢*, n, and p, orbitals of CH,. For the reactants,
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® ’

l —-——————

® X

Figure 7-15
Coordinate system for discussion the reaction C + H, — CH,.

the o, and o, orbitals have a, and b, symmetry, respectively. The nitrogen or-
bitals and their symmetries are 2s (a,), 2p, (a1), 2p, (b2), and 2p, (b,). For
CH, the symmetric combinations of the two CH ¢ and ¢* bonds have a, sym-
metry, the antisymmetric o and ¢* combinations have b, symmetry, the non-
bonding (n) orbital has a, symmetry, and the p,(x) orbital has b, symmetry.

An orbital-correlation diagram for the CH, — C + H, reactions can be
drawn in which the orbitals are ordered by their relative energies. The same
orbital-correlation diagram applies to both reactions; only in the configuration-
and state-correlation diagrams does one distinguish between the triplet and
singlet species. The orbital-correlation diagram is constructed by connecting
orbitals having the same symmetry, as shown in Figure 7-16. To proceed, 3p,
'D, and 'S wavefunctions of the carbon atoms must be symmetry-analyzed.
We write these wavefunctions—first in terms of 2p,, wherem = 1,0, —1 or-
bitals and then in terms of 2p,,. orbitals. These wavefunctions are the following:

1. Three Slater-determinant wavefunctions belonging to the *P state,
each of which has an M, value of 1. (Any value of M,—1, 0, or —1—
could be chosen because the reaction of *P C to produce *B; CH, is in-
dependent of M,.)

2. Five 'D Slater-determinant wavefunctions

3. One 'S Slater-determinant wavefunction

Then, the configuration-correlation diagrams for the above singlet and triplet
reactions can be constructed.

The M, = 1 functions all have two unpaired « electrons. If the 1s? and
2s? spin orbitals, which are common to the first four columns of each Slater
determinant are ignored, for *P (M,, M.)
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Orbital-correlation diagram for the reaction C + H, — CH,.

3P(lrl) = |2Pﬂ+12Poa|

and
’PO,1) = |2ps102p-1a
P(-1,1) = |2poa2p_sa|.

The five 'D determinantal functions are obtained as follows. The *D(2,0)

and 'D(-2,0) functions are the only determinants arising from p? that have
M; = +2and are

lD(Z»O) = |2Pua2PnB| and 19(4,0) = |2P-102P—!l3| --

The other 'D(M,,0) M, = 1,0,— 1 functions are obtained by applying the L _
lowering operator to 'D(2,0) or the L, raising operator to !D(—2,0). In so do-
ing, we use the fact that L, acting on an eigenfunction of L2 and L, yields a
multiple of the eigenfunction having one higher or lower L, eigenvalue. Thus,
L_'D(2,0)~'D(1,0), and L,'D(— 2,0) ~ 'D(—1,0).

The operators L, are most conveniently expressed as sums of orbital-level
nneratnre [' = T ! Y Tha affont ~AF ] An Aane AfF the <1~ ~Lall f1-2A.25
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2p? aspects are treated. Since /, operating as an orbital having (/,m) eigen-
values gives #iv/(/ + 1) — m(m * 1) times the orbital with eigenvalues (/, m + 1),

LID(2,0) = [I(5) + I-(6)]|2p+102p41 8]
= #iv2[|2poa2psiB| + |2p+102poB|] ~ 'D(1,0)
and
L.'D(=2,0) = [14(5) + 1.(6)]| 2p-102p_,B]
= 7iV2[|2poa2p-18| + |2p-102p0B|] ~ 'D(—1,0)

To obtain 'D(0,0) we can apply L. to *D(1,0) or L, to 'D(—1,0). For
example,

L'D(1,0) = #iv2[|2p-102p 48| +2|2p002po|
+ |2P+102P—1!3|]‘ﬁ\/§ = 'D(O’O)-

These combinations of Slater determinants are not normalized; to normalize
them is straightforward, for example,

1D(0,0) = \% [12041020-18] + | 20-102418] + 2| 20002068 ).

The one 'S(0,0) Slater-determinant function can be obtained as the re-
maining combination of the determinants having M; = 0, M, = 0 that is or-
thogonal to 'D(0,0) and *P(0,0). Recall that 'D(0,0) is given above. *P(0,0)
can be obtained from *P(0,1) by applying S_:

3P(0,0) ~ S-*P(0,1) = (S-(5) + S-(6))| 2p+102p- 1|

= ‘ﬁ\/T[inuﬁZp-nal T lzpﬂazp—!ﬁ]]-

Clearly 'D(0,0) has the form 2z + x + y, whereas *P(0,0) contains x — ¥;
hence, 'S(0,0) must have the form z — x — y, or

15(0,0) = \% [122002P0B| — |20+102p-18] — | 29-102p418]].

Ta exnress the 1D 3PAL. 1Y and 1§ wavefunctioneg in terme nf 0. or-
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and (2p, + i2p,)2""'? for 2p,,; this will generate Slater determinants including
2p.,.. orbitals. It is important to understand the reason for bringing about this
transformation from m, = 1,0,—1 to x,y,z space. The 2p,, orbitals and their
determinental wavefunctions are appropriate for the spherically symmetrical
carbon atom in which L, = L./.(/) commutes with the electronic Hamiltonian.
However, in the presence of the H; molecule in C,, symmetry, L, no longer
commutes with the electronic Hamiltonian, though the operations of the C;,
point group (E, ¢,, 0,,, C;) do. Because the 2p,,, orbitals are symmetry-
adapted with respect to C,, symmetry, these orbitals must be used in the
wavefunctions.

The transformations of the three *P(M.,1), five 'D(M;,0), and one
'5(0,0) wavefunctions to x,y,z-space are the following. The transformations
of the P wavefunctions are

JP(IJ) = ]2p+|a2poa| e z_lnllszaszal +f|2pya2apla|]
*P(—-1,1) = 27'?[|2p.02p.a| — i|2py02p.a|]
*PO,1) = 27'[|2p.02p.a| + |2p,02p,0| +i|2p,02p.t| — i|2p.02p,x|]

i|2p,02p.al.

For *P(0,1) we used the facts that Slater determinants are antisymmetric

Iprazpyal e -|2Pyﬂf2anl

and that they obey the Pauli principle
|2p.02p,a| = 0

The three *P(M_,1) functions are degenerate when the H, molecule is not
present, so any combinations of these three functions would also be degenerate.
In particular,

PPQ,1) +°P(=1,D127? = |2p.a2p.a] = *P(xz,1)
PP, = *P(- 1D = [2p,a2p.al = *POz.1)
and

%’P(o.l) = |2p,a2p.al = *P(yx,1)
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are all degenerate. However, the three new functions (yz,xz, and yx) are more
useful because they are symmetry-adapted for C,, symmetry: *P(xz,1)
3P(yz,1) and *P(yx,1) have B,, B, and A, symmetry, respectively. These sym-
metries are obtained as the direct products of the symmetries of the orbitals.
For example, *P(yx,1) has 4, symmetry because the direct product of b,(y)
and b,(x) has 4, symmetry. Notice that it is not correct to conclude that the *P
state functions would span the same symmetry space as three 2p orbitals do (p,
has b,, p, has b, and p, has a, symmetry). A second reason that the xz, yz, and
»yx determinants are more useful for the C,, case is that they correspond to a
single orbital occupancy from which configuration-correlation diagrams are
easily generated.
Let us now consider the five degenerate 'D(M. ,0) wavefunctions.

'DQ.0) = 2902018 = +1127:020,6] + |22,02p.6]
+=[120:020.6] — |20,02p,61]

'D(=20) = |2p-1020-8] = 5 1|120:020.8] - |2,02p,8]
— 21129:020,6] + |20,02p.B1.

'D(1,0) = 27V2[|2po02p1B| + | 2P4102P0B|]

S 1129.029.8] + |20.02p.8] +i|20.02p,8] +i2p,2.8]]

'D(=1,0) = +{120:020:6] + 200208  120.02p,6|  i|20,02p,6]]

'D(0,0)

672[2|2poa2poB| + |2P+102p-18| + |2P-102P.1B]]

6_”1[2|2Px“2p:f3| + |2apx°‘2px-6| i |21’y°‘2PyB“

Since degenerate functions can be combined without affecting their degeneracy,
1D(+2,0) can be combined to yield functions having symmetries 'D(xx,0) —
'D(yy,0) and 'D(xy,0). Likewise, ' D(% 1,0) can be combined to yield ' D(xz,0)
and D(yz,0) symmetry functions. These new combinations are useful because
they are symmetry-adapted: For example, the symmetries of 'D(xx,0) —
'D(yy,0), 'D(xy,0), 'D(xz,0), and 'D(yz,0) are A,, A,, B, and B,, respectively;
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Configuration-correlation diagram for singlet and triplet.

The 'S(0,0) wavefunction has the property that

'5(0,0) = 37?[|2poa2poB| — | 2P4102p-1B| — | 2P-102p+1B]]

3_”2[|2P;a2p,ﬁ| T ‘praznaxﬁl o |2Py02Pyﬁl3.

I

which has A, symmetry in C,, since each of its components has 4; symmetry—
that is, @; X a; = A,, by X by = Ay, ba x by = A,.

The configuration-correlation diagram, together with the relevant avoided
crossings, is shown in Figure 7-17. In constructing this diagram, the relative
energy orderings of various configurations must be kept in mind. For example,
the o%n?p,o configuration is placed lower then the 0*n%00* one, which, in turn,
is lower than o?n?p.o*.

Let us examine how the configurations have been correlated. The *B,
o%a’np, configuration of CH; correlates with the o2p?2sp, configuration of
C + H, (see the orhital-confieuration diagram in Figure 7. 18 The |atter can
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H, + C(I1s*2s2p?) and, as such, lies considerably above the 'S state of
C(1s*2s%2p?).

The 'A, 0®0*n? configuration of CH, correlates with ¢725*2p? (see Figure
7-16). This latter configuration is not purely 'D or 'S. It is a combination of 'D
and 'S functions—in particular

loz2s*2p3| = 67'[6" 'D(0,0) — 3'/22'S(0,0)] - 27'['D(2,0) + 'D(-2,0)],

which is 2/3 D and 1/3 'S in character. Hence, the configuration-correlation
diagram must be drawn with a barrier near the ' D asymptote to represent the
fact that '4, CH, correlates with a (2/3:1/3) mixture of 'D and 'S C (plus
H,), which will eventually mix (with 2p2 and 2p?) to yield the 'D and 'S states.

The *A, o*n’op, and B, ¢*n?ee* configurations of CH, correlate with
032s*p.p, and 022s’p,p, configurations of C + H;. The latter two triplet con-
figurations are members of the three degenerate *P(xy,1), *P(yz,1) and *P(xz,1)
functions. The third member of this family—the 3P(xz,1) configuration
0;2s’p.p.,—which has B, symmetry—correlates with the o’n’p.0* con-
figuration of CH,.

In like fashion, all five of the 'D and the 'S states of C + H; can be corre-
lated with those of CH,. However, since we are considering only the lowest
triplet and singlet states, this correlation is unnecessary. All that needs to be
done is to seek low-energy configurations that have '4, or B, symmetry in the
C,, point group.

We now examine whether the reactions C(*P) + H, — CH; and C('D) +
H,; — CH; have large activation barriers and determine the states of CH; that
are produced in these reaction.

The configuration-correlation diagram in Figure 7-17 clearly illustrates
that the *B, reaction—C + H, — CH,—should have a symmetry-imposed bar-
rier. The transition state along this reaction path should lie closer to the
C + H; reactants than to the CH; products because the forward reaction is
exothermic.

The A, reaction C(*D) + H, — CH, also has a symmetry barrier in the
configuration-correlation diagram, but this barrier is artifical. Recall that the
'A,0%0*n* CH, configuration correlates with a 2/3:1/3 mixture of 'D and 'S
configurations. Hence, as CH,(*4,) is pulled apart along the assumed C,,
reaction path, the electronic wavefunction must mix the *D(0,0), 'D(+2,0) +
!D(-2,0), and the 'S(0,0) configurations. However, as the distance between
the C and H, species becomes so large that they no longer interact, the
wavefunction smoothly evolves to have only (*D) C + H, symmetry.

Another aspect of the configuration correlation diagram shown in Figure
7-17 is of interest. The lowest *B, surface, which has a substantial barrier, is
crossed hv the 34, and 3R, surfaces. so we mav ask whether pseudo-Jahn-
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vibrational distortion to give rise to mixing. The CH, molecule has no vibra-
tion with this symmetry. In constrast, the *B,%A4, crossing could give rise to a
pseudo-Jahn-Teller effect through a distortion having 4, X B; = B, sym-
metry. The asymmetric stretch vibration of CH;, has b, symmetry; this means
that as the CH; is pulled apart, any asymmetric stretch motion could cause a
transition from the °B, surface to the 34, surface, after which further
dissociation could occur on A, to give rise to CP) + H,. The result of such a
surface transition would be a lowering of the activation energy of the dissocia-
tion reaction. The *B, — A4, transition need not take place in every collision.
Those collisions in which the molecule ends up on the 34, surface will ex-
perience a lower barrier.

Such pseudo-Jahn-Teller effects can also affect the reaction C(*P) + H,
— CH,. Those C atoms whose orbital occupancy is p,p, (*A4,) can follow the
%A, surface, which has no barrier, until the >4,*B, crossing. At the crossing
the asymmetric distortion can permit the system to move to the B, surface
and thereby form ground-state CH; products. Those C(P) atoms whose or-
bital occupancies are p,p.(*B,) or p,p.(*B,) will encounter barriers as the H,
approaches. The B, surface appears to have the smallest barrier (activation
energy) but, as mentioned above, the >B,>B, crossing cannot give rise to a sur-
face transition because CH; has no B, X B; = A, vibration, and thus, 3B,
collisions are ineffective. B, collisions can proceed directly (that is, with no
pseudo-Jahn-Teller effects required) through the barrier on this surface to give
ground-state CH; products.

Problems

1. You are studying the photochemical reaction in which 1,4-dewarnaphthalene rear-
ranges in a disrotatory ring opening to yield naphthalene. The relevant energy
change is AE = —48 kcal/mol.

AE=—48kcal /mole

a. Using the one symmetry plane that is conserved in the reaction, draw and label as
even (a") or odd (2") all of the active orbitals of the benzene moiety and of the

D

moiety. For example,
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isa’.

. The energy ordering of the orbitals in the dewar structureisa’,a’,a’,a", a’,a”,

a’,a",a”,a”. Describe the physical characteristics (e.g., ¢ or x, bonding or anti-
bonding) of each of these orbitals in terms of the benzene and

D

The energy ordering of the = orbitals in naphthaleneisa’,a’,a”,a’,a”, a’,a”,
a’,a”,a". Draw an orbital-correlation diagram for the reaction, labeling each or-
bital as @’ or a” and state the nature (o, w, o*, or x*) of each orbital.

moiety orbitals.

. The low-energy excited states of 1,4-dewarnaphthalene lie at 125 kcal/mol, 150

kcal/mol, and 180 kcal/mol and are triplet, singlet, and singlet, respectively.
Their spatial symmetries are 4", A’, and A", respectively. Assign configurations
to each of these three excited states and state the configurations of naphthalene
with which they correlate. In all cases use the ground state of naphthalene as the
reference point of energy.

The low-energy excited states of naphthalene lie 60 kcal/mol, 90 kcal/mol, and
100 kcal/mol above the ground state and have 34", 4", and '4” symmetries,
respectively. Assign configurations to each of these three states and state the con-
figurations of 1,4-dewarnaphthalene with which they correlate.

Draw a quantitatively correct configuration-correlation diagram using all of the
above data. Give spin and space (4" or A”) labels to all configurations. Show how
the configurations will mix to give rise to states. You may assume the doubly ex-
cited configurations lie 180 kcal/mol or more above their ground state configura-
tions.

based upon your state-correlation diagram, answer the following:

. When light of 2850 A is used to excite the dewarnaphthalene, why does one ob-

tain primary fluorescence of the dewarnaphthalene?

. What other fluorescence would you expect to see if the wavelength of the exciting

light decreases to 2550 A ? Why? What does the observation of fluorescence at
3195 A tell you about how the internal energy has been distributed within the ex-
cited dewarnaphthalene molecule?

. At a much longer time after creating the initial excited state of the dewarnaphtha-

lene, why does one see phosphorescence only from naphthalene?

2. The photochemistry of formaldehyde has received much attention recently. It is a
““testing molecule’’ for models of energy-sharing, photodissociation, and internal
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conversion. Let us try to understand some of the interesting features of this small
molecule.

a.

Draw an orbital-correlation diagram for the C;, decomposition HCO — H; + CO,
labeling the orbitals according to their symmetry under the two reflection planes.
Repeat this process for the H;CO — H + HCO reaction, assuming the reaction to
take place in a manner that preserves one symmetry plane. Include only the active
orbitals in these diagrams.

The following facts are available: (1) The lowest n#x* triplet and singlet ex-
cited states of H,CO lie 25,200 cm ™" and 28,200 cm™! above the ground state. (2)
The CH bond energy in H,CO is 88 kcal/mol. (3) H,CO — H; + CO is exother-
mic by 11 kcal/mol. (4) H,CO (*4) — H(®S) + HCO (linear *x) is endothermic
by 114 kcal/mol. (5) The lowest nx* singlet excited state of CO lies 65,500 cm™'
above its ground state.

. Draw configuration-correlation diagrams for the C;, H;CO — H; + CO reaction

and the C; H;CO — H + HCO (bent) reaction. Label the configurations according
to symmetry and indicate how the configurations combine to give rise to states.

. It is known that excitation of the singlet nx* state of H,CO with light between

28,200 and 30,600 cmi~! leads to internal conversion, fluorescence, and formation
of ground state H, + CO. By examining the C;, correlation diagram, explain how
H; + CO could be formed. In particular, what kind of molecular deformation
could be involved to allow (in a symmetry sense) the formation of ground-state
H; + CO? Near 28,200 cm™!, H,CO* undergoes fluorescence and internal con-
version to ground-state H,CO in a ratio fo 1:20. In contrast, D,CO (D = deute-
rium) undergoes mostly fluorescence and very little internal conversion. Explain
this difference between H,CO and D,CO. (An isotope effect is not a sufficient
explanation).

As the energy of the exciting light reaches 30,600 cm™*, formation of H + HCO
becomes possible. On symmetry grounds, what kind of molecular deformation

could give rise to these radical products? Be sure to explain the fact that the
resulting HCO is bent.

Describe the mechanism by which triplet nx*H,CO (formed by triplet sensitiza-
tion) quickly gives rise to ground-state singlet H,CO.



Appendix A

Overview of ab Initio
Molecular Orbital Theory

A Born-Oppenheimer electronic wavefunction ¢ must obey the ‘‘clamped
nuclei’’ Schrodinger equation described in Chapter 1,

h(r|R)$(r|R) = E(R)¢(r|R). (A.1)

Here, A,, the electronic Hamiltonian, might include spin-orbit operators as well
as the usual kinetic energy, electron-nuclear, nuclear-nuclear, and electron-
electron interaction terms. For any system containing more than one electron,
equation A.1 has never been solved exactly, and one must resort to approxima-
tion methods to obtain a description of the wavefunction ¢ and a value for the
electronic energy E(R).

* The two most commonly employed approximation techniques are pertur-
bation theory (PT) and the variational method (VM) (Pilar, 1968; Eyring,
Walter and Kimball, 1944). The implementation of either approximation
begins with finding an appropriate set of molecular orbitals that can subse-
quently be used to construct a basis of N-electron functions in terms of which
¢ is expanded. Let us first analyze how the molecular orbitals are obtained.

A.1. Orbitals

In the Hartree-Fock (HF) or self-consistent field (SCF) method (Cook, 1978),
one uses the variational principle to determine those spin-orbitals {y;]—orbitals
multiplied by a spin function « or 8 having m, = + 1/2—that minimize the
energy of a single Slater-determinant trial wavefunction ¢, (Cook, 1978;
Pilar, 1968)

p = det[yi(r)ya(rz) - - - Ya(ra)l. (A.2)

This energy-minimization process results in a set of HF or SCF equations that
the spin orbitals must obey, namely,
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F‘f’l = Ei‘nf’n (A.3)

in which ¢, is the orbital energy corresponding to spin orbital ,; and F is the
Fock operator in atomic units (Pilar, 1968), or

F= —— E Ir E 51&*{ ) "’l vir'ydr'. (A4)
in which P,,. permutes the coordmates randr’, and N is the number of elec-
trons in the system. In the operator F, the sum over j,. refers to those spin or-
bitals that are occupied in ¢gp. It is through this choice of occupancy that one
determines the state (e.g., 1salsp or 1sa2sf) for which the SCF calculation is
being performed.

In writing the trial variational wavefunction as a single Slater determi-
nant, one assumes that the major component of the true electronic wavefunc-
tion ¢ describes uncorrelated motion of the electrons. In other words,
although the electrons certainly interact, their motion is not strongly affected
by the instantaneous positions of the other electrons. The regions of space in
which they move (the orbitals) are primarily determined by the average interac-
tions among the electrons. This nearly independent-motion ansatz leads to the
postulate that ¢ can be approximated as an antisymmetrized product of one-
electron spin orbitals (Pilar, 1961; Cook, 1978); this approximation is similar
to giving the probabilities of uncorrelated events as products of probabilities
of the individual events.

If the orbitals used to construct ¢, are allowed complete variational flex-
ibility, the resulting calculation is referred to as an unrestricted HF (UHF)
calculation. In this most general case, the resulting HF spatial orbitals
associated with o and @ spins will not necessarily be identical. For example, a
UHEF calculation on the 1sals’f2sa occupancy of Li does not yield two iden-
tical 1s orbitals (1s # 1s’). As a result, the Slater determinant det(lsals’f2sa)
is not a pure doublet (s = 1/2) spin eigenfunction (Pauncz, 1979). Although
this is indeed an unattractive feature of such UHF wavefunctions, this SCF
procedure is widely used as a method for generating molecular orbitals (Pople,
1976). Subsequent to the UHF calculation of the molecular orbitals, the im-
proper spin-symmetry behavior of ¢sp can be removed by applying a spin-
projection operator P, (Pauncz, 1979) to ¢y to give a correct spin eigenstate

bssp = Ps‘ibSD- (A.5)

The resulting projected UHF wavefunction ¢, sp is generally no longer a single
Slater determinant. For example, a doublet (s = 1/2) projection of the
1sals’B2sa Slater determinant yields

—l—,: [det(15al5’B2s5a) + det(15815 0251
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However, it is still straightforward to compute the energy of ¢,sp using the
Slater-Condon rules (Cook, 1978) discussed below.

As an alternative to projecting a spin-unrestricted Slater determinant, one
can force the orbitals that belong to paired electrons to be identical at the start
of the SCF procedure and to remain so. For example, one can use the determi-
nant det(lsalsB2sa), which contains only two (ls and 2s) spatial orbitals
rather than three (1s, 1s’, and 2s). The energy of this spin-restricted HF (RHF)
trial function can be minimized to give a set of equations (Roothaan, 1960)
analogous to equation A.3, which determine the restricted HF orbitals. This
RHF process has the advantage that it does not yield different spatial orbitals
for paired electrons. Thus, for the Li example, the RHF ¢, automatically has
doublet spin symmetry (Pauncz, 1979). A disadvantage of the RHF method is
that it is computationally more difficult. Furthermore, its derivation is not en-
tirely free from arbitrary assumptions (Jgrgensen and Simons, 1981), which
makes it difficult to associate the orbital energies {e;} with ionization potentials
by means of Koopman’s theorem (Pilar, 1968; Cook, 1978). In contrast, the
UHF method permits the approximate evaluation of (vertical) ionization
energies as —e;.

The UHF or RHF self-consistent-field equations are usually solved by the
Roothaan-matrix procedure in which the y,; functions are expanded in an
atomic orbital (AO) basis {X;}. When this expansion is used in equation A.3,
ane obtains Roothaan-matrix HF equations of either the UHF or RHF variety
(Cook, 1978). If M atomic orbitals are used in the expansion, the resulting
matrix eigenvalue problem generates N occupied molecular orbitals and
2M — N excited or virtual molecular orbitals.

Vi = Ecebxb(ﬂf or 3). (A.6)
b

The most commonly used atomic orbitals are Slater-type orb.tals (STO),
namely,

Xb = NyYim,r™ 'exp(—alr — Ry ) (A.7)
and Gaussian-type orbitals (GTO),
X, = N.X*Y“Z"exp[—a.(r — R,)*]. (A.8)

In these defining equations, Y, is a spherical harmonic, N, and N, are nor-
malization constants, R, , is the position of the nucleus on which the atomic
orbital is located, ny, I,, my, k., 4, and v, are orbital quantum numbers, and
¢, and «, are orbital exponents that determine the radial sizes of the atomic
orbital.

Slater-type orbitals are to be preferred on fundamental grounds because
they display proper cusp behavior at the nuclear centers. For example, the
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[dﬁ N exp(— ;‘r)] = —N{. (A.9)
r r=0

This is precisely the behavior displayed by hydrogenlike orbitals that are eigen-
functions of the one-electron Schrodinger equation having only kinetic and
electron-nuclear attraction energies. In contrast, all GTO have zero slope at
the nucleus; for example, for the 1s GTO

LT ] 5
[drNexp( ar rao-—(}. (A.10)

Near a nucleus the full Schrodinger differential equation is dominated by the
same kinetic and nuclear-electron attraction terms that constitute the hydrogen-
like Hamiltonian; thus, the correct wavefunction ¢ must display hydrogenlike
cusps at the nuclei. The STO fulfill this criterion; the GTO do not.

The deficiencies of the GTO raise the question of why and how they are
used. GTO’s are convenient in studies of polyatomic molecules because they
allow efficient handling of the multicenter integrals that arise. In integrals con-
taining a product of two orbitals X, and X, that have origins on different
nuclei R, and R,, the Gaussian orbitals allow this product to be written in
terms of a single common origin. For example, the product of two ls-type
GTO’s can be expressed as

exp[ — aa(r — R,)%lexp[ — as(r — Rp)?]

= exp[—(aa + as)r?jexp (—;“T“;bn‘) (A.11)

in which the origin of the final r-dependent function is located between R, and
R, at a distance a.R/(a.+ p) from R, and opR/(a. + o) from R,
(R = |R,—R,|). The fact that the product X,X, that involves GTO’s having
different origins can be expressed as a single new GTO at a new origin makes
the use of GTO’s in evaluating integrals efficient.

To attempt to overcome the improper cusp behavior of GTO’s, one often
employs contracted GTO’s (CGTOQ) (Schaefer, 1972; Dunning, 1970, 1971;
Huzinaga, 1965). A CGTO (X3) is a linear combination of the GTO’s

Xo = Y AaX, e
b

in which the GTO [X,} have common quantum numbers (e.g., 1s, 2p, 3d) but
different orbital exponents («;). By combining a tight GTO (one having large
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Figure A-1
Formation of an STO by addition of loose and tight GTO’s.

a) with other GTO’s having progressively smaller exponents, one might fit
the cusp behavior of the STO. This is shown for 1s-type functions in Figure
A-1. By choosing the contraction coefficients {4 ,;} properly, it is possible to
generate a CGTO which, in a least-squares sense, reproduces the proper STO
cusp behavior (Pople, 1969). Alternatively, the contraction coefficients can be
chosen to minimize the SCF energy of the lowest energy state of the atom of
interest (Dunning, 1970, 1971). For either of these CGTO for any atom, the
CGTO itself can be viewed as the atomic-orbital basis function that is to be used
in subsequent molecular SCF calculations. In the literature, tabulations of op-
timal CGTO’s are available for most first-, second-, and third-row atoms based
either upon the STO fitting procedure (Pople, 1969) or the atomic-energy op-
timization procedure (Dunning, 1970, 1971).

In summary, the SCF method can be used to generate a set of molecular
orbitals that are expressed in terms of a chosen set of Gaussian- or Slater-type
atomic basis functions. The nature of the occupied molecular orbitals, as
displayed in the molecular-orbital expansion coefficients of equation A.6,
describes the charge density and bonding characteristics of these orbitals. The
energies {¢;] of the occupied orbitals give us, via Koopmans’ theorem, ioniza-
tion potentials of the system. However, one must remember that the entire
SCF method, including the concept of molecular orbital, is predicated upon
the assumption that ¢ is accurately represented by ¢qp.
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A.2. Configuration Interaction

In Chapter 3 it was shown that it is not always possible to describe the elec-
tronic wavefunction ¢ in terms of a single orbital-occupancy list (configura-
tion). For example, the fragmentation of heteropolar bonds to give radical
products was shown to require both ¢ and go* configurations to describe ¢
throughout the entire bond-dissociation process. For these reasons one must
often extend the description of ¢ to include more than one Slater determinant
or configuration. Moreover, such a multiconfigurational description should be
examined whenever high accuracy in the resulting wavefunction and energy is
desired. Hence, even when ¢ is dominated (~95%) by a single Slater determi-
nant, that determinant does not accurately represent the true wavefunction
because the Slater determinant describes electrons moving in orbitals deter-
mined only by the average interactions with the other electrons and not by the
instantaneous interactions. No electron correlation is present in the SCF
(single determinant) description.

By writing ¢ as a linear combination of all Slater determinants {¢,} that
can be constructed from the 2M (occupied and virtual) SCF spin orbitals,

¢ = ECJ¢1. (A.13)
I

the SCF treatment is improved. In most such configuration-interaction
calculations the ¢, are symmetry-projected functions (each of which may con-
tain several Slater determinants) describing the various configurations (spin-
orbital occupancies) that can be made from 2M orbitals and N electrons
(Pauncz, 1979; Shavitt, 1977).

Clearly, the number 2M /N !(2M — N)! of these configurations becomes
extremely large as the basis size (M) and the number of electrons increases.
Therefore, various procedures have evolved for selecting the most important
of the 2M ! /N1(2M — N)! configurations (Shavitt, 1977). The most commonly
used criterion for judging the importance of a configuration ¢, is to evaluate
its interaction strength using the one or few configurations that are absolutely
essential to describe ¢. For example, for the case of heteropolar bond rupture
(mentioned above and in Chapter 3) the ¢ and oo* configurations are essen-
tial. Other configurations ¢; (e.g., o¢’, 72, and so forth) are evaluated for
their importance by computing their interaction strengths {(¢;| H | ®eseniiar) fOr
all of the essential configurations. If the interaction strength is large, ¢, is con-
sidered to be important.

Unfortunately, ranking configurations according to the value of their in-
teraction strengths provides little physical interpretation for the nonessential

configurations. However, it is possible to ascribe meaning to those configura-
tions that are either cinolv (4 Y or danhly (4,) aveitad valation to o damato s
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essential configuration ¢.. The contributions to ¢ made by a configuration in
which one electron is promoted from ¢, (occupied in ¢.) to ¥, (unoccupied in
#.) can be denoted ¢%,. The trial wavefunction ¢, + C,¢5, consisting of two
Slater determinants is (because the two determinants differ by one column only)
equivalent to another single Slater determinant having the property that the
column in which ¢, and ¢Z, differ (¢. having y,, and ¢%, having V) is replaced
by a column containing the modified spin orbital y’ = Vu+ Cs¥p. The fact
that ¢, + C.¢%, is equivalent to a modified Slater determinant in which ¥, has
been replaced by ¢’ is the basis for saying that such singly excited deter-
minants £, produce either orbital modification or orbital relaxation.

If the SCF orbitals are used to construct the Slater determinants, one
finds (by using the Slater-Condon rules discussed below) that the interaction
strength between the SCF determinant (which is presumably one of the essen-
tial configurations) and singly excited determinants vanishes—that is,

(bur| H|¢:) = 0. (A.19)

This equation, known as the Brillouin theorem (Schaefer, 1972; Cook, 1978;
Pilar, 1968), simply states that singly excited determinants are not important
(in the interaction strength case) when SCF orbitals are used to construct the
determinants because these orbitals are already optimal—further optimization
(modification or relaxation) or the orbitals is not needed.

For doubly excited configurations ¢5?,, in which ¥, and ¥, (which are
occupied in ¢,) are replaced by ¥, and ¥, the trial function ¢, — Cpé7’,, can
be rewritten as a combination of two other determinants, each of which in-
clude pairs of polarized orbitals:

¢¢ = Cp(bpp?”, == det[- . -(‘;’u = \/a\&p)(#’v + \/G'J’q)]
+det[. . .(¥u + VCp ¥,)(¥, — VCb ¥,)l. (A.15)

Notice that in each of these two determinants, each electron moves in separate
polarized orbitals. For example, in describing the rupture of the H, bond
discussed in Chapter 3, a configuration-interaction wavefunction including
both the o§ and o2 configurations was used:

¢ = o} — Co}. (A.16)

The polarized orbitals corresponding to this doubly excited configuration-
interaction wavefunction are g, + VCo,. Such double excitations give rise to
electron-pair correlations because, in the polarized-orbital determinantal
description, the electron pair residing in the orbitals ¥, and ¥, are correlated in
the sence that one electron ic in one polarized orbital when the other electron is
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Figure A-2
Polarized orbitals.

in the other polarized orbital. Doubly excited determinants that include excita-
tions of orbitals differing in their left-right symmetry (as above) give rise to
polarized orbitals that are left-right polarized. Double excitations of the form
o — =1 give rise to polarized orbitals (¢ + vCr,) that differ in their angular
characteristics as shown in Figure A-2. Double excitations of the form
252 — 3s? give polarized orbitals (25 + /C3s) that differ in their radial or in-
out character. This polarized orbital-pair description of the contributions
made by double excitations is the basis for saying that such configurations give
rise to electron correlations. As one electron is in one polarized orbital, the sec-
ond is in the other orbital; this is what is meant by correlated motion.

In summary, configuration interaction is used to improve upon the SCF
description of the electronic wavefunction. Such improvement is often essen-
tial as, for example, in describing heteropolar bond rupture to give radical
products. However, configuration interaction can also be used simply to im-
prove the accuracy of the wavefunction ¢ and energy E. Configurations that
are singly or doubly excited relative to a dominant (essential) configuration
allow orbital relaxation and electron-pair correlation effects to be included in
the configuration-interaction wavefunction. Numerical procedures for adding
configurations above and beyond these singles and doubles, which are included
on physical grounds, are usually based upon evaluating the interaction strength
of each such configuration with all of the essential configurations.

A.3. Slater-Condon Rules

After obtaining a list of configurations that includes the essential configurations
and perhaps some set of singly, doubly, or more highly excited configurations
that have been chosen as discussed in section A.2, the C; expansion coefficients
of equation A.13 must be evaluated. In the configuration-interaction proce-
dure, the wavefunction of equation A.13 is used in the variational method to
minimize the electronic energy. This approach leads to the well-known config-
uration-interaction matrix eigenvalue problem (Shavitt, 1977; Pilar, 1968)
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Q ;
Y HyC; = EC; I=1,...4 (A.17)

J=1

in which Q is the number of configurations included in the configuration-
interaction wavefunction and E is the configuration-interaction approximation
to the electronic energy. The Q x Q matrix H clearly has Q eigenvalues (£},
i=1,...0) and Q independent eigenvectors {C;;, i =1,...Q0;J =1
... Q). The various E; represent the configuration-interaction approxima-
tions to the ground- and excited-state energies; the coefficients [C,,; J = 1,
. . . Q) describe the configuration-interaction wavefunction for this ith state.

The elements of the H matrix are given as integrals over the configura-
tions ¢;:

Hy = jt;b?h&; dry . ..d1n, (A.18)

in which A, is the full Born-Oppenheimer electronic Hamiltonian described
earlier and dr; denotes the space- and spin-integration volume element for the
Jjth electron. The evaluation of these integrals is nontrivial because the ¢, are
antisymmetrized N-electron functions. The derivation of closed expressions
for the H;, matrix elements is given in many texts on quantum chemistry
(Cook, 1978; Condon and Shortley, 1957). The resulting set of so-called
Slater-Condon rules can be summarized as follows. Two configuration func-
tions ¢; and ¢; are first decomposed into their constituent Slater determinants
det,, and det;, (each ¢, consists of one or more Slater determinants). To com-
pute the matrix element det;, | A, [det;,) the spin-orbital occupancies of these
two determinants are compared. If the occupancies differ by more than two
spin orbitals (e.g., 1s?2s? and 15,2p23s; differ by three), then the matrix ele-
ment vanishes. If the occupancies differ by two spin orbitals (with , and ¥, in
det,, and ¥, and ¥, in det ), then the matrix element has a value + [(u»|pq) —
{ur|gp)) in which

(wrlpg) = s YREOWRE ) [r =1 |0, () drdr’. (A.19)

The choice of + or — in the + sign is determined by how many spin-orbital
interchanges are needed to arrange det,, to have exactly the same spin-orbital
ordering as det,, except that ¥, replaces y,, and ¢, replaces ¢, . If the number
of interchanges needed is odd (even), then the minus (plus) sign results. When
det,, and det,, differ by only one spin orbital (with y,, in det;, and ¢, in det;),
then the value of the matrix element is



132 APPENDIX A

« [ -572- o[ + @bt - RATEN

in which the sum over » runs over all of the spin orbitals common to det;, and
det;,. The sign + is computed as just described by determining how many
spin-orbital interchanges are needed to bring det,, into the same order (except
for the ¥, and ¢, mismatch) as det;,. If det;, and det;, have identical spin-
orbital occupancies, their Hamiltonian matrix element is given as above, but
with ¥, = ¥,., and summed over the index  that runs over all occupied spin
orbitals.

Once the Slater-Condon rules are used to compute the Hamiltonian
matrix elements over the determinants det;,, the evaluation of the configuration-
based matrix elements {(¢;|h.|¢,) is straightforward. Knowing that ¢, is ex-
pressed as a linear combination of the det,,

b = EB:,‘delrk. (A.20)
k
one can write
@ilhe| sy = Y Bi By (dety|h|dets). (A.21)
k.d

The final result of using the Slater-Condon rules is that the configuration-
interaction H matrix, whose dimension is equal to the number of configurations
selected, can be computed in terms of the one-electron ({y¥:|—1/2V?|y;),
(¥:| —Z./|r—R,| |¥;)) and two-electron ({¥,¥;|¥x¥:)) integrals over the
spin orbitals used to form the configurations. These integrals can be evaluated
in terms of the molecular-orbital expansion coefficients C;, and the one- and
two-electron integrals over the atomic-basis orbitals {X.], which must be ex-
plicitly calculated for the GTO or STO basis. For example, the two-electron in-
tegrals are expressed as

Wbl ¥adi) = Y CiaCisCireCraXaXs| XX a). (A.22)

abed

After forming the Q x Q configuration-interaction H matrix, the eigen-
values (E)) and eigenvectors (Cy; J = 1. . . Q) are found by diagonalization.
Each of the resulting approximate energy levels E; can be shown (Hylleraas,
1930) to be an upper bound to the fth exact energy level of the system. The
eigenvector {Cy; J = 1. .. Q] tell us to express the approximate configuration-
interaction wavefunction (¢;) for the Ith energy level in terms of the configura-
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Q
b = Eci!¢r- (A.23)
I=

By including in a configuration-interaction wavefunction the essential
configurations (which are usually straightforward to guess) as well as con-
figurations that are singly and doubly excited relative to any of these essential
components, a satisfactory description of orbital relaxation and eleciron-pair
correlation effects can often be achieved. This truncated configuration-
interaction treatment, based upon low-order excitations out of essential con-
figurations, has a significant weakness that should be made clear. This kind of
configuration-interaction method suffers from what is called size inconsistency
(Pople, 1976). To illustrate the problem, consider how one would compute the
configuration-interaction energy of two separated and noninteracting beryllium
atoms. Assume that a configuration-interaction calculation has already been
performed on a single Be atom from which it was decided that only two con-
figurations (1s*2s* and 1s?2p?) need to be included in the one-atom configu-
ration-interaction wavefunction to achieve a reasonable description—that is,
evidence is available that supports the inclusion of only double excitations
(25 —2p?) in the Be atom configuration-interaction wavefunctions. If the
same level of configuration interaction (dominant configuration 1s42s%1s22s3
plus double excitations 2s% — 2p3, 253 — 2pa2ps, 255 — 2pk, 254255 —
2042D8, 254255 — 2p 4, and 25,4255 — 2p3) were applied to the Be + Be system,
the lowest resultant configuration-interaction energy would not be equal to
twice the configuration-interaction energy obtained above for the single Be
atom. One says that this configuration-interaction treatment is size-inconsistent
because the energy obtained for noninteracting systems is not the sum of the
configuration-interaction energies of the individual systems.

What is wrong with the above configuration-interaction wavefunction is
that the wavefunction for Be + Be should (because the atoms are noninteract-
ing) be the antisymmetrized product of the wavefunctions for the two Be
atoms (A and B):

PBe + Be = ¢BeA¢BeB' (A.24)

Because g, and ¢g.,, contain both 15?25 and 15*2p* configurations, ¢g. . s
should contain 2s22s3, 2522p2, 2p22s2, and 2p%2p? (the 152 1s2 is suppressed).
This last configuration is quadruply excited relative to the dominant 2s2 252
configuration, but it must be included if ¢y, , g is to be size-consistent.

From the above example, it should be clear that a configuration-
interaction wavefunction that is truncated to any level of excitation (e.g.,
doubly) when separately treating individual systems, A and B, will not be ap-
propriate for use when treating the combined system AB even when A and B
avn For camacnd (lat alane swhen thev are interactine or chemicallv bonded).
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Correct treatment of AB requires inclusion of excitations up through the sum
of the excitation levels used when separately treating A and B. Clearly, this
size-consistency problem of the truncated configuration-interaction method
may cause serious errors when using these techniques for computing energy
differences such as bond-dissociation energies, intermolecular forces, and
energy or enthalpy changes in chemical reactions.

The realization that truncated configuration-interaction approximations
are not size-consistent has led to much recent interest in the use of perturbation
theory for treating electron correlation effects (Pople, 1976). In these many-
body perturbation theories (MBPT) the electronic Hamiltonian A, is usually
decomposed into hand V in which h2is a sum of one-electron Fock operators

N
= 3 F. (A.25)

i=1

in which F (i) is the Fock operator for the ith electron defined in equation A.4,
The perturbation V then consists of the instantaneous electron-electron in-
teraction minus the average (coulomb minus exchange) interaction contained
in the Fock operator

E

l#j

Ev(r ) (A.26)

il" _rli i=1

in which

vr) = Y S L ) | | —YAr’) dr’. (A27)

jDDC

In addition to the above decomposition of h., the exact electronic
wavefunction ¢ is assumed to be given as a zeroth-order component ¢° plus
higher-order corrections (¢‘"'; n = 1, 2, . . .) with ¢° taken to be a single-
configuration wavefunction. Such a single-configuration wavefunction, if it is
constructed from the SCF spin orbitals, is an eigenfunction of the above-defined
h?with eigenvalue E° equal to the sum of the SCF orbital energies belonging to
the spin orbitals occupied in ¢°.

Although such MBPT-based treatments of electron correlations have been
successfully carried out by several research workers (Pople, 1976; Bartlett,
1975), major problems arise when the physical situation dictates that the true
wavefunction ¢ is not dominated by a single configuration. As we saw earlier,
description of processes with heteropolar or homopolar bond rupture usually
requires a description of two or more essential configurations. By using a spin-
unrestricted SCF configuration as ¢°, it is possible to describe bond rupture

Mo =
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length of, for example, HCI, the single configuration is det(. . .oac’ ) with
¢ = ¢’. Upon bond rupture the single-configuration wavefunction becomes
det(. . .oac’B) in which o is the hydrogen 1s orbital and ¢’ is a chlorine 3p or-
bital. Unfortunately, such a UHF treatment suffers from the spin-impurity
difficulty discussed in section A.1. Moreover, chemical problems (e.g., strong
configuration mixing arising in concerted reactions involving breaking and
forming more than one bond) exist for which any single-configuration descrip-
tion is inappropriate, and these limit the application of MBPT to large
numbers of species arising in a variety of chemical reactions.

At present, a great deal of research is aimed at extending the machinery of
MBPT (which does not suffer from the size-consistency problems) to permit
$° to consist of more than one essential configuration; however, this problem
is not resolved yet. As a result, a perturbation theory tool that can be used in
the avoided-crossing situations arising in many of the concerted reactions
treated in Chapters 4 and 7 is not available. Thus, we shall not pursue further
the use of MBPT to treat correlation in a manner that overcomes the size-
consistency difficulty of the configuration-interaction method. The most
essential point is that configuration interaction is not size-consistent. Thus,
although the inclusion of singly and doubly excited configurations is attractive
because of their significance with respect to relaxation and pair correlation,
use of the variational configuration-interaction method for determining the
amplitudes of these configurations may be questionable. Unfortunately, the
MBPT method has not yet been extended to allow multiconfigurational
zeroth-order functions, so it also cannot (at present) be employed for reliable
evaluation of the desired amplitudes.
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The Nature of
Photon-Induced
Electronic Transitions

When a photon is absorbed by a molecule and causes an electronic transition
to occur, the electronic energy of the molecule changes from Ey(R), its ground-
state value before absorption, to E.(R), its excited-state value. The energy of
the photon of frequency Ar must match E,(R) — Eo(R) = hv. For any given
frequency v, this condition will generally not be met at all molecular geometries
{R}; only at particular geometries {R.} will iy = E, — E,.

There is much more to understanding photon absorption than is contained
in the above relation. Often the electronic absorption spectrum of a molecule
(even one which subsequently undergoes a photoreaction) displays sharp vibra-
tional structure, especially when the molecule is in the gas phase or in an inert
matrix such as frozen argon or nitrogen. This vibrational structure arises
because the ground and excited electronic states of the molecule have quantized
vibrational energy levels {eJ} and [eX ], respectively. Even when the excited state
has vibrational levels that are broadened by dissociation (i.e., they are not ac-
tually bound), vibrational structure can persist in the absorption spectrum if
the width of the state (% divided by the dissociation lifetime) remains less than
the spacing between the levels.

When vibrational structure is seen, the energy of the photon must also
obey the equation kv = €I — €2 that is, the transition occurs between quantized
states of Eo and E,. Combining the above two requirements on hy gives

f:’ b 53 - r(Rc) i EO(Rc}' (B° l)

This very important relation shows that transitions from e to ¢ can occur only
at molecular geometries {R.} in which the quantum-level energy difference
e — €2 is identical to the electronic energy difference E.(R.) — Eo(R.). Since
the electronic energy functions E, and E, are the potential energy functions for
the vibration-rotation motion of the molecule, the vibration-rotation classical
kinetic energies T are given by €. — E.(R.) = T(R.)and €2 — Eo(R.) = To(R.).
Hence, the above condition can be restated as T.(R.) = T,(R.); that is, photon
absorption can occur at geometries in which the classical vibration-rotation
kinetic energy is conserved.
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Thus far, we have seen how to determine geometries at which the light of
energy hv = €& — €2 can be absorbed. To understand the rate at which such
light will be absorbed, we need to consider what happens to the electronic and
vibration-rotation wavefunctions of the molecule when a photon is absorbed.

In the approximation in which the photon-molecule interaction is treated as
an electric dipole interaction, the ground-state Born-Oppenheimer wavefunction
$o(r| R)xAR) becomes ¢.(r|R) (p.(r|R)|e-r|po(r|R)) xX(R) when the photon
(hv = €& —€?) is absorbed (Simons, 1982). To make a connection with the
Franck-Condon picture, the R-dependence of the above postabsorption wave-
function (y,,) is expanded in terms of the complete set of vibration-rotation
functions {x;-} of the excited state

ety
bealr|R) = Dol rlxtboroncsly - (S55)] ®.)

'

The & function is inserted simply to insure that the energy of the photon that
creates ¥, is equal to the quantum-state energy difference eX- — €. The prob-
ability P of finding the molecule in any specific vibration-rotation state ¢,X;.
having energy e is given by the square of the amplitude of this state in the
above expression for ¢, ,:

P = o[- (555)] K oulerixiso) ™ (B.3)

The usual Franck-Condon factors arise by assuming that the electric-dipole-
transition matrix element (¢.(r|R)|e r|do(r|R)) = po.(R) is relatively inde-
pendent of molecular geometry p,.(R) = po,. With such an approximation

F e ]
P=af— €] 16 1

which contains the Franck-Condon factors | (X3 |x2)|2. The expression for P
leads to the conclusion that transitions to ¢,X;- occur at a rate proportional to
pd. times the square of the overlap between the initial vibration-rotation state
X% and the final state x*..

Transitions for which po, vanish are said to be electronically forbidden.
Molecular point-group symmetry, which is reflected in the spatial symmetry of
¢o and ¢,, can determine whether o, vanishes. For example, the '4, — '4,,
n(b;) — n*(b,) electronic transition in C;, H,CO is forbidden, since po, =
(n*|e-r|n) vanishes. Transitions that are electronically allowed can still be
forbidden if the Franck-Condon factor |{x-|x)|? vanishes. Again, molecular
symmetry gives rise to symmetry in x* and x?2, which can then be used to predict

TR
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equation B.3 it had not been assumed that po.(R) is R-independent, and po.(R)
was expanded about the equilibrium geometry {R.} of the ground state x,

#os(R) = po(R.) +(R—R,) Vgpor + * * -, (B.4)

then for such electronically forbidden transitions the transition probability P
would reduce to

)
P= 5[ - (“’—hf-")]|v,w.,,-(x:.|(n—R,)|x8)|2. (B.5)

Because the geometrical displacements R — R, contain contributions from
various symmetries, the integrals (X |R—R.|X?) could be nonzero even
though (XZ.|x?) = 0. In such cases, the intensity of the transition is said to be
borrowed. In lowest order it is forbidden, since o, = 0; it is only through the
R-dependence of po, that theé transition is weakly allowed.

Although the above Franck-Condon analysis of the intensities of vibration-
rotation structure in electronic absorption lines is very informative, another
point of view gives additional insight. By treating the vibration-rotation
kinetic-energy operator of the molecule classically, the photon-absorption
probability can be rewritten as follows (Simons, 1982):

P = (X2|8[v — (ER) — Eo(R))/hlud-(R) | X7). (B.6)

This expression can be interpreted in terms of the probability | X)(R)|? of the
molecule being at geometry R in the ground state XJ, multiplied by the electric
dipole matrix element at that geometry p3,(R), and constrained (by the & func-
tion) to allow contribution of only those geometries that obey hy = E, — E,.
By allowing equation B.6 to apply only when A = €} — ¢J, a partly classical
approximation of P is obtained:

P = 8y — (& — e2/hI(X0| 81y — (Ex — Eo)/hlpd:| X2). B.7)

This expression for P can be used in attempting to understand how photon
absorption prepares the molecule at the excited-state potential-energy surface
E.(R). The energy of the photon must coincide (within the spectral linewidths)
with one of the energy spacings €. — 2. For each such energy value, the mole-
cule can absorb the light only at geometries {R.] obeying hiv = E,(R.) — Eo(R,);
this condition preserves the vibration-rotation kinetic energy of the molecule.
The relative probability that the molecule experiences each such critical geome-
try [R.} is given by the square of the initial vibration-rotation wavefunction
IXAR|.
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|x2|2 of the absorbing molecule being at {R.} multiplied by the relative rate
né(R,) of its electronic absorption at {R_}. This interpretation of equation B.7
is a valuable one. In attempting to determine the geometries at which the
system will enter the excited surface, only molecular geometries for which
| x2|? is substantial must be examined. Within such geometries, only those for
which ground- and excited-state surfaces are spaced by A» will be populated
during photon absorption. Finally, the transition to the excited surface will be
efficient only where p3.(R.) is large.

The above qualitative treatment of photon absorption was motivated by
the need to guess where a molecule will enter an excited-state potential energy
surface. Knowing where it enters E,, one can then walk along the E, surface
toward the product molecule to see whether reaction barriers, surface cross-
ings, or near-crossings occur. As illustrated in Chapters 6 and 7, the ability to
explore excited surfaces in the above manner is essential if one hopes to predict
the outcome of photochemically initiated reactions.

The energy of the photon Ay = €. — €2 has been treated as being precisely
determined by the initial €2 and final €3 energies. However, the energy of the
absorbing photons may not be precisely determined, owing to the finite band-
width of the light source or the lifetime broadening of the excited level ;. In
that case, the contributions arising from a finite range of frequencies vo + Ay
must be added up. In attempting to guess the molecular geometries at which
the excited surface E, is entered, » must be allowed to vary (by Av) about the
mean value vo. Experiments involving high-resolution monochromators (Av/c
~0.1 cm™) and sharp vibrational lines (1/hc)Ae;- ~ 1 cm™ do not produce
significant smoothing of the photon energy (i.e., Ar is small). However,
modern picosecond and nanosecond light sources have bandwidths of 33 cm™*

-and 0.03 cm™!, respectively, and for very short (~1-10 picosecond) light
pulses, significant uncertainty in » can occur, which then requires one to con-
sider a spread in » values in implementing a picture of the photon-absorption
event.

Even if a highly frequency-resolved light source is employed, a reasonably
short (107''-107"? sec) lifetime of the final state eX- can give rise to a spread
(3-333 cm™) in the allowed absorption energies. Thus, when considering ex-
cited states that decompose on a relatively fast time scale (< 107'° sec), one
must again consider a range of » values.



Appendix C

Review of
Point-Group Symmetry Tools

In this appendix it is assumed that the reader is familiar with molecular point
groups, symmetry operations, and character tables. Good introductions to
these topics can be found in several references (Cotton, 1963; Eyring, Walter
and Kimball, 1944; and Wilson, Decius, and Cross, 1955). In this appendix,
we shall only review material that is of direct use in solving the problems in the
text.

We begin by summarizing the information content of a representative
character table. A fairly complete list of character tables is given at the end of
this appendix. At its ground-state equilibrium geometry the ammonia
molecule NH; belongs to the C;, point group. Its symmetry operations consist
of two C; rotation axes (rotation by 120° and 240°, respectively, about an axis
passing through the nitrogen atom and lying perpendicular to the plane formed
by the three hydrogen atoms), three vertical planes ¢,, 0,-, ¢,-, and the identity
operation. These symmetry elements are shown in Figure C-1.

The Cj, character table given at the end of the appendix lists the above
symmetry operations along with the names of three irreducible representations
(A,, Az, E) that characterize this point group. Also listed under the title of
point group C;, are examples of especially common and important functions
[e.g., 2, R., (x,y)] that transform according to each of the irreducible represen-
tations.

To transform according to a certain irreducible representation means that
the function, when operated upon by a point-group symmetry operator, yields
a linear combination of the functions that transform according to that ir-
reducible representation. For example, a 2p, orbital (z is the C; axis of NH;)
on the nitrogen atom belongs to the A, representation because it yields 1 times
itself when C,, C3, o,, 0., 0.-, Or the identity operation operates on it. The
factor of 1 means that 2p, has A, symmetry, since the characters (the numbers
listed opposite A, and below E, 2C,, and 3¢, in the C;, character table) of all
six symmetry operations are 1 for the 4, irreducible representation.

The 2p, and 2p, orbitals on the nitrogen atom transform as the E repre-
sentation, since C3, C3, 0,, 0,-, 0,-, and the identity map 2p, and 2p, among
one another. For example,
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Figure C-1
Symmetry elements of NH;.
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and
1 V3
sz _'2'_ _2_ 2px
g, = N ; x
2y v el e

The 2 x 2 matrices, which indicate how each symmetry operation maps 2p,
and 2p, into some combinations of 2p, and 2p,, are called the representation
matrices (RM) for that particular operation and for this particular irreducible
representation. For example,

1B
2 2
5o
2 2

is RMEg(o,-). The traces (sums of the diagonal elements) of these matrices are
called characters (e.g., Xg(0.-)) and are the entries in the character tables.

A shortcut device exists for evaluating the trace of the representation
matrices (that is, for computing the characters). The diagonal elements of the
representation matrices are the projections along each orbital of the effect of
the symmetry operation acting on that orbital. For example, a diagonal ele-
ment of the C; matrix is the component of C;2p, along the 2p, direction. More
rigorously, it is {2p*C32p, dr. Thus, the character of the C3 matrix is the sum of
§2p*Ci2p, dr and [2p?Ci2p, dr. In general, the character x of a symmetry
operation S can be computed by allowing S to operate on each orbital ¢,, pro-
jecting S¢,; along ¢, (forming [¢?S¢; dr), and summing these terms,
L:|o1S¢; dr = x(S). If these rules are applied to the 2p, and 2p, orbitals of
nitrogen within the Cj, point group, then

Il

X(E) =2, x(Cs3) = x(C3) = —1, and

X(o,) = x(0.’) = x(o.7) = 0.

This set of characters agrees with those of the E representation for the C;,
point group, so 2p, and 2p, belong to or transform as the E representation.
This is why (x, y) is to the left of the row of characters for the E representation
in the C;, character table. '

In similar fashion, the C;, character table states that d,2_,2 and d,, or-
hitale an nitroeen trancform ac F acdod._and 4. but 4.2 transforms as 4.
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To illustrate a somewhat more complicated situation, we consider how the
three ls, orbitals on the hydrogen atoms transform. Using the shortcut rule
just described, the traces (characters) of the 3 X 3 representation matrices
formed are computed by allowing E, 2C3, and 30, to operate on 1sy,, 1sy,, and
Isy,. The resulting characters are X(E) = 3, X(C;3) = X(C3-) = 0, and X(0,)
= X(o,') = X(o,-) = 1. The C;, character table shows that these characters
(3,0,1) do not match the characters of any one irreducible representation,
though the sums of the characters of the 4, and E representations do give
these characters. Hence, the hydrogen lsy orbital set forms a reducible
representation consisting of the sum of A; and E. This means that the three
1sy orbitals can be combined to yield one orbital of A; symmetry and a pair
that each transforms according to the E representation.

To generate the A, and E symmetry-adapted orbitals, the symmetry-
projection operators Pr and P4, are used. These operators are given in terms
of linear combinations of products of characters times elementary symmetry
operations as follows:

P4, = Y X4 (5)S (C.1)
5

P = Y Xx(S)S (C.2)
5

The result of applying Py, to, say, lsy, is

Py lsy, = lsy, + lsy, + Isy, + Lsy, + Isy, + 1sy,

2(].5'“’_ + lst + lSHJ) = ¢A.,
which is an (unnormalized) orbital having A, symmetry. Clearly, this same ¢,
would be generated by P4, acting on 1sy, or 1sy,. Hence, only one A4, orbital
exists.

Likewise,

Pelsy, = (2 X 1sy,) — Isy, — 15y, = ée

which is one of the symmetry-adapted orbitals having E symmetry. The other
E orbital can be obtained by allowing Pg to act on 1sy, or 1sy,:

Pelsy, = 2x Isy,) — lsy, — Isy, = ¢g2

qP,E'lSH3 = (2 X l.S‘HJ) -~ ISHl - lst = ¢£_3.
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It might seem as though three orbitals having E symmetry were generated, but
only two of these are really independent functions. For example, ¢g 3 can be
expressed in terms of ¢g; and ¢, as

be3 = —(de1 + ¢2).

Thus, only ¢£ ; and ¢, are needed to span the two-dimensional space of the E
representation.

In summary, a given set of atomic orbitals {¢;} can be used as a basis for
the symmetry operations of the point group of the molecule. The characters
X(S) belonging to the operations S of this point group can be found by sum-
ming the integrals [¢*S¢; dr over all the atomic orbitals. The resultant
characters will, in general, be reducible to a combination of the characters of
the irreducible representations X;(S). To decompose the characters X(S) of the
reducible representation to a sum of characters X,(S) of the irreducible
representation X(S) = I;n.X,(S), it is necessary to determine how many times,
n;, the ith irreducible representation occurs in the reducible representation.
The expression for n; is (Cotton, (1963))

ni = LY X(S)XLS) (C.3)
£'s

in which g is the order of the point group—that is, g is simply the total number
of symmetry operations in the group (e.g., 8 = 6 for C3,). The reducible rep-
resentation X(E) = 3, X(C;3) = 0, and X(o.) = 1 formed by the three lsy
orbitals discussed above can be decomposed as follows:

na, = %(3-1+2—0-1+3-1-1) =
e %(3-1 +2:0-143-1:(=1) = 0
o %(3-2+2-0-(—1)+3-1(0)) =y

These equations state that the three 1sy orbitals can be combined to give one
A, orbital and (since E is degenerate), one pair of E orbitals, as established
above. With knowledge of the n;, the symmetry-adapted orbitals can be formed
by allowing the projectors

p — V'viag (C.4)
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to operate on each of the primitive atomic orbitals. How this is carried out was
illustrated for these 1sy orbitals after equation C.2. These tools allow a sym-
metry decomposition of any set of atomic orbitals into appropriate symmetry-
adapted orbitals.

Before considering other concepts and group-theoretical machinery, it
should be pointed out that these same tools can also be used in symmetry
analysis of the translational, vibrational, and rotational motions of a mole-
cule. The twelve motions of NH; (three translations, three rotations, six vibra-
tions) can be described in terms of combinations of displacements of each of the
four atoms in each of three (x, y, z) directions. Hence, unit vectors placed on
each atom directed in the x, y, and z directions form a basis for action by the
operations (S) of the point group. In the case of NH3, the characters of the re-
sultant 12 x 12 representation matrices form a reducible representation in the
C,, point group: X(E) = 12, X(C3) = X(C3) = 0, X(e,) = X(0,) = X(0,”) =
2. This representation can be decomposed as follows:

Na, %[1-1-12+2-1-0+3-1-2} =3

Il
—_

I

na, -;—[1—1—12+2-1-0+3-(—1)-2]

il
=

- %{1 2124 2-(=1)-0+3-0-2]

From the information on the left side of the C;, character table, translations
of all four atoms in the z, x and y directions transform as A4,(z) and E(x, y),
respectively, whereas rotations about the z(R.), x(R,), and y(R,) axes
transform as A, and E. Hence, of the twelve motions, three translations have
A, and E symmetry and three rotations have 4, and E symmetry. This leaves
six vibrations, of which two have A4, symmetry, none have A, symmetry, and
two (pairs) have E symmetry. We could evaluate the symmetry-adapted vibra-
tions and rotations by allowing symmetry-projection operators of the
irreducible-representation symmetries to operate on various elementary carte-
sian (x, y, z) atomic displacement vectors. Both Cotton (1963) and Wilson,
Decius and Cross (1955) show in detail how this is accomplished.

We now return to the symmetry analysis of atomic orbitals by considering
how the symmetries of individual orbitals give rise to symmetry characteristics
of orbital products. Such knowledge is important because one is routinely faced
with constructing symmetry-adapted electronic configurations that consist of
products of N individual orbitals. A point-group symmetry operator S, when
acting on such a product of orbitals, gives the product of S acting on each of

Th S [ S |



REVIEW OF POINT-GROUP SYMMETRY TOOLS 147

$é19203 - - - dn = (561)(Sh2)(S3) - - - (Séw). (C.5)

For example, reflection of an N-orbital product through the o, plane in NH;,
utilizes reflection operations for all N electrons.

Just as the atomic orbitals formed a basis for action of the point-group
operators, the configurations (N-orbital products) form a basis for the action
of these same point-group operators. Hence, the various electronic configura-
tions (orbital occupancies) can be treated as functions on which S operates,
and the machinery illustrated earlier for decomposing orbital symmetry can
then be used to carry out a symmetry analysis of configurations. However,
another shortcut makes this task easier. Since the individual orbitals {¢;,
i = 1,..., M} transform according to irreducible representations, we form
the direct product of the symmetries of the N orbitals that appear in any con-
figuration. This direct product can then be symmetry-analyzed in a straight-
forward manner, as discussed earlier. For example, if one is interested in
knowing the symmetry of an orbital product involving aja3e? occupancy in
C;, symmetry, the procedure used is the following. For each of the six sym-
metry operations in the C,;, point group, the product of the characters
associated with each of the six spin orbitals (orbital multiplied by « or 8 spin)
is formed

6
X(8) = JTTxdS) = x4,(SXE,(S)XE(S). (C.9)

=1

In the specific case considered here, X(E) = 4, X(C3) = 1, and X(¢,) = 0.
Notice that the contributions of any doubly occupied nondegenerate orbitals
(e.g., ai, and a3) to these direct-product characters X(S) are unity because for
all operators S, X¥(S) = 1 for any nondegenerate irreducible representation k.
As a result, only the singly occupied or degenerate orbitals need to be con-
sidered when forming the characters of the reducible direct-product represen-
tation X(S). In this example, the direct-product characters can be determined
from the characters Xg(S) of the two active (non-closed-shell) orbitals—the e?
orbitals. That is, X(S) = Xg(S)-Xg(S).

From the direct-product characters X(S) that belong to a particular elec-
tronic configuration (e.g., ajaje?), one must still decompose this list of
characters into a sum of irreducible characters using equation C.3. For the ex-
ample at hand, the direct-product characters X(S) decompose into one A,, one
A3, and one E representation. This means that the e? configuration contains
A,, Az, and E symmetry elements. The e? configuration contains all deter-
minants that can be formed by placing two electrons into the pair of degener-
ate orbitals. There are six such determinants. In Chapter 4 we show how to
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these pure (4, A,, and E) symmetries and that possess either singlet or triplet
spin (which are the only possibilities for the two e? electrons).

In summary, we have reviewed how to make a symmetry decomposition
of a basis of atomic orbitals into their irreducible representation components.
This tool is most helpful when constructing the orbital-correlation diagrams
that form the basis of the Woodward-Hoffman rules. We also learned how to
form the direct-product symmetries that arise when considering configurations
that consist of products of symmetry-adapted spin orbitals. This step is essen-
tial for the construction of configuration- and state-correlation diagrams upon
which one ultimately bases a prediction about whether a reaction is allowed or
forbidden.
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Den = Dg % i
T E iC, 4C, 4C3
Active A 1 1 1 1
Activ E 1 1 e w?
clive 1 1 wz o i ez-us
ACtiVE (in R,n R:)
(x, 5, 2) T 3 -1 0 0
Ty =Txi
(o] E 8C, ic, 6C, 6C,
Active A, 1 1 1 1 i
Inactive A, 1 1 1 -1 -1
Active E 2 -1 2 0 0
Active (Rx, Ry, R,) T, 3 0 -1 -1 +1
x, », 2)
Active I 3 0 -1 +1 -1
O, =0xi
Ta E 8C, ic, 604 654
Active A, 1 1 1 1 1
Inactive A, 1 1 1 -1 -1
Active I - 1 - n n

153



154 APPENDIX C

L E e, o,
xt4p? 22 z Ay 1 1 1
R, As 1 1 -1
x, »)
XZ, ¥Z £ 2 2 cos ¢
(xz, y2) (R., R, 1
x? -y xy) E; 2 2cos2e
Don E 2C, C; i 2iC, iC3
x* 4yt 22 Al 'l 1 1 1 1 1
A 1 1 1 -1 -1 -1
Ao 1 -1 1 1 7|
z Aj, 1 1 -1 -1 -1 1
(xz, ¥z) (R R,) Ey, 2 2cos ¢ 0 2 2cos ¢ 1
(x, ») Ey. 2 2 cos ¢ 0 -2 —2cos ¢ 0
2 -y x) Ejg 2 2 cos 2¢ 0 2 2 cos 2¢ 0
E;. 2 2 cos 2p 0 -2 —2cos 2¢ 0




Answers

Problems Relating to Thermal Processes (Chapter 4)

1. The relevant HOMO and LUMO of the ten-membered ring are the anti-
symmetric ¢4 bonding and symmetric antibonding ¢¥ orbitals involving the
CH bonds. The HOMO and LUMO of the smaller ring are the s and 74 or-
bitals, which are symmetric and antisymmetric, respectively, under reflection
through the plane of symmetry that is preserved throughout the reaction.
Suprafacial attack would result in favorable HOMO-LUMO interactions
(04 — 7} and of — 75), whereas antarafacial attack would not.

The bond-symmetry rule also indicates that suprafacial attack is allowed
because the occupied orbitals of the reactants (os, 04, and 75) match in sym-
metry those of the products (ws, os, and o4), where the = bond is now in the
ten-membered ring, and o5 and o4 now refer to CH bonds in the smaller ring.

In applying the Dewar-Zimmerman method, one finds for suprafacial at-
tack, a Hiickel transition state having six electrons (two CH bonds and one n
bond). Again, the suprafacial attack is predicted to be allowed.

2. Using the bond-symmetry rule, one sees that the occupied active orbitals of
the cyclopenteneone are the symmetric o5 and antisymmetric o4 CC bonding
orbitals and the symmetric ps orbital. The plane of symmetry used to make
these labels is the only one that persists throughout the reaction path. In the
products the active orbitals are the CO lone pair on carbon, which is sym-
metric o(CO)s, and the two occupied = orbitals of 1,3-butadiene, which are
symmetric w5 and antisymmetric w4, respectively. The reactant and product
orbitals match in symmetry; hence, the decomposition reaction should be ther-
mally allowed.

In the other case, the relevant occupied orbitals of the cyclohexadieneone
are the two CC bonds o5 and 04 and the two 7 bonds rs and 5 (both of which
are symmetric). In the products, the orbitals are 05(CO) and the three occupied
orbitals of benzene, which are rg, 7§, and 74 (see section 7.6). Again, the bond-
symmetry rule indicates that the thermal decomposition reaction is allowed.
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3. This reaction is symmetry-forbidden—it is nothing but two independent
[2, + 2,] cycloaddition reactions. Such reactions were shown to be forbidden in
sections 4.4 and 4.8. The reason this problem might lead to confusion is that
when using the orbital- and configuration-correlation diagram method, one is
tempted to connect the m,; — ws¢ sSymmetry-adapted orbital, which is antisym-
metric under the plane M1, with the o33 — 047 orbital, which is also odd under
M 1. However, as becomes clear when one utilizes the orbital-following device,
w12 — Ts¢ and o3z — 047 cannot be so connected—they belong to totally
distinct portions on this molecule.

By placing two forbidden [2, + 2,] reactions in close spatial proximity,
one might incorrectly correlate the reactant and product orbitals. It is not
proper to correlate orbitals that are localized on one part of the reactant
molecule with those that belong to a different part of the product molecule.

4. If n is odd, the H atom can undergo a suprafacial shift to give
HDFC=C(—C=C),—CR;R;; when n is even, the antarafacial hydrogen shift
to the terminal carbon is allowed. In either case, one obtains two isomers that
differ geometrically at the —CR;R; end and that are enantiomers at the
HDFC— end. The two isomers arise in each case because of the free rotation
about the C—CHR;R; bond in the reactant molecule.

5. Methyl-group migration is allowed because the orbital of the CH; group,
| which plays a role analogous to that of the 1s orbital of the hydrogen atom,
has sp? character. This orbital has both a positive and a negative lobe. By con-
necting its positive lobe to the orbital of the neighboring carbon atom and its
negative lobe to the p, orbital of the terminal carbon atom, one achieves a
Mobius transition state having four electrons. Thus, the suprafacial methyl-
group shift is allowed. Of course, the configuration of the substituents around
the methyl group is inverted once the transfer to the 3-carbon takes place.

6. Denoting the three orbitals of the hydrogen atoms by lsy,, 15yg, and lsyc
and applying the a, and e symmetry projectors (see Appendix C), one obtains
the following (unnormalized) symmetry-adapted orbitals:

X“l = (ISH,\ + lSHB + lSHC)
Z'ISHA— lSHB"" lSHC

X, =
2 lsHB - lSHA i lch
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The four nitrogen orbitals can also be symmetry-projected:

X;l =0

X:. — ZpsN

X,’ 208 szN
ZPyN

(The z axis is chosen to be the 3-fold symmetry axis of the molecule.)

The three a, atomic orbitals combine to yield bonding (¢,), nonbonding
(¢4) and antibonding (¢,) molecular orbitals having a, symmetry. Likewise,
the two pairs of e orbitals combine to give pairs of bonding (¢2,¢3) and anti-
bonding (¢s,%s) molecular orbitals having e symmetry.

The ground state of NH; has an electronic wavefunction that is dominated
by the configuration ¢ip3¢3¢4 (the 15 electrons are neglected). This configu-
ration has !4, symmetry. The singly excited configuration bdidrdsdads gives
rise to singlet and triplet states corresponding to all symmetries contained in
the direct product e X e = e + a, + a, (see Appendix C). Of these, the E state
would be first-order Jahn-Teller unstable, whereas the other two (4, and 4,)
are not. The A, and A, states could be second-order (actually pseudo-) Jahn-
Teller unstable through coupling, via a distortion of e symmetry, with the E
state. The other singly excited configuration ¢;p2¢3psd; hase X a; = e sym-
metry. This E state should be first-order Jahn-Teller unstable with respect to
distortions of E X E = E+ A, + A, symmetry. Of these, the only vibrations
of NH; have A4, and E symmetry. The A, vibrations would not remove the
degeneracy because they preserve the symmetry of the molecule; hence, only
the distortion of E symmetry will be effective.

Problems on Photochemistry (Chapters 5-7)

The answers to problem 1 are given in the excellent book Problems in Quantum
Chemistry by P. Jgrgensen and J. Oddershede (Addison-Wesley, Reading,
Mass., 1983). On page 238 of this book a discussion of the problem is given, as
well as references to the experimental literature relating to this very interesting
case.

Complete answers to the questions posed in problem 2 are probably not
attainable at this time. Much debate remains about what is really happening in
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the photochemistry of formaldehyde. For this reason, it is best to attempt to
relate your answers to this problem to some of the best treatments of for-
maldehyde photochemistry, which are contained in the following references: J.
C. Weisshaar and C. B. Moore, (1980), J. Chem. Phys., 72, 5415; H. L. Selzle
and E. W. Schlag, (1979), Chem. Phys., 43, 111; D. F. Heller, M. L. Elert,
and W. M. Gelbart, (1978), J. Chem. Phys., 69, 4061; J. D. Goddard and H.
F. Schaefer I11, (1979), J. Chem. Phys., 70, 5117; and many other references
contained in these papers.
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