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Preface

In this book we address several modern quantum chemical tools that are
presently being applied at the state-of-the-art level to eIectronic states of
atoms and molecules. We have attempted to concentrate on topics for
which textbook coverage does not currently exist in an entirely satisfactory
form. The emphasis is on quantum chemical methods whose developments
and implementations have been presented in the modern literature primarily
in the language of second quantization. We do not assess the precision of the
numerical results provided by these methods because liany of the techniques
discussed are relatively new and their precision limits have not yet been
established.

There is little mention of specific molecular systems that might be ex-
amined using these tools. We have developed an integrated set or problem s
with detailed answers, all of which caD be worked by band, to iIIustrate the
practical implementation of the techniques developed. These problems
appear at the end of each chap ter, and we recommend that they be worked
aIs an integral component of the respective chapters. Excellent treatments
of the following very important aspects of quantum chemistry already exist
in several texts and are therefore not il1c\uded in this book: questions of
basis set choice, efficient evaluation of requisite one- and two-eIectron
integrals, fast and space-efficient methods for transforming integrals erom
one basis to another and for storing such integral lists, or the use of orbital
symmetry correlation concepts in deciding which eIectronic configurations
must be inc\uded for specific molecules. The emphasis here is on describing
the structure ofthe various methods rather than on discussing their numerical
implementations.

The choice of topics and depth of presentation were guided by our view
of the active research workers who are likely to benefit erom this book.
Many leading theoretical chemistry research groups have only recently
begun to make use of second quantization-based techniques. IL is not



vm Preface

likely that the fuli potential of these methods will be realized until those
quantum chemists ~ho possess the most sophisticated computational
tools and experience become moce involved in their use. A presentation
that is limited to explaining how working equations of these methods are
derived and how the equations are implemented in practice should be
especially useful and timely. This monograph is intended to be of use both
to the research worker in quantum chemistryand to graduate-levelstudents
who have already taken introductory courses that cover the fundamentais
of quantum mechanics through the Hartree-Fock method as applied to
atoms and molecules. The purpose of this book is moce to teach than to
survey the literature in the research areas covered. We assume that the
reader is fammar with linear algebra, matrix representations of operators,
Slater- and contracted Gaussian-type basis functions, the Slater-Condon
rules for evaluating determinantal matrix elementsof one- and two-electron
operators, and the construction of Stater determinant wave functions
having proper space-spin symmetry.
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BWPT
CC
CHF
CI
CMCHF
EOM
EP
GBT
GF
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HF
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RHF
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Brillouin theorem

Brillouin-Wigner perturbation theory
coupled cluster
coupled Hartree-Fock
configuration interaction
coupled multiconfigurational Hartree-Fock
equations of motion
electron propagator
generalized Brillouin theorem
Green's function .

unitary group, graphical approach
Hartree-Fock
iterative natural orbitaIs

maDy-body perturbation theory
multiconfigurational self-coilsistent field
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M0l1er-Plesset perturbation theory
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self-consistent field
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unrestricted Hartree-Fock
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Chapter 1 I lntroduction to Second-
Qy,antization M ethods

In the vast majo rity of the quantum chemistry literature, Stater determi-
nants have been used to express antisymmetric N-eIectron wavefunctions,
and explicit differential and multiplicative operators have been used to write
the electronic Hamiltonian. More recently, it bas become quite com mon to
express the operators and stale vectors that arise in considering stationary
electronic states of atom s and molecules (within the Bom-Oppenheimer
approximation) in the so-called second quantization notation (Linderberg
and Ohm, 1973). The eIectron creation (r+,s+, t+, u+) and annihiIation
(r,s, t, u) operators occurring in this language wece originany introduced for
use in physical problems that actually involved creation or destruction of
particIes, photons, or excitations (e.g., phonons). In a majority of the applica-
tions of the second-quantization techniques to quantum-chemical problems,
no electrons or other particles are created or destroyed. Thus, the operators
{r +}, {r} usually serve merely as a convenient and operationally useful
device in terms of which quantum-mechanical states, operators, commuta-
tors, and expectation values caD be evaluated.1n this chapter, we examine
how the eIectronic Hamiltonian, other quantum-mechanical operators, and
stale vectors are represented in this second-quantization language. We algo
show how to describe unitary transformations among orthonormai orbitais
in an especially convenient manner. In subsequent chapters we make use of
the tools of second quantization to describe maur approximation techniques
(e.g., Hartree-Fock, perturbation theory, configuration interaction, multi-
configurational Hartree-Fock, cIuster methods, Green's functions), which
are currently in wide use within the quantum chemistry community. The
oecd for such approximation methods is, of COllege,motivated by aur inability
to exactly solve electronic structure problems for moce than one eIectron.
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A. ANTICOMMUTATlONPROPERTIES OF CREATlON
AND ANNIHILATlON OPERATORS

Siatce determinantal wavefunctions involving orthonormal spin-orbitals
</Jk caD be represented in terms of products of creation operators on the
so-called vacuum ket Ivac),

r+s+ ... t+lvac) (N!)-1/2detl</J,'.. </Js</J,I==I</J,..' </Js</J,I (1.1)

The Fermi statistics present in such wavefunctions caD be expressed either
in terms or a sigo change arising upon permuting columns of the determinant
or in terms of the following fundamental relation among the r+ operators:

[r+,s+]+ ==r+s+ + s+r+ = O (1.2)

Note that this equation also states that the stale vector cannot contain the
same spin-orbital twice.(the Pauli principle) since r+r+ = - r+r+ = O.Before
we go further, we should stress that Eq. (1.1) does not equate Stater deter-
minants to the produet of r +S + . . . operating on Ivac). Il simplyelaims that
there is a one-to-one connection between the two objects.

The Fermion annihilation operator r, which is the adjoint of the creation
operator T+, caD be thought of as annihilating an electron in </J, and is
defined to field zero when operating on the vacuum ket

rlvac) = O (1.3)

The annihilation and creation operators fulfili the following two anticom-
mutation relations (Raimes, 1972):

[T,s] + ==rs + sr = O

[r,s+]+ ==rs+ + s+r = c;,s

(1.4)

(1.5)

which together with Eq. (1.2) comprise the essential relationships used in
the application of such second quantization operators to quantum chemistry.
Fornonorthonormal spin-orbitals,Eq.(1.5)isreplaced by [r,5+]+= «/J,I</Js),-
where the overlap appears explicitly.

The interpretation of Eq. (1.2) in terms of permutational symmetry of
determinants is elear. To make the analogous content of Eqs. (1.4) and (1.5)
moce transparent, we now examine some o( the implications that fol1ow
erom "these equations. Let us fiest examine Eq. (1.5). For r = s, this reads
rr+ + r+r = 1.When operating on a ket in which </J, is "occupied," the fiest
term (rr+) c1early gives zero, since according to Eq. (1.2) terms violating the
Pauli principie vanish. The second term (r+r) yields

r+rt+u+ .. . r+ . . . w+lvac) = (-I)"'r+rr+t+u+ ... w+lvac) (1.6)

where k, is the number of creation operators standing to the left of r+ in
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the original ket. If ibis is, according to Eq. (1.5), equal to the original ket,
then we musi have

t+,,+ .. . 1'+. . . w+lvac) = (-l)krr+rr+t+u+ ... w+lvac)
= (-l)krl'+t+u+ "'w+lvac) (1.7)

The lasi equality in Eq. (1.7) implies that rl'+, when operating on a ket that
does not contain tP" leaves that ket unchanged, and that I'+1',when acting
ona ket in which tPris present, leaves that ket alone. When 1'+1'operates on
a ket in which tPr is not present, it giveszero.Thus r+r tells whether orbital
tPr occurs in a ket. For that reason, it is often rererred to as the occupation
number operator "r = 1'+1'. It is algo conventional to introduce the total
number operator N as N = Lr n" which when operating on aDYket gives
as its eigenvalue the total number or electrons in that ket.

In the case r i< s, Eq. (1.5) implies that I' operating on aDYket that does
not contain tPryields zero, since

rs+t+u+ ... w+lvac) = -s+rt+,,+ ... w+lvac) = O (1.8)

by repeated use or Eqs. (1.5)and (1.3).When the kets contain both tPr and
tPs> both the I's+and s+r terms vanish. For s+r operating on a ket that.
contains tP"

s+rt+u+ ... r+w+lvac) = (_l)krs+t+u+ ... w+lvac)

= t+u+ ... s+w+lvac) (1.9)

which is simply a new ket with tPr replaced by tPs'

Finally, we shQuld attempt to elaborate on the meaning or Eq. (l.4). Let
us consider the action or rs (I' i< s) on a ket in which tPrand tPsare present:

I'st+u+ ... ,.+ ... s+ ... w+lvac) = (_l)krH'I'ss+r+t+u+ . . . w+lvac)

which by Eq. (1.5) reduces to

(-l)krH'r(l - s+s)I'+t+u+ . . . w+lvac) (l.l0)

The term involving s+s vanishes because slvac) = O,and hence we have
(again using rlvac) = O)

(-l)krH"rr+t+u+ .. 'w+lvac) = (-l)krHst+u+ . . . w+lvac) (l.l \)

If instead we consider the action or SI',we obtain

srt+u+ "'1'+ "'s+ "'w+lvac) = (-l)krH.-lsrl'+s+t+u+ "'w+lvac)

= (_l)krH.-1 t+u+ . .. w+Ivac) (1.12)

which is opposite in sigo to the result orthe rs operation. Thus, the statement
rs + SI'= O simply means that the effect or annihilation displays Fermion
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statistics. For r = s, Eq. (l.4) reads rr = - rr = O,which algo expressesthe
Pauli principle and Fermi statistics.

Although Eqs. (1.2)-(1.5) contain all of the fundamental properties of the
Fermion (electron) creation and annihilation operators, it may be useful to
mak e a rew additional remarks about how these operators are used in
subsequent applications. In treating perturbative expansions of N-electron
wavefunctions or when attempting to optimize the spin-orbitals cPrappearing
in soch wavefunctions, it is often convenient to refer to Slater determinants
that have been obtained erom SOfie "reference determinant" by replacing
certain spin-orbitals by other spin orbitais. In terms of second-quantized
operators, these spin-orbital replacements will be achieved by using the
replacement operator s+r as in Eq. (1.9).

In subsequent chapters, we shallJ:>e interested in computing expectation
values of one- and two-electron operators. By expressing these operators in
terms of the above creation and annihilation operators, -the calculation of
soch expectations values reduces to the evaluation of the elements of the
one- and two-electron density matrices <Oli+jIO)and <Oli+j+lklO) (Davidson,
1976). If the wavefunction 1°) is expressed as a linear combination of kets
each given in terms of creation operator products nreo r+lvac), the one-
and two-electron density matrices caD be evaluated in terms ofthe expansion
coefficients oCIO)in these kets. The average occupation of an electron in spin-
orbital cPrbecomes a particular element <Olr+rIO) ofthe one-particIe density
matrix. If we wish to compute, say, <Olt+uIO),where l°) = nreO r+lvac),
we may proceed using the anticommutation algebra obeyed by the creation
and annihilation operators, to yield

<Olt+uIO)= n n <vaclr't+UI'+lvac)
re O r'eO

= <vaclrNrN-l . , . rlt+urtri . . . r~lvac)
= c)ur,<vaclrNrN-l... rlt+rirj ... r~lvac)

-<vaclrNrN-l... rlt+rturirj ... r~lvac) (1.13)

which, by "anticommuting" u through to the right (so as to eventually
generale ulvac) = O) and t+ through t<1the left (to eventually generale
<vaclt+ = (tlvac»+ = O),and using <vaclvac) = 1, yields a nonvanishing
matrix element only when t = u and u is one of the elements of l°) (the
"occupied" spin orbitais in l°». This result caD be summarized as follows:

<Ole+ulO) = c)'uv, (1.14)

where v,denotes the occupation number of orbital cP, in 1°).
This expresses a general role of how to obtain matrix elements of a re-

placement operator. The fule is the second-quantization analog of the
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Slater-Condon fule (Condon and Shortley, 1935) for evaluating matrix
elements of a one-electron operator. In practical calculations one would,
of course,use ibis ruJeas wellas the other counterparts ofthe Slater-Condon
rules.

B. EXPRESSINGQUANTUM-MECHANICALOPERATORS
IN SECOND QUANTIZATION

Having naw scen how stale vectors that are in one-lo-one correspondenee
with N-electron Stater determinants caD be represented in terms of Fermiotl,
creation and annihilation operators, it still remains for us to show how to
express one- and two-electron operators in ibis language. The second-
quantized version of aDYoperator is obtained by simply demanding that
the operator, when "sandwiched" between ket veetors of the form nr r+ Ivac),
yield exactly the same result as arises in using the fiest quantized operator
between corresponding Stater determinant wavefunctions. For an arbitrary
one-eleetron operator, which in first-quantized language is L:f=1 f(ri), the
second quantized equivalent is

N

L: (cPrIJlcPs)"+s- L: f(ri)
r,S i=1

(1.15)

where the sums (r, s) are over a complete set of orthonormaI spin-orbitals
cPrand CPs.The analogous expression for aDYtwo-eleetron operator is

1~ II ++ 1~
2. L, (cPrcPsgcP,cPu)rs ut-"2.'= g(r"rj)r,s,'.u I,j- 1

(1.16)

Here (cPrcPslg\cP,cPu)represents the usual two-electron integral involving the
operator g:

(cPrcPslglcP,cPu) = f cP:(1)cP:'(2)g(l,2)cP,(1)cPu(2)dl d2 (1.17)

When g(I,2) = rli, we often express these integrals in short-hand notation
as (rsl tu), It should be noted that the order ofthe creation and annihilation
operators appearing in Eq. (1.16) musi be as presented in order to guarantee
that the proper sigo will result when expectation and transition value
matrix elements of such operators are formed. These spin orbitais {cPr}are,
in most practical applications, obtained as linear combinations of atomie
orbital basi s functions

cPr= PL: CraXa
a

(1.18)

where (Xand f3are the one-electron spin functions. The Xaare usually taken
to be Slater-type orbitais or contracted Gaussian orbitais, and the C"' are the
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linear orbital expansion coefficients. In what follows, we assume that the la
are realorbitais. This means that the Gaussian or Stater orbitais are given
in cartesian form rather than in terms of spherical harmonics.

A rew clarifying remarks are now in order. First, one should notice that
the first-quantized forms ofthe above operators contain explicit reference to
the num ber of electrons N, whereas the second-quantized operators do not.
This means, for example, that the kinetic energy operator

I <cf>rl-lVzlcf>s)r+s
'.s

is independent of N. The kinetic energy operator of the beryllium atom is
identical to that of the Be+, Bez+, Be-, etc., ions. Of course, nuclear inter-
action operators (- ZA If=1Irj - RAI-1) do contain referenceto nuclear
charges in their second-quantized version,

I <cf>rl-ZAlr- RAI-llcf>s)r+sr.s

but nowhere does N appear. In second quantization, the only reference to N
comes erom the ket vectors Oreo r+lvac), which contain N creation oper-
aloes. This pro perty of operators in the second-quantized language plays an
important role, for example, in Green's function methods for calculating'
ionization energies. The fact that the same Hamiltonian caD describe neutral
and jon states permits the Green's function to be expressed in terms of a
single Hamiltonian.

In examining the above expressions for the second-quantized one- and
two-electron operators, it should become elear, for example, that the one-
electron operators, which contain r+ s, caD "connect" Iwo N-electron kets
(corresponding to N-electron Stater determinants) that dilfer by at most one
spin-orbitallabel. That is, r+s caD cause only a single spin-orbital replace-
ment. Similarly, the two-electron operators containing r+ s+ ut caD connect
kets differing by at most Iwo spin-orbitallabels.

To summarize, we have cons~ucted stale vectors that obcy Fermi-Dirac
statistics through introducing creation and annihilation operators that
fulfill the anticommutation relations of Eqs. (1.2), (1.4), and (1.5). The ant i-
commutation relations allow us to build the Slater-Condon rules directly
joto the operators in the second-quantized language. The operators thereby
lose their dependence on the electron num ber N. The only dependence on
N in the second-quantized language appears in the stale vectors lO). In
contrast, in the first-quantized language the dependence on N appears in
both the operators and the wavefunctions.

Because it is important that one fully understand how the above forms of
arbitrary one- and two-electron operators are related to the Slater-Condon
mles, let us now consider an example of how one uses these operators. Let
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us compute the expectation value of the electron-electron interaction
operator for the three-electron stale 2s: Is; Is:lvac). We know erom Slater-
Condon type rules that we should get J h.h + 2J h.2s - K h.2s' where J and
Kare the usual coulomb and exchange integrals:

Jij = <!iW)
Kij = <ijjji)

The second-quantizedapproach involvesevaluating

(1.19)

(1.20)

I, I .++ +++
1 I

I
I2 L. <vac IsalsfJ2si s ut2sa l.~fJIsa vac)<1vp,;-:-- cP/cP,,)r.s./." 12

which involves the rwo-particIe density matrix.
The application of Eq. (1.5) in the form rs+ = Dr.,- s+r permits the

annihilation operators u, t to be anticommuted to the right in the above
and the creation operators r +s + to be moved to the left. This strategy
permits us to identify all of the nonvanishing contributions (those arising
erom the Drsterm s) and to eventually obtain ulvac) Ol' <vaclr+, both of
which yield zero. The process of moving ut to the right is carried out as
follows:

ut2s: Is; Is: Ivac) = u(b/2s"- 2s: t)ls; Is: Ivac)

= [b/2s"(buls,,- Is;u)ls: - u2s:(b,ls" - Is;t)ls:Jlvac)

= [D'2s"buls"ls: - b'2s"buls)s;

- (Du2S"- 2S:U)(Drh"- Is;t)ls:Jlvac)

= [br2s"buh"ls: - D'2s"buts)s; - bu2s"Dlls"ls:

+ bu2s"blls)S; + blls"Duls)S: - brts,,<)"1s,,2s:Jlvac)
(1.2\)

The treatment of <vacllsalsfJ2sar+s+ goes through in exactly the same manner
and yie1ds the adjoint of the above result, with,. replacing t and s replacing 1/:

<vaclls",1.~fJ2s",r+s+ = <vacl[br2s"bsts"ls", - br2s"bsts)sfJ - bs2s.brh"lsa

+ Ds2s"brh"lsp + e5rls"bsls)s", - brh"bsh"2s,,,J

( 1.22)

Then by forming the scalar product <vaclls",lsfJ2si'+ s+ut2s: Is
r
+1.~:Ivac) and

using, for example, the fact that <vaclls",ls:lvac) = I and <vacls",2s:lvac) =
O,one obtains

Jrr2S"<'>uSIs,,+ <'>rr2s"Dsuh" + <'>s"2s"D'rh" + e>su2s.<'>/rts"

+ Drrts"<'>suls,,+ D/rts"<'>sUh,,- <'>"r2s"Dtsh" - Durh"bts2s"

- <'>/s2s.<'>urls. - <'>"r2s.D/sh. - <'>tsh"Druls" - <'>rsts,,<)ruh.
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where the triple-indexed delta function ~IJkmeans ~ij~Jk' This resuIt, when
multiplied by -i<cPrcPsll/r12lcPrcP..)and summed over r, s, t, u, indeed yields

J h, h + 2J h,2s - K h,2s

C, TENSOR OPERATORS

To gain further experience and understanding, lei us algo consider how
specific operators that ale familiar in fiest quantization-notation ale mapped
joto their second-quantized analogs. The z projection of the total spin Sz is
given by

Sz = L <cPrISzlcPs)r+s (1.23)
r,s

which, if the ms dependence of the spin-orbitals is marle explicit (cPr= pilir),
becomes

Sz = tli L<ilirlilis) [r:s" - rtsp] (1.24)
r,s

Because the orbitais ilirale assumed to be orthonormal, spatial integration
further reduces ibis to .

Sz = L [r:r" - rtrp]ln (1.25)

wherethesumis over the orbitais ilir.The spin-raisingand -Iowering operators
S:t. = Sx :!: iS, ale, in second quantized form,

S+ = L <cPrIS+lcPs)r+s= L nr: rp,
r,s r

(1.26)

S- = L lirtr" , (1.27)

In addition to the operators dis'cussed above, it is often important in
quantum-chemical applications to evaluate commutators of pairs of opera-
tors. For example, to show that the creation operator r: is of doublet spin
character (Le., bas the potential to change the total-spin eigenvalue of aDY
function upon which it acts by :!:-in) it is sufficient to demonstrate that
[Sz,r:] = tftr:, [S_,r:] = flT;, and [S+,r:] = O.As an example ofhow to
evaluate such commutators, lei us compute [Sz,r:] and [S_,r:]:

[Sz,r:] = ~ L[t: t" - tttp,r:]r
(1.28)

Now

t:t"r: - r:t:t" = ~rrt:- t:r:t" - r:t:t" = ~lrt: (1.29)
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and algo
+ + + + + .+ + + Otptpr.. -r..tptp= -tpl..tp-r..tptp= (1.30)

Therefore,

[S.. r:J = t/lr: (1.30

Before moving on, we wish to clearly point out an important consequence of
performing commutation between operator pairs. For example, notice that
although each term in the commutator arising in Eq. (1.29) involves three
operators (e.g., t:t..r:), the final result contains only one operator. This
reduction of the operator "rank" always arises when performing soch com-
mutators. We usually say that an operator soch as r+s bas one-particIe rank,
whereas r+s+ tu bas twa-particIe ranko Soch Tank lowering is an important
feature, which is explicitly brought about in the second-quantized language
and which is used on numerous occasions in Chapter 2. Because the second-
quantized operators contain no reference to N, this cancellation caD be
achieved at the operator level. The same cancellation occurs in first-quanti-
zation calculations but not until determinantal matrix elements are taken.

The commutator involving S - caD be written as

[S_,r:J = ftLJtpt..,r:J = ftL(tpV: - r:tpt..)
r r

= " L (c5rrtp- tpr:t.. - r:tpt..)
r

= Ilrp (1.32)

(Again, Dole the reduction in particIe rank.) The importance of ibis result is
that r+ when operating on aDYeigenfunction of S2 (e.g., S21°) = fts(s + 01°»
will yield a function whose Sz eigenvalue mIl is increased by tli

Szr:IO) = r:SzIO)+ !/,r:IO)= (m.+ t)/lr:\O)

As delined in group theory (Tinkham, 1964),general tensor operators of Tank
L obey [Jz, T~] = JlIIT~ and [J:b T~J = ft[L(L + I) - Jl(Jl:l: I)r/2T~:!:I'

where J refers to angolar momentum. OUToperators r:, I.; correspond to
L = t, Jl = :l:!. These operators, together with their corresponding annihi-
lation partners(r.. = T~i/2' rp = - T~m,can then becombined, using vector-
coupling coefficients to generale two-or-more-electron creation operators
having various to tal spin values. For example, the two-electron pair creation
singlet tensor operator is

Tr~(O,O) = ~[r;sp - r;s:]
(1.33)
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whereas the two-eIectrontripIet (with various M.) tensor operators are

Tr~(1,1)= r;s;

T~(1, -1) = r;s;
(1.34)

Tr~(1,O)= ~ [r;s; + r;s;]

The operators that create singlet and tripIet coupled one-eIectron replace-
ments are

,

q~(O,O)= ~ (r;s" + r;sp), q~(1, 1)= -r;sp

qr~(1,-1)=r;s", q~(1,O)=~[r;s,,-r;sp]

Soch tensor operators often occur when one- and two-electron operators are
expressed in the second-quantization language. For eJtample, the electronic
part of the electric dipole operator elf .Lf=1ri becomes Lt.. elf .<<ptlrl<p.>
t +s, which after spin integration reduces to

(1.35)

L elf . < cPtlrlcP.> [t; s" + t; Sp]
t"

which contains the singlet-spin tensor operator.

D. UNITARYTRANSFORMATlONSOF ORBITAlS

Having now been introduced to the basic properties of Fermion creation
and annihilation operators as they express N -electron wavefunctions and
quantum-mechanical operators, as wen-as to the strategy involved in mani-
pulating these operators, we are nearly ready to consider the efficient use of
these tools in expressing wavefunctions as they are actually employed in
state-of-the-art quantum-chemical studies, ILfrequently occurs that we are
in possession of a set of orthonormaI spin orbitaIs that, although their
construction was straightforwardly achieved, may not represent an optimal
choice for the problem under consideration. Hence, it is natural to consider
how one caD describe unitary transformations among these orbitaIs within
the second-quantization language. We have already shown that the replace-
ment operator r+ s yields, when operating on a ket in which <Psis occupied,
a new ket with <Psreplaced by <Pr.Now we wish to demonstrate that the
exponential operator exp(iA) defined as

1
exp(iA) = 1 + iA+ ,. (iA)(iA)+ . . .2. (1.36)



yields, when operating on any ket (and hence when operating on any wave-
function that is expressed as a linear combination ofkets), a new ket in which
each spin-orbital ofthe original ket «P,)is transformed joto a new spin-orbital
$, (Dalgaard and J0rgensen, 1978). Let us therefore consider the effect ofsuch
an exponential transformation [exp(iA)] on an arbitrary ket. Using the fact
that [exp(iA)] - 1 = exp( - jA),we may show the following:

exp(iA)ttti . . . t~lvac> = exp(iA)tt exp( - U)exp(U)li exp( ~ iA)

. . . exp(iA)t~ exp( - U)exp(iA)lvac)

which because Alvac>= Obecomes

nTi ...r~lvac>
with the modified creation operators being defined by

r: ==exp(iA)t: exp( - iA)

D. Unitary T ransformations oj Orbitais

where
A = L Arsr+ s

r,s

ll

(1.37)

(1.38)

(1.39)

(1.40)

By naw expanding both of the above exponential operators, we obtain
.2

r:= t: + i[A,t:J+ ;! [A,[A,t:]] + .,. (1.41)
Becauser

l'
:~
(i'
,:'

[A., t:J = L Ars[r+s, t:J = L Ar'kr +
r,s

p, p, t:J] = L AsrAr'kS+ = L (AA)sr.S+
r,s

(1.42)

(1,43)

Eq. (1.4l) caD be rewritten
,2

-+ + ." 1 + '" 11 +
lit = tle + I .;- As'kS + 2! .;- (AA)s,.S

i3

+ 3! ~(l}.).)sr.s+ +... = ~[exp(il)]Sf'S+ (1.44)

The exponential matrix exp(il) appearing in Eq. (1.44) is defined through the
power series appearing in that equation. However, as we show below, this
matrix caD be computed from the l matrix in a much moce straightforward
and practical manner.

If we want the transformation described by exp(iA) to preserve ortho-
normality of the spin-orbitals ar, equivalently, to preserve the anticommuta-
tion relations [see discussion following Eq. (1.5)]

[t+, s] + = [r+,5']+ = (j,s (1.45)
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then certain restrictions most be placed on A. This restriction, of COllege,
requires the above transformation to be unitary. Using Eq. (1.40) and

[exp(iA)]+ = exp(-iA+) (1.46)
then

;s = exp(iA +)sexp( - iA+) (1.47)

We therefore have

T+;S+ Sf+ = exp(iA)t+ exp( -iA)exp(iA +)sexp( -iA +)

+ exp(iA+)sexp( - iA+)exp(iA)t+ exp( - iA) (1.48)

Now if the operator A is required to be hermitian, which then makes the
elements Arsform a hermitian matrix

A+ = 2)Arsr+s)+ = L Ai.s+r = L AsrS+r = A (1.49)
r,s r,s r,s

then Eq. (1.48) will reduce to

Ps + Sf+ = exp(iA)(t+s + st+)exp( - iA) = J,s (1.50)

which means that the above transformation does indeed preserve the anti-
commutation relations. The fact that the l matrix is hermitian implies that
the transformation matrix exp(il) occurring in Eq. (1.44) is unitary since

[exp(il)]+ = exp(-il+) = exp(-il) = [exp(il)]-l
This means that the orbital transformation

(1.51)

(Pr ==L [exp(iA)]sr4>s (1.52)

is algo unitaryand hence preserves orthonomality.
When the matrix Ais hermitian, it caD be divided joto real and imaginary

parts
A=oc+iK,

where the matrix ocis real and symmetric (ars= asr) and the matrix K is real
and antisymmetric (Krs= - Ksn Le., Krr= O). The operator A mayaiso be
divided,

A = L Arsr+ s = L (ars + iKrs)r+ S

(1.53)

rs rs

= L arrr+r + L ars(r+s + s+r) + i L Krs(r+s - s+r)
r r>s r>s

(1.54)

joto three terms each of which are hermitian. Since we have assumed earlier
that the spin-orbitals are real, orbital variations in exp(iA) described through
the ars parameters most vanish identically because these variations would
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map the realorbitais joto complex orbitais. When the variations described
by the arsparameters are eliminated, the unitary tnlnsformation described by
exp(iA.)becomes an orthogonal transformation exp( - K). In what follows,
when we refer to a unitary transformation, it is usually the orthogona'
transformation described above.

To see how one caD express the exp(iA.)matrix most compact'y, 'et us
introduce the unitary transformation u, which diagonalizes A.:

udu+ = A.,uu+ = u+u = 1, drs = (jrsdr (1.55)
Then

i2
exp(iA.) = 1 + iA.+ - U + . . .2!

. i2
=uu+ +ludu+ +-udu+udu+ +...

2!

(
~ ~

)
l le

= u 1 + id + 2! dd + 3! ddd + . .. u+

= u exp(id)u + (1.56)

Because d is diagonal (dd)r..= (jrsd; and hence [exp(id)].., = (jrsexp(idr).
Therefore the elements or exp(iA.)are easily given by

[exp(iA.)].s = L Url exp(id,)u,~
I

(1.57)

This equation gives a compact and efficient expression for the orbita' trans-
formation matrix appearing in Eq. (1.52).

Having seen how the operators of second quantization caD be used to
express wavefunctions and quantum-mechanical operators, let us naw move
on to the problem of choosing wavefunctions that yield optimum descrip-
tions, in an energy optimization sense, of the stationary states or atomie and
molecular systems.

PROBLEMS

1.1 Show the following identities to be valid for the operators A, B,
and C;

[AB,e] = A[B,e] + [A,e]B = A[B,e]+ - [A,e]+B
[AB,e]+ = [A,e]+B + A[B,e]

N

[AIA2"'AN,B]= L AIA2"'Aj-l[Aj,B]Aj+I"'AN
j= I
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1.2
l. Show by performing the following commutators and anticommuta-

tors that one achieves a lowering of the particie rank of the operators in-
volved:

[i+j,el], [s, [i+rlk,r+]]+, [r+s, [i+j, t+v]]

2. By how much (what order) bas the rank been lower~din each case?
1.3 Show that the operators {qr+s(l, i); i = 1,O,-l} given in Eq. (1.35)

are tensor operators in spin space with S = 1.
1.4 The Fermi contact Hamiltonian may, in first-quantizedlanguage,be

written as

N 81t

HF = ~L 3g. p. "f~j' I"«5(rj- RII)I II

where (" is the spin of nucleus a, and g is the electronic gyromagnetic ratio,
p the Bohr magneton, "fa the nuclear gyromagnetic factor, S the electron
spin, and «5(r)the Dirac delta function. Show that ibis Hamiltonian, in
second-quantized language, may be written as

HF = L ~1tgP"fllli~(Ra)lis(RII)[-q~(l, l)(I~ - iI;)a,r,s

+ q~(l, -l)(I~ + iI;) + .fiq~(I,O)I:]

where lis(Ra) is the amplitude of orbital s at nucleus a and the q+ operators
are defined in Eq. (1.35).

1.5 Given iwo orthonormai orbitais 41t and 412 expressed as linear
combiriations of iwo not necessarily orthonormai basis functions XII and
Xb:

41t,2 = at,2XII + bt,2Xb

1. Show that the two-dimensi~nal unitary transformation given in Eq,
(1,52), which in ibis case is described by a Kmatrix

K=(~ -~)
involving one parameter K, can be expressed as

(
l O

)
.

(
O 1

) (
COSK sinK

)exp(-K)=COSK O 1 +SIOK -l O = -sinK COSK

2. Apply ibis transformation to the orbitais 411,2for K = 10° to obtain
neworbitais cfJ 1,2 and express (f)l,2explicitly in terms of Xa,Xb,at,2' bt,2'
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SOLUTlONS

1.1

\
~.
~.
~.
f.
t
;.;

i..
~
y
~

L,

[AB,C] = ABC - CAB = ABC - ACB - CAB + ACB

= A[B,C] + [A,C]B = A[B,C]+ - [A,C]+B

[AB,C]+ = ABC + CAB = ABC - ACB + ACB + CAB

= [A, C]+B + A[B, CJ

[AlAl'" AN,B] = AlAl'" ANB - BAlAl'" AN
= AIAl '" ANB - AIAl . , 'BAN

+ AIAl ," BAN- BAlAl'" AN
= AlAl'" [AN,B] + AlAl'" [AN-..B]AN

+ AlAl'" AN-1BAN-IAN - BAlAl'" AN

etc, Clearly, by continuing to move the B to the leO:,we generale all terms in
the series:

1.2
N

L Al", Aj-I[Aj,B]Aj+I"'AN
j= 1"':

1. [
'+' k +

/]
,+ 'k +1 k +I'+'

I l, = I l - I l
- s: '+ 1 '+ k + 'I s: k +' + k+ ,

.

+1'

- Ujk' - I l - Uli J I I}

= CJjki+l- CJ/jej

[i+j+lk,r+] = CJkri+rl- CJlri+j+k
ClO

;y

Hence

~..
[s, [i+j+lk,r+]]+ = (jkr(si+j+1 + i+j+ls) - CJlr(si+j+k + i+j+ks)

= (jkr«(jisj+1- (jj';+ l) - (j1~(CJiJ+k - CJj.i+k)

[
,+,+

] s:'+ s:+'
I l, t v = ujl' V - uivt l

Hence

[
+

[
,+, +

]] s:
[

+ '+
] J: [

+ +'
]I' S, I l, t v = Ujl r s, I v - Uiv I' S, t l

= (jjl«(j.;r+ v - CJrvi+ s) - (jiv«(j,.,,+ j - CJrl + s)

2, In the fiest problem we lowered the rank by one, in the second by
iwo, and in the third by iwo,

1.3

{qr:(l,M.)} = {-r:S(1' ~(r:s" - r;S(1)"';S"}
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Consider the Ms = Ocomponent only (the others are treated in tike fashion):

1
[8",q,~(1,O)] = L M U:j" - jpjp,r:Sa - rpsp]h/2

j y2

h
= M L {bj,j: Sa+ bj,j; Sp- bjsr:ja - bjsrpjp} = O

2y2 j

[8+,q,~(1,O)] = L ~ u: jp,r:Sa - r;sp]
y'2

h
= M L {-bj,j: Sp- bjsr:jp}

y2 j

- h2 + Mh +

= .j2 ra Sp = y2 q,s(1,1)

r +
] h" [ .+. + +

]L8_,q,s(1,O)= M
.

L., JpJa,ra Sa- rp sp
,y2 j

h
= ML{bj,jpsa+bjsrpja}

y2 j

2h + M h +

= .j2rpsa=y2 q,s(1,-1)

We have thus shown that q,~(1,O)bas the properties ofa tensor operator of
8 = 1 with Ms = O.

1.4 Using Eq. (1.15), the second-quantized Fermi contact Hami1tonian
may be written as

8n
HF = LL3 gfJYa(t/J,IS.Iab(r - Ra)lt/Js)r+s

a 's /

8n /
1[

1 a 1 a

= ~ ~ 3 gfJYa\ t/J, 2 (8 + + 8 _)1 '" + 2i (8 + - 8 _)1 y

+ 8,,/~]b(r - Ra)lt/Js) r+ S

- " " 8n ;r;:* ;r;: (1 + a 1 + a

- L.,L.,3 gfJYa'l',(Ra)'l's(Ra) "2ra spl", +"2 rp.sal",a 's

l+ l a l+ l a 1+ l a l l a+ )+ li ra Sp y - 2i rp Sa y + "2ra Sa" -"2 "rp Sp
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From the definitions of {q+(I,i),i = 1,0, -I} in Eq. (1.35), the final results
given in the problem follow directly.

1.5
1.

(
1 O

) (
OK

)
1

(
OK

)(
OK

)exp( -re) = O 1 + -K O + 2! -K O -K O +...

Since

~:l
"(
~'j

~;

~.

~~.
~4

(
O K

)(
O K

) 2(
1 O

)-K O -K O = -K O 1

then

(
1 O

) (
O 1

)
Kz

(
1 O

)
K3

(
O 1

)exp(-re)= 01 +K -10 -2! O 1-31 -10 +"'.

(
1 O

)
.

(
O 1

) (
COSK SinK

)= cos K + SlD K =.
O 1 -1 O - SlD K COS K

2.

(1: 1: ) = (A. cP )( C~SK SinK )= (X XB)(OI 02

)( C~SK SinK )'l'1'l'Z 'l'1 2 -glUK COSK A bl bz -glUK COSK

K = 10°= 0.174 rad, cosK= 0.985, sinK= 0.174

- -
(

0098501 - 0.1740z 0.17401 + 0.9850z\

)(cPlcP2) = (XaXb) 0.985b1 - 0.174b2 0.174b1 + 0.985bz.;.-
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Chapter 2 I Energy and Wavefunction
Optimization Methods

A. INTRODUCTlON

The total electronic energy of a system described by a stale l°) is given as

E = (OIHIO), (010)= 1 (2.1)

In approximations commonly used to describe the true stale function, l°)
may depend on variational parameters CI, C2' . . . , Cj, which may be expan-
sion coefficientsdeseribing either the linear combination of configurations
in l°) or the orbitals [Eq. (1.18)]appearing in these configurations.The total
energy forms an energy hypersurface in these parameters E(CI, C2, . . . , Ci)'
Wewishto determinestationary points or extremaofthe energyhypersurface
that, of course, occur when

OE(C1,C2,...,cNaci=0, i'= 1,2,...,j (2.2)

In ibis chapter, theproblem of making E( CI, C 2, . . . , Cj) stationary will be
treated for both linear and nonlinear parameters that arise in treating the
most common quantum-chemical energy expressions. The fiest derivatives
of the total energy determine the slol» at a given point of the energy hyper-
surface, wbite the second derivatives of the total energy

o2E(C1,C2,..., cNaCjOCj (2.3)

determine the curvature or the energy hypersurface and thus may be used
to characterize the stationary point as a local minimum, a saddle point, or
a local maximum. In attempting to find excited states of a given symmetry,
one most use care to guarantee that the procedure does not permit a collapse
to the lowest stale of that symmetry. Procedures soch as constraining the
class of wavefunctions given by {Cj} to be orthogonal to the ground stale
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or monitoring the dominant components (largest Cj) of each wavefunction
are commonly used to avoid ibis difficulty.

In the fiest optimization procedures we examine below, the parameters
Cj characterize a unitary transformation of the wavefunction within the
space ofboth orbital and configuration variations. To determine a stationary
point (SP) on the energy hypersurface in ibis case, we derive an iterative
scheme that is quadratically convergent both for ground and excited stalego
We use knowledge of the fiest and second derivatives of the total energy to
determine the iterative step lengths that we have to take to reacIi the SP. If
the energy hypersurface wece parabolic in all of the parameters considered,
we would reach the SP in one step. The iterative nature of the solution
originates erom the nonparabolic terms in the true energy hypersurface,
whose description we truncate after quadratic terms.

To be moce explicit about the kinds of variational parameters that com-
manty arise, we write the wavefunction l°) as a linear combination of the
orthonormai basis states {l4>g)}that may originate erom several electronic
configurations:

l°) = L l4>g)cgo
g

(2.4)

Each of the states l4>g)is formed erom a single electronic configuration and
is defined as

l4>g) = n r+lvac) (2.5)
rell

where the product nreg r+ refers to an ordered set of creation operators.
The coefficients CgOare the expansion coefficients for the considered stale
l°) within ibis configuration basis {14>,I)}. Variations of the spin-orbitals
{4>r}are commonly expressed in terms of variations in the linear expansion
coefficients deseribing the {4>r}within an atomie orbital basis. [Eq. (1.18)].

In a multiconfigurational self-consistent field (MCSCF) calculation (Dal-
. gaard and jergensen, 1978; Schaefer and Miller, 1977, Chapters 3 and 4),
: we consider both the configuration expansion coefficientsand the orbitais
~. as variational parameters. The optimization techniques required to determine

r an MCSCF wavefunction are discussed in Section B. In a configuration
~... ' interaction (CI) calculation, the coefficients ClIOare determined erom Eq. (2.2)
lt under the assumption that the orbitais are fixed. We discuss various ap-
~) proaches to the CI problem in moce detail in Section D. The Hartree-Fock
'. (HF) approximation assumes that the reference stale refers to a single

configuration but the orbitais (or creation operators) are allowed to vary
and are determined erom Eq. (2.2). Several techniques that have been pul
forth to generale optimal HF orbitais are considered in moce detail in
Section C.
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B. MULTICONFIGURATIONALSELF-CONSISTENTFIELD

l. Unitary Transformation of the Wavefunction

Let us now describe how one determines SPs on the energy hypersurface
when the wavefunction bas the form given in Eq. (2.4). We allow variations
to occur in both the orbitais and the configuration expansion coefficients.
In Eqs. (1.52) and (1.57) we have described how the orbital variations may
be carried out by performing a unitary transformation among the orbitais.
The variations in the expansion coefficients may be described in a similar
manner (Dalgaard, 1980). The expansion coefficients for the stale lO) form
one column of a unitary matrix in which the remaining columns are the
expansion coefficients for the orthogonal complement states within the
configuration space being considered:

In) = L l4>g)Cg/l
g

(2.6)

The states {lO),In)} and {l4>g)}thus are related through a unitary transfor-
mation matrix C. Variations in the expansion coefficients Cg/lmay be achieved
either by a direct variation of these linear parameters or alternatively in
terms of parameters S'm deseribing a unitary transformation among the
states {II)}. The operator

S = L S'mll)<ml
I,m

(2.7)

when applied on the set of states {Ik)} results in a general transformation
amon g the states {Ik)}. The operator exp(iS) therefore may be used to
describe a general unitary transformation among the states Ok)}.

This unitary transformation shows great resemblance. to the unitary
transformation exp(iA.)in Eq. (1.36). The operator S is hermitian and the
parameters SImform a hermitian matrix that determines the unitary trans-
formation to be performed. Since we consider oBly realorbitats here, it
becomes sufficient to use only the imaginary part of the variational param-
eters S'm,denoted iP'm[analogous to using oBly the iKr.part of A.in Eq. (1.54)],
and the S operator then takes the form

S = i L P'm(II)<ml-lm)<II)
I>m

(2.8)

Further, because our interest is in optimizing the totat energy for the stale
l°), we need only include the m = O parameter PlO in Eq. (2.8), which then
limits the operator S to be of the form

S = i L P/lo(ln)<OI-IO)<n!>
II~O

(2.9)
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where the elements PnOare real. The matrix P is a real antisymmetric matrix
that, in its lower triangle, has aU zero elements except for the elements PnO:

The nonlinear variational parameters P"o are one less in num ber than the
linear expansion coefficients Cgo' This is due to the fact that a normalization
condition has to be imposed on the linear expansion coefficients {Cgo} if
they are used as variational parameters, whereas variations described by the
parameters PnOautomaticaUypreserve the orthonormality ofthe stalego

Let us now carry out the above unitary transformation. We obtain by
expanding the exponential

exp(iS)lm) = [1 + iS + ;, (iS)2 + ;, (iS)3 +.. '}n).

The second term in the expansion may be written as

(2.11)

iSlm) = ii L Pno<ln)<ol-IO)<nl)lm)= - LI1)P'm'
n*O I

(2.12)

The last identity foUowsby the definition ofthe (sparse) P matrix in Eq. (2.10).
The third term in the expansion in Eq. (2.11) may be determined through
successive applications of Eq. (2.12) to be

+ liSiSlm) = -liS LI1)P'm = l Llp)PpIP'm
I p.1

(2.13)

Successive terms in the expansion of the exponential in Eq. (2.11) are deter-
mined in a similar manner. after which it becomes obvious that the terms
may be summed to give an exponential matrix

exp(iS)lm) = L 11)[exp(- P)]'n.'
I

(2.14)

~;

The actual evaluation of the exponential matrix in term s of the unitary
transformation that diagonalizes iP may be carried out in a manner analo-
gous to that described in Eq. (1.57) for exp(il).

Because of the especiaUy simple nature of the above P matrix, the unitary
transformation in Eq. (2.14) may be carried out analyticaUy. We obtain by
coUecting together the terms arising in the (l/n!)(is)nlm) factors as sine and
cosine components:

exp(iS)IO) =cosxIO) _! sinx L PnO\")x n
(2.15)

o -PlO -P20 ... -P nO
p O O ...

p =, 10
O O \ (2.10)

P20

O
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exp(iS)lm)=/m) + pmo! sinxIO)+--;'(cosx-l)P mOIln)Pno (2.16)
X X n

where

X2 ==L:P;o
n

(2.17)

A unitary transformation of the reference stale may naw be described as

l°) = exp(i;') exp(iS)\O) (2.18)

Using the technique of Eq. (1.40) to transform aU of the creation operators
appearing in l°) and in exp(iS) (Le., those in I'»), we caD write

l°) = exp(iS)IO) (2.19)

where S and l°) are defined as in Eqs. (2.9) and (2.4), respectively, with
creation operators ;:+ referring to the transformed set of orbitals. The unitary
transformation of the stale l°) caD thus be thought of as fiest carrying out a
unitary transformation among the orbitals in l°) and S and then performing
a unitary transformation in the configuration space [Eq. (2.19)]. This same
transformation caD be viewed in a somewhat different manner. One may
interpret it as fiest performing the configuration transformation involving
aU untransformed orbitals (or creation operators)

exp(iS)IO) = L: [exp( -p)]1O11>
I

(2.20)

as given by Eq. (2.14) and then transforming the orbitaIs in the functions
In) to give

exp(U)[ exp(iS)IO)] = L:[exp(- P)]1O11)
I

(2.21)

where

11) ==exp(i;')I') (2.22)

Of COllege,both of these interpretations of Eq. (2.18) amount to nothing
moce than twa ways of working at the same configuration and orbital
transformation.

An alternative description of a unitary transformation of the reference
stale involves using the exponentials in Eq. (2.18) in the opposite order. This
form implies that the reference stale may be rewritten as

l°) = exp(iS)IO) (2.23)

where the creation operators in l°) refer to the set of transformed orbitais,
while the creation operators in S correspond to the nontransformed set.
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The subsequent evaluation of exp(iS)IO) would be very difficult because it
would involve the computation of overlaps between states <111°)involving
both transformed and nontransformed orbitais. This would complicate tre-
mendously the determination of the transformed stale 1°); we therefore
consider in the following only the unitary transformation of the reference
stale given in Eq. (2.18).

2. Variation oCthe Total Energy

The total energy corresponding to the transformed reference stale is given
as

E(Jc,S) = <Olexp(- iS) exp( - iJc)Hexp(iJc) exp(iS)IO)

= <OIHIO)- i<OI[S+ Jc,H]IO) + l<OI[-S,[H,S]]IO)

+ l<OI[Jc,[H,J.]]IO)+ <OI[S,[H,Jc]]IO)+... (2.24)

By introducing a matrix notation in which the variational parameters /(r5
and PnOform row and column vectors, we caD rewrite Eq. (2.24) as

E(J.,S) = E(O,O)- 2(KP)(~) + (KP)(A- B)(;) +...
(2.25)

Q+ = {r+s}(r > s),

and defined the matrices
R+ = {I")<°l}

We have introduced in Eq. (2.25) the short-hand notation for the operators

(2.26)

(
AliA=
A21

(BilB=
B21

w = <OI[Q,H]IO)

V = <OI[R,H]\O)

A12) «
OI[Q,H,Q+]IO)<OI[[Q,H],R+,JIO» )Au = <OI[R,[U,Q+]]IO)<OI[R,H,R+]IO)

B12)=
«

OI[Q,U,Q]IO)<OI[[Q,Il],R]IO» )Bu <OI[R,[H,Q]IO)<OI[R,H,R]IO)

For convenience, we have introduced the double commutator, defined as

[Q,H,Q+] = l{[Q,[H,Q+]] + [[Q,H],Q+]}

which arises naturally in AlI, Au, Bil' and Bu because

<Ol[A, [H,J.]]IO) - <OI[[A,Il],Jc]IO) = <OI[[Jc,J.],H]IO) = O (2.32)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

, and an analogous result for S. The matrices W, V determine the first-order
. variations of the energy function, which at a SP on the energy hypersurface
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are zero. The condition that V and W are zero at a SP is often referred to as

the generalized BriIlouin theorem (GBT).
The matrix A - B defines the second-order variation of the energy func-

tion and is often referred to as the Hessian matrix. The double-commutator
form of the Hessian matrix allows these second-order terms to be expressed
as a quadratic form.

3. One-Step Second-Order Procedure

As stated previously, a SP on the energy hypersurface is obtained when
()E(A.,S) = O.Neglecting third- and higher-order terms in the energy function
[which rigorously no longer makes E(Jc,S) a true expectation value] we
obtain erom Eq. (2.25), by differentiating with respect to K and P,

-(~) + (A - B) (;)= O
(2.33)

or equivalently

(;) = (A - B)-I(~)
(2.34)

as the conditions for a SP. The matrices K and P may then be determined
erom Eq. (2.34) and a set of transformed orbitais and states obtained erom
Eqs. (1.52) and (2.14), respectively. If the energy hypersurface contained no
higher than quadratic term s, we would reach a SP in one iteration of the
above procedure. The third- and higher-order terms in the energy function
do, however, require that an iterative scheme be applied to determine a SP.
The iterative scheme may be described as follows: From an initial guess of
orbitais and a choice of the configuration space, we determine a set of ap-
proximate eigenstates I") (e.g., by performing a configuration interaction
calculation). The matrices V, W, A, and B are then determined and Eq. (2.34)
is solved to give the matrices Kand P. A transformed set of orbitais and
states may then be obtained erom Eqs. (1.52) and (2.14) and the procedure
repeated until the numerical values of Wand V are smaller than a specific
tolerance. The above described approach bas included all terms in the energy
function through second order and is therefore quadratically convergenl.
We therefore denote this scheme the one-step second-order approach (Yeager
and ]ergensen, 1979).

4. Two-Step Procedure

Another approach, which differs slightly in its realization of the iterative
procedure, bas algo been used and is referred to herc as the two-step second-
order scheme. Il may be described as follows: After an initial guess of orbitais,
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a configuration interaction calculation (see Section D) is carried out to~deter-
mine the starting set of CI eigenstates II). We then have

(mIHI1) =<E,(jm' (2.35)

and the V matrix

Vn= (OI[Rn, H]IO) = (01[1°)(111,H]IO) = O (2.36) I
becomes equal to zero. Equation (2.34)may then be partitioned (L6wdin,
1968)to give(using 822 = O)

K = [A" - B" - (AI2 - BI2)Ai}(A21 - B21)]-tw (2.37)

and the K matrix caD be determined erom this set of linear equations.
A transformed set of orbitaIs may now be obtained using this K in Eq.

(1.52) and a new CI calculation (diagonalization of (I\Hlm» carried out.
This process is then continued until convergence is reached. In the two-step
second-order procedure, Eq. (2.34) is thus always applied in a basi s where
the states are determined erom a CI calculation. The matrix P is never ex-
plicitly calculated. In contrast, in the one-step procedure the configuration
expansion coefficients of l°) and I") are determined erom the unitary trans-
formation given in Eq. (2.14), where P is obtained °from Eq. (2.34) rathcr
than erom a CI calculation.

The terms AI2 - BI2 coupling the configuration and orbital space vari-
ation have been neglected in maDYcalculations. In maDYcases, these terms
show liule effect on the convergence fale ofthe procedure. It should, however.
be pointed out that a quadratically convergent scheme is only obtained when
these coupling terms are included.

5. Explicit Hessianand GeneralizedBrillouin
Matrix Elements

Let us now consider the evaluation ofsome ofthe matrix elements appear-
ing above. In (he one-step procedure we have to calculate. .

(Admn = <Ol[Rm,lf, R,;JIO) = <lIIIHI") - ()",n<OIHIO) (2.38)

Vn= (OI[Rn, H]IO) = <IIIHIO) (2.39)

The elements A22 and V thus contain all matrix elements contained in a
configuration interaction calculation within the considered configuration
space. When the iterative MCSCF procedure has converged, nIl elements of
V are zero and the interactions between the reference stale l°)and the residual
states are thus eliminated. The diagonal and olT-diagonal matrix elements\ .
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of the Hamiltonian in {he residual space {In)} may, however, all be non-
vanishing.

In the iwo-step second-order approach, the CI calculation that is carried
out in each step prior to the evaluation of the matrices simplifies the evahia-
tion of V and A22' The V matrix becomes, as stated earlier, zero and the
A22 matrix

(A22)mn = (jmn(Em- Eo) (2.40)

becomes diagonal. These simplifications remain in each step of the iterative
process because a,CI calculation is performed in each iteration.

Except for A22 and V, the form of the matrix element in the one- and
iwo-step procedures are the same. The matrix elements of W, A11, and 811
may be derived erom Eqs. (2.41) and (2.42) by index substitution. Tl'1eexcita-
lian operators in these equations have singlet spin symmetry, since they
arise in the operator A, which musi preserve the symmetry of l°) in forming
exp(i,1)IO). These matrices can be expressed in terms of one- and two-electron
integrals and the one- and two-electron density matrices as given below.
Note that no more than two-electron density matrices appear in W, A11,
and 811:

(O\[t:Ua + tpup,H]\O) = L hu/Olt:PuIO) - L hpt(Olp:uuIO)
up up

- L (pqlrt)Pqpru + L (uqlrs)Plqsr (2.41)

pqr ar\6,{)~') q:s (\,.I~\1;»)eA(c
(OI[I:ka+lpkp,[H,t:ua+tpUp]]IO) o ,r ,,(J'

= hkl L (°11: uulO) + hu'L (Olt: kulO) - I5klL hup(OI/: PulO)
u u ~

- D,u L hpI(Olpu+kulO)- (j,uL (pqlrt)ppqkr - DklL (uqlrs)p'qsr .
pu pqr qrs

- L (pq\Lt)PpqUk- L (uklrs)Ptlsr + L (kplrt)p,pur
pq rs pr

+ L (kpi tr)pp'ur + L (uq\LS)PlqSk+ L (uqls/)pqtsk
pr qs qs

(2.42)

where (I 9 (

- '. ,) r.
Pijkl= L,(Oli:j:.k~.luIO)

U,(1
(2.43)

and a and a' run over the electron spin indices lXand {l.
The elements of A21and 821 reduce as follows:

(01[10)("1, [H, t:ua + 'p lip]] \0) = (ni [H, t:ua + tpup]IO) (2.44)
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and an explicit final formula for Eq. (2.44) may be obtained from Eq. (2.41)
by replacing the one- and two-electron density matrices with the correspond-
ing transition density matrix elements.

6. Mode Damping

The GBT matrix and the Hessian matrix arising in the one-step second-
order procedure determine the energy slope and curvature, respectively,
for a given point on the hypersurface. When a SP point bas been reached, the
eigenvalues of the Hessian matrix thus caDbe used to characterize ibis point.
We have reached a local minimum if all eigenvalues are positive. Mixed
positive and negative eigenvalues correspond to a saddle point on the energy
hypersurface. In employing the iwo-step procedure outlined above, one no
longer bas the opportunity to characterize the stale by its Hessian eigen-
values, because the full Hessian matrix is not employed and the partitioned
Hessian of Eq. (2.37) does not have the same eigenvalues as the full Hessian.

Som e insight joto the step lengths (K,P) that should be taken in second-
order procedures may be obtained by transforming the second-order equa-
tion to a form in which the Hessian matrix is diagonal. Let us consider initially
the diagonalization (by the unitary matrix U) of the full A - B matrix ap-
pearingin the one-step second-order equation

,I

~

J
A - B = UBU+ (2.45)

Equation (2.34) then becomes

(;) = e-t(~) (2.46)

where

(;) = u+(;)

(~) = U+(~)

(2.47)

(2.48)

,; Each normaI mode on the energyhypersurfaceis decoupledand hence may
be described independently. This is particularly useful in the initial iterations

. of an MCSCF calculation, where third- and higher-order term s may be
. important and even dominate as a result of the poor initial guess of the
orbitaIs. The second-order scheme may, in soch cases, be forced to take step
lengths (K,P) that are too large. The normaI mode analysis of Eq. (2.46),which

:displays the slopes ('W,V) and curvature (e) of each marle independently,
}hen becomes a convenient tool to use for changing the step length for those
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modes that tak e very large steps. This is dane by restricting the allowed size
of the K and P matrix elements. In ground-state calculations where the
Hessian matrix has to be positive definite, we may even change the direction
of the step (Le.,change the sigo arK) if smalI negative eigenvalues 8j appear.
This situation occurs frequently in the initial iterations ofactual calculations.
If the matrix elements that couple the orbital and coefficient optimization
(the A12 - B12 matrix) are very smalI, K then predominantly refers to the
orbital optimization while P refers to the coefficient optimization. In these
cases, it is reasonable to impose same ditTerent limits upon the size of the
maximum elements of the step length vectors Kand P. At present, there is
little experience on how to optimally make these restrictions although results
of initial calculations indicate that the basic philosophy is correct. When
strong coupling occurs between the configuration and the orbital space, z

more refined damping schemes may oecd to be introduced (Yeager et al.,
1980).

In the twa-step second-order procedure, damping may only be performed
in the space that is dominated by the orbital space. Froni applying the unitary
transformation to Eq. (2.37) we get

K = 8-1W (2.49)

where

A11 - Bil - (A12 - B12)Ai"l(A21 - B21) = U8U+

K = U+"

w= U+W

(2.50)

(2.51)

(2.52)

Because the reference stale lO) and its orthogonal complement states lit)
are determined from a CI calculation, it is not generally possible to impose
constraints on the step lengths in the configuration space. Further, the CI
steps are not necessarily tak en along the normal modes. In particular, when
strong coupling elements exist between the configuration and orbital spaces,
large fluctuations in the amplitude of the dominant configuration may be
encountered, which may lead to difficulties in converging to the stale under
consideration.

7. Elimination oCRedundant Operators

Having naw given a general discussion of quadratically convergent second-
order MCSCF methods together with same analysis ofhow such techniques
might best be implemented, we can move on to describe other MCSCF
methods, as well as to give more detail about the numerical requirements
of such calculations. Before do ing sa, however, it is important that we
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~~t'addressa technical point that must be understood if one is to be successful
t~, in carrying out such MCSCF calculations.

The unitary transformation or the reference stale given in Eq. (2.1 8) has

,~::'as generators the operators,. +8 of A and 1/1)<Ol of S. It is possible that the
,3 operators ,.+S and In) <Ol gran the same srace. That is, the effects of the
~foperators ,.+s may be expressed in terms or those of the stale projections in
~'. the configuration srace. To determine whether the effects of a given operator
lr+s can be expressedin termsof the kets UIII)},weexaminethe following

I" difference ket::'
,

: II)= "+511)- 2: Im) <ml,.1-811) (2.53)
& m

~Irthe norm oClI) vanishes, then II) itselfvanishes and hence ,,+sll) can be
~<J;'.exactlyrepresented as a sum ofthe {Im)} functions. The norm ofl/) vanishes
~.when .

(2.54)

"1;'" 2:1(1II1,,+sll)12= (1Is+""+511) (2.55)
m

~When bot'l the operators ,.+s and s+,. fulfilI Eq. (2.55), for aDYstale I') the
l~ariations described by the para.meters Arowill be denoted as r.edundant.
~".,.The search for redundant vanables may, of course, alternatlvely be per-
i;formed in the configuration srace {Iq,g)} since this srace is related to the
'~space {II)} through a unitary transformation. Because the states {/'+slq,g):

!f
,

:~
,

!are,norm~IiZ~d to unity, the search for redundant variabIes may be achieved
~:by tnveshgatmg whether the sum
'.~:.

2:1<q,g,I,,+slq,g)12
g'

(2.56)

~~.
~}~ equal to zero or one for any stale Iq,g)'"'."
1/' We now show how orbital changes caused by redundant variabIes can

1;00 represented as configuration changescaused by S and can thus be elimi-
~i1ated floro the energy optimization procedure. The redUlldant set of oper-
i.!tors form a hermitian operator
,,:~
,t

AU = 2: A:", + s
rs

(2.57)
'j

,~Jhe operator A', which contains all of the ,.+s that are not redUlldant algo
Uorms a hermitian operator
'\~~

A'= 2:A~".+S (2.58)
rs
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Since the operators in Eq. (2.57) ale generators of a subgroup of the unitary
group, exp(iA)may be factorized to give

exp(iA) = exp(iA')exp(iA") (2.59)

Equation (2.59) is thus a representation of an arbitrary group element ex-
pressed as a left coset of this subgroup. Expressed in other words, the unitary
transformation that is described by exp(iA) may alternatively be described
by the unitary transformation exp(i).') exp(i)."). It should bepointed out that
there exist no simple relations between the Ar. parameters and the A~.and
A~~ parameters. With the above factorization of the "redundant" part (A"),
the unitary transformation of the reference stale may be written as

lo> = exp(iA')exp(i).")exp(iS)IO>

Since II> in Eq. (2.53) is zero for aDYproduct of redundant operators,

exp(i).")jl> = IIp><plexp(iA'')jl> (2.60)
p

Using this relation together with Eq. (2.14) gives

lO> = exp(iA')exp(iA")I II) [exp( - P)]1O
I

= exp(iA') I Ip><plexp(i).")ll>[exp(- P)]1O
p,l

(2.61)

The matrix {<plexp(i).")ll >} is unitary since the scalar product of Eq. (2.60)
with <qlexp( - iA") gives

I <qlexp( - iA")lp><pl exp( + i).")ll> = Jal
p

Therefore, the product matrix

I <pl exp(i).")ll > . [exp( - P)]1OI
(2.62)

must consequently also be unitary. Because a single unitary transformation
ofthe form given in Eqs. (2.10) and (2.14) is sufficient for optimizing the to tal
energy, the redundant variabies may be left out when optimizing the energy.
That is, the )." factors caD do nothing moce, in a wavefunction optimization,
than caD be clone by the exp(iS) operator.

8. Practical Considerations

So far, no attention bas been given to the spatial and spin symmetry
features of the reference stale. The theory we have outlined thus far may
hence be described as unrestricted multiconfigurational HF. In most appli-
cations (Eyring et al., 1967),we require the referencestale to have a certain
symmetry (Le.,the referencestale should transform according to an irreduc-
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ible representation ofthe Hamiltonian's point group). For the wavefunction
symmetry to be conserved under a sequence of unitary transformations, the
operators A and S have to be tensor operators belonging to the totally sym-
metric irreducible representation. In this way, the symmetry of the wave-
function would be conserved during the iteration procedure.

Calculations of the matrix elements that are used to define the above

procedures requires knowledge of the one- and two-electron integrals in the
MCSCF spin-orbital basis. Therefore, a two-electron integral transformation
(Schaefer and Mi11er, 1977, Chart. 6) has to be performed in each step of
the iterative procedure. MCSCF approaches, in general, require such re-
peated two-electron integral transformations to be performed. Since these
transformations may, in maDYcases, be the computationally most demanding
step of the calculation, it becomes very important to use MCSCF procedures
that converge re1iably in a minimum num ber of iterations. We have chosen
to emphasize herc the one- and twa-step second-order procedures because
they are quadratically convergent and because they allowa controlled
(damped) "walk" to be performed on the energy hypersurface when cubic
and higher-order terms and/oT coupling between orbitaIs and configuration
optimizations are important.

9. Generalized Brillouin-Theorem-Based Procedures

So far we have used the condition that the energy function be stationary to
define MCSCF schemes. The existence of a stationary point on the energy
hypersurface requires that the GBT be fulfilled at this point. Hence, iterative
MCSCF procedures may alternatively be developed by insisting that the
GBT be satisfied as the iterative procedure converges. A quadratically con-
vergent scheme may be obtained by further insisting that the erraT in the
GBT matrix in the (II + 1)th iteration should be the square of tlte erraT in
tlte 11thiteration. Oenoting the operators and states in the (II+ I)th iteration
with a tilde and those of the ,,'th with no tilde, using Eqs. (2.18) and (1.38)
we obtain

Wn+1 = (OI[Q,H]IO) = (OI[Q,H]IO) + i(OI[Q, [H,A]]O)

+ i(OI[[Q, H], S]IO) + 0(/(2, p2)

Vn+1 = (OI[R,H]IO) = (OI[R,H]IO) + i(OI[R, [H, A]] l°)

+ i(OI[R,[H,S]]IO) + 0(/(2,p2)

(2.63)

(2.64)

since, for example,

(°l [Q, [H,A]]IO) - (OI[[Q,H],A]IO) = (OI[[Q, A],H]IO)

= K(OI[[Q,Q- Q+],H]IO)

= 0(/(2) (2.65)
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The lagi identity arises because the GBT is not fulfilled until convergence is
reached,and thus <OI[[Q,Q - Q+],H]IO) is of order K itself. The double
commutator may be introduced in Eq. (2.63), and Eqs. (2.63) and (2.64) may
then be combined to give

(~)n+l = (~)n - (A - B)n(;) + O(K2,P2)

where we have used Eqs. (2.27)-(2.30).A quadratically convergent scheme
is thus obtained when the K and P matrices aredetermined erom

(2.66)

(~)n = (A - B)n(;)
(2.67)

which is identical to the one-stepsecond-orderequation [Eq. (2.33)].Hence
the one-step second-order procedure described earlier caD aiso be viewed
as arising erom the GBT.

Most MCSCF procedures that have been employed to dale (Schaefer and
Miller, 1977, Chapters 3 and 4) have concentrated on deriving iterative
schemes based upon only insisting that

<OI[H,r+s]IO) = O (2.68)

in each step of the iterative procedure. Assuccessivesets of M CSCF orbitais
are determined in each step of the iterativeprocedure, the configurationspace
equivalent ofthe GBT <Ol[H, In)<OI]IO) = Ois achieved through performing
a CI calcu'ation within the limited configurationspace.

To see how Eq. (2.68) caD be used to define an iterative proces s, lei us con-
sider the first iwo terms in the expansion of exp(iA)IO):

l°)- L Kr.(r+s - s+r)IO)
f>'

(2.69)

This first-order approximation to the true exp(iA)IO)then leads us to consider
the variational wavefunction

1°)~ XoIO) + L Xr.(r+s - s+r)\O) (2.70)
f>'

containing the linear variational parameters X o and {Xr.}' The optima'
va'ues of these parameters may then be determined erom the superconfigura-
tion interaction (SCI) secular problem (Banerjee and Grein, 1976)

HX = ESX (2.71)

The SCI Hamiltonian matrix elements are defined as

Ho.r. = <OIH(r+s - s+r)IO) (2.72)
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which for realorbitais reduces to Eq. (2.68):

Ho.rs= (01[H".+5JI0) = Hrs.o

The other matrix elements of H are

(2.73)

Hoo = (OIHIO)

Hrs.lu = (01("+s - s+r)+H(t+u - u+ t)IO)

(2.74)

(2.75)

The scalar product matrix S is defined in a similar fashion (e.g., SO.rs=
(Ol,.+s - s+rIO) = O) and the eigenvector X bas the components X =
{Xo' Xrs}' The G BT therefore states that in the so-called SCt secular problem
[Eq. (2.71)], the stale l°) should be noninteracting with its single excitations
(,.+s - 5+")10). ODce this occurs, Eq. (2.71) will have, as one ofits eigenvalues,
the MCSCF energy (OIHIO). The other eigenvalues, as in all variational
secular problems, represent upper bounds to other true energy levels.

The eigenvector X obtained erom the SCI secular problem caD be used to
define a transformation of the orbitat appearing in lO). To see how this
transformation arises, we rewrite Eq. (2.70) as

lo) = Xb-N
[
X~+ L x~-IXrS<r+s - s+r)

J
L CgolePg)

r>s g
(2.76)

The elTectof Lr>s(r+s - s+,.)Xr.,on each configuration lePg)results in twa
new configurations in which spin orbital ePsis replaced by ePrand vice versa.
For example, the effect on 1+2+ . . . N+lvac) is to give

N'

[i~l r~i Xril+2+ "'(i-1)+r+(i+ 1)+ "'N+

- L.Xirl+2+""(i-l)+,.+(i+1)+ "'N+ ]lvac)
r<1

(2.77)

If the spin-orbitals occupied in aDYconfiguration lePg) are denoted by 1',.
then the above SCI wavefunction in Eq. (2~76)caD be expressed as

1

- I-N ~ n[ +,' + ~ +]I 2
O)=Xo L.,CgO Xot +L.,Xr," -L.,X'rr vac)+O(Xr.,) (2.78)

g lEg r>1 r<1

That is, the wavefunction used in the SCt calculation (Eq. (2.?0)) is identical.
through fiest order in the Xrs parameters, to a new linear combination of
configurationswith the same CgOcoefficientsbut with orbitais ifJ, that caDbe
expressed in terms of the original orbitais as

i
ifJ, = XOeP,+ L XrlePr - L X'rePr (2.79)

!:' r>1 r<1
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Because this orbital transformation is not properly unitary (the {cPk}are
normalizedand orthogonalantythroughfirstorderin the Xrs),the set {cPk}
must, in each iteration, be orthonormalized (by, for example, the Schmidt or
Lowdin procedure).

The SCf iterative procedure thus consists of guessing a starting set of
orbitalsand generating the {CI/o}expansion coefficients erom a CI calculation.
The SCI secular problem is then constructed and solved (to give X) after
which the neworbitaIs {cPdare computed as in Eq. (2.79) and subsequent1y
orthonormalized. These neworbitaIs are then used to perform a new CI
calculation to generale new {Cgo} coefficients and hence a new SCI secular
problem. This iterative procedure is continued until convergence is achieved
at which time the GBT is fulfilled. A significant drawback of most SCI
procedures as now implemented is that they do not treat the coupling between
orbital and configuration optimization. SCI methods that treat both optimi-
zations on equal footing represent a significant improvement. In situations
for which strong coupling exists between the orbital and configuration space,
the above-described twa-step SCI process might thus be expected to converge
slowly. As we mentioned above, the quadratically convergent one-step second
order procedure discussed in the preceding section could algo be viewed as
being defined, through Eq. (2.66), to make the GBT obeyed. It is then impor-
tant to explore how the twa iterative methods, both of which can be stated
through the GBT, dilfer. The dilference arises erom terms in

<Ol exp( - iS) exp( - iA)H exp(iA) exp(iS)IO)

that are quadratic in S or Aand that arise erom the second-order components
of the individual exponential operators. For example, <OIHiAiAIO)and
<OliSiSHIO) arise in the exponential formulation but do not arise in the
expectation value of the SCf wavefunction given in Eq. (2.69).The neglect of
second-order terms and the requisite reorthogonalization of the MCSCF
orbitaIs dilferentiate between the twa methods and render the SCf approach
not quadratically convergent.

Because SCf approaches to the MCSCF problem are not based upon
extremizing the fulI second-order energy expression described above, their
convergence fale is linear rather than quadratic, although in practice such
SCf methods may sometimes demonstrate approximate quadratic con-
vergence. Because the SCI energies result erom solutions of an eigenvalue
problem, each SCI energy is an upper bound to the respective true energies
(ground and excited). The values of X ijobtained erom the SCI secular problem
[Eq. (2.71)] when used to carry out orbital modifications [through Eq. (2.79)]
yield a new multiconfigurational wavefunction whose Hamiltonian expecta-
lian value is, because of the subsequent orthonormalization needed, no
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longer identical to the eigenvalue E that was obtained erom the SCI secular
problem.

In the unitary second-order method, the energy expression E(A,S) given in
Eq. (2.25), when truncated after terms linear and quadratic in A and S, is no
longer an expectation value of H and thus no longer bounds the ground-state-
total energy. Thus, the stationary points of E(A,S) do not form rigorous
upper bounds to the respective true ground- and excited-state energies. or
course, there are geod reasons to believe that, in the neighborhood of an
eigenstate, E(A,S) caD be wen approximated by this quadratic hypersurface.
Moreover, the values or P and K obtained erom making E(A.,S) stationary,
when used in Eqs. (1.52) and (2.14) to obtain 1°), do give a proper upper-
bound energy through <OIHIO).

Having new discussed how one caD go about optimizing the electronic
energy of an MCSCF waveCunction, we turn our attention to twe specjal
subelasses of ibis procedure; the single-configuration SCF problem and the
frozen-orbital CI problem. Because we choose to view these situations as
specjal cases of the above MCSCF problem, we obtain a specialized view or
SCF and CI theory. There already exist in the literature extensive and elear
treatments oCSCF and CI as they are moce commonly treated within the
linear variational framework. Hence we have not attempted to cover the moce
conventional aspects of these topics herc.

C. SINGLE-CONFIGURATlONSELF-CONSISTENT
FIELD METHODS

.
1. Quadratically Convergent Scheme

Le( us consider a situation in which we choose to wark with a one-coll-
figuration wavefunction for which the orbitaIs are allowed to vary. This
single configuration lO) may still consist or a linear combination or deter-
minants whose (fixed) coefficients are determined by the srace and spin
symmetry imposed on lO).The orbital variations may be described by exp(U)
and an optimal set of orbitaIs determined as in the previous section [by
simply neglecting terms involving exp(iS)]. The second-order Eq. (2.33) then
reads

w = (Ali - BIt)rc (2.80)

where A" and B" are defined in Eqs. (2.29)and (2.30).A quadratically
convergentschemeforoptimizingorbitaIsmay bedescribedas follows.Givell
an initial guess for the "occupied" orbitaIs, we use Eq. (2.80)to determine
K,and then we use Eq. (1.52)to generale a transformed set of orbitaIs. This

1:-.

~..
~:;
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process is repeated until convergence is reached. This process requires, even
in the one-configuration case, a partial two-electron integral transformation
in each step of the iterative procedure. For a sing1e-configuration case, a
more restricted two-electron integral transformation caD be used in each
step if, instead of the above quadratic procedure, one uses an approach that
is based on the Brillouin condition alone. These so-called first-order BT-
based self-consistent-field (SCF) procedures are, however, not quadratically
convergent, much as the SCI method treated earlier is only a linearly con-
vergent MCSCF method.

2. Brillouin-Theorem-BasedMethods

The HF or SCF approaches based opon the BT itself,

(OI[H,r+sJIO) = O (2.81)

introduce a decomposition of the Hamiltonian joto a Fock operator (which
the spin-orbital basis is chosen to diagonalize)

F = ~)hrs + v,s)r+s= L Brr+r (2.82)
r.s

where I1rsis the one-eIectron part of the Hamiltonian. A Fock potential

v = L v,sr+s
r,s

(2.83)

and the eIectron repulsion term W combine with F so that

H=F-V+W (2.84)

The one-eIectron Fock potential V is thus far arbitrary. Different choices
for V correspond to diITerent choices of the spin-orbitals {tPr} and their
corresponding orbital energies {Br},since we require the tPrand Brto obey

hrs + v,.s = (jrsBr (2.85)

The BT [Eq. (2.81)] caD now be used to determine V and hence to determine
the spin-orbitals tPr.By inserting the H ofEq. (2.84) joto Eq. (2.81) we obtain

0= (OI[r+s,HJIO) = (Bs- 8r)(0Ir+sI0) + L(~'<°lrsIO) - v,j(Olr+jIO»
j

+ L (sklljl)(Olr+e 1j10)+ (lklljr)(OII+ejsIO»
k./,j

(2.86)

where

(ijllkl) ==(ijlkl) - (ijllk) (2.87)
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Since the one-electron density matrix is diagonal for the single-configuration
case considered here, we have

<°11' + slO) = <>rs"s (2.88)

where I'. denotes the occupation num ber for orbital <1>.in l°). Because l°)
may consist of a linear combination or determinants, tlte "s are not neces-
sarily zero or unity. The Fock potential determined from Eq. (2.86) is then

v,.s(l'r- Vs)= L «sklljl)<ol,.+eljlo) + <lkljj,.)<oll+ejsIO»)(2.89)
"./.j

which is only defined from the Brillouin condition when Vr- "s is nonzero.
Notice that the symmetry of the Fock operator defined in Eq. (2.82) is deter-
mined by the symmetry of the above Fock potential. This in turo depends
uran the symmetry of the density matrices appearing in Eq. (2.89). As a
result, the Fock operator may not have the same symmetry as the fuli elec-
tronie Hamiltonian for specific choice of the reference stale l°).

Before discussing various possibilities for how to choose the part of the
Fock potential that is not determined from the BT, let us describe the itera-
tive procedure that can be used for obtaining a set of optimized orbitaIs
given aDYfinal choice for the form ofthe fuli Fock potentiaI. From an initial
guess of orbtials, we use Eq. (2.89) together with one of many choices or
the remainder of the V to determine a Fock potential. The Fock matrix
F = h + V (whieh is hermitian) is then diagomilized, and a new set or orbitais
is determined, whieh are then used to set up a new Fock potentiaI. This
(first-order) process is continued until convergence. The above HF iteration
process is nothing but a variant of the commonly used Roothaan SCF pro-
cedure (Roothaan, 1951, 1960).

3. Choices of the Nondefined Blocks of the
Fock Potential

The part ofthe Fock potential not defined through the Brillouin condition
is onen chosen on physical ground [e.g., to have the resultant orbital energies
represent ionization potentials and electron affinities (via Koopmans' theo-
rem)] (McWeeney and Sutcliffe, 1976).For a reference stale containing a set
of occupied spin-orbitals that we denote by (1.,(J,y, <>and a set of unoccupied
spin-orbitals denoted 11/,II,p, q, the Fock potential in Eq. (2.89) is defined by
the BT oBly between occupied and unoccupied orbitals. From Eq. (2.89) we
get

Vm<x= L <myllay) (2.90)
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One commonly used choice of the remaining blocks of V results in a Fock
potential that caD be expressed as

V = L <ryllsy)r+s (2.91)
y,r,s

where r and s run over all spin-orbitals. With ibis choice, the orbital energies
represent (through Koopmans' theorem) the ionization potentials and elec-
tron affinities of 1°). Of COllege,other choices of the nondetermined part of
V have been marle in the literature. For example, the (unoccupied-unoccu-
pied) part of the Fock potential (Vmn)bas been chosen to correspond to a
so-called vN-t potential (Kelly, 1964), thereby making the virtual orbitaIs
moce suitable for use in the calculation of excitation energies.

Calculations soch as the one discussed above do not involve imposed
symmetry restrictions on the reference wavefunction. Hence ibis approach
is referred to as the unrestricted Hartree-Fock (UHF) method. When sym-
metry restrictions are imposed opon the reference wavefunction the resulting
calculation is denoted a restricted Hartree-Fock (RHF) calculation. When
the simplest RHF type calculation is carried out for a cIosed-shell reference
stale (Le., one having doubly occupied orbitaIs), the nondefined part of the
Fock potential (the occupied-occupied) and (empty-empty) part is often
chosen to have the same form as the (occupied-empty) part defined from
the BT. We then would obtain for the entire Fock potential

V = 2)2<rylsy) - <rylys»)(r;s/I + rp sp)
y

r,s

(2.92)

where the indices r, s, and y refer to orbital indices and the subscripts IX,p
denote the electron spin ms componenl. The orbital energies er then corre-
spond to approximate ionization energies. For a state,that bas SOfie doubly
occupied and SOfie partially filled orbitaIs, the choice of the nondefined
blocks of the Fock potential is less obvious. The BT defines the blocks that
connect (occupied-partly occupied), (occupied-empty),and (parHy occupied-
empty) orbitaIs. The (occupied-occupied), (parHy occupied-parHy occupied),
and (empty-empty) blocks of the Fock potential are not defined through
the BT and maDYchoices have been suggested. One common feature or aDY
of these choices is that the sets of orbitaIs one obtains in a converged calcu-
talion using aDYarbitrary choice ofthe nondefined Fock matrix blocks would
represent the same SP on the energy hypersurface. The physical interpre-
tations of the orbital energies do, of course, depend on the actual choices
marle for these "diagonal blocks" ofV. For ibis reason, much work bas been
devoted to finding particular choices of diagonal blocks that are optimal for
particular physical situations. It is not Dur intention to provide a lengthy
discussion of the merits and weaknesses of numerous soch methods. Rather,
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we merely wish to stress that the undetermined blocks ofV represent a certain
freedom Ol'flexibility that can be exploited to generale orbitais whose orbital
energies have some approximate physical meaning.

4. Practical Considerations

Although it is not obvious erom Eq (2.89) that a two-electron integral
transformation is not required to set up the Fock potential matrix for a
general rererence stale, it becomes elear upon actually working Ollt the
matrix eIements for a particular case. For exampte, for either a spin-
unrestricted rererence stale Ol' a elosed-shell rererence stale, the Fock po-
tentials or Eqs. (2.91) and (2.92), respectively, Bre scen to involve oBly a
two-index transrormation [e.g., sum over y in Eq. (2.92)].

From the above discussion it should be elear that the first-order procedures
based upon using the BriItouin condition to define V suffer rrom some draw-
backs. They involve arbitrary choices or certain elements of V (this is related
to the invariance of lO) under certain orbitat rotations). They are not qlla-
dratically convergent and may thus suffer erom convergency difficlllties. On
the other band, the freedom in choosing elements of V (ineluding the diagonal
blocks) is useful when one wishes to cause the resultant orbital energies to
have certain physical interpretations (e.g., Koopmans' theorem or ionization
energies Ol' excitation energies). The exp(iA) approach to HF orbital opti-
mization is quadratically convergent but contains no orbital energies for
use in physical interpretation. Il avoids the problems related to arbitrary
choices by simply eIiminating rrom the orbital optimization operator srace
those operators ("+05- o5+~)that Bre redundant and that therefore have no
effect on the energy to be extremized.

D. CONFIGURATIONINTERACTIONMETHOD

l. Connection \VithSecond-Order MCSCF Theory

Next we consider the optimization or the total energy when orbital relax-
ation is not explicitly accounted for in the ca\culation. The optimization or
the total energy may then be carried out either in terms or the configuration
expansion coefficients CgOof Eq. (2.4) Ol' in terms of the parameters P of
Eq (2.9). Let us consider initially the optimization of the total energy when
the configuration expansion coefficients of Eq. (2.4) Bre used as linear vari-
ational parameters. The total energy then becomes

E(CIO'C2O"") = L Cg'OCgo<cPg,/HlcPg)!LICgoI2
g,g' g

(2.93)
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where we have assumed that the configuration basis states Icf>g)are ortho-
normaI. Because the energy function contains no higher than quadratic
terms in the CI/O'determination of stationary points of the energy function

bE(C1o,C20"") = O (2.94)

leads to a set of eigenvalue equations in the. configuration expansion coef-
ficients

HCo = ECo

where H is the matrix representative of the Hamiltonian

(2.95)

HI/g' = (cf>I/IHIcf>I/') (2.96)

and the eigenvector

CO={C1OC2O"'CI/O} (2.97)

determines the values of the set of parameters at the SP, where the value of
E is Eo. In fact, the same eigenvalue equation, Eq. (2.95), caD be used to
determine aIl extrema of the energy within a given configuration space be-
cause the energy function contains no moce than quadratic terms in C.
Equation (2.95) is referred to as the CI eigenvalue equation.

The optimization of the total energy might alternatively be expressed in
terms of the variation parameters P [in exp(iS)]. The energy function E(S)
would not be quadratic in these parameters P but would contain cubic,
quartic, etc. terms jn P. An explicit solution erom which to determine a SP
of the energy function when this unitary exp(iS) operator is used is very
difficult to establish; hence an iterative procedure is required to determine
SPs of the energy hypersurface. One iterative scheme that is. quadratically
convergent is obtained if the terms that refer to the orbital optimization
[exp(iA)] are neglected in the MCSCF derivation performed in Section B.
The second-order Eq. (2.33) then would read

v = A22P

where A22 is defined in Eq. (2.29) as

(2.98)

(A22)mn = (mIHln) - bmn(OIHIO)

Vn = (OI[Rn,H]IO) = (nIHIO)

(2.99)

(2.100)

and the indices 11,m are different erom O. The iterative procedure may be
described as foIlows. For an initial set of configurations (1°), In» the matrices
A22 and V caD be formed. The matrix P then is determined erom Eq. (2.98),
and Eq. (2.14) is used to obtain a transformed set of states [one caD use
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alternatively Eqs. (2.15) and (2.16)], and the whole process is repeated until
convergence is obtained. The stale l°) that would be determined in this
iterative procedure would, of COllege,be the same as that obtained by solving
the CI eigenvalue problem.

In the derivation ofSection B we considered the energy function to depend
on both orbital variation parameters and the configuration expansion coef-
ficients. By freezing the orbital variation parameters, we prohibit orbital
relaxation eITects erom being eonsidered explicitly. To obtain with a CI
calculation, which does not permit sueh orbital relaxation, the same quality
as in an MCSCF ca\culation would require the inclusion of many moce
configurations, whose purpose would be to compensate for the neglect of
explicit orbital relaxation. These additional funetions would include a large
number of singly excited eonfigurations, but same double, triple, etc. excited
configurations would algo be needed to fully compensate. If all eonfigurations
arising erom a given orbital basis wece included in a CI ealculation (fuli CI),
the need for considering orbital relaxation effeets explicitly would, of COllege,
not be present beeause all orbital variation parameters (..1.)would then be
redundant variabies. However, the num ber of configurations required to
perform a full CI ea\culation is usually prohibitively large even for systems
of modest size. Beeause CI expansions eonverge very slowly (as a function
of the dimension of the CI secular problem) and the requisite eomputer
time increases very rapidly as moce and moce configurations are included,
eITorts must be marle to optimize the convergence of a CI calculation by

facing twa major problems. First, we must make a reasonable ,choice of
orbitais to use in the ealculation, and seeond, the eonfigurations that are to
be included in the ealculation must be picked by same physically motivated
procedure.

2. Choice of Orbitais for Use in CI

The most commonly used set of spin-orbitals for setting up a CI matrix
eigenvalue problem is the set of orbitais obtained in a RHF calculation.
These orbitais form a particularly convenient set in the sense that they ful-
fili the BT (Le., there are no matrix elements eonnecting the HF ground
stale and singly excited configurations). However, these orbitais are not
especially well suited for use in the CI problem if one desires a reasonably
short CI expansion to give high precision. One major problem with the
HF orbitais comes erom the fact that the electrons in the virtual eanonical

HF orbitais "feel" an N-electron potential and not an N-l eleetron poten-
fial, as would be physically moce proper.

One partial solution to this problem is to use a set of orbitais obtained
in a MCSCF calculation for setting up a CI matrix problem whose dimension
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is much larger than that ofthe MCSCF calculation. The orbitais would then
be relaxed with respect to the configurations included in the MCSCF calcu-
lation. Since ibis MCSCF function normally would include the dominant
configurations, a very large fraction of the orbital relaxation etTects would
would thus explictly be accounted for in the following CI calculations.

Another set of orbitals that bas been used as a basis for CI calculations
is the so-called iterative natural orbitais (INO) (Bender and Davidson, 1967),
which are obtained in the following manner: From a limited num ber of
configurations (tbe same in all iterations) a reference stale l°) is determined
by the CI procedure. This reference stale is then used to set up the one-
electron density matrix <Olr+slO), which upaD diagonalization gives a set
of "natura l orbitais." These orbitais are then used for setting up a new CI
problem, a new reference stale l°) is then determined, and the procedure
is continued until a self-consistent set of natural orbitais is determined.
Clearly, the INOs are not identical to the MCSCF orbitais discussed earlier.
The farmer are obtained by diagonalizing the fiest-order density matrix,
whereas the MCSCF orbitais are determined by minimizing the electronic
energy~The use oflNOs in CI calculations is motivated by Lowdin's (Lowdin,
1955) analysis, which showed that soch orbitais result in the most compact
configuration expansion of lO) (Le.,the fewest configurations being required
to generale a wavefunction of a given overlap with the true wavefunction).

The choice of configurations to include in an INO calculation requires
particular attention. If the configuration list only includes configurations
that are doubly excited with respect to each other, aDYset of orbitais would
be naturai orbitais. To make the natural orbital concept useful, the list of
configurations bas to contain configurations that are singly excited with
respect to each other. For example, for the ground stale of the beryllium
atom, a natura l choice of configurations in an MCSCF calculation would
be 1522s2and Is22p2. In the INO calculation, the configuration list would
further have to inc\ude Is22.ms and ts22pllP, II= 3,4,5, . .. . These configu-
rations would then, to a certain degree, simulate the orbital optimization
parameters Kn.2.and Knp2pcontained in the MCSCF calculation.

3. Selection of Configurations

Let us naw move on to discuss same basic ideas (Schaefer and Miller,
1977,Chapter 6) behind selecting the number of configurations to be inc\uded
in the CI calculation. With a well-chosen set of orbitais, it is thought that a
very small fraction of al! possible configurations gives the most important
contributions to the total energy. Estimates of the importance of the indi-
vidual configurations may be obtained erom a perturbation theory analysis
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of the CI secular problem [Eq. (2.95)]. An order analysis based upaD
Rayleigh-Schrodinger perturbation theory (RSPT) shows immediately the
order in which aDYparticular class of configurations enters into the wave-
function. For example, for a set of HF orbitais of a dosed-shell system, onIy
the doubly excited configurations contribute to the fiest-order wavefunction
(see Section 3.F). Estimation of the coefficients of the individual configura-
tions through perturbation theory may then be used to select the important
configurations by specifying a certain tolerance for the coefficient (or the
energy contribution) below which the configurations are not induded. For
cases in which several configurations are very important to the description
of the system, these configurations may be used to form a so-called reference
space whose coupling with other configurations caD then be estimated
through perturbation theory. Another approach is based on performing a
series of (11+ l)-dimensional CI calculations among the n-dimensional refer-
ence space and a sequence of configurations that are obtained as law-order
excitations out of these reference functions. The criterion for rejecting con-
figurations tested in ibis manner usually bas to do with the energy lowering
of one or moce of the 11reference-state energies caused by the "added con-
figuration" (Buenker and Peyerimholf, 1974).

4. Treating Large CI Matrices- Direct Methods

When aDYsuch preselection of configurations has been performed. one is
often faced with the problem that 10-300,000 configurations have to be
included in the final CI calculation. Conventional matrix diagonalization
routines such as the one used in the Householder algorithm, which modifies
the elements of the matrix as it proceeds, cannot be used to determine the
eigenvalues and eigenvectors of the CI matrix. For ibis reason, specialized
approaches have been developed (Schaefer and Miller, 1977, Chapters 7 and
8) to determine a few selected roots (usually the lowest) of sllch very large
CI matrices. One very important feature of these methods is that they do
not entail modification of the CI matrix wbiJe determining a particular root.
To darify ibis point, we describe twa such techniques, which are referred
to as the power method and the perturbation theory method. Althollgh
much moce efficient approaches have become available, we have chosen to
discuss these techniques because they stress, in a simple manner, the basic
principles underlying the direct determination of particular eigenstates. In
the power method one considers a sequence of operations ofthe Hamiltonian
matrix on aD, in principie, arbitrary initial guess of the stale vector Co:

{CO,HCO,H2CO,..., H"CO} (2.101)
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The information content of the converged vector lim"- 00H"Co caDbe under-
stood by expanding the vector CO in terms of the (unknown) exact eigen-
vectors Cj of the Hamiltonian matrix

HCj = EjCj

Co = L a"C", a" = <COIC">

(2.102)

(2.103)
"

By assuming that the eigenvalues of H are ordered such that

lEGI~ lEli ~ lEli ~... ~ O (2.104)

we obtain the formai result

H"Co = E~{aoCo + j~l aj(:~)" Cj}
(2.105)

which, because lE/Eol < 1, reduces for large n to

H"Co= aoE~Co (2.106)

Of course, to arrange the energy ordering assumed above, one might have
to subtract from all diagonal elements of H a constant that depends on the
largest positive diagonal Hu elemenl. This constant would then be added
back onto the resultant Eo value to obtain the true lowest desired eigenvalue.
Hence we see that, for large enough n, the vectors H"+lCO and H"Co should
be proportional, with their proportionality constant equal to Eo, and Co
should be the eigenvector of the Hamiltonian matrix having the largest
eigenvalue Eo. Notice from Eq. (2.106) that the norm of H"Co grows with
n; therefore, normalization of the eigenvector CO may be required during
the above iterative scheme. Eo and Co are obtaine,d without ever modifying
the elements of matrix H; only simple row-by-row multiplication of H with
a vector is involved. In fact, as we show below, one caD ev~n circumvent
the explicit reference to elements of H by using integral-driven matrix multi-
plication techniques. Such steps become advantageous when one must avoid
having to read through the integrals maDYlimes. The convergency fale of
the power method is governed by the rafio El/Eo and by the choice of Co.
An inappropriate choice of the initial stale vector CO may lead to slow
convergence (e.g., if ao vanishes, the power method, in principie, cannot
converge to Co). ODce one bas obtained the desired Eo and Co, the next
eigenvalue of H caD be found by employing H + IEoIICo><Col instead of H
in the next application of the power method. The lowest root of this

(H + IEoIICo><Col>

matrix should then be El'
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The rower method as outlined above is not very widely used in large-scale
CI calculations because it is not usually very rapidly convergent. In contrast.
variants of the perturbation method describedbe1ow do constitute viable
approaches to finding eigenvalues of large CI matrices. In the basic pertur-
bation method one introduces a decomposition of the fuli CI Hamiltonian
matrix

H = Ho + V (2.107)

In what follows, we make the simplest possible choice of Ho; we take it to
be the diagonal part of H. Another choice of Ho that bas been widely used.
(Davidson, 1975) involves tak ing Ho to be a certain smali subblock of H
(with H lek e1ementsfilling the remaining diagonal entries of Ho), which
involves the Hamiltonian matrix elements of the most dominant configura-
tions in the desired eigenvector. Given a choice ofHo, the CI secular problem
becomes

(HO- E)C = -VC (2.\08)

By iterating on this equation according to the prescription

Cln) = (E - Ho)-lvCln-1) (2.109)

one generates successively higher approximations to the desired C vector.
Corrections to the eigenvalue E are achieved at each iteration by premulti-
plying Eq. (2.108) on the left by the transpose of COto yield I

(EO - E)(CO)TC= _(CO)fVC (2.110)

Initial estimates CO and Eo must, of course, be marle consistent with the
choice of Ho. FOf the diagonal choice of Ho, COwould correspond lo a linii
vector CO= (1,0,0,. . ., O)and Eo to the diagonal element of H (Eo = 111d.
If HOwere taken to be a smali subblock of a very large H matrix, Eq. (2.108)
could still be solved perturbatively since the dimension ofthe matrix (Ho - E)

to be inverted would not be large. The iterative scheme contained in Eqs.
(2.109) and (2.110) generates successive1y higher-order corrections to Ihe
desired energy and eigenvector.

To demonstrate how such perturbative methods lead lo so-called direct
CI techniques, let us consider a simple application of Eqs. (2.109) and (2.1tO)
to a CI wavefunctionconsistingof a dominant HF configuration Iq,UF>plus
all pair excitations of the form Iq,~>=111;111;11/111~1q,IIF)'The elemellls or
the V matrix can be easily written in terms af two-e1ectron integrais

VUF.nr/l = (1l1l11ll1ll)

Vnr/l.n,'= c5nrn(vvlllJl) + c5,.,.(11I111I",,)

(2.111)

(2.1t 2)
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whereas

< cPHFIHolcPHF > = EHF (2.113)

and <cP~IHolcP~>is the Hamiltonian expectation value for the doubly excited
configuration IcP~>.The matrix produet vc<n-I)appearing in Eq. (2.109)can
be written as follows:

" V. c<n-l) = " < vvlkk >c <n-I)
L, HF.kv kv L, kv
kv kv

(2.114)

L Vm/l.kvC~~.-1) = L<vVIJ1lt>C~v-l) + L<mmlkk>C~~-l)
kv v k

(2.115)

Using these results in Eq. (2.109)we obtain an explicit formula for the elements
ofc<n):

c~~= L(E - EHF)-l<vvlkk>q~-l)
kv

(2.116)

c~~ =(E - <cP~IHolcP~»-l (~<vVIJ1J1>C~v-l)+ t <mmlkk>C~~-1)) (2.117)

By writing out the elements of V and Ho in terms of the integrals, we see that
the iterative scheme for the evaluation of C and E can be written entirely in
terms of sum s over integrals and c<n- I) and E values erom the preceding
iteration. This fact allows this perturbation scheme to be programmed on a
computer in an integral-driven manner. That is, as the two-electron integrals
<ij!kl> are brought into the core memory ofthe computer, all contributions
of each successive integral to all of the sums appearing in Eqs. (2.116) and
(2.117) can be evaluated, multiplied by appropriate factors, and added to the
appropriate expansion coefficients. In this way, the computer is required to
read through the (presumably long) list of two-electron integrals only ance
for each iteration. In this war, one avoids the explicit construction and storage
of the Hamiltonian matrix, which may be very large and much larger than
the num ber of two-electron integrais.

Techniques that permit the working numerical equations [e.g., Eqs. (2.116)
and (2.117)] to be expressed as sums over explicit two-electron integrals are
referred to as integral-driven direct CI methods. The perturbation solution
described above is only a simple example ofsuch methods. For moce general
classes of CI wavefunctions, the expressions for the V matrix elements are
moce involved. However, the basic structure and philosophy ofthe direct CI
techniques remain as outlined. These techniques have proven to be quite
useful in carrying out large-scale CI calculations, and such integral-driven
strategies have been used to efficiently implement the graphical unitary group
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approach (GUGA) for electronic structure calculations (Paldus and Boyle,
1980; Shavitt, 1978; Brooks and Schaefer, 1979).

5. Size Consistency

Thus far, we have concentrated on describing how the CI procedure is used
in practical applications and how it caD be viewed as relating to the MCSCF
method. Il is important to realize that even though difficulties having to do
with large CI matrices may be overcome, a serious problem remains inherent
in nearly all of the above methods. To understand the difficulty, consider how
one might perform a calculation of a potential-energy curve for the diatomic
Be2. Assume that a prior calculation on a single beryllium atom indicated
that the 2S2and 2p2 ts configuration should be included in order to describe
the electron correlation in beryl1ium. Then to describe the correlation in Be2
in a balanced manuel (Le., such as to yield a 2S2 + 2p2 level description of
both beryllium atoms uran dissociation), one musi include the 2si2s~,
2si2p~, 2pi2s~, and 2pi2p~ configurations, where A and B labet the twe
beryllium nudei. Hence, although a double-excitation CI or MCSCF could
be employed for Be, one needs to include (certain) quadruple excitation
(relative to 2si2si) for Be2. Clearly, for mOle complex molecular clusters
one would oecd to include even higher level excitations (e.g., eightfold for
Be4) to achieve a qualitatively balanced description of the complex and its
fragments. This is, of course, essential if one is trying to compute energy
changes (bond energies and energies of formation) for chemical reactions.
Then one musi use a method that yields the same value for the molecular
complex energy (e.g., Be2) when evaluated at large interfragment separation
as the sum of the fragment (e.g., twe beryllium atoms) energies evaluated
separately within the same method. Such methods ale said to be size con-
sistent (PopIe et al., 1977).The use of a restricted CI or MCSCF wavefunction
(e.g., doubly excited for Be2) could indeed yield a smooth potential-energy
curve free of obvious pathological behavior. However, such a wavefunction
would preferentially describe the electron correlation in the complex (Be2)
BeaTits equilibrium geometry and would dissociate to yield fragments that
ale described to a laweT correlation level (e.g., the 2si2sfi configuration
would dominate).

The size consistency problem may be less significant if an appropriate
configuration selection is performed at each geometry on the molecular
potential surface, but the problem still remains as to how to efficiently choose
configurations that describe equally well an entire potential energy surface.
Il may in fact be mOle straightforward to achieve this goal using an MCSCF
wavefunction, since the orbital optimization thereby induded caD make the
configuration expansion length short enough to be physically understood
and hence correctly chosen. As we discuss in mOle detail in Chapter 3, ibis
question relating to achieving a balancecl description of a molecule and its
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fragments is important and not easily addressed within a variational frame-
wark.

6. Discussion

Because the CI teehnique has been the most widety used approaeh to
treating electron eorrelation problems, maDYadvanees have been marle in
matrix storage techniques, two-electron integral transformations, the use of
unitary group tools, matrix eigenvalue and eigenvector determinations, and
configuration selection proeesses. Weby no means intend to treat these
advanees here; maDYor them are reviewed well in Chapters 6 -8 or Sehaerer
and Miller (1977).1t is essential that one realize that the monumental develop-
men t or exactly these same data management methods is what makes it
possible to implement not only effieient CI eomputer program s but algo
highly efficient MCSCF, HF, eoupled-cIuster, and Green's function routines.
To implement aDYofthe above quantum-chemieal methods in a state-of-the-
art manner, onemust make extensive use of maDYofthe advanees in numerieal
methods and data handling that the seientists who have been instrumental in
developing effieient CI program s have marle.

PROBLEMS

2.1 Using the one- and two-eIeetron integraIs given below, earry out an
SCF ealculation for the la2HeH + ground staLeusinga fiest-orderprocedure.

1. By expanding the moleeular orbitaIs {cPk}as linear eombinations or
atomie orbitaIs {X/l}'

cPk = L C/lkX/l

/l

and using the definition of the cIosed-shell Foek operator given in Eq. (2.92),
show that the Foek eigenvalue equation caD be written in terms of the atomie
orbital basi s as

Fc = SCt

where the overlap matrix is

S/lv=(lllv)

the eIements or the Foek matrix are

FIIv = (Illhlv)+ L Pp,,{2(llplva)- (Ilplav)} (A)
p"

h is the one-eIeetron operator in the Hamiltonian, and the charge band
order matrix P is defined as

Pp" = L C;kC"k
k
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2. Show that the HF Latal energy for a closed-shell system may be writ-
ten in terms of integrals over the orthonormal HF orbitaIs as

occ occ

E(SCF) = 2 L <4Jkl"l4Jk)+ L {2<kllkl)- <kl!ik)} + L (Z"Z,.jR",.)
k kI ">,,

(B)

3. Show that the HF latal energy may alternatively be expressed as
occ

E(SCF) = L {€k + <4Jkl'tl4Jk)} + L(Z"Z"IR'I\')
k ">,,

(C)

where the {f:d refer to the HF orbital energies.
To earry out an SCF ealculation on the ground stale of HeH + at R =

1.4 a.u., the following information is to be used. The orbital exponents of
the Is, Stater orbitals of the He and H are 1.6875 and 1.0, respeetively. The
atomie integrals required to earry out the HF ealculation are (in a.u.)

SlI = S22 = 1.0, S12= 0.5784

"11 = -2.6442, "22 = -1.7201, "12 = -1.5113, ("ij ==<illtlj),

(11111)=1.0547, <11121)=0.4744, \(12112)=0.5664,

<22111) = 0.2469, <22121) = 0.3504, <22122) = 0.6250

where 1 refers to ISlle and 2 to Isll' In this and the following problems we
ghalI employ the indiees 1 and 2 to tabel either the moleeular orbitals or the
atomie orbitals whenever do ing so is not eonfusing. We ghalI reserve the
notation 1/Tand 2/Tprimarily for deseribing the orbital oeeupancies arising
in the wavefunetion~. As an initial guess for the oeeupied moleeular' orbital
use 4Jt ~ lslle'

4. Form, with this initial guess of the oeeupied moleeular orbita\, a
2 x 2 Foek matrix, using Eq. (A) for F/l",

5. Solve the Foek matrix eigenvalue equations given above to obtain
the orbital energies and an improved oeeupied moleeular orbita\. In so
doing, note that the normalization eondition <4Jtl4Jt) = 1 = cTsCt gives
the needed normalization eondition for the expansion eoeffieients of the 4Jt
in the atomie orbital basis.

6. Oetermine the latal SCF energy using Eq. (C) at this step of the
iterative proeedure. When will this energy agree with that obtained by using
the alternative expression for E(SCF) given in Eq. (B)?

7. Use the 4Jl moleeular orbital erom question 5 to determine a new
Foek matrix.

8. Oetermine a new set of orbital energie s and an improved oecupied
molecular orbita\.
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9. Determine from Eq. (C) the SCF to tal energy at this step of the
'terative procedure.

The iterative process may be continued until convergence. As a conver-
~ence criterion, assume that the difference between the SCF to tal energy
n two successive iterations must be less than 10-6 a.u. Listed below are
.he HF total energies (in a.u.) obtained during the iterative procedure beyond
he two iterations performed above:

-2.842151, -2.843221, -2.843393,

- 2.843420, - 2.843425, - 2.843425

10. Show, by comparing the difference between the SCF total energy at
ne iteration and the converged SCF to tal energy, that the convergence of
he above SCF approach is linear or first order.

11. Is the SCF total energy listed above in each iteration of the SCF
rocedure an upper bound to the exact ground-state total energy?
The converged self-consistent set of molecular orbitais <Pland <P2is

<Pl= 0.9000Is". + 0.1584 ls", <P2= -0.8324 lsile + 1.2156 ls"

12. Show, using the one- and two-electron integrals in the molecular
rbital basis,

<llhll) = -2.6158,
<11111) = 0.9596,
<12121) = 0.1261,

<llhI2) = 0.1954,
<11121) = -0.1954,

<22121) = -0.0045,

<2IhI2)= -1.3154

<12112) = 0.6063,
(22122) = 0.6159

at the converged ~alues of the orbital energies are

el = -1.6562, e2 = - 0.2289

13. Does this SCF wavefunction give rise (at R --. 00) to proper dissocia-
on products?
2.2 Now carry out an SCF calculation for the same cIosed-shen HeH +

rstem using a second-order SCF procedure. Sofie of the integraIs used in
roblem 2.1 wilI be useful again here.
1. Show that the one- and two-electron density matrices decouple as
nows for a cIosed-shen reference staLe:

L <°l,.; SalO)= brs2v"
a L <Olr:s;ta,uaIO) = (4brub., - 2brAu)vrv.aa'

here Vris the occupation of orbital 4Jr'That is, if 4Jris an occupied orbital
= 1, and if 4Jris unoccupied Vr= O.
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2. Show that the AlI, B II' and W matrices of Eqs. (2.29), (2.30), and
(2.27), respectively, may be written for a closed-shell system as

(AII)n/l,m" = (°l[P: II" + p;"f',H,m:a" + ",;a/l]IO)

= 2[ -11"/I(jmn+ I1nm(5"/I+ {J"/I~ {2(lIylmy) - (lIylrm)}

- {Jmn L {2(aylpy)- (aylyp)}
r

+ 2(lIaIPm) - (na 1mIJ) J
(Bl1)n/l,m"= (Ol[p:n" + p;n/l,H,a:m" + a;m/l]IO)

= 2[ (mnl pa) - 2(111111aP)]

w"m = (Ol[a:m" + a;m/l,H]IO) = 2[hm"

+ ~ {2(mylay) - (mylya)} J
Again use as the initial guess of the occupied molecular orbital lsH..

3. Given this guess for 4Jl' determine the virtual or unoccupied moJecular
orbitaJ 4J2 using a Schmidt orthogonaJization procedure. The atomie
integrals required are given in Problem 2.1.

The second-order SCF procedure requires knowledge or the integraJs in
the basis of the set of initial orthonormal moiecuJar orbitaJs (4JI and 4J2

obtained above). The one- and two-electron integrais in this basis are given
below (in a.u.):

1111 = -2.6442,

(11111) = 1.0547,
(22111) = 0.0765,

h22= -1.2870,

(11121) = -0.1663,

(22121) = 0.0171,

1112= 0.0223

(12112) = 0.5567,
(22122) = 0.6200

where, as before, 1 denotes the occupied and 2 the unoccupied moiecuJar
orbita!.

4. Determine the SCF totaJ energy that corresponds to this initiaJ guess
of moJecuJar orbitais.

5. Determine the A II' B II' and W matrix elements.
6. Determine the rematrix and the unitary matrix X = e-"'.
7. Determine the new improved set of orthonomaJ moJecuJar orbitaJs

resuJting erom applying X to 4JI and 4J2'
The one- and two-electron integrals may naw be evaluated in the set of

improved molecular orbitaJs and the iterative procedure thus may be con-
tinued untiJ convergence is obtained. The HF to taJ energies obtained during
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the iterative procedure become

- 2.80504513, - 2.84303574, - 2.84342526, - 2.84342527

8. Show by comparing the difference between the SCF total energies at
successive iterations and the converged SCF total energy that the con-
vergence or the above SCF approach is quadratic or second order.

2.3 Given the one- and two-electron integrals in the SCF orbital basis
round in Problem 2.1, carry out a two-configuration CI calculation on HeH +

using the 1112and 2112 configurations.

l. First obtain expressions for the CI matrix elements H ij (i, j = 1112,2112)
in term s of one- and two-e1ectron integrals.

2. Show that the resultant CI matrix is (ignoring the nuclear repulsion
term)

(
-4.2720

0.1261
0.1261

)-2.0149

3. Obtain the iwo CI energies and eigenvectorsfor the above matrix.
4. Show that the lowest-energy CI wavefunction is equivalent to the

followingiwo-determinant (singleconfiguration) wavefunction:

HI(a1l2q,1 + b1/2q,2)a(al/2q,1 - b1/2q,2)PI

+ l(al/2q,1 - b1/2q,2)a(al/2q,1 + b1/2q,2)PI]

involving the polarized orbitais al/2q,1 :!:b1/2q,2' where a = 0.9984 and
b = 0.0556.

2.4 Using the same information as in Problem 2.3, carry out a three-
configuration CI calculation on HeH+ at R = 1.4 a.u. using the 1112,2112,
and 10-20-electronic configurations.

I. First express the proper singlet spin-coupled' 10-20-configuration as
a combination of Slater determinants.

2. Compute aU elements or the 3 x 3 CI matrix.
3. Obtain the eigenenergies and corresponding normalized eigenvectors

for this problem.
2.5 Use the perturbative method described in Section D.4 on the CI

matrix eigenvalue problem of Problem 2.4 to find the lowest eigenenergy and
its corresponding eigenvalues. Use as the initial guess for the eigenvector
Co = (1.0000,0.0,0.0)and take

(

- 4.2720 O O

)
Ho = O -2.0149 O

O O -3.1988

and Eo = - 4.2720 for the first iteration. Use the energy computed using
Eq. (2.110) to start the second iteration, but notice that the C(1) vector you
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then obtain is so much different erom Clij) that convergence of the process
is not likely. Therefore, average these Clij)and C(1)to obtain a new damped
C(1)Córuse in determining CI2).

2.6 Perform a one-step second-order multiconfiguration HF calculation
on HeH +, using the minimum SIatcebasis of Problem 2.1.The multicon-
figuration reference stale will include the twa configurations IU2 and 2U2.
As an initial guess of orbitais use the set of single-configuration HF orbitaIs
of the principal configuration lu2. The HF orbitals wece determined in
Problem 2.1, and the one- and two-electron integraIs in the HF basis are
given there. The initial guess of the configuration stale functions (denoted
l°) and II») will be the ones determined in the two-configuration CI calcu-
tatian given in Problem 2.3.

1. Determine all of the nonvanishing one- and two-electron density
matrix elements

(OlrtsIO),(OlrtsttujO)

and the nonvanishing one- and two-electron transition density matrix
elements

Olrt siO), (llrt st tujO)

2. Determine the V, W, A, and B matrix elements.
3. Determine the Kand the P matrix elements via the one-step second- .

order MCSCF method.

4. Determine the transformed set of orbitais and states (l°) and 11».
5. Discuss whether the orbitaIs and states obtained after the fiest iteration

of the one-step second-order MCSCF procedure (question 4) differ erom
the orbitais and states that would be obtained after the fiest iteration of the
twa-step second order MCSCF procedure. If they differ, describe how they
would be obtained in the twa-step procedure.

From the orbitais and states obtained in question 4 new one- and two-
electron integrals and one- and two-electron densityand transition density
matrix elements may naw be evaluated, and the iterative procedure thus
continued. The multiconfigurational HF Latal energies obtained during this
iterative procedure are

- 2.85044942, - 2.85066435, - 2.85066436

6. Show by comparing the difference between the MCSCF to tal energies
at each iteration and the converged MCSCF total energy that the convergence
fale ofthe used MCSCF approach is second order.

7. How musi the converged MCSCF ground-state total energy compare
with the ground-state total energy obtained in the fuli CI calculation?
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8. Write a priori the ground-state total energy that would be obtained
if we used the three eonfigurations 1u2, 2U2,and lU12ul in an MCSCF
calculation.

9. Write a priori the ground-state total energy that would be obtained
from a eonvergedtwo-eonfiguration MCSCF caleulation that used thellu2)
and 11u2u)eonfigurations.

2.7 Consider n HeH+ moleeular ions, whieh do not interaet because
they are infinitelyfar from one another.

1. Write the eleetronie Hamiltonian for ibis system in a basis eonsisting
of orthonormai orbitais that are localized on eaeh of the HeH + moleeules.
Retain only those eontributions that are nonzero. In so doing, describe
each HeH + molecule with a bonding and antibonding SCF orbital pair.

2. Show that a CI calculation that includes the HF ground-state wave-
funetion eonsisting of the antisymmetrized produet of orbitais localized on
the n ions having 1u2oecupaney,and all doubly excitedeonfigurations leads
to the followingCI matrix of dimension n + 1:

c = E~F- EHF+ "EUF, B = (11122)= (lu2IHI2u2)
EUF= 2h11 + (11111) = (lu2IHI1u2),

E~F = 2ltu + (22122) = (2u2IHI2u2)

As in other problems, 1 and 2 denote the bonding and antibonding SCF
moleeular orbitais, respeetively, for an isolated HeH+ molecule.

3. Show that the correlation energy for n infinitely separated HeH +
moleeules is

Ecorr= - EHF + E~F2 ]
1/2

[<-EHF: E~F)2 + n(11122)2

4. Use the HeH + SCF orbitais and results from Problems 2.1 and 2.3
to evaluate for n = 2, 4, 10, 100, and 1000 the correlation energy obtained
for n infinitelyseparated HeH + moleeules.Show that the eorrelation energy
inereases as 1l112when Il becomes large. How would the eorrelation energy
increase in a size-consistent model?

nEHF B B B ... B
B C O O
B O C O
B O O C

B C

where
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Bartlett and Purvis (1981) have found that for H2 and He the percentage
errors caused by size inconsistency in double-excitation CIcalculation vary
as follows:

5. Argue why the two-basis function HeH + problem is likely to under-
estimate the non-size-consistent contributions when compared with resuIts
obtained in more accurate calculations on HeH +.

SOLUTlONS

2.1

l. V;j= ~)2(il'ljl') - (il'll'j»
y

Let

4Yi=IC/liX/l'
/l

4Yy= I CvyX,.,.

Then

V;j=.. I (CVyCv'y)(C/liC/l'j)(2(JlvIJl'v')- (JlV IV'Jl'»
"b/l'/lVV'

= I C/liC/l'jV/l/l'
/lI"

where

V/l/l' = I Pvv.(2(JlVIJl'v')- (JlVIV'Jl'»,
vv'

Pn' = I CVJ'C"'y
y

Likewise

(4Yil- tv2 - I(ZA/lr - RA!)I4Yj)==hij= I C/liC/l'jh"/l'

A /l/l'

h"/l' = (X/lI-!V2 - I(ZA/lr - RADIX/l')
A

As a result F4Yi= Ei4YicaD, by expanding 4Yias above, be expressed as

hij + V;j = (;ijEi = I C/li C/l,i/I/l/l , + v,'/l')
/l/l'

" Error H2(%) Error He c{,)

2 1.5 0.8
4 4.8 2.4

10 12.3 6.5
100 48.0 34.8

1000 79.1 70.8
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Then using

(41il41j) = oij = L C",S"",C"'j
",,'

we have

L C"' [l:jS"", - h"", - V"",]C"'j = O,
,,/l'

for all i, j

This caD only be true if

L(h"", + V""' - I:jS"",)C"'j= O
/l'

This is FC = SCa.
2. The Slater-Condon rules tell us that the Hamiltonian expectation

value for a single Stater determinant in which spin orbitais 41h . . . , 41N are
occupied is

N 1

E = k~l (41kl- !VZ - ~(ZA/lr - RAI>I41k)+ 2 t,[(kilkl) - (kl\lk)]

For a closed-shell system the orbitais are doubly occupied and therefore
411= iPt(X,41z= iPdJ,413= iPz(X,414= iPzp,etc., where iP.. ipz, etc. labet the
occupied orbitais (not spin-orbitals). Hence by carrying out the spin inte-
grafion in the above energy expression and using the fact that each orbital
is doubly occupied, we obtain

occ occ

E = 2 L (41k\hl41k) + L {2(kllkl) - (kl/lk)}
k ki

where labeis now refer to orbital index. The term L,,>. (Z"Z./R/l.) must then
be added on to obtain the total energy (including nuclear repulsion).

3. Ifthe occupied orbitais 41k'obeyF41I<= 61<411<then the above expression
for E caD be rearranged to give

occ occ occ

E = L {(41I<I/tl41k) + L [2(kl\kl) - (kl/lk)]} + L (41I<lhl41I<)
k I k

The fiest two terms in this expression caD be recognized as (41kIFI41k),where
F is the closed-shell Fock operator whose potential is defined in Eq. (2.92).
Hence

occ occ

E = L (41I<IFIl/JI<) + L (41I<lhl41I<)
k I<

(
1.0 0.0

)4. P = 0.0 0.0'
F = (

-1.5895 -1.0369

)- 1.0369 - 0.8342
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5. 8. = - 1.6048, 8z = -0.2348, 4>1 = 0.9194 IsMe+ 0.1296 ls"
6. ESCF= - 2.8005. The twa expressions will agree anty opon conver-

gence of the SCF when F4>i= 8i4>i,which was assumed in writing the ex-
pression for E containing the orbital energies.

7 = (
0.8453 0.1192

) F = (
-1.6246 -1.0836

). p 0.1192 0.0168 ' -1.0836 -0.8772

8. 8. = -1.6469, 8z = -0.2289, 0/1 = 0.9032 Isne + 0.1537 IsM
9. ESCF = -2.8356

10. Esu - E~o;,v (EsCF - E~~.o;,v)2

0.001274
0.000204

0.000032

0.000005

0.00000o

0.000002

0.000000

Second-order convergence requires that the error in the (II + 1)th iteration
is the square of the error in the 11thiteration, In the first iteration above the
error is 0.001274; thus in the next iteration the error should be (0.001274)2 =
0.0000016 ifwe used a second-order procedure. Since the second iteralion's
error is 0.000204, the convergency of the above SCF procedure is linem
rather than quadratic. .

11. The collve,.gedSCF total energy calclllated from Eq. (C) is an upper
bound to the ground-state energy, whereas the SCF total energy from Eq. (C)
during the iterative procedure is not a bound. His anty at convergence that
the expectation value of the Hamiltonian for the HF determinant is given
by Eq. (C).

12. The SCF orbital energies are determined to be

8k = <'<I"lk)+ I{2<kllkl) - <kilIk)}
I

from which the orbital energies follow straightforwardly.
13. Yes, the luz configuration does dissociate properly because at R -> 00,

the lowest-energy stale is He + H +, which algo bas a 1U2orbital occupancy.
2.2

l. Since 4>rand 4>.are either occupied ar unoccupied I" <°l": s"IO)van-
ishes unless both 4>rand 4>.are in l°). Hence I" <°l,.: s"IO) = c5rs2vr.Likewise,
in I"". <°l,.: s:. t".u"IO) all four spin-orbitals most be in 1°). Then.

<OI,.:s:'t",u"IO)= c5.,<O\":u,,IO)- <OI,.:t",s:'u"IO)

= c5.A..- <5...<5"".<°1":t".IO) + <°l,.: (".11,,5;.10)
= (5.,c5r"- <5."c5rt<5t7tf'
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where all orbitais are occupied. Clearly L.,.,' (Olr':-s':-.t.,.u.,IO)vanishes when
one or moce or the rour orbitais are unoccupied, and its equals 4~.,~ru-
2~.uJrt when all rour orbitais are occupied.

2. Equation (2.42), when combined with the results or question 1, give

(A 11)"p.m~= 2J~phnm + O - ~nm2h~p- O - O- ~"mL [«XY I{Jy)4 - 2«xy Iy{J>]
y

- O - O - L (nylym)~~p2 + 4(n<xI{Jm)
y

+ ~afl L (nylmy)4 - 2(n<xlm{J) + O + O
y

(Bu)nP.m~ = O + O - O - O - O - O - O - 4(mn I<xp> + 2(mnlp<x)

+0+0+0+0

Using Eq. (2.41)we find

~m = 2hm~ - O- O+ L [4(myl<xy)- 2(myly<x)]
y

3. <Pl= lsHe

<Pz = lsH - (lsH IlsHe>lsHe= lsH - 0.5784 lsHe

Normalizing <Pzrequires that wedivide by thesquare root or1 + (lsHI1sHe)z
-2(lsHl1sHe)Z to obtain

<Pz = 1.2259 lsH - 0.7091 lsHe

The coefficient matrix C whose elements C,.A:are the orbital expansion coef-
ficients then becomes

C = (1.~ -0.7091 )0.0 1.2259

4. -2.8050
5. The excitation erom moIecular orbitalito 2 is nonredundant. The

relevant matrices thus become one dimensional:

Au = 1.8713, Bll = -0.1530, W = -0.2880

(
0.0 0.1423

) (
0.9899 -0.1418

)6. K = -0.1423 0.0 ' X= 0.1418 0.9899

7 C = (
0.8893 -0.8437

). 0.1739 1.2135
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8. ESCF- Es~'F (ESCF - Es~'F)2

0.03838013

0.00038952

0.00000001

The error in the (/1+ l)th iteration is the square of the error in the 11th
iteration.

2.3

1. <la2IHlla2) = 2/111+ (lIlii), <2a2IHI2a2) = 2/122

+ <22122), (la2IHI2a2) = (l 1122)

2. (la2IHlla2) = (-2.6158)2 + 0.9596 = -4.2720

<2a2IHI2a2) = (-1.3154)2 + 0.6159 = -2.0149

(la2IHI2a2) = 0.1261

3. E- = -4.2790, E+ = -2.0079,
C + = (0.0556,0.9984)

4. HI(al/2<pl+ bl/2<p2)a(alI2<pl- blI2<p2)PI

+ l(alI2<pl - blI2<p2)!J.(a1l2<pl + bI12<p2)PI]

= ~ [(al/2A-. + bl/2A-.)(al/2A-. - bll2A-.)
2J]. 'Vi 'P2 'Pl 'P2

+ (al/2<pl - bI12<p2)(al/2<p1 + blI2<p2)](ap- pa)

= (a<Pl<Pl- b<p2<p2)(ap- pa)/J].

= al<pla<P1PI- bl<p2a<P2PI

0.00147303
0.00000015

C- = (0.9984,-0.0556),

2.4

1. The singlet function with la2a occupancy is
1

J].[11a2PI-1I p2aIJ

2.
1

<1a2aIHlla2) = J].[2/112+ 2<11121)] = J2[0.1954 - 0.1954]= O
1

<1a2a1H12a2) = - [2/112 + 2<22121)]
J].

= J2[0.1954 - 0.0045] = 0.2699

(la2aIHI1a2a) = 1111+ /122 + (l2112) + (l2121)
= -2.6158-1.3154+0.6063+0.1261 = -3.1988

The other matrix eIements are derived in Problem 2.3.
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3. The 3 x 3 CI matrix

C4.2720

0.1261

-2.0149
0.000

)
0.2699

- 3.1988

then has as its eigenvalues El = -4.2792,E2 = -3.2567,andE3 = -1.9497.
The corresponding eigenvectors have, as coefficients of 110"21,120"21,and
110"20"1,(0.9982, -0.0573,0.0143), (-0.0261, -0.2098,0.9772), and (0.0530,
0.9761, -0.2109), respectively. The ground-state to tal energy, including
nuclear repulsion, is - 4.2792 + (2/1.4) = - 2.8506.

2.5 First iteration:

EO- E = _(CO)TVCO= O

and so we use E = -4.2720 in the fiest iteration to calculate C(1):

C(1) = (E - Ho)-IVCo,

(

O O O

)
(E1 - HO)-l = O -0.4430 O

O O -0.9318

(Actually, the 1,1 element of this matrix is iII defined. However, this does
not cause trouble hece since VCObas zero as its fiest entry. In general, how-
ever, this trouble arises wherever Eo is taken to a diagonal element of HO):

(

0.0

)
VCO= 0.1261

0.0

Therefore,

(

0.0

)
CO) = -0.0559

0.0

A problem now arises: C(1)does not obey intermediate normalization, which
was assumed in deriving Eq. (2.110) for E. Hence we most damp the itera-
tion process by averaging C(1) and CO to obtain a better C(1) (which most
then be intermediate normalized):

1

(

1.0000

)

1

(

0.0

) (

1.0000

)
CO) ="2 0.0 +"2 -0.0559 -+ -0.0559

0.0 0.0 0.0

One finds that by not damping, the successive C<n)computed (using E =
-4.2790) are wildly oscillating.
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Cln) = [(0.9989,0,0.0140),(0.0,-0.0573, -0.0035), (1.0000,0.0004,0.0139),
(1.000,0.0797,0.000 I), (1.0000,0.0386,0.0138)]

However, once the damping is introduced, we caD proceed to find c(n) values
in a slabie manner.

(

1.0000

)
Eo - E = -(Co)+VC = -(0,0.1261,0) -0.0559 = 0.0070

0.0000

and so E = Eo - 0.0070 = -4.2790. Now compute C(2):

(

- 142.9 O O

)
(E1 - HO)-l = O -0.4417 O

O O -0.9258

and

(

-142.9 O O

) (

O 0.1261 O

) (

1.0000

)
C(2)= O -0.4417 O 0.1261 O 0.2699 -0.0559

O O - 0.9258 O 0.2699 O 0.0000

Then

(

1.0003

)
C(2) = - 0.0557

0.0140

which upon intermediate normalization becomes

(

1.0000

)
C(2) = - 0.0557

0.0140

For the third iteration,

(

1.0000

)
Eo - E = -(0,0.1261,0) -0.0557 = 0.0070

0.0140

Therefore, E = - 4.2790 and so (E1 - HO)- 1 is unchanged:

(

O 0.1261 O

) (

1.0000

) (

1.0003

)
C13) = (E1 - HO)-I 0.1261 O 0.2699 -0.0557 = --0.0574

O 0.2699 O 0.0140 0.0139
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which when renormalized becomes

(

1.0000

)
-0.0574

0.0139

To compare these results with those of the CI Problem 2.4, we "musi nor-
malize C(3)so that 1 = (Cm)T(C(3)).This procedure gives

(

0.9983

)
C(3) = -0.0573

0.0139

which is to be compared with the CI eigenvector

(

0.9982

)
CCI = -0.0573

0.0143

The CI energy -4.2792 compares wen with our third iterate E = -4.2790.
2.6
1. Let 1and 2 denote the 10"and 20"orbitais, respectively:

(ii = (°l (ii = <11

(iii; 1.1°)
(iI2;2.1O)
(iii; 1;1,1.10)
(ill.+1;2,2.10)
(iI2;2;t,I.10)
(iI2; 2; 2,2.10)

0.9970

0.0031

0.9970

-0.0555

-0.0555

0.0031

0.0555

-0.0555

0.0555

-0.0031

0.9970

-0.0555

Since the states 1°), 11) have singlet symmetry, interchange of IXand p
spin gives the same matrix elements, e.g., (iii: 1; 1/11..10)= (iii; 1: 1..1/11°).
Change of the sequence of the creation (or the annihilation) operators does,
of course, change the sigo of the matrix elements.

2. ~l) = (lIHIO) = O, since \1) and l°) are determined erom a CI
calculation:

W12 = (°1[1:2..+ 1;2/1,H]10) = 2[h12(011:1..- 2:2..1°)
+ (22121) (0\2; 2: 2p2..+ 1: liJ2p2..10)

+ (11121)(°11: 1; lpl,,+ 1; 1:2p2,,10)]
= -0.0224
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A21,21 =<°1[1:-2«+ 1;2//,H,2:-1«+2;I/1]IO)

= 2[(hn - hll)<OII:- 1«- 2:-2«1°)- <22122)<°12;2:-2«2//\0)

- <11111)<°11:-1; 1/11«10)- 2<11122)<°11;1:-2«2/110)

- <21112)<°11; 1:- 1/11«+ 2;2:-2/12«1°)

+ <21121)<°11;1:-1«1//+ 2:-2;2//2«1°)]
= 2.1606

821.21= <°1[1:-2«+1;2//,H, 1:-2«+ 1;2//]1°)
= 2[(2<22111)+ 2<21121)- (11111) - (22122»)<°11:- 1;2//2«1°)

- <22111)<°12:2;2//2«+ l: 1; 1/11«10)]
= -0.2400

(A21)11>.21= (11[H, 2:- 1«+ 2; 1//]10)= 2[hl2(111:- 1«- 2:-2«1°)

- <11112)<111; 1:-1/11«+ 2:-2; 1/11«10)

- <22112)<112;2:- 1//1«+ 2:-2;2/12«1°)]
= 0.4020

(821)!1>.21= <11[H,1:-2«+ 1;2/1]1°)
= 2[1112(112:-2«-1:- 1«1°)- <22121)<112;2:-2//2«+ 1:-1;2/12«1°)

- <11121)<111:- 1; 1/11«+ 1; 1:-2/12«10)]
= -0.0198

(An)11 >,11>= - 2.0079 + 4.2790 = 2.2711, (8n)'I>.II> =0

3. Since A - 8 is a 2 x 2matrix, we invert it easily and obtain the
numerical value of K21 and PlO through (;) = (A - 8)-1(~). Hence the K
and P matrices are

(
0.0 0.0097'

)K = -0.0097 0.0 ' (
0.0 -0.0018

)p = 0.0018 0.0

4. By applying exp( - K) as shown in Problem 1.5 to the HF orbitaIs,
we obtain

CPt= 0.8919 lsH. + O.l701lsu, CP2= -0.8410 lsH. + 1.2140lsu

Likewise, transformation of the two CI eigenstates through exp( - P) gives
rise to two new MC stale vectors whose expansion coefficients are given by

c = (
0.9984 0.0574

)-0.0574 0.9984
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5. Since we used the states of a CI calculation as the initial guess for the
reference stale in the one-step MCSCF procedure, the orbitais of the one-
and two-step MCSCF approach become identical when the first iteration
is carried out. The states obtained in the next iteration of the two-step
MCSCF approach would, however, be determined erom a new CI calculation
(which requires transformed integrals) and would thus differ erom the states
obtained in the one-step MCSCF procedure.

6. EMCSCF - Ef.t~CF (EMCSCF - Ef.t~F)2

2.1494 X 10-4

l X 10-8

4.6 X 10-8
l X 10-16

The error in the (n + l)th iteration is the square of the error in the nth
iteration.

7. The MCSCF and the fuli CI calculation have the same number and
kind of variational parameters; hence the total energiesobtained in the two
calculations shou!d become identical. The 110'20')configuration included in
the CI wavefunction is treated in the two-configuration MCSCF function
through the 2+l K21orbital optimization parameter.

8. In an MCSCF calculation that uses 10'2,20'2,and 10'120'1,the 20'+10'
excitation operator becomesa redundant excitation operator and hence the
orbita! optimization step oecd not be included. The three-configuration
MCSCF calcu!ation thus becomes identical to the three-configuration CI
ca!cu!ation.

9. Again, Iwo configurations plus one degree of orbital optimization
freedom spaD all of the configuration space needed to generale the fuli CI
wavefunction. Hence the converged MCSCF energy would equal the fuli
CI energy herc.

2.7
l. In the one- and two-electron integrals appearing in the second-

quantized form of H, we neglect all integrals involving orbitais on different
HeH + ions. Hence

"

(

l

)

"

H = L L hiji+j +"2 L (ijlkl)i+j+lk = L HAA=l i.j=la,2a ijk/=la,2a A=l
eA eA

where A labeis the n HeH + ions.
2. Let us denote the reference HF determinant by HF. Then doub!y

excited configurations involving excitation of the A th HeH + jon caD be
represented as (2;2; lpl")AIHF) ==lA). Doubly excited configurations in
which one orbita! is excited on each of IWOHeH + ions will not give rise to
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nonvanishing CI matrix elements since the one- and two-electron integrals
that arise in evaluating such CI elements would vanish because of the large
separation between the twa ions.

The CI matrix elements arising erom the functions IHF) and {lA)} are
n

<HFIHIHF) = L <HFIHAIHF) = IIOa21Hlla2) ==IIEHF
A= I

(This result follows since IHF) = n~=I (lp 1:)Alvac»);

<HFIHIA) = <la2\HI2a2) (the same for all A)

<AIHIA') = c5AA.[<2a2IHI2a2)+ (11- I)EHFJ (the same for all A)

3. The components of the eigenvalue problem (HC = EC) for the matrix
shown in question 2 can be written as

n

I1EHFCHF + L BC A = E<!HF'
A=I

BCHF+ CCA, = ECA" A' = 1,. . .,11

Solving for CA' in terms of CHFand substituting joto the first equation gives
n

IIEHFCHF + L B[E - C]-I BCHF= ECIIF
A=l

This equatiol1 wil1 have a l1ontrivial solution for CHF anty if

I1EHF+ B211(E - q-l = E

This quadratic equation can be written as'

(E - C)(IIEHF- q + IIB2 = (E - q2

the solutions of which are

E - C = HIIEHF - C:1::[(IIEHF- q2 + 4I1B2]1/2}

Using the definitions of C and B, the ground-state energy becomes

E= IIEHF+H -(E~F- EHF)- [(E~F-EHF)2 +4110 1122)2JI/2} + E~F- EllF

The correlation energy then becomes

Ecorr = E - IIEHF= HE~F- EHF- [(E~F- EHF)2+ 411(11122)2]1/2}

4. From Problem 2.1 we find (11122) = 0.1261 and from Problem 2.3,
(1a2IHlla2) = EHF = -4.2720 and <2a2IHI2a2)= E~F= -2.0149. There-
fore (E~F - EHF= 2.2571),

- 2.2571
[(

2.2571

)2 2

J

I/2

Ecorr - ~ - ~ + 11(0.1261)
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Evaluating Ecorrfor n = 2, 4, 10, 100, and 1000, and eomparing it to n limes
the eorrelation energy of 1 HeH + jon, we find

For large n, the analytieal expression of question 3 cIearly varies as n1/2.
Comparing our resuIts for n = 100 and n = 1000, we find a ratio of 3.0156/
0.5637 = 5.35, which is not (1000/100)1/2 = 3.16. Thus n = 100 is not yet
in the large-n range. The ratio for n = 10 and n = 100 is 0.5637/0.0684 = 8.24,
whieh is even further from (100/10)112 = 3.16. Henee one must go beyond
n = 100 before this large-n behavior is reaIized.

5. Within our smalI basis the HeH + is undereorrelated beeause the 2<T
orbital is much higher in energy than would be expeeted for the lowest
excited <Torbital of HeH +. Therefore, our eorrelation energy, which arises
from the 1<T2-+ 2<T2exeitation is smalIer (because (11122) is smalIer and
21>2- 21>1.islarger) than one would obtain if one were to use a better atomie
orbital basis on HeH +. As a result the (11122) appearing in the above
expression for Ecorr is "too smalI" and (E~F - EHF) is "too large." This leads
to an underestimate of Ecorr.
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Chapter 3 IPerturbation Theory

A. INTRODUCfION

As an alternative to the variational approaches described in Chapter 2,
we may use perturbative approaches to solve the Schrodinger equation.
aur purpose in Ibis chapter is not to survey the maDYdevelopments and
applications that have been marle of perturbation methods. Rather we
attempt to cast the most familiar perturbation theory (Rayleigh-Schrodinger,
RSPT) in the language of second quantization and then demonstrate how
Ibis tool caD be used to compute stale energies and wavefunctions. In
Chapter 5 we extend Ibis treatment to property average values and second-
order response properties. We algo musIcale SOfie of the strengths and
weaknesses of RSPT by comparing it with other perturbative and non-
perturbative methods.

To begin, lei us assume that the total electronic Hamiltonian H is de-
composed joto Iwo pieces

H = Ho + U (3.1)

the former of which is assumed to be "larger" in a sense that will be clarified
shortly. We algo assume that we have available the complete set of eigen-
states of Ho (including the continuum, in principie)

HOlkO)= E~lkO) (3.2)

This latter assumption often places substantial practical restrictions on the
forms of Ho that are possible. For example, choosing Ho to be the N-electron
Fock operator (or its second-quantized equivalent) would be quite reasonable
because the IkO) are then the usual Slater determinantal wavelunctions,
which one is often actually able to obtain to reasonably high precision. On
the other band, choosing Ho to include SOfie factors (e.g., rij 1)of the inter-
electronic distance is probably not practical because one cannot usually

fili
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obtain the eigenstates {ll>} to high precision. Of course, the physical
context and requisite accuracy relevant to each specific problem must
ultimately dictate how one caD most eITectivelysplit H joto Ho + U.

B. DERIVATIONOF GENERALENERGY
AND WAVEFUNCTIONEXPRESSIONS

Given the above decomposition of H, we now express the Schrodinger
equation

HID = EjU>

as (March et al., 1967),
~

(C - RoM> = (C - Ej + U)U>

(3.3)

(3.4)

where the energy parameter C, which bas simply been added and subtracted,
will be used shortly to define dilTerent kinds of perturbation theories. The
normalization of the exact stale IDwill now be chosen such that U> bas
unit projection along its zeroth-order component Ijo>

IjO><jOID = jjo> (3.5)

The total wavefunction IDcaD now be written in terms of the projector Q,

Q ==1 - jjo><jOI

as

Ij> = Ijo> + QU> (3.6)

Making use of the fact that HoQ = QHo, which is easily seen to be valid
erom definition of Q, we caD operate on Eq. (3.4) wilII lhe projector Q lo
obtain a closed expression for QU>:

Q Ij) =- Q Qlj> =1~ - RO)-IQ($ - Ej + U)U>

The factor of Q, which when applied to Eq. (3.4) gave Eq. (3.7), is needed
because the resolvent (C - RO)- I is singular at tE= EJ. The presenceof Q
guarantees that ($ - HO)- I never operates on a stale (UO»that would
cause a singularity at this value of EJ. Clearly (@- HO)-I is singular at
other values of C (@= Er, k ol-j) but we need not be concerned with these
singularities as tong as the parameter tff is held in the neighborhood of EJ
and away erom the other Er. This would, or course, be difficult to achieve
in systems such as metais, which possess maDYclosely spaced (nearly degene-
fale) energy levels. Equation (3.7) is then inserted joto Eq. (3.6) to yield the

(3.7)
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integral equation

jj) = jjO) + (tS'- HO)-1Q(tS'- EJ+ U)lj) (3.8)

If Eq. (3.8) is iterated, one obtains an order-by-order expansion of the
wavefunction

'T.J

Ij) = L [(tS'- HO)-1Q(tS' ..;..EJ + U)]"jjO)
"=0

(3.9)

Multiplying Eq. (3.3) on the left by (jol we get

Ej = EJ+ (jOIUlj) (3.10)

which then may be used to obtain a perturbative expansion of the energy
in the perturbation U:

OC)

Ej - EJ = L (jOlU[(tS'- Ho)-1Q(tS'- EJ+ U)]"ljO)"=0
(3.11)

We now consider two especially relevant choices ofthe, in principie, arbitrary
parameter tS'.lf tS'is taken to be equal to EJ' then the above perturbation
series describe the Brillouin-Wigner approximations to jj) and EJ' The
choice tS'= EJ yields the Rayleigh-SchrOdinger perturbation series.

To express aDYof the above perturbation expansions in terms of creation
and annihilation operators, we simply write Il), Ho, and U in the second-
quantized manner. The zeroth-order Hamiltonian is virtually always taken
to be a one-electron operator

HO = L (4J"IHol4J,)el",'
(3.12)

involv!ng a one-electron potential V,

Ho = -i\72 - L Zair- Ral-1+ V (3.13)
a

With this choice, the perturbation U becomes

1
U = 4 L (ijllkl)i+j+lk - L (i!Vjj)i+j'i'" ,Ii

If the spin-orbitals {4J,,}are chosen to' diagonalize Ho,

(3.14)

HO = L (4J"IHol4J,,)k+k==L e"k+k" " (3.15)

then the zeroth-order wavefunctions {ljO)} are simply N-electron Stater
determinants (or their second-quantized equivalent) involving these same



C. Size ConsistencyProblemin theEnergy 7\

spin orbitais {cJ>/c}. This choice of Ho is especially convenient because the re-
solvent (8 - 1-1°)-1becomes diagonal (and hence easy to treat) within ibis
representation.

To gajo same experience in the evaluation of perturbation contributions
to I.i> and Ej and to motivate an analysis of a rundamental weakness or the
Buillouin-Wigner perturbation theory (BWPT), lei us naw consider a rew
examples. First, we evaluate the fIrst-order correction to the energy that
arises erom the Il = O term in Eq. (3.11):

1
E~I) = <jOlujjo>= - L Goli+j+Ikjjo><ijllkl>- L Gole IjjO><k!V11)

4 ij/cl kI

(3.16)

which by straightrorward application of Slater-Condon-like rules to com-
pule the above density matrices, yields ~

1
E~I) = - I <J,vIlPv>- I <1'!Vlp>.

2/l.,oEjO /lEjo
(3.17)

Note that because E~1)contains no reference to the parameter 8, RSPT and
BWPT have identical fIrst-order energies.

C. SIZE CONSISTENCYPROBLEM IN THE ENERGY

Next, we consider the second-order energy and, in particular, we examine
E~2)for a system consistingoftwo noninteracting subsystems (o and b). For
ibis case, the Hamiltonian H separates joto

II = H~ + Ua + H~ + Ub (3.18)

and the zeroth-order states become (antisymmetric) product states (recalI
that IjO) labeIs our specific stale of interest whereas IkO) labeis the other
states):

IjO) = Ij~jg>, {!kO)}= {lk~jg),lj~kg>,!k~kg>} (3.19)

The second-order energy expression erom Eq. (3.11) reduces, using QI/> = O,
to -

Ef) = <jOIU(8- Hor IQul/> (3.20)

Expressing Q in the conventional sum-over-states manner gives

Q ==1- jjo><jOI = I Iko><kol
, 1°*1'"

(3.21)
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and Eq. (3.20) becomes

E~2) = L <jOIUlko><koIUljo>/(8- Er)
kO ~ 1'0

(3.22)

Now, introducing the fact that we are dealing with two noninteracting
subsystems [through Eqs. (3.18) and (3.19)] and breaking the sum over
ko joto three sums corresponding to the partitioning of Iko> given in Eq.
(3.19), we obtain

Ef:2) - L l<j~j~IU" + Ublk~j~>12 + L l<j~j~IU" + Ublj~k~>12
j - o 8-EI?-E~ o 8-E jO-E~ka Jb a kb a b

" l<j~j~IU" + ublk~kg>12+ L., O O
ko ko 8 - Ek - Et.a' b a v

Using the orthonormality of the spin-orbitals and the fact that the systems
are noninteracting permits the simplificationof the above matrix elements.
For example,

<j~jglu" + Ublk~jg>= (j~lu"lk~>,

Thus, we finallyobtain

(3.23)

(j~jglu" + ublk~kg> = O (3.24)

E1.2' = L l<j~I[f"lk~>12 + L l<jglublk~>12
J ol-EI?-E~ 08-E jO-E~ka Jb a kb a b

(3.25)

Notice that this total second-order energy is not, in general, a sum of the
second-order energies ofthe two separate:d species because ofthe appearance
of the EJ" and EJ" terms in the denominators. We therefore say that the
general (Le., with arbitrary 8) perturbation theory energy is not size con-
sistent (PopIe et al., 1977). However, if I is chosen, as in RSPT, equal to
I = EJ = EJ"+ EJ", then we indeed obtain a perfectly size-consistent
result :

F},.2)= E1.2) + F},2) (3 26)J Ja l" .

It is elear that the first-order energy expression <jOIUljo> is algo size con-
sistent. Because this size consistency property is important, especially if we
are interested in using perturbation methods to study molecular fragmenta-
tion, the use of RSPT must be favored over BWPT (8 = Ej) or aDY other
perturbation theory derived erom alternative choices of 8.

Even if we now decided to use only RSPT to compute Ij> and El' another
potential difficulty arises when we consider the third- (and higher-) order
energies

E}3) = <jOIUQ(EJ - HO)-tUQ(EJ - HO)-tU/jo>

- E}1)<jOluQ(EJ- HO)-2Ull> (3.27)
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BecauseE}l) is an extensive property (Le.,size consistent), we should expect
possible size inconsistency from the last term in E}3) if the (second-order)
factor in front of E?) is algo extensive; Ef) wou'd then contain terms that
are proportional to the square of the system's size (for identica' noninter-
acting subsystems). Let us now 'Dok at this situation moce close'y. By intro-
ducing the spectra' representation of the projector Q given in Eq. (3.21),
Ef) caD be written as

(3) - <jOIUlko><kolulto></olul/>
Ej - L (EO EO)(EO EO)kO,/O j - k j - I

- <jOlujjo> L <jOlul:o><k:I~ljo> (3.28)
kO (Ej - Ek)

It is now important to demonstrate that the ko = 1° terms appearing in the
fiest sum above exactly cancel the size-inconsistent terms in the second factor.
This cancellation caD be brought about by combining these terms as

11= L l<j:lulk01r[<koIulko>.: <jOlujjo>]
kO (Ej - Ek)

Now, if we consider 11for the specjal case of twa noninteracting subsys-
tems (analogous to what was clone above for Ef). we see that the terms
<koI Ulko> - <jOlUljo> decompose, under partitioning of ko [as in Eq. (3.19)].

i~ ~~.)c
(j~k~IUa + Ubjj~k~> - (j~j~lubjj~jg> = <kglubikg> - <jglubjjg> (3.30))

(3.29)

(notice that reference to system a bas disappeared herc) and
~V'"

<k~j2IUa+ Ublk~j~>- <j~j2IUalj~j2>= <k~IUalk~>- <j~IUajj~>.(3.31)

. (reference to system b bas disappeared herc).
The states {Ik~k~>} give no contributions because the fiest factor in Eq.

(3.29) <jOIUlko>becomes identically zero for these states. This then permits
11to be written as a sum of terms referring totally to system a:

11 = ~ l<j~IUalk~>12[<kOIu Iko>
- <l,oIU 11

'°
>]

a 'rf (El! - EO )
2 a a a a a a

ka Ja ka
(3.32)

and an ana'ogous expression for I1b'Hence 11is size c6nsistent even though
each of the twa terms arising in it Egee Eq. (3.29)] are not. When ko f=l°
the fiest term in Eq. (3.28) may algo be shown to be size consistent and E}3)
therefore is size consistent. RSPT energies are in general size consistent
even though substantial regrouping of terms as in Ef) may be necessary
before it caD be realized.
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If one wishes to use RSPT to perform ab initio quantum-chemical caIcu-
lations that yield size-consistent energies, then care musJ be taken in com-
puting the factors that contribute to any given E}").For example, if E}3)wece
caIculated as in Eq. (3.28), limitations of numerical precision might not give
rise to the exact cancelIation of size-inconsistent terms, which we know
should occur. This would certainly be the case for an extended system (for
which the size-inconsistent terms would dominate). In addition, it is unpleas-
ant to have a formalism in which such improper terms arise in the fiest place.
It is therefore natural to attempt to develop approaches to implementing
RSPT in which the size-inconsistent ractors are never even computed. Such
an approach bas been developed and is commonly referred to as many-body
perturbation theory (MBPT). The method of implementing MBPT is dis-
cussed ance we have completed the present treatment of RSPT.

D. M0LLER-PLESSET PERTURBATlONTHEORY
FOR ENERGY

A very common choice of the potential V used to define Ho as in Eq. (3.13)
is the HF potential

V = I I (kJLIIIJL)k+ I
k.I/H;,J'"

(3.33)

where the sum over JLruns over those spin-orbitals that are occupied in the
specific zeroth-order state (the Stater determinant IjO»whose perturbation
we are examining. The unperturbed Hamiltonian Ho is then given in terms
or the HF orbital energies as

HO = I6kek
k

With the above choice of Ho naw marle, the perturbation U becomes

(3.34)

. l
U = 4 I (ijllkl)i+j+Ik- I I (kJLII/JL)eIIjkl k.1 /lejo

(3.35)

These choices or Ho and U, when used in RSPT, give rise to what is commonly
called (PopIe et al., 1977) M~lIer-Plesset perturbation theory (MPPT) and
the expression for E}l) reduces to the familiar form

1
E~l)= -- I (JLVIIJLv)

J 2/l._ejo
(3.36)

The RSPT expression for E}2)can algo be expressed in terms of orbital
energies and two-electron integrals. The kets IkO)appearing in Eq. (3.22)for



D. Mfiller-Plesset Perturbation TheoryJor Energy 75

E~2)refer to kets that are singly, doubly, etc. excited relative to the reference
ket IjO). Because of the BT, <jOlUlkO) vanishes when IkO) is a singly excited
ket. Kets IkO) that are triply excited and higher algo give no contribution to
(jol UlkO).Hence, Ej2)as given in Eq. (3.22)would contain only contributions
from the doubly excited kets,

(j°IUr+s+pal/) = <aPllrs) (3.37)

and therefore

E~2) = - L l<aPllrs)12
,,<per+es-e -er<s "p

(3.38)

To obtain more insight joto the structure of the size-consistent and -in-
consistent terms, we derive an explicit expression for the quantity A appearing
in Eq. (3.29) within MPPT. Realizing that anty the doubly excited deter-
minants IkO) contribute in Eq. (3.29) because of the BT, we obtain

A = L l<iXPllmn)122[<:;IUI:;) - <jOIUljO)] (3.39)
",<n(e"+ep-e,,,-en) r

"<P

where

I:;)==m+n+pa\jO) (3.40)

The expectation value dilTerence contained in the square brackets caD be
expressed in terms of elementary two-electron integrais and, since U =
W - V, HF potential matrix elementsas

L [<mylimy)+ <nyll"}')- <a}'II!!}')- <PyliP}')] + <m"IIII1I1)- <afJllaP)
rejO

r#".P

- <mlVlm) - <nlVl") + <iXlVla)+ <PIVIP) (3.41)

By then introducing the explicit form of V given in Eq. (3.33) this expression
canbe reduced to

<mnllm,,) + <aPI laP) - (1 + p ",n)(l + P"p)<mall"p) (3.42)

where P",nmeans interchanging the indices 111and ". Upon inserting this joto
Eq. (3.39) one obtains

l<aPllnm)12
A = "'~n (B"+ Bp - B", - Enf [<nlllll",n) + <aPIlaP)

,,<P

- (I + P",n)(l + P"p)<n~iXlI"p)] (3.43)
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The expression for /).given in Eq. (3.39) may be written as a product of two
independent disjoint sums since part of the fiest term <:a;IUI:;)and the
whole second term (j°IUljO) in the square bracket consists of a sum that is
independent of the sum m < n and O(< {J.Equation (3.39) thus contains a
product of two disjoint terms. When the terms in the square brackets are
collected together in a ditTerent manner, Eq. (3.39) reduces to Eq. (3.43),
which cannot be divided up into disjoint sums. The expression for /). given
in Eq. (3.43) is thus linked. Il is the linked nature of the size-consistent terms

that is used in MBPT to assure that size-consistent terms alone wiUappear
in the maur-body perturbation expressions for the electronic energy and
other stale properties.

E. THE PERTURBEDWAVEFUNCTION

Having now carried out som e detailed analysis of the RSPT expression
for Ej' let us tum to the perturbative corrections to the wavefunction Ij).
The fiest-order RSPT wavefunction is, according to Eq. (3.9),

If1) = (EJ - HO)-lQ(EJ - Ej + U)ljO)

which, because QljO) = O,reduces to

(3.44)

Ipl) = (EJ - HO)-lQUjjO)

By inserting the spectral representation of Q [Eq. (3.21)],we obtain

(3.45)

Ipl) = L <koIUljO)
k°#-]""El! - Eo IkO)

J k
(3.46)

As we did above for the energy, it is instructive to analyze 1/1) when it
pertains to two noninteracting subsystems (a and b). For this special case,
the sum in Eq. (3.46) separates into terms pertaining to each of the isolated
systems:

I.(ll ) = - '\' <k~IUalj~) Iko ,O) - '\' <kglubljg)
' ,okO)l ~ Eo - El! alb ~ EO - El! la bka ka Ja k. /t. J.

(3.47)

Thus, we see that, through fiest order, the wavefunction jj) contains only
terms of the form Ij~jg), U~kg), and Ik~jg); terms such as Ik~kg) are not
present. One might have expected that, for two noninteracting subsystems,
the total wavefunction should be a (antisymmetric) product of the wave-
functions for each subsystem and that term s like Ik~kg)would, thus, be
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for Ej' let us tum to the perturbative corrections to the wavefunction Ij).
The fiest-order RSPT wavefunction is, according to Eq. (3.9),

1ft) = (EJ - HO)-lQ(EJ - Ej + U)ljO)

which, because QjjO) = O,reduces to

(3.44)

IP) = (EJ- HO)-lQUjjO)

By inserting the spectral representation of Q [Eq. (3.21)], we obtain

(3.45)

IP) = L <koIUljO)
k°#,)" El! - Eo IkO)

J k
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Thus, we see that, through fiest order, the wavefunction jj) contains only
terms of the form Ij~jg), U~kg), and Ik~jg); terms such as Ik~kg) are not
present. One might have expected that, for two noninteracting subsystems,
the total wavefunction should be a (antisymmetric) product of the wave-
functions for each subsystem and that term s like Ik~kg)would, thus, be
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presenl. The RSPT fiest-order wavefunction certainly does not possess ibis
product-separable property.

Il is naturai to ask how the RSPT caD have the physically consistent
property that its energy is extensive whereas its wavefunction does not reduce
to a product form for noninteracting systems. The answer bas to do with the
manuel in which the total energy Ej is computed in perturbation theory:

Ej = </IHIj) (3.48)

In contrast, the total energy is obtained, in variational approaches, by eval-
uating the expectation value

Ej = (jIHjj)/(jjj) (3.49)

Because ofthe structure ofthe matrix element appearing in Eq. (3.48) it is not
possible for terms such as Ik~kg) to contribute directly to the RSPT expres-
sions for Ej even though these factors ale certainly contained in the exact
wavefunction jj) (they will occur as higher order RSPT wavefunction cor-
rections). That is,

<j~jgIHlk~kg) ==<j~jgIH~ + Hg + Ua+ ublk~kg) = O
!

(350)

In a sense then, the first-order RSPT wavefunction contains faults (absence or
Ik~kg») that do not adversely affect its ability to yield, through

E]2) = </IUI/1) (3.51)

a size-consistent second-order energy. The same form of the wavefunction
(jj) ~ IjO) + 1i1)) when used in the expectation value [Eq. (3.49)] would
not yielda size-consistentresult; one would have to add on the Ik~kg>terl11s
to generale size consistency in the expectation value. This implies that in a CI

or MCSCF ca\culation one musi use thesei'disjoint excitations Ik~kg)(e.g..
1(1~(T~)for Iwo H2molecules) in order to guarantee that the expectation value
formula for the energy is size consistenl. This necessity that one include, in a
CI study of a composite system, excitation levels (in Siatce determinants) that
are higher than those included for the individual constituent fragments is a
problem or the CI and MCSCF methods.

F. M0LLER-PLESSET WAVEFUNCTION

Ifthe unperturbed Hamiltonian Ho is taken to be the HF Hamiltonian, the
fiest-order M PPT wavefunction [Eq. (3.46)] caD be expressed in term s or the
doubly excited kets r+s+fJIXjjO)(again BT makes the contributions due to
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singly excited kets vanish):

IP» = L K~j,r+s+paljO)
a.<{J
r<.

(3.52)

where

K~j, = - (rsllaP)Br+B.-B _ Ba. (J
(3.53)

The explicit expression for the second-order wavefunction for this (HF) Ho
case contains singly, doubly, triply, and quadruply excited kets

IP» = L K~r+aljO)+ L K~j,r+s+paljO)
~a. a.<{J

r<.

+ L K~pyr+s+t+yPaljO)+ L K~p;6r+s+t+u+bypajjO)
a.<{J<y a.<{J<y<6
r<'<1 r<.<I<u

(3.54)

where, for example,

K~= ~
(
L (ryllmn)(mnllya) + L (pyllam)(mrllyp)

)2 mn(Ba.- Br)(By+ Ba.- Bn- Bm) m (Ba.- Br)(By+ B{J- Br - Bm)
y y{J .

(3.55)

G. MANY-BODYPERTURBATlONTHEORY

Having now completed our treatment ofRSPT, lei us return to the problem
of finding a mechanism for explicitly computing, in aDYgiven order, only
those term s in E}n'or Ij(n,) that are size consistent. Recall that RSPT, as
normally expressed, contains size-inconsistent terms that cancel when
grouped together properly, but that nevertheless appear in the forma I RSPT
expression. Recall algo that the size-inconsistent terms could be charactecized
by a factorization joto products of iwo oc moce terms that did not share
common summation indiees. In MBPT, the format cancellation of size-
inconsistent terms in RSPT is carried out explicitly (Brueckner, 1955a,b;
Bartlett and Silver, 1975; Kelly, 1969; Lowdin, 1968; Brandow, t977). For-
mally, we may thus write Ef' as

E}3>(RSPT)= (jOIUQ(EJ - HO)-l U(EJ - HO)-lQUjjO)

- E}l>(jOIUQ(EJ- HO)-2UljO)
==(j°IU(EJ - HO)-l U(EJ - HO)-1 UjjO)L = E<l'(MBPT) (3.56)
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or E)"I in general, using Eq. (3.11),as

E)"I = (jolU {(EJ - HO)-lQU}"jjO)L (3.57)

The subscript L indicates that only the size-consistent terms in that expres-
sion are included. The term involving E)l) in Eq. (3.56) give rise to purety
size-inconsistent terms. In MBPT, the size-consistent terms are said to be
linked, white the size-inconsistent terms are referred to as unlinked. If aH
of the unlinked terms wece trivial to identify, such as the second term in
E)31(RSPT), one could merely exclude them. However, as we demonstrated
earlier, there are algo unlinked contributions in the first term in Ef'(RSPT)
that cancel those in the second term and that are not easily identified. Il is
the strength of MBPT that it allows us directly to identify aH the linked
terms of RSPT. The derivation that shows how to identify the size-consistent
or linked terms is rather tedious and is described in detait in maDYtextbooks
(March et al., 1967; Raimes, 1972; Linderberg and Ohm, 1973). We do not
carry out that derivation but simply familiarize the reader with the language

of MBPT and report the results of}he derivation. The implementation or
the MBPT method for evaluating only the linked contributions to E)"I is
commonly given in term s of a set of diagrams, the numerical values of which
are the desired size-consistent components. We use the so-called Hugenholtz
diagram rules to determine the number of diagrams, which enter in a given
order (n) in the perturbation. In Table I, we report the rules for constructing
these diagrams and in Fig. 3.1, the Hugenholtz energy diagrams that enter
up through second order are displayed. The translation of the Hugenholtz
diagrams joto algebraic expressions is commonly performed by translating
the Hugenholtz diagram joto one of its equivalent Brandow diagrams
(Brandow, 1977).The algebraic expression for the Hugenholtz diagram is then
obtained by applying the rules given in Table II to the Brandow diagram.

Table I

RuJes for Constructing Ali Hugenholtz Diagrams for a Given Order /I

I. Representeachof the two-e\ectroninteractions (W) with a dol havingIwo incomingand
Iwo outgoing lines (e.g..X) and each of the one-e\ectron terms (- VI with a solid lilIe
having one end point at which one line is entering and one leaving (e.g.,}--.) (H = 110+
W- V).

2. To a given order /I in the perturbation, write BIlpossibJe ways (on a time axis) of drawing
", (m = O, I.. . . . /I)dots and /I - m solid lines with one endpoint.'

3. Connect the lines entering and leaving a dol and a solid line with one endpoint in BIl
possibJe different ways such that the resulting diagrams Bre linked. A linked diagram call!1ot
be pulled apart joto twoseparate diagrams without cutting lines. An example ofan unJinked
diagram is given in Fig. 3.3A.
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A Hugenholtz diagram is translated joto one of its equivalent Brandow
diagrams when the dots (which represent the two-electron interaction) are
extended joto dashed lines, where one arrow is entering and one leaving at
both end points of the dashed line, e.g., .t. - "'--{. The Hugenholtz
diagram in Fig. 3.2, may, for example, be translated joto one of the eight
Brandow diagrams given in Fig. 3.2. At fiest glance, these eight diagrams
look very different,but when applying the rules in Table II, their algebraic
expressions become identical. To ilIustrate this and to get some experience
in applying the rules in Table II, we evaluate Brandow diagrams A and E

80

Hugenholtz

8
A

)( OB



G. Many-Body Perturbation Theory 81

TableII

Rules for Evalualing 8randow Diagrams.

I. Label the diagram with general "hole" (IX,{I,}', . . .) (down arrow) and "particie" (111.II. p, . . .)

(up arrow) indices. A line thal starts and ends at the same interaction is labeled wilh a hole
index. An example ofthe labeling is given in Fig. 3.2A,E.

2. The numeralor of lhe diagram contains products of the one-eleclron inlegrals (if aBY)and
the antisymmetrized two-eleclron inlegrals. The indices of the one- and two-electron
integrals Bre assigned accordil1g to the fule

(ouII- Vlin)

(Ieft-oul, right-oulllleft-in, right-in)
Examples:

("I-VIIX)

("qIIIX{I)

PV-!x_--<~ - (pqIlIXr)

3. The denominator corresponding to a given diagram is obtained by taking a factor equal
to the sum of the hole orbital energies minus Ihe sum of the particie orbita' energies for
each horizontal cut the eye draws between successive pairs of eilher dotted or solid lines.
These II - I individual factorsare then multiplied to form the denominator.

4. Multiply the diagram by (l)", where /I is the number of "equivalent pairs" of lines. Two
lines form an equivalent pair if they both begin at the same interaction, both end at the
same interaction, and both go in the same direction (e.g., Fig. 3.1C has Iwo pairs. Fig. 3.3A
has one pair, and Fig. 3.2A-H has no pairs).

5. Multiply each numerator by (_I)'H, where " is the number of hole lines in the diagram
and l the num ber of closed loops. A closed loop is formed when one can trace from one
endpoint of an interaction along Ihe direction of an arrow and end up back at the same
point without ever having to cross an interaction (dashed) lilIe (Fig. 3.3A contains three
loops, Fig. 3.2C contains Iwo loops, and Fig. 3.28 has one tour).

6. Sum over all particie and hole states that occur in the diagram.

p~

pV-!x..9yp

Hugenholtz Brandow

~
po~~~~Dvl!tJ ~ o~-~

C DA B.
A

:e~~~~Dy 0~~:D Q() G<
E F G H

FIG. 3.2. Translation of a third-order Hugenholtz diagram into corresponding Brandow
dial\rams.
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in Fig. 3.2.We obtain, using the labeling of particie and hole lines given in
the figure

A = L (-1)3+3 <ocrllmp)<pmllmx)<nPIlPr)
{1.py (B{1.+ By - Bm - Bp)(Bp + 8 - B - B )
mnp y n p

(3.58)

Diagram A eontains three hole lines and three closed 100ps.Diagram E may,
in a similar way, be expressed as

E = L (-1)2+3 (ocrllmp)<pmllocn)<nPIIPr)
{1.{ly (B{1.+ By - Bm - Bp)(8p + 8 - B - B )
mnp y n p

(3.59)

since E eontains iwo closed loops. Interehanging OCand n in the seeond elee-
tronie interaetion in E gives a minus sigo and A and E thus become identical.

The reason for including only the linked diagrams in the expression for
E}n)is further clarified by examining the value of an unlinked diagram, e.g.,
the one given in Fig. 3.3A:

A = (-1)1 + 1 L(p!VIJL) (JL!Vlp)l< -1)2+2 L (ocPllocP)
/lP liP

(3.60)

Because, for iwo noninteracting subsystems, both of the disjoint sums o,:cur-
ring in Eq. (3.60)are size consistent (Le.,proportional to the size ofthe system),
the produet would not be size consistent. Hence, unlinked diagrams corre-
spond direetly to non-size-consistent factors, which should not be included.

If Ho is taken to be the HF Hamiltonian, so that V = VHFofEq. (3.33), then
certain simplifications occur. In particular, all diagrams containing the loop
structure o( eaneel with eorresponding diagram s having the potential
symbol ) o< in the same loeation except in fiestorder. For example, dia-
grams B and C ofFig. 3.3 caneel since the value of diagram C is

C=t(-I)2+2 L (mPllllp)(ocPllnp)(-(n!VHFlm»
{1.{l(8{1.+ Bp - Bp - 8,,)(811 + 8p - Bp - Bm)

m"p

(3.61)

which, because

(n!VHFlm) = L (nJLllmJL)
/l

(3.62)

~~~O
A B c

FIG. 3.3. Diagram A is unlinked and diagrams B and C demonstrate the cancellation
or the Fock potential.

E---o Q~~O
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is equal to (but opposite in sigo erom) diagram B:

B = H-1)3+3 L (mpllcxp>(l1jlllmjl>(cxPlll1fJ>
~(J"(6"+ 6p - 6p - 6")(6" + 6p - 6p - 6m)
m"p

(3.63)

Because of the cancellation of ~ and ~ that occurs in all orders beyond
fiest, we oecd only consider diagrams A, B, and C in Fig. 3.1 to determine the
energy consistent through second order when V = VHF'

The fiest-order diagrams shown in Fig. 3.1A,B combine as follows:

A + B = H_1)2+2 L (cxpllcxp>+ (_1)1 + I L(- )(CXIVUFlcx>
~ ~

= -t L(cxPllcxp>
~p

The second-order contribution may be written as

C = L(W( -1)2+2 (cxPllrs>(rsllcxp>
~(J 6" + 6p - 6r - 6s
r.

(3.64)

(3.65)

I

Both the first- and the second-order contributions are, of COllege,identica]
to the RSPT expression for E)1) and E)2) given in Eqs. (3.36) and (3.38),
respectively.

In the application of MBPT to certain physical problems, it bas been
noticed that special families of diagrams seem to make important contri-
butions to the energy in all orders. Attempts have been marle to identify
such diagrams and then to evaluate their energy contributions in a manner
that permits these terms to be algcbraically summed through all orders.
One example of such a family or diagrams is shown in Fig. 3.4. We can apply
the rules for Brandow diagrams given in Table II to each of these diagrams
to obtain

(A) = (l)2 L( -1)2+2 (cxPllrs>(rsllcxp>
~p 6" + 6p - 6 - 6
rs r s

(B) = (t)2 L(- W+4 (cxpllrs>(cxPllcxp>(rsllcxp>
~p (6~ + 6p - 6 - 6 )2

rs r s

(C) = (l)2 L( -1)2 +6 (CXPII"S>(CXPllcxp>2(rsllcxp>
"fi (6"+ 6p - 6 - 6 )

3

rs r ..

(3.66)

(3.67)

(3.68)

.o~~~~. 'OEJ} .a~:!n
A 8 c

FIG. 3.4. A sequence of diagrams Ihat can be summed lo infinile order.
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It should be elear that expression for higher-order diagrams analogous to
Fig. 3.4Abut with one or moceadditional interaction linesconnecting a and
p would involve higher powers of (aPI laP) (B,.+ Bp- Br - Bs)-I. Therefore,
the series represented by the sum of Fig. 3.4A-C is an easily summed geo-
metrie series of the form y + yx + yx2 + yx3 + . . . . The result of summing
this series is to yield

(t)2 L (aPI Irs) <rsl IIXP)(EII+ep -er- esf 1[1- (aPllap)(e,. +ep- Er- e.)-I]-1
liP
rs (3.69)

which caD be rearranged to read
1
4L <aPIIrs)<rsllaP)(e,.+ ep- er - es - (aPlllXp»-1,.p

(3.70)
rs

We see that the result of summing the elass of diagram s given in Fig. 3.4
is to generale an expression that is identical to the value of Fig. 3.4A except
for the "denominator shift" of - <aPIlaP).

In addition to expressing Ej in term s of diagrams, we may write the per-
turbation corrections to U) in this language. A rewfirst- and second-order
Brandow wavefunction diagrams are shown in Figs. 3.5. The rules for eval-
uating these diagrams are similar to those for the energy except in two ways.
First, in counting the num ber of hole lines to determine the sigo (- 1)h,
the external hole lines are not included. Second, each free external line
bas associated with it an excitation operator and an orbital energy term. For
example, the value of diagram D in Fig. 3.5 is

D = l( -1)1 +2L (pallap)(aPII}'a)
pa (e,. + ep - ep - e )(e - e )

p+}'IOO)

liPy a Y P

(3.71 )

As was the case for diagramcontributions toEJ,the factors )o and >- that
occur in equivalent locations, for example, in Figs. 3.5A,B, exactly cancel
when Vis VHF'The cancellation in Fig. 3.5A,B is the diagrammatic expression
of the BT; that is, the first-orl-;r wavefunction contains no singly excited
configurations. .

The kind of perturbation theories (RSPT and MBPT, in partieular) de-
scribed above have proven to be useful quantum-chemical tools. However,
these methods are expected to fail whenever the perturbation (the electronic

V_--D L V__V V~~~T)A B C D

FIG. 3.5. Ali first- (A-C) and one (D) second-order wavefunction diagrams.
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fluetuation potential if Ho is the HF Hamiltonian) is not smalI or if the
system under study is not welI deseribed in terms of a single Stater deter-
minant. This would be the ease, for example, when one or mate of the states
IkO) is energetically close to jjO) (Le., EJ - Er is smali). This arises often
when one breaks ehemieal bonds. Also, it is orten not possible to describe a
system in term s of a single determinant whose spin-orbital oeeupation is held
eonstant throughout a large position of nuclear eonfiguration srace [e.g.,
LiH(10-22u2)gives improper dissoeiation into jonie states at large RJ. For
these reasons, there bas becH reeent research activity aimed at developing
MBPT for a multieonfigurational referenee stale, but sueh tools are not yet
eommonly available. Thus although MBPT is indeed a size-eonsistent theory
in that it yields total energies proportional to the size of the system for a
eolleetion of noninteraeting subsystems, it stiIl may sulfer from the improper
dissoeiation problem common to most single-configuration-based theories.
Size eonsisteney and proper dissoeiation are dilferent eharacteristies. The
question of pro per dissoeiation bas to do with whether the wavefunetion
eontains eonfigurations that ean yield proper dissociation produets and
whether the method used to compute the amplitudes of these eonfigura,tions
(e.g., CI, MBPT, MCSCF) can be trusted to be aeeurate as dissociation
oeeurs. The MBPT may indeed contain the 10-220'30'eonfiguration needed
to dissociate UH, but the amplitude of ibis eonfigllration (whieh dominates
at large R) cannot be obtained erom an MBPT calculation based upalI using
the 10'220-2configuration as 10°) unless a very high correlation level is
eonsidered. Henee although MBPT would yield a size-eonsistent energy for
twa or mate noninteracting LiH moleeules (eaeh at their equilibrium band
lengths) it fails to deseribe even one LiH moleeule at large band lengths.

PROBLEMS

3.1 Using the orbital energies and two-eleetron integrals found in
Problem 2.1, carry out a RSPT ealculation of the first-order wavefunction
110'2)(1)and the seeond-order energy E(2) for the ease in whieh the zeroth-
order wavefunetion is taken to be the 10'2Stater determinant.

I. Show that the first-order wavefunetion is given by

110'2)(1) = -0.0442120'2)

2. Why does the 110'20') eonfiguration not enter iato the first-order
wavefllnetion?

3. Normalize the resultant wavefunetion that eontains zeroth- plus
first-order parts and eompare it to the wavefunetion obtained in the two-
configuration CI study of Problem 2.3.
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4. Show that the second-order RSPT correlation energy of HeH + is
given by -0.0056 a.u. How does this compare with the correlation energy
obtained eromthe two-configuration CI calculation?

5. Show that the second-order RSPT energy of a collection of n non-
interactingHeH+ ions reducesto n limes the correlationenergyof one
suchjon. .

3.2 Using MBPT, determine the third-order contribution to the correla-
tion energy for the HeH + .

1. Write all Hugenholtz dtagrams that contribute in third order when
the perturbation U = - V + W consists of the electronic repulsion Wand a
one-electron perturbation V.

In the following, assume now that V = VHF'
2. Which of the diagrams of question 1 cancel?
3. Write the algebraic expression for the diagrams in question 2 that

did not cancel.

The third-ordercontributionto the correlationenergyfor the HeH+ of
Problem 2.1 caD now be determined, using the HF orbital energies and the
one- and two-electron integrals in the HF basi s that is determined there.

4. Determine the third-order contribution to the correlation energy for
the HeH + system.

5. Compare the third-order contribution with the second-order con-
tributions determined in Problem 3.1 and the fulI CI correlation energy.

SOLUTlONS

3.1

1. jj(1» = - L (rsIlIXp) r+s+PIXljO)
«<P 6, + 6s - 6« - 6p
,<s

In our case IX= 1(10(,P = l(1p, r = 2(1IX,s = 2(1P:

11(12(1»= - (22\11) \2(12)= 0.1261 12(12)2(62- 61) 2[-0.2289 + 1.6562]

= -0.044212(12)

2. The BT gives (1(12IHI1(12(1)= O;hence the 11(12(1)configuration does
not enter joto the first-order wavefunction.

3. lO) ~ 11(12) - 0.044212(12). To normalize, we divide by
[1 + (0.0442)2]1/2= 1.0010:

lO) = 0.999011(12)- 0.0441\2(12)
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In the CI, we got

lo> ~ 0.998411(12> -0.055612(12>

4. E(2) = J(22111>12= - (0.1261f
2(B2- BI) 2[ -0.2289 + 1.6562]

= -0.0056 a.u.

From the two CI energy, compared to the SCF energy (l(12IHI1(12>.the
correlation energy is -4.2790 - (-4.2720) = -0.0070 a.u.

5. E(2)is generally given by

L: l(mplliXp>12
a<p Ba + Bp - B -
m<p m Bp

For Il noninteracting HeH + ions, the integrals (mplliXp> involving orbitais
on different ions vanish. Thus aU four orbitais in (mPlliXp>must be ón the
same jon. Hence

E(2) = L:

(
L: l(mplliXP>12

)A=I a<pBa+Bp-Bm-Bp
m<p onA

where A runs over the Il HeH + ions.
3.2

1. See Fig. 3.6, where the Hugenholtz diagrams are displayed.
2. Diagrams Dl-Xl cancel with diagrams D2-X2 such that Dl cancels

02, El cancels E2, etc.
3. The Hugenholtz diagrams in Fig. 3.6A-C are translated juto the

corresponding Brandow diagrams in Fig. 3.7A-C, respectively. Each ofthese
diagrams is then evaluated according to the rules to give

A = L:! (iXPII/I1l>(mnllpq>(pqlliXP>
78~+~-~-~~+~-~-~

B = L:! «xPIInm>(y«51liXP>(mlll ly«5>
apyIJ8 (Ba+ Bp- Bm- B.)(By + BIJ - Bm - Bn)
m.

c = L: (iXylImp> (Pml IniX>(llpl IP}'>
m.p(B"+ By- Bm- Bp)(Bp+ By- B - B)apy . p



000
A 8 C

~~~~~ ~ ~

v=.~ ~~~~fLI NI

(1:~f([t
RI SI 11 Ul VI XI

ff~~tt~
02 E2 F2 02 H2 12 J2

flr~tffM2 (',

([~(f~f
R2 52 T2 U2 V2 X2
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4. A = <1l122><22122>;22111>= 0.0012
4(&1- &2)

B = <1l122><1l11l>;22111> - 0.0019
4(&1- &2)

C = <11 122><22111>«1212l; - 2(12112» = -0.0042
2(&1- &2)

A + B + C = -0.001l

5. Secondorder, -0.0056; second+ third order, -0.0067; fuli CI
- 0.0072.
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Chapter 41 The Coupled-Cluster
Method

A. INTRODUCTION

The CI and MCSCF methods described earlier suffer from one significant
weakness. The slow convergence of the wavefunction as the configuration
size is increased is a problem that becomes moce severe as the number of
electrons in the system grows. In fact, for extended systems the finite CI or
MCSCF wavefunctions (because they contain only a finite number of eIectron
pair interactions) become infinitesimal portions of the exact wavefunction.
Perturbation theory methods, whose wavefunction usually algo contains
oni y finite numbers of interactions, sometimes provide some relief because
the total energy is not calculated as an expectation value. However, it is
often not appropriate to assume that the usual fluctuation potential (true
eIectron-eIectron interaction minus the HF potential) is smali, i.e., to assume
convergence of the perturbation series. Moreover, it is quite often important
to be able to properly treat systems that are not adequately described by a
single-configuration zeroth-order reference wavefunction (such as is assumed
in most perturbation theories).

B. FORM OF THE WAVEFUNCTION

The coupled-cIuster (CC) method (Cizek and Paldus, 1971; Harris,
1977a,b; Bartlett and Purvis, 1978) is an attempt to introduce interactions
amon g electrons within cIusters (predominantly pairs) as well as coupling
among these cIusters of eIectrons and to permit the wavefunction to contain
all possible disjoint cIusters. For example, we know, from the e~rIy work of
Sinanoglu (1962) and others, that eIectron pair interactions are of utmost
importance and that contributions of quadruply excited configurations to

()()
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l°) arise predominantly as products of doubly excited configurations. CC
wavefunctions in which such electron pair interactions (clusters) are assumed
to dominate stin contain terms that describe disjoint products of electron
pair clusters just as SiDanoglu's observations would suggest. In fact, for a
system containing aD even (odd) number of electrons N(N + 1), one bas
products of 2, 3, . . . , N /2 disjoint pair clusters in the CC wavefunction. The
mechanism for introducing these cluster interactions is to write the wave-
function 1°) in terms of a so-called cluster operator T acting on a reference
function describing noninteracting or noncoupled electrons 1°°):

l°) = exp(T)IOO). (4.1)

The reference function 1O°)bas, in nearly all CC developments to dale, been
limited to a ket corresponding to a single Stater determinant. In the treatment
given in ibis chapter, we therefore restrict our attention to ibis single deter-
minantal case. The cluster operator T generates one-, two-electron, etc.,
clusters

T=Tl+T2+"'+TN (4.2)

with

Tl = L t~r+1X (4.3)
a,r

1
T =-~trs,.+S+ PIX

2 4L-aPap
rs

(4.4)

etc. (the greek indices IX,p, y, . .. denote spin-orbitals occupied in 1O°);
r, s, t, u,. . . denote unoccupied spin-orbitals). To mak e SOfie connection
between the CC wavefunction ofEq. (4.1)and the moce conventional CI and
MBPT expressions for lO), we expand the exp(T)IOO) and collect terms of
com mon excitation level:

l o ( 1 2 1 3

exp(T)O)= I+Tl+T2+2! T1+T3+3! Tl+ T1T2 + T4

1 4 1 2 1 2

)1

o
+ 4! Tl+2! T2+T3T1+2! T1T2-:'" O)

(4.5)

By grouping the terms of a given excitation level together, we see that the
CC wavefunction can be rewritten as

exp( T)IOO)= (I + CI + C2 + C3 + . . .)10°) (4.6)
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where the configuration excitation operators Cl, C2,.. . are

Cl = T1

1 2
C2 = T2 + 2! T1

(4.7)

(4.8)

1 3
C3 = T3 + 3! T 1 + T1 T2

1 4 1 2 1 2
C4 = T4 + 4! Tl + 2! T2 + T3 Tl + 2! T 1T2

(4.9)

(4.10)

etc. We thus see, for example, that the quadruple excitations that would be
obtained in a CI or MCSCF treatment caD be viewed within the cIuster
framework as consisting of five separate parts. The T~ component is thought
to be the dominant term because it represents the simultaneous interactions
of two distinct pairs of electrons (e.g., electron pairs that occupy spatially
different molecular orbit ais). The T4 term is usually expected to be quite
smali since it describes the simultaneous interaction of four electrons. The

single-cIuster contributions to C4, C3, and C2 caD be marle smali by using
.MCSCF orbitais.

If Dur normai description of chemical bonding in terms of electron pair
bonds is correct, it is likely that a description of molccular structure in
which T2 is treated to high order [e.g., through exp( T2)] wbite T l' T3' T4'
etc. are either neglected or treated less rigorously, is quite accurate. For this
reason we consider developing systematic procedures for truncating the
expansion of T given in Eq. (4.2). By truncating [approximating the cIuster
operator T to some low-order (say pair cIusters T2)], the resultant wave-
function contains not only these low-order cIusters 7210°) but algo disjoint
cIusters [e.g., (1/2!)T2 T2Io0), (1/3 !)T2T2T2Io0), etc.] that involve moce
highly excited configurations than are present in T2Io0). Of COllege,these
higher-order excitations [e.g., quadruply excited for (1/2 !)T2T2Io0)] are
present in lO) only to the extent that their amplitudes caD be described in
terms of products of the ampIitudes belonging to the smaIIer cIusters (e.g.,
l~pl~). The fact that the product factors T2 T21o0) contain only disjoint
cIusters arises because the operator product (r+s+ . . . rx{3. . ')(l +u+ . . . y<5. . .)
vanishes if aDY of the hole (rx,{3,y, . . .) or particIe (r+,s+,l+, . . .) indices are
equaI. Anessential point of the CC approach is that eyen low-order trunca-
tions of T (which are usually based upon the physical assumption that
electron pair interactions dominate) lead to a wavefunction that contains all
of the disjoint higher excitations needed to make the resultant energy (and
other physical properties) size consistenL.
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C. EQUATIONS FOR THE CLUSTER AMPLITUDES

The cluster amplitudes t~~ are determined by insisting that exp(T)IOO)
satisfy the usual Schr6dinger equation (or at least certain projections of this
equation)

H exp(T)IOO) = E exp(T)IOO) (4.1I)

which uran premultiplying by exp( - T) gives

exp( - T)H exp(T)IOO) = EIOO) (4.12)

The above exponential sedes gives, when expanded and collected together
as commutators,

(
1 1

H + [H, T] + 2! [[H, T], T] + 3! [[[H, T], T], T]

+ ~! [[[[H, T], T], T], T] )\(r) = EIOC)
(4.13)

The series truncates (exactly) after four commutators regardless of the level
at which (Tn) T is truncated (if at all). This exact truncation is a result of the
fact that H contains at most two-e1ectron operators, which involve four
general(particieor hole)operators i +j+ Ik.Therefore[H, T] containsat most
three general operators, [[H, T], T] contains twa, and [[[[H, T], T], T]. T]
thus contains anty (excitation) operators of the form r+ s+ . . . IY.{J . . . . These
excitation operators clearly commute with T; thus the next (fifth)commutator
in the sedes vanishes. The CC expression of the Schr6dinger equation hence
yields a quartic equation for the cluster amplitudes (t~p' .'.'.) appearing in T.

A closed set of equations for the desired amplitudes is obtained by insisting
that the final Schr6dinger equation [Eq. (4.13)], when projected against a
set of law-order excitations out of 10°), yield zero. The particular excitations
are usually chosen to include up through II-fald excitations from 10°) in the
case where T bas been truncated at Tn. The resultant set of algebraic equa-
tions will then be equal in number to the number of amplitudes t~p'.'.'.in T.
ODce these amplitudes are obtained by solving the resultant nonlinear
equations, the total e1ectronic energy is computed by projecting Eq. (4.13)
anto 1°°). We should stress that the energy expression thereby obtained is
not variational in 'the sense that it is not given as an expectation value of
the Hamiltonian. The quantity ,

(0°1 exp(T+)H exp(T)IOO)/(OOIexp(T+) exp(T)IOO)
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would give rise to a variational energy expression but the resultant commu-
tatar expansion ofthe exponential operators would not truncate because T+
contains operators of the form a+p+ . . . rs' . . , which do not commute with
T. Il is the presence of exp( - T), rather than exp(T+), in Eq. (4.12) that
gives rise to the exactly cIosed quartic equation for T. Moreover, the presence
of the commutators in the expression for E and the fact that T contains only
particie creation and hole annihilation operators makes the CC-calculated
energy contain only linked terms (in the sense discussed in Chapter 3). This
then makes E contain only size-consistent terms.

D. HARTREE-FOCK ORBITALS AND T ==:Tz

Most CC calculations carried out so far have used the approximation
T ~ T2. In ibis section, we treat ibis model in same detail since doing so
will give us moce insight joto the structure ofthe CC equations. The physical
motivation for approximating T ~ T2 relies on the fact that if the set of HF
orbitaIs are used, the BT suggests that single excitation T1 operators, which
largely serve to optimize the spin-orbitals, should be lessimportant than T2'

Il is, however, naw commonly Celtthat one should include both T1 and T2
so as to obtain a balanced or coupled description of the orbital and electron
pair cIuster optimization. Let os, however, continue OUTanalysis oC the
T ~ T2 case.

To see what the solution of the above discussed nonlinear equations
actually involves, lei us examine these expressions in moce detail for a case
in which the spin-orbitaIs {cprr.CPfJ"'"CPr,. . . , CPs}are eigenfunctions of a
HF operator having orbital energies {Brr.'. . Br' . '}. The decomposition of
the Hamiltonian H joto Ho + U is then given as in Eq. (2.84) by

H = Ho + W - VHF

where Ho is the HF Hamiltonian

(4.14)

HO = }:>r i
i

(4.15)

Wis the fuli eIectron interaction term in Eq. (2.84)and VHFin the HF potential
[Eq. (2.91)].

The commutator expansion of exp( - T)H exp(T) in Eq. (4.12) given in
Eq. (4.13) demonstrates in an elegant mann er that when Eq. (4.13) is projected
against law-order excitations <~P""'~rI= <0°1 y . . . par+ S + . . .n + , it gives equa-
tions that are at most quartic in the cIuster amplitudes t~p""'~y'However, it
toros out that for findingequations for t~p it is equally simple to expand the
exponential operators directly. To determine the total energy E, we project
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Eq. (4.12) against 10°) to obtain

E = (0°1exp( - T2)Hexp(T 2)10°)

= (0°10 - Tz + l(Tz)2)HO + Tz + l(Tz)2.. ')10°)

= (OOIHIOO)+ (00IHT2Io0)

= EHF + L (prxllmll)t:;
m>n
a>p

(4.16)

where we have used the fact that (OOITz= O because of the appearance of
,'+s+prx in Tzo We have algo used the fact that (00IHT2TzI00) vanishes
because T~IOO)is quadruply excited and hence cannot couple through H to
(0°1. The t:; amplitudes are determined by projecting Eg. (4.12) against
doubly excited kets (:J'I to obtain

0= (:;1 exp(- Tz)H exp(Tz)IOO) (4.17)

Expanding the exponential then allows one to see that the Dulynonvanishing
contributions are contained in

0= (:;IH(l + Tz + ln)IOO) + (:;I( - Tz)H(l+ Tz)IOO) (4.18)

which shows that we obtain Doly a quadratic equation for the cluster ampli-
tudes when T ~ Tz. Explicitly evaluating the matrix element appearing in
Eq. (4.18) then leads to the following nonlinear equation for the cluster
amplitudes:

(Bm+ Bn- Ba - Bp)t:;
= (mllllrxp)- L (mllllpa)t~»- L (y(jllrxP)t~;

p>a y>~

+ L «YIIIIPp)t:! - (ymIIPp)t:~- (Yllllrxp)tP'!+ (ymllo:p)ti:n
yp

+ L (y(jllpa)[t~»t~;- 2(t:ift;i + t:»t~f)
y>~
p>a

- 2(t~tSi + t~~tp';)+ 4(t~~tii~+ t:~tp'f)] (4.19)

In the next sections we describe how solutions may be obtained to Eq. (4.19)
and we discuss the relationship of the solution thereby obtained to results
of MBPT.

E. PERTURBATIVESOLUTlON TO THE
COUPLED-CLUSTEREQUATIONS

We describe herc how Eq. (4.19) may be solved in a manner that shows
the connection between the CC and the MBPT approaches. We solve
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Eq. (4.19) in an iterative manner by perCorming an initial guess oC{(.;,} and
then inserting ibis value on the right-hand side joto Eq. (4.19) to obtain an
improved set oCvalues oC{t~p}.These are then inserted back joto the right-
band side oCEq. (4.19) to again give us improved values oC{t~;,}.etc. As an
initial guess oCthe duster amplitudes we set those amplitudes that appear
on the right-hand side of Eq. (4.19) equal to zero. The motivation for ibis
choice is that the term s containing t on the right-hand side of Eq. (4.19) are
assumed to be smali er than those on the left-hand side of ibis equation. We
then obtain the following expression for the amplitudes:

t:'P= (mnllocfJ)(em+ ell- ell - e/l)- 1 (4.20)

Inserting ibis value of 1':; joto the CC expression for the total energy as
given in Eq. (4.16) yields

E = EHF + L (fJocllmn)<mnllocfJ)(em+ Ell- ell - e/l)-I (4.21)
m>1I
11>/1

This expression is nothing but the result obtained in second-order perturba-
tion theory, which is written explicitly in Eq. (3.38).

A second iteration may be carried out by inserting joto the right-hand
side of Eq. (4.19) the dusteramplitudes obtained above. If we then neglect
the terms that are quadratic in the t:; amplitudes [the eighth through four-
teenth terms on the right-hand side of Eq. (4.19)], we obtain duster ampli-
tudes that, when used to compute the energy E via Eq. (4.16) give the same
algebraic expression as is obtained in third-order MBPT (see Problem 4.1,
question 1). If these duster amplitudes are then inserted joto the right-hand
side of Eq. (4.19) (keeping the quadratic terms ibis time), we obtain new
amplitudes that, when used to compute E, give all contributions to the
fourth-order MBPT energy that arise erom quadruple excitations [C4 in
Eq. (4.10)]. From the form of OUTworking equation, Eq. (4.19), it is further
elear that the quadruple excitations obtained in ibis way caD only arise erom
the l(Tz)z and - Tz Tz terms. These terms. in a sense, correspond to iwo
simultaneous interactions of iwo electrons (electron pair interaction). The
T4 term, which corresponds to a true four-body interaction, fiest enters at
fifth order in perturbation theory, thus indicating that electron pair inter-
actions are much moce important than true ronT-body interaction (Sinanoglu,
1962). Ali fourth-order energy diagrams caD, of COllege,not be obtained by
approximating T with T z, since both single and triple excitations contribute
in fourth order. To obtain all fourth-order diagrams in a CC calculation
would require both TI and T3 to be induded in the duster expansion.

The iterative process carried out when determining the duster amplitudes
erom Eq. (4.19) may be continued by inserting the duster amplitudes erom
one iteration joto the right-hand side of Eq. (4.19) to obtain the new ampli-
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tudes. The converged result would then correspond to summing all diagrams
that contain double and products of double excitations through infinite order.

F. NEWTON-RAPHSON METHOD

Clearly, either the equations obtained by taking T ~ 1; [Eq. (4.l9)] or
the general quartic equation obtained erom Eq. (4.13) are nonlinear and
multivariable. Such equations caD be represented in matrix form (by defining
t~.pas the /'s,afJelement of the t column vector) as

O = a + bt + ctt (4.22)

where, for example ar..all= <rsllafJ) [see Eq. (4.19)]. The solution of these
nonlinear algebraic equations represents a substantial practical difficulty in
implementing the CC method. To solve these equations one can employ the
perturbative analysis described above. This technique has the advantages
that it is straightforward to program on a computer and that it haS"a close
connection with MBPT.

An alternative to the above described perturbative procedure is the multi-
variable Newton-Raphson method. Such methods were used in the first
molecular CC calculations (Paldus et al., 1972).Here, one attempts to choose
t such that the vector f(t) defined as

f(t) ==a + bt + ctt (4.23)

becomes equal to zero. This is clone by expanding f(t) about the "point"
to. Keeping only linear terms in ibis Taylor expansion and seUing f(t) equal
to zero, one obtains equations for the changes tlt in the t amplitudes, which
caD be expressed as

(
a'lr..

)f
rs

(t) = O= f
rs

(t ) +" ~ MuWa/l a/l o L.., ~tUW y~
uw (J I'~ to
y.!

(4.24)

The step lengths (corrections to to) caD be obtained by solving the above
set of linear equations and then used to update the t amplitudes

t = to + tlt. (4.25)

These values of t caD then be used as a new to vector for the next application
of Eq. (4.24). This multidimensional Newton-Raphson procedure, which
involves the solution of a large num ber of coupled linear equations, is then
repeated until the tlt values are sufficiently smali (convergence). Given the
set of t~p amplitudes, Eq. (4.16)caD then be used to compute E. AlthQlIgh
the first applications of the coupled cluster method to quantum chemistry
did employ ibis Newton-Raphson scheme, the numerical problems involved
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in solving the large multivariable inhomogenous equations [Eq. (4.24)]bas
led moce recent workers to use the perturbative techniques discussed in
Section E. Within the perturbative framework,mocesophisticated methods
have been developedto solvethe large numberof quadratic(for T~ T2)
equations that arise. One soch device is based opon the so-called reduced
linear equations technique, which bas algobeen widelyused to find selected
eigenvaluesand eigenvectorsoflarge CI matrices (Davidson, 1975).

G. SUMMARY

Although the CC method possesses several advantages over CI and
MCSCF approaches, the fact that the resultant set of CC equations that
determine the t~~ . . . amplitudes are nonlinear and of very large dimensions
even for modest-sized systems, bas marle the practical applications of ibis
theory rather limited. An analysis of the relationships between the solutions
of the nonlinear CC equations and the solutions of corresponding CI secular
problems bas recently been provided (Monkhorst and Zivkovic, 1978).This
analysis thus provides same reagan for optimism concerning the possibility
of finding efficient mechanisms for solving the CC equations. However, at
present, the nonlinear nature of the equations to be solved stm makes the
practical utilization of the CC method something toward which we are stm
working. Research aimed at achieving efficient solutions of the quadratic
(or even quartic) coupled equations and at extending the CC development
to open-shell and multiconfigurational reference states is necessary if the
CC method is to become widely used in quantum chemistry.

PROBLEMS

4.1 Perform a CC calculation where T is approximated with T2.
1. Show that the CC equations may be iterated to yield cluster amplitudes

that, when used in the energy expression, give the MBPT third-order energy
expression [see discussions following Eqs. (4.20) and (4.21)]. The third-order
MBPT energy expression is given in Problem 3.2.

Carry out a CC calculation on HeH + using the minimum basis HF results
found in Problem 2.1. In performing ibis calculation follow the steps given
helowo

2. First use a linear (truncated) form of the CC equation to determine
the numerical values of the tr;;parameters and then use these parameters
to compute the corresponding correlation energy.

3. Argue that although the above linear form (question 2) of the CC
equation and the perturbative solution (question 1) yield amplitudes that
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have the same formai structure, the correlation energyof HeH+ determined
in question 2 and in third-order MBPT (question 1 and Problem 3.2) dilTer.

4. Use the quadratic form of the CC equations (which clearly has Iwo
solutions) to determine the values of the Iwo sets of t;;parameters.

5. Evaluate the total energy and the correlation energy contribution for
both of these Iwo sets of solutions.

6. Show that the CC equations in Eqs. (4.16) and (4.18) and the CI eigen-
value equation lhal contains doubly excited states become identical for a
two-basis-function two-electron problem. Why do the twa configuration CI
total energies of Problem 2.4 and the CC total energies of question 5 dilTer?

Consider now IIHeH + molecules that are separated at infinite distance
with each molecule described by the localized SCF orbitais or Problem 2.1.

7. Show by carrying out a perturbative solution to the CC equations
as described in Section E that the correlation energy for the Il HeH + mole-
cules becomes identical to /I limes the correlation energy of a single HeH +

molecule and that the CC model thus is size consistenl.

SOLUTIONS

4.1

1. When the CC amplitudes on the right-hand side of Eq. (4.19) are set
equal to zero, we get

t;; = (nmllcxp)(em+ en- e~- e/l)- l

Inserting this value or t':; on the right-hand side or Eq. (4.19) gives the next
approximation to t':;:

t;;=(em+en-e~-e/l)-l [ (mllllcxP) - L (mllllpa)t~J- I (}'c5lllXp>t~
p>q r>~

+ L (}'IIIIPp)t~~- (}'IIIIIPp)t:V- (}'lIlllXp)ti:'t+ (}'lIllllXp)tpn
]rp

The fiest term in the square brackets results in the second-order energy
expression [Eq. (4.21)] when used in Eq. (4.16).

The second term in the square brackets gives, when inserted into Eq. (4.16),
the correlation energy contribution

- L (plXllnm)(/Itllllpa>(paIIIXP)
m>n (em + I'.n- I'.~- 1'./I)(l'.p+ I'.q - I'.~ - 1'./1)
/I>~
p>q

which is identical to diagram A in Fig. 3.7.
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The third term gives

- L <palImn)<yJIlaP) <mnllyJ)
m>n (8m + 8n - 8a - 8p)(8m + 8n - Ey - e,,)
a>p
y>"

which is identical to diagram B of Fig. 3.7.
The last four terms give

L <pallmn) L «ynIlPp)t::- <ymIIPp)t:f
m> n (Em + Bn - Ca - Bp) yp
a>p

- <ynllap ) t';;:+ <ymllap )tjj~)

Substitution of variabies [e.g., in the fiest term we substitute (m -+ p, a -+ y,
i y -+ p, n -+ m, p -+ a, p -+ n)] allows these four terms to be rewritten as

+ L <ayllpm)<pmllan)<pnllyp)
p>m (Bp + Bm - Ca - By)(ep + En - ey - Bp)
y>a
pn

- L <ayl Imp)<pml lan) <pnllyp)
m> p (em + Ep - Ea - Cy)(Bp + En - Cy - ep)
y>a
np

- L <yallpm)<pmllan) <pnilyP)
p>m (Bp + Bm - ey - c,,)(ep + Cn - ey - Bp)a>y
np

+ L <yallmp)<pmllan)<pnllyp)
m> p (Bm + Ep - Cy - Ba)(Cp + En - ey - Ep)
a>y
np

The above four terms when collected together give diagram C of Fig. 3.7.
Hence, all second- and third-order diagrams have been accountered for.

2. The anty nonvanishing cluster amplitude is ti:i~. Equation (4.19) gives

0= <22111) + ti:i~(2El - 2e2- <22122) - <11111) +4<12112) - 2< 12121»)

which gives ti:i~ = 0.0559. Inserting this value in Eq. (4.16)gives the cor-
relation energy contribution

j1

AEcorr = -0.0070 a.u.

Notice that although ti:i~ is positive, the correlation energy of Eq. (4.16)
is negative, because <pallmn) = -<11122).
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3. Both the third-order MBPT and the approximation in question 2 use
a linear form ofthe CC equations. However in the MBPT solution (question
1) the cIuster amplitudes used in Eq. (4.19) are determined erom perturba-
lian theory, which results in a second- and third-order correlation energy
of -0.0066 (Solution 3.2, question 5). The nonperturbation solution or
question 2 is different erom the one obtained in question 1 and gives a cor-
relation energy - 0.0070.

4. The quadratic CC equation reads

0= <221li) + t:::~(2Et - 2E2- <22122) - <li IlI)

+ 4<12112) - 2(12121» + <11122)t:::gt:::~

which gives

t:::~ = 0.0560, a::~ = -17.8432

5. a::g = 0.0560, E = -4.2791, Ecorr= -0.0071
a::~ = -17.8432, E = - 2.0220, Ecorr= 2.2500

6. The CC (Schrodinger)Equation (4.12)contains anty linear terms in
T2 when applied to a two-electron system:

(1 - T2)H(1+ T2)IOO)= EIOO)

When this equation is projected against <°°1 and <:::~I = <ni one obtains

<OOIHIOO)+ <OIH!n)t= E

<nlHIOO)+ <nlHln)t - t<OoIHIOO) - t2<0IH!n)= O

where a::g is denoted t. Substituting Eq. (A)into Eq. (B)gives

<nlHIOO)+ <nlHln)t = Et

(A)

(B)

(C)

Equations (A) and (C) are nothing but the CI eigenvalue problem written
out in component form for an intermediate normalized eigenvector with
components (I, t). The CC to tal energies (-4.2791, -2.0220) and the CI
to tal energies (- 4.2790, - 2.0079) differ anty because or numerical errors
caused by using rour significant digits in the integraIs.

7. When the cIuster amplitudes in the nonlinear part of Eq. (4.19) are
set equal to zero (as in lhe fiest slep or the perturbative solution), lIte anty
nonvanishing cIuster amplitudes that remain (see the solution to question 1)
are those involvingaUrour orbitaIs in t;;located on the same HeH + moIec-
ule. This result is due to the fact that integrals involving orbitaIs on different
HeH+ molecules are zero. Continuing this iterative process does not intro-
duce cIusteramplitudes that couple differentHeH + moleculesagain because
integrals involving orbitaIs on twa or moce different molecules vanish. Hence,
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the CC equations separate joto equations for each HeH + molecule. Conse-
quently, the correlation energy as computed via Eq. (4.16) for n HeH + mole-
cules will be n limes the contribution from a single HeH + molecule.
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Chapter 5 I Physical Properties

A. CLASSES OF PROPERTIES

Given wavefunctions belonging to one or moce states that are obtained
erom an MCSCF, HF, CI, RSPT, or CC calculation, one is often interested
in subsequently using these wavefunctions to compute physical properties of
the system other than the total electronic energy. Below we discuss how the
three distinct classes of properties-expectation values, transition properties,
and response properties-may be evaluated, and we show aIso how stationary
points on the potential energy surface may be determined using a quadrati-
cally convergent procedure.

1. Expectation Values

Stale average values soch as dipole and quadrupole moments and electron
spin densities are usually evaluated as expectation values of their corre-
sponding quantum-mechanical operators. For example, the electronic con-
tribution to the dipole moment operator is

r = L e<4>ilrl4»i+j
i,j

(5.1)

and theelectroniccontribution to the dipole moment ofstate lO) thus becomes
- <OlriO).In evaluating expectation values, we most be careful that the wave-
function being used is of sufficiently high quality to pennit accurate results.
For example, in computing the expectation value of the electronic contribu-
tions to the dipole moment beyond the SCF level, it is important to include
singly excited configurations in the CI or MCSCF wavefunction. A perturba-
tion analysis of the order in which singly excited, doubly excited, etc. con-
figurations enter in the calculation ofthe dipole moment makes ibis statement
easily understood. The fugi-order RSPT function, which includes only doubly
excited configurations (relative to the single determinantal zeroth-order

IO~
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function 1O°», yields a dipole moment average value that differs erom
(OOlrIOO)only in second order since (OOlrl~p)vanishes as a result of the fact
that r is a one-electron operator. As both the singly and doubly excited states
contribute in second order, it becomes equally important to include both
singly and doubly excited configurations in the calculation. This observat,ion
demonstrates the point that those configurations that are optimal for de-
scribing the to tal electronic energy may not be adequate for obtaining accu-
cale expectation values. This conclusion is naw generally accepted as applying
to all types (MCSCF, CI, HF, CC) ofwavefunctions and is important to keep
in mind when choosing which configurations to employ in aDYcalculation.

Within the class of expectation values, we might also include calculations
or electronic excitation and ionization energies as differences in individual
stale energies. The excitation and ionization energies ale smalI numbers
com pa red to the individual stale to tal energies. For this reason, alternative
procedures have been developed that caD be employed to directly calculate
such excitation (and ionization) energies as well as their corresponding oscil-
lator strengths and that avoid the difficulties that might appeal when sub-
tracting twa large num bers the difference of which is a smalI number. These
direct evaluation techniques are based upaD the so-called Green's function
(GF) methods described in Chapter 6. The energy differences obtained either
erom a GF or by subtracting twa wavefunction expectation values no longer
have the upper bound pro perty that individual stale energies possess. Thus,
there is no fundamental reason to insist that excitation energies be calculated
as differences between stale expectation values each of which are upper
bounds to twa stale energies.

2. Transition Properties

The second class of quantities in which one is likely to be interested we
refer to as transition properties. They include, for example, the electric dipole
transition moment <Olein)betweenstationary states l°) and In). The primary
difficulty in evaluating such transition moments bas to do with treating the
overlap between nonorthogonal orbitals that arises in computing <Oli+jln).
That is, unless In) and l°) ale both expressed as linear combinations of
determinants involving a common set of orthonormal spin-orbitals, the
determinants in In) will not be orthogonal to those in l°). Rather than being
an exceptionally race. situation, this is actually the most likely case. For
example, MCSCF calculations or INO-CI calculations on twa electronic
states of a molecule invariably result in different optimal (MCSCF or INO)
orbitals for the twa states. Although these nonorthogonality problems do
indeed make the evaluation of transition properties quite difficult, it is still
possible to compute the requisite overlap matrices and thereby obtain the
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desired quantity. However, ibis formidable difficulty provides strong moti-
vation for us to trent the evaluation of transition moments through the GF
framework as described in Chapter 6. Suffice it to sar for now that these GF
methods are designed to yield both transition moments and electronic energy
ditTerencesdirectly rather than as matrix elements and energy ditTerences of
iwo separate stalego

3. ResponseProperties

In addition to expectation values and transition moments, we have a third
cIass of important physical properties, which we refer to as second-order
response properties. To develop some understanding for the meaning of and
theoretical methods for studying these responses, lei us investigate the
response of a stale l°) corresponding to H to an external time-independent
one-electronperturbation (aHl)

H-+H+aHl (5.2)
(

Such perturbations could, for exampIe, include electric field (a = ,f,) etTectsor
nuclear coordinate displacements. The to tal electronic energy in the presence
ofthe perturbation becomes a function of IXand may (for smalI IX)beexpanded
in a power series

_
I 1

- l 2 . J l 4
E(a) = (OH + aHl O) = Eo -IXE. - la Ez - 6a EJ - Z4a E4'" (5.3)

The terms that are nonlinear in a arise because the stale wavefunction l°)
depends on a (Le., the stale bas responded to aH l' which gives rise to the name
"response pro perty"). When, for exampIe, aH I represents a stalic electric
field (exl!l = 8 .f), El yields the permanent electric dipole moment (JI)of the

unperturbed stale lO), Ez gives ibis state's polarizability (oc),and EJ, E4, etc.
yieId successively higher hyperpolarizabilities (P, y, etc.).

a. Fillite-Field Approach

One war of determining the first- and second-order response properties
would be to calculate the lotnI electronic energy of the system with IXH1
present (using the CI, HF, RSPT, MCSCF, or CC method) for several smalI
valuesof IXand to then attempt to fil thesecomputed E(a)valuesto the series
given in Eq. (5.3).This numericaI procedure is usualIy referred to as the
finite-field method. As an alternative to performing a least-squaresfilto
Eq. (5.3)one may, by judiciously choosing the valuesof the field at which
E(a) is computed, employ versions ofEq. (5.3)that contain anty odd or even
powers of a [E:!: = E(a):t E(-a)].Furthermore, by combining computed
values of E:!:(IX)and E:t(2a), one caD selectiveIy remove higher (odd or even)
powers of IXfrom the resultant equation. For example, by using - tE _(a) +
.l2E_(2a) one obtains Eta + O(rx5)since the EJIXJwas cancelled by tak ing the
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proper (-l, /2) combination of E_(a) and E_(2ex).Alternatively, using E+(ex)
and E+(2ex)one caD obtain

-lE+(ex) + .l2E+(2ex)+ jEo + O(ex6)= ex2E2t..
Again, notice the canceUation of the power of extwa higher than the power
occurring in the property being evaluated. These finite-difference fits (Bartlett
and Purvis, 1979) of Eq. (5.3) to calculated values of E(ex)then permit one to
obtain the dipole moment J1.erom El and the polarizability erom E2.

Although the numerical procedure outlined above may permit one to
efficiently and precisely extract erom computed energy values [E(ex)] the
desired response properties, it by no means guarantees the accuracy of these
properties. The accuracy of the computed response properties is determined
by the quality of the wavefunction 1°) used to evaluate E(ex).ILis not at aU
straightforward to choose an atomie basi s set that permits the orthonormai
molecular orbitais appearing in l°) to properly polarize in the presence ofthe
field. Furthermore, it is difficult to choose a set of configurations for use in
constructing l°) that is certain to yield the same accuracy in the computed
E(ex)values for all values of the fieldstrengths ex.Becauseof these difficulties,
it is important to look for alternative methods for computing response
properties. In Section B, we outline an analytical approach to this problem
that does not involve fitting values of the energy that are computed at finite
values of the applied-field strength.

b. Analytical Approacll
As an alternative that does not suffer erom these difficulties, analytical

expressions for the response properties may be derived. If we are able to
obtain a closed-form expression for the response of a stale wavefunction lO)
to the presence of the "field" exHI'

l°) = A-I/2[1°) + exlOI)+ ex21O2)+"'J

(5.4)

(5.5)

(A is a normalization constant), then this result caD be used in Eq. (5.3) to
express the Hamiltonian expectation value (OIH + exH11°) as a power series
in ex,opon which the desired second-order response is identified as the multi-
plier of ex2.Of COllege,for each specific choice ofthe form of l°) (Le.,MCSCF,
CI, RSPT, CC) the prescription for evaluating Eq. (5.5) is different; the basic
approach is, however, identical for aU soch wavefunctions.

H --+H + exHI + ex2H 2 (5.6)

,
I
i
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~
}

~
j

~

~

B. MCSCF TREATMENT OF RESPONSE

To iIIustrate the analytical approach, let us consider how an MCSCF
wavefunction would respond to a one-electron external perturbation of the
form
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The totaJ energy of the system in the presence of the externaJ field may be
written as

E«(X,A,S) = <Olexp( - iS) exp( - iA)(U + (XUt+ (X2U2) exp(iA)exp(iS)IO)

= <OlU + (XUI + (X2U21o) - ;<O1[S + A,U + (XUIJl°)

+ l<OI[S, [U,SJJIO) + l<OI[A,[H,AJJIO)

+ <Ol[S, [U,AJJIO) +... (5.7)

The vaJues of P and Kappearing in S and A,respectiveJy, may be expanded as;
power series in (X:

S = SIO) + (XS(I) + (X2S(2) + . . .

A = A(O) + (XA(I) + (X2A(2) + .. .

(5.8)

(5.9)

Since the A and S operators are determined by making the to taJ energy
expression in Eq. (5.7) stationary, the zeroth-order terms that appear in
Eqs. (5.8) and (5.9) become zero because the stale l°) was optimized in the ~

absence ofthe one-eJectron perturbation. The term s - i<OI[A(I)+ S(1),UJ l°),
which are offirst order in (x,and - ;<O1[A(2)+ S(2),UJ l°), which are of second
order, vanish because ofthe GBT. Hence, in Eq. (5.7)all ofthe terms remaining
shouJd be viewedas containing A(I) and S(I)since we are onJykeepingterms
up through (X2in aur energy expansion.

Using. Eqs. (2.29) and (2.30), we may express the above totaJ energy in a
form similar to the one given in Eq. (2.25):

E ((X,A,S) = E(O,O,O)+ (X<OIUtIO) + (X2<0Iu21°)

- (X2(KP)(~)+ (KP)(A- B)(;) +. . .
(5.10)

where the matrices F and G are defined as

F = <OI[Q,UIJIO)

G = <OI[R,HtJIO)

(5.11)

(5.12)

and Q and R are given in Eq. (2.26).
Since the totaJ energy must be stationary in the presence of the externaJ

perturbation, we may determine K and P from Eq. (5.10). Neglecting third-
and higher-order term s, we obtain by dilferentiating with respect to Kand P

-2(X(~) + 2(A- B{;) = O

which may be written as

(5.13)

(;) = (X(A - B)-I (~) (5.14)
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~Note that the A - B matrix is evaluated erom Eqs. (2.29) and (2.30) and doesw'

~. not contain H I or H2' Using Eq. (5.14) to eliminate Kand P in Eq. (5.10),we
obtain an expansion of the total energy as a function of a:

E(ex)= (OIHIO) + ex(OIHIIO)+ ex2(0IH21°)

- ex2(FG)(A - B)-I (~) + O(ex3)
(5.15)

Notice that in ibis MCSCF result, the multiplier of exis equal to the expecta-
tion value ofthe perturbation operator H I' We have thus obtained an analyti-
cal expression erom which to determine the desired first- and second- order
response properties. This analytieal approaeh for determining the seeond-
order properties is referred to as the eoupled multiconfiguration Hartree-
Foek (CMCHF) approaeh (Dalgaard and J~rgensen, 1978).

If only one eonfiguration is used for expanding the reference stale lO) the
above development ean still be used to give

E(ex)= (OIH/O) + ex(OIHdO) + ex2(01H21°)
- ex2F(AII - BII)-IF + O(ex3) (5.16)

where Ali and Bil are defined in Eqs. (2.29) and (2.30). This approximation
to seeond-order properties bas been denoted the coupled Hartree-Fock
(CHF) method.

C. CI RESPONSE PROPERTlES

In a CI approach to ibis same problem, the variation of the referenee stale
is deseribed through variations in the eonfiguration expansion eoeffieients.
These variations may be deseribed either by the exp(iS) operator or through
the linear variational parameters Cgo' Beeause orbital variations are not
considered in sueh a CI ealculation, first- and second-order properties may
be easily determined erom Eq. (5.15) by negleeting aU terms that involve the
orbital optimization parameter K:

E(a) = (OIHIO) + ex(OIHdO) - ex2GAijG + O(ex3)+ ex2(01H21°) (5.17)
where

and
Gn = (nlH 11°)

(An)mn = (mIHln) - bmn(OIHIO)

(5.18)

(5.19)

The matrix An eontains the CI matrix involving aU ~tates In) exeept the
reference stale l°). Carrying out a CI ealculation (with H not including exHI)
within this orthogonal eomplement spaee would lead to the foUowing farni1- ,)~

~
,I
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jar expression for the second-order property:

GA221G= L 1<0IHlln)12(E"- EO)-I
"*0 .

(5.20)

However, this diagonalization of <I1IHlm) is not necessary; Eq. (5.17) still
gives the CJ approximation to the desired second-order property. ILshould
be noted that the second-order properties obtained erom Eq. (5.20) simulate
a finite-field CJ calculation where the same orbitaIs are used to obtain the

to tal energy at various strengths of the field. Hence, it is appropriate to take
K = O in deriving Eq. (5.20) because the orbitaIs used have not been deter-
mined in the presence of the external field.

A finite-fie'd CI calcu'ation in which the orthonorma' orbita's used to

construct lO) are determined via an SCF calcu'ation in the presence of the
applied field could not easily be described in the analytical framework given
here. Taking K = O is not appropriate because the orbitaIs are "optimized"

with the field presenL. However, the orbitaIs are determined erom a single-
configuration (SCF) ca1culation rathel' than through the simultaneous
optimization of K and P for a multiconfiguration wavefunction. Hence a
significant disadvantage of such a finite-field CJ method is that it caD not
easily be directly connected with the analytical response equation given
earlier.

D. THE HELLMANN-FEYNMAN THEOREM

It follows erom the above MCSCF-based derivation that the Hellmann-
Feynman theorem is fulfilled both for SCF and MCSCF wavefunctions since
Eq. (5.15) yields, upon differentiation with respect to oc,

d~~OC)Lo = <OIHIIO)
(5.21)

It should, however, be pointed out that this result is a consequence of the
fact that the SCF and MCSCF wavefunctions lO) have been optimized with
respect to all variational parameters in lO) and that AIO)and SIO)in Eqs. (5.8)
and (5.9) therefore vanish. Jf the orbita' optimization is carried out using
a limited number of the total set of variational parameters in lO), the ex-
pansions in Eqs. (5.8) and (5.9)contain zeroth-order elements. The expansion
of the total energy E(oc)would then contain fiest-order terms in. ocbeyond
<OIH110) and the Hellmann-Feynman theorem would thererore not be
fulfilled. This is the case in a 'imited CI calculation where the orbita' vari-

ations are not considered explicitly [Eq. (5.9) contains zeroth-order terms].
ar course, the Hellmann-Feynman theorem is fulfilled in the fuli CJ limit,
where the orbital optimization parameters are redundanL.
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THE COUPLED-CLUSTERRESPONSE PROPERTIES

The above described linear-response approach to calculating first- and
:ond-order properties caDalgo be applied within the CC and RSPT frame-
orks. In the former (Monkhorst, 1977) theory we consider the CC working
uations for a Hamiltonian to which a one-electron perturbation a.H1 bas
en added:

H(rx)= H + rxH1

exp[ - T(rx)]H(rx)exp[T(a.)] 10°) = E(a.)IOO)

(5.22)

(5.23)

eglecting the variations in the orbitais when the field is applied, the equation
r E and the duster amplitudes t~po::.,

(OOlexp[ - T(rx)]H(rx)exp[T(a.)] 10°) = E(rx) (5.24)

d

Gp'::.1 exp[ - T(rx)]H(rx)exp[T(rx)] 10°) = O (5.25)

n be expanded in powers of the field rxODcethe duster operators T(rx)and
°a.)are so expanded:

T(rx) = To + d\f(1) + a.2T(2) + . . .

E(rx)= Eo + rxE(1)+ rx2E(2)+ . . .
e resultant first- and second-order equations read

(5.26) .

(5.27)

E(I) = (OOlexp(- TO){H1 + [H, T(l)]} exp(TO)IOO)

O= <~po::olexp(- TO){H1+ [H, T(1)]}exp(TO)IOO)

(5.28)

(5.29)

d

E(2) = (0°1exp( - TO){[H I' T(1)] + t[[ H, T(I)], T(I)]

+ [H, T(2)]} exp(TO)IOO)

O = <~i;::0Iexp(-ro){[H1, T(I)] + U[H, T(1)], T(I)]

+ [H, T(2)]}exp(TO)IOO)

(5.30)

(5.31)

;pectively. The zeroth-order (in rx)equations are, of course, nothing but
e original CC equations in the absence of rxHl' We assume that we have
'eady solved these equations. 1t is probably most reasonable to choose
1) and T(2) to contain the operators r+ s+ . . . rxp. . . , which are of no
~her duster size than those in To (e.g., To = Tl + T2 is quite likely to be
osen for physical and practical reasons).
The above fiest-order equation for T(I) [Eq. (5.29)] expresses a set oflinear
gebraic equations for the duster amplitud es in T(1),which caD be written

~.
,.,
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in matrix form as

Dt(1) = Hl

where the elements of Hl and D, respectively, are

- Gp'::.1exp( - TO)Hl exp(TO)IOO),

<~p.::.1exp( - TO)[H,I'+ q+ . . . y~' . .] exp(TO)IOO)

(5.32)

In principIe, D and H. caDbe computed in terms ofthe known (unperturbed)
cluster amplitudes and integrals involving the H l operator. The second-order
equation that determines T12)caDalso be expressed as a set of linear algebraic
equations

Dt(2) = C

where D was given above and C has eIements

(5.33)

- Gii::.1 exp( - TO){[H l, TIl)] + ![[H, TII)],TO)]}exp(TO)IOO)

Clearly, the evaluation of C requires that Eq. (5.32) first be solved for T(l).
Then given TlI) and T(2), Eqs. (5.28) and (5.30) caD be used to obtain the
desired first- and second-order response properties as EO) and E(2),respec-
tive!y. We should point out that the term T12)arising in this CC deve!opment
has no analog in the MCSCF treatment given earlier. The absence of soch
quadratic terms in the MCSCF analog arises because, even if the energy
expression given in Eq. (5.7) contained the term -i<01[SI2) + ,.1,(2),H]IO),it
would vanish by the GBT. In the CC treatment of E12)one needs both TIO
and T12)because the CC wavefunction does not obey a GBT. We should
also mention that, unlike the analogous result for the MCSCF response
properties, the CC linear response energy E(I) is not simpIy equal to the
average value of Hl' The term <OOlexp(-TO)[H, T(I)]exp(To)IOO) has no
counterpart in the MCSCF expression for Ell). In the event that the CC
unperturbed energy <°°1exp( - TO)Hexp(TO)IOO)were stationary with re-
spect to variations in T, this term would vanish.

F. PERTURBATIVECALCULATlON
OF RESPONSE PROPERTlES

The RSPT or MBPT approach to computing response properties for
atomie and molecular system is, in principle, straightforward (Kelly, 1969:
BarIett and Silver, 1975). The perturbed Hamiltonian H + aH I is decom-
posed joto an unperturbed part Ho, which is most commonly taken to be a
HF HamiItonian, and a perturbation that contains both aH l and (H - Ho):

H(a) = Ho + aH1 + H - Ho (5.34)
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rhen RSPT or MBPT is employed, as diseussed in Chapter 3, to calculate
:>erturbation eorreetions to the system energy. However, the terms Ej")are no
onger simply grouped together aeeording to their order in the tatar per-
urbation rxH1 + (H - HO)but rather they are regrouped and labeled by
wo order indiees Ej".m),which tell their separate orders in rxH1 and (H - HO),
espeetively. This additional decomposition is introdueed beeause it is not
~raetical to formulate a perturbation theory of the system's response to
cH1 in term s of the exaet eigenstates of the fuli H.
;The desired first- and seeond-order response properties of the stale JJ>
lee calculated by summing Ejl.m)and EjZ.m),respeetively, over the index m
labeling order in H - HO):

00

E(1) = L Ejl.m)
m=O

(5.35)

00

EIZ) = L E)Z.m)
m=O

(5.36)

'or praetical reasons related to diffieulty and expense in evaluating the
ligher-ordereontributions to Ejl.m)and EjZ.m),the index m is usually limited
o rather smali values.
I Either the algebraie methods of RSPT or the diagrammatie methods of
~BPT caD be used to evaluate Ejl.m)and Ejz.m),as deseribed in Chapter 3
~ term s ofthe usual orbital energies, two-eleetron integrals, and one-eleetron .

ntegrals involving HI «4>rlH114>.».Beeause bot h forms oC perturbation
heory yield energies that are size eonsistent, the evaluation oCresponse
Iroperties as Ell) and EIZ)guarantees that these properties will also be size
onsistent. As an example oChow second-order properties may be evaluated,
~edisplay in Fig. 5.1 for a set oCHF orbitaIs all ofthe zeroth- and fiest-order
in eleetron interaetion) diagrams appropriate to a second-order response
Iroperty whose perturbation operator [rxHI oCEq. (5.2)] is denoted by a
quare figure. The evaluation oCeaeh oC these diagrams is treated in the
I

L
, A

--L

c

~
B

'c

"

tjFIG.S.1. Alt zeroth- and first-order dia-

grams for a second-order response property.
'.1

~j
::.,

~ (fv:
D
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manner described in Table 11of Chapter 3 with the matrix elements of the
(one-electron) perturbation rxRI being treated as the one-electron operator
V. For example, the value of diagram D in Fig. 5.1 is given by

D = (-1)2+2 L (PlrxR IIp)(pqIIPY)(ylrxR ,Iq)
pq (Ey + Ep - El' - Eq)(Ep - ~
~ f

The evaluation of aU the diagrams in Fig. 5.1 would thus give thecdesired
second-order pro perty consistent through first order in electronic interaction.

(5.37)

G. MOLECULAR GRADlENTS AND FORCE CONSTANTS

The determination of minima and saddle points on the potential-energy
surface of a molecule plays an important role (Schaefer and Miller, 1977,
Chapter 4) in deseribing the electronic structure and chemical reactivity of
molecules. In ibis section, we show how such stationary points on a mole-
cule's potential energy surface may be found by using an approach similar
to that employed in Section 5.B. We first eon sider how the eleetronic
Hamiltonian changes when the nuclear positions are changed erom an
initial set of positions, R~ to RA' i.e., RA-+ R~ + DA.The eleetron-nuclear
interaetion is the only term in the Hamiltonian that depends explicitly on
the nuclear position. Performing a Taylor expansion of ibis potential about
the point R~, we obtain .

Ir-RAI-I =lr-R~-uAI-1 =lr-R~I-I-(uA'V)lr-R~I-1

+ !(DA' V)21r - R~I-' + O(D~)
(5.38)

We may thus identify the changes in the eleetronie HamiItonian through
seeond order in the nuclear displaeements(DA)as

VI = L + ZA(4J,I[(DA'V)lr- R~I-']I4Js)t+s
A
's

(5.39)

V2 = L - !ZA(4J,I(DA' V)21r - R~I-'I4Js)t+s
A
's

(5.40)

Here, VI clearly represents the forces on the eIeetrons due to the nuclear
displaeement, whereas V2 deseribes eleetrie-fieid gradient terms indueed by
movement of the nuclei. A stationary point on the potentiaI energy surface
oeeurs when the average value of the first-order term in zero:

(OWljO) = O (5.41)
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s demonstrated below, stationary points on the potential-energy surface
ay be determined in a quadratically convergent procedure using an

nalytical expression for the total energy that is accurate through second
,rder in the nuelear displacement, and a Newton-Raphson procedure to
etermine the step length of the nuelear displacement. We now develop a
'rocedure for carrying out such gradient calculations when lO) refers to a
ICSCF wavefunction, Since the changes in the eIectronic Hamiltonian are

letermined in Eqs. (5.39) and (5.40) through second order in the nuelear
'splacement, an analytical expression of the to tal energy through second
'der in the nuelear displacement may be determined erom the coupled
ulticonfiguration HF expression for the latal energy given in Eq. (5.15)

nce aR I is identified as VIand a2J-/2 as V2. The first-order term a<OIJ-/IIO)
Eq. (5.15) may be written as

<OWIl°) = L DA. V lA
A

(5.42)

here the cartesian components of the foTce vector for displacement of
ueleus A are

VIA = (ViA' VIA' ViA) (5.43)
ith

viA = ~ ZA < 4>ti[ :i Ir - R~I-1J l4>s)<Olt+sIO),

he second-order term a2<01J-/lI0) becomes

<OW21°) = L DA' VlA . DA
A

'here VlA is a tensor operator, the components of which are de~ned as

i = x, y, z (5.44)

(5.45)

j' "I

I[
a2

I ol-I
JI

I + I'1A=f:-2ZA<4>t 2iajr-RA 4>s)<Otsa),
i,j = x, y, z (5.46)

he matrix aF given in Eq. (5.11) may similarly be written as

aF = LDA' FA
A

(5.47)

here

F~ = ~ ZA<4>ti[~iIr - R~I-IJl4>s)<OI[Q,t+s]IO),
i = x, y, z (5.48)

od an analogous expression caD be written for the aG matrix of Eq. (5.12).
he lagi term of Eq. (5.15) therefore caD be written as

L DA . DABDB
AB

(5.49)
~
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where the tensor operator DAB is definedthrough its components as

.. .. t (
F~)D'1B= (F~G~)(A - B)- G~' i,j = x, y; z

The total energy that contains all terms through second order in the nuelear
displacement may thus be expressed as

(5.50)

E(u) = <OIHIO) + L UA .V tA + L UA . MAB . UB
A AB

(5.51)

where

MAli = V2A()AlI - DAli (5.52)

is the COfceconstant matrix. This expression contains Hellmann-Feynman
Cofceterms in VIA' field gradient terms in V2A, as wen as terms in DA8 that
describe how the MCSCF orbitals and CI coefficients respond to displace-
ments of the nuelei. A stationary point on the molecular potential energy
surface is determined when t5E(u)= O. Neglecting third- and higher-order
terms in the energy function given in Eq. (5.51) and dilferentiating with
respect to u thus gives

Vt + 2Mu = O (5.53)

where Vt and u are column vectors containing the elements ViA, nA, V1A,
ViII, ... and u~, u~, u~, UB,"" respectively. The elements of the matrix
M are defined as the components of the tensor operator MABin Eq. (5.52):

(M)Ai,Bj==M~B' i,j = x, y, z

The nuelear displacements are thus given as

u = -iM-ty t

(5.54)

(5.55)

In the above derivation we have assumed that the atomie orbital basis
employed in forming the MCSCF orbitais was complete. This assumption
allowed us to write [in Eqs. (5.39) and (5.40)] the Hamiltonian both at R~
and R~ + UAin terms of the MCSCF orbitals, which were obtained erom
an MCSCF ealculation performed at the "starting" geometry R~. In most
molecular calculations, limited basis sets are used and the basis therefore
depends on lhe nuelear positions. This dependence was not considered in
the above derivation although it may be quite important depending on the
basi s set used in aDYpartieular ealculation. Let us naw assume that we shall
attempt to deseribe the potential energy surfaee of a molecule by using an
atomie orbital basis that is attached to the atomie nuelei and that thus moves
with the nuelei. The above deseribed formalism will be useful in locating the
desired stationary points on the potential surface if both the first and second
derivatives (with respect to nuelear displaeement) oC the dominant basis
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orbita1s caD be expanded in this basis. This caD be scen by considering that
the coulomb potentia1 jr - RAI- 1 of Eq. (5.38), when integrated over an
electronic charge density per), yields an interaction energy that caD be ex-
panded in powers of UA==RA - R~ either by expandingIr- RAI-1as in
Eq. (5.38) or by expanding the charge density per - UA).The expansion of
this charge density then gives rise to the derivatives of the atomie basis
orbitaIs. This criterion-thatthe first and second derivatives of the important
basis functions caD be expanded in the same basis-may, of course, in
princip1e never be met. For practieal purposes we caD, however, fu1fill the
criterion if the basis consists of a set of gaussian functions. We know that
the nuclear displacement derivative of a gaussian function just is another
gaussian with one higher angular momentum value. Thus by including such
gaussian basis functions of higher angu1ar momentum in the origina1 basi s,

1 we ~ou1d ~a~rantee that th~ deriv~ti~es of th~ impo~tant gaussi~n ~tomie
orblta1s:wllI mdeed bldescnbed wlthm OUTfimte basls. If the denvatlves of
the basis functions cannot be expanded in the basi s, the fu1fillment of Eq.
(5.41) may not 1ead to an accurate stationary point. As an a1ternative to
including in the atomie orbital basis sufficient flexibility to describe the fiest
and second derivatives of the moce important basis functions, one caD ex-
plicitly evaluate derivatives of the one- and two-electron integra1s (Thomsen
and Swanstrem, 1973).Suppose, for example, that s, p, and d atomie orbitaIs
wece used in a calculation on CH2. Even if only the s and porbitaIs wece im-
portant in describing the orbitaIs having nonneg1ible occupation num bers,
one would have to include fuli sets of d and f orbita1s in the basis to guarantee
that the second derivatives of the s and p functions could be described.
As a result, maDYtwo-electron integra1s involving d and f functions would
have to be computed over the atomie orbita1 bask On the other hand, this
caD be avoided by ca1culating only the fiest and second derivatives of the
integrals over the s and p orbita1s. These derivatives would then involve a
very restricted subset of integrals containing d and f functions. For example,
the second derivative of (pplpp) wou1d inv01ve (pplpf) and (ppldd)
integrals; integra1ssuch as <ddldd) or <ddlfp) or <fflff) could not arise.
The smaller number of difficult integrals arising in approaches that explicitly
evaluate integral derivatives rather than those using very large basis sets
has marle these integral derivative schemes moce commonly used in state-
of-the-art calculations.

PROBLEMS

5.1 Oetermine the excitation energies and transition moments for HeH +

using the fuli CI calculation for HeH + again making use of SCF data of
Problem 2.1. The nonvanishing matrix elements of the dipole operator
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r(x, y, z) in the atomie basis are

<tsHlzllsHe) = 0.2854, (l sHlzllsn)= 1.4
l. Determine the matrix elements of r in the SCF orbital basis.
In Problem 2.4,a fuli Ct ealculation was earried out on HeH + in the SCF

orbital basis.
2. Use the results of Problem 2.4 to determine the exeitalion energies and

transition moments from the ground stale to the iwo excited singlet states of
HeH+.

3. Determine the frequeney-independent polarizability and the fre-
queney-dependent polarizability at a frequeney E = 0.1 a.u. for HeH +.

5.2 Carry out a eoupled Hartree~Foek (CHF) ealculation of the frequen-
eJ-independent polarizability tensor for the closed-shellHeH + system.To
aehieve this goal, follow the !\teps given below.

l. Show that

<Ol[r, m; a" + mp ap] 10) = 2<4>"lrl4>m)

2. Use the A.. and B.. matrix elementsderived in Problem 2.2to show
that the Ali and B.. matrix elementsin a CHF ealculation may be written as

(A.I)n/l,m"= <OI[P:II" + Ppll/l,H,m:a" + mpa/l]IO)

= 2«Em - B")c5mnc5,,p+ 2<llaIP",)- </I(xl"'P»)
(8 I "n/l.III" = <O1[11;a" + lip Pll' H, »1,,+a" + "'p ap]IO)

= :,'IIlllllfJa) - 2<mlllafJ»

To obtain these results 'OlI musi use the definition of the Foek potential
given in Eq. (2.92) and a~"'lme that the orbitaIs are HF orbitais.

Now earry out the CHF cal-: ,""ion on HeH +, using the single zela Stater
basis and the SCF data given in Problem 2.1. The nonvanishing matrix
elemenls of r(x, y, z) in the SCF basis are given in Solution 5.1, part I.

3. Evaluatethematrixelementsofr, which enter joto the CHF ealculation.
4. Evaluate the A.t and B.. matrix elements.
5. Determine the frequency-independent polarizability tensor in the CH F

approximation for HeH +.
5.3 Carry out a CMCHF ealculation of the frequency-independent

polarizability tensor.
1. Show that

<Ol[r,p;q" + ppq/l]IO) = L: {rsp<Ols;q" + spq/lIO) - ras<Olp;s" + ppsplO)}
s .

2. Show that

(Ol[r, 111)(0\]\0) = L: rp/Olp; q" + PPq/ll")
pa
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3. Indicate the simplificationsthat occur in the formulas for the A and
Bmatrix elementsin Eqs. (2.29)and (2.30),whenconvergedMCSCF orbitaIs
ale used for evaluating the A and B matrices.

Now carry out the CMCHF calculation of the frequency-independent
polarizability tensor for HeH+, using the minimum basis given in Problem
2.1. The multiconfiguration referencestale includes the two configurations
1(12and 2(12.A MCSCF calculation using these two configurations was
carried out in Problem 2.6. The one- and two-eleetron integrals in the
MCSCF basis ale given below:

(1Ihll) = -2.6119,
(11\11) = 0.9521,

(11122) = 0.1298,

(2IhI2) = -1.3193,
(12\12) = 0.6100,
(22\21) = -0.0069,

(1IhI2) = 0.2078
(12111) = -0.1963
(22\22) = 0.6161,

where 1 and 2 denote the 1(1and 2(1orbitaIs, respectively, whieh ale

1(1= 0.8920 tsHe + 0.1701tsH,

The MCSCF states ale

lO) = 0.998411(12) - 0.057412(12),

II) = 0.057411(12)+ 0.998412(12),

2(1= -0.8410 lsHe + 1.2140lsH

Eo = - 2.8506

El = -0.5863

4. Calculate the nonvanishing one- and two-eleetrondensity and transi- .
tion density matrix elementsof the form

(ilr+s+ tuiO), (ilr+sIO), (Olr+sli), i = 10),II)

The matrix elements oh in the atomie basis ale givenin Problem 5.1.
5. Caleulate the matrix elements of r in the MCSCF basis.
6. Caleulate the numerical valuesofmatrix elementsgivenin questions 1

and 2. .
7. Determine the A and B matrix elements.
8. Oetermine the frequeney-independent polarizability tensor in the

CMCHF approximation.

SOLUTIONS

5.1

1. (1IzI1) = 2(0.9000)(0.1584)(0.2854) + (0.1584)2(1.4)= 0.1165

(2IzI2) = 2( -0.8324)(1.2156)(0.2854) + (1.2156)2(1.4)= 1.4911

(1IzI2) = [(0.9000)(1.2156) - (0.8324)(0.1584)]0.2854
+ (0.1584)(1.2156)(1.4)= 0.5442
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2. Excitation energies are 4.2792 - 3.2567 = 1.0225 and 4.2792 - 1.9497
= 2.3295. Transition moments:

(la2Izlla2) = 2(1lzlI), <2a2IzI2a2)= 2<2IzI2), (la2IzI2a2)= O
2

(l0-2alzll0-20-)= (llzll) + <2IzI2), (l0-2IzII0-20-)= fi (llzI2),

2

<20-2IzI10-2a) = fi <2IzI1).

Therefore

<Olzll) = (0.9982)(-0.0261)2(0.1165) + (-0.0573)( -0.2098)2(1.4911)

+ (0.0143)(0.9772)(0.1165 + 1.4911) + [(0.9982)(0.9772)

+ (0.0143)(-0.0261) + (-0.0573)(0.9772)

(
O5442

)+ (-0.2098)(0.0143)] 'J2 2

= 0.7578

<0IzI2)= (0.9982)(0.0530)2(0.1165)+ (- 0.0573)(0.9761)2(1.4911)
- (0.0143)(0.2109)(0.1165+ 1.4911)+ [(0.9982)(0.2109)
+ (0.0143)(0.0530)+ (- .0573)(0.2109)

+ (0.0143)(0.9761)]C.;2)2

= 0.0144

3. IXzz(E)= 2 I 1<0Izlll)12(E;- Eo)n=1.2 (En - Eo) - E

E = O = 2[°.5742 O.OOO~
J

-
, IXzz 1.0225 + 2.3295 - 1.1233

E = 0.1 = 2
[

(0.5742)(1.0225) (.0002)(2.3295)

J
= 1.1342

, lXu 1.0456 - 0.01 + 5.4266- 0.01

5.2
1. <OI[r,m;lX<I+ m;IX/l]IO) = I «pplrl<pq)<OI[p+q,m;lX<I + m;cx/l]IO)

pq

= I <<pplrl<pq)<olp +IX/Jmma- m: qc'5p<lm
pq

+ P+IX/lc'5qm/l - m; qc'5p<l/lIO)

= 2«p<Ilrl<Pm)
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2. Thedefinition ofthe Fock potentialin Eq.(2.92)resultsin the following
definition of the orbital energies

hrs+ L(2(rylsy) - (rylys» = <>rser
r

and the All matrix element in Problem 2.2 therefore may be rewritten as

(A l1)n/l.m"= 2[( -B" + Bm)(j"/I(jmn+ 2(naIPm) - (nalmP) J
3. Let 1 and 2 denote la and 2a, respectively. As was shown in Problem

5.1 (1IzI2) = 0.5442. H ence

<0Iz(2,,+l" + 2p 1/1)10) = 2(0.5442)

4. (Allh1.21 = 2(B2 - BI + 2(21112) - (21121» = 2.1464,
(Bllhl.21 = 2«22111) - 2(22111» = -0.2522

5. anly the zz component of the polarizability tensor is nonvanishing.
Thiscomponentbecomes2.4. 0.54422/(2.1464+ 0.2522)= 0.9878.

5.3

1. Using r = L rsr(S: t" + Sptli)we obtain
s/

(Ol[r,p: a" + PPa/lJIO)= L r,s(OI[t:s"+ t;sp,p: a" + p; a/lJIO)s/

Performing the commutations then leads immediately to the result asked for.

2. (OI[r,ln)(OIJIO) = (Olrln) = L rpa<°lp"+q,,+ p;qpln)
pq

3. The AlI and 811 matrices in Eqs. (2.29) and (2.30) can, when conver-
genre is reached and the GBT is obeyed, be evaluated directly using Eq. (2.42),
which does contain the double commutator form.

We algo have (011,,+1,,11)= 0.0573, (°12,,+2,,11)= -0.0573. See text below
Solution 2.6, question 1.

5. Zll = 0.1271, Z22= 1.4805,Z12 =0.5574.
6. (°l [z, 2:1" + 2;I/1JI0) = 2Z12{(011:1" - 2:2,,10)} = 1.l076

<OI[z,II>(OIJIO) = 2z11<011:1"ll) + 2z22(012:2"ll> = -0.1551

4. <ii = <ol <ii = <II

<ill.+1.10) 0.9968 0.0573

<iI2.+2.lo) 0.0033 -0.0573

<;11.+I; 1,1.10) 0.9968 0.0573

<iiI: 1;2,2.10) -0.0573 -0.0033

<iI2.+2; 1,1.10) -0.0573 0.9968

<;12.+2;2,2.10) 0.0033 -0.0573
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7. Formulas for the A and B matrix elementarederived in Solution 2.6,
question 2:

A = (
2.1756 0.4018

) B = (
-0.2495

0.4018 2.2643' -0.0230

8 (A - - I = (
0.4264 - 0.0800

). B) -0.0800 0.4566

-0.~230)

The zz component of the frequency-independent polarizabilitx becomes

cx" = 2(l.JO76, -0.1551) (
0.4264

- 0.0800

-0.0800

)(
l.J076

)0.4566 -0.1551 = l.J232
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Chapter 6 IGreen's Functions

A. INTRODUCfION

Having now seen how methods that are based upon stationary-state
N-eIectron wavefunctions caD be used to compute stale energies and other
physical properties, we tum to examine a cIass of so-called response func-
tions or Green's functions (GFs) (Linderberg and Ohm, 1973), which permit
a direct calculation of transition properties. For example, the one-particIe
GF (electron propagator) yields ionization potentials and electron affini-
ties, whereas the two particIe GF (polarization propagator) provides us
information about eIectronic excitation energies and oscillator strengths,
which then caD be used to calculate maur other observables (e.g., polariz-
abilities and spin-spin coupling constants). The general definition of a GF
belonging to the reference stale l°) is given as

i i
~A(t); B} = += fi O(t)<OIA(t)BIO) + fi O(- t)<OIBA(t)IO) (6.1)

where O(t) is the Heaviside step function

O(t)= {1,t > O; O,t < O} (6.2)

and A and B are arbitrary operators in the second quantization form. A(t)
is the Heisenberg representation of A,

A(t) = exp(iHtjh)A exp( - iHtjh) (6.3)

and B is the Heisenberg operator at t = O.If the operators A and B contain
an even num ber of creation or annihilation operators (e.g., r+ s, or r+ t+su)
the plus sigo is used in Eq. (6.1).For operators A and B havingan odd num ber
oCsuch operators (e.g., A = r+ or r+t+u, and B = r or rut+) the minus sigo
is used. The reasons for these choices are made cIear helowo

122
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To understand the physical content of such GFs, we introduce between
the A(l) and B operators in Eq. (6.1) a resolution of the identity involving
a complete set of eigenstates In). By inserting these resolutions and assuming
that the states In) are eigenfunctions of H, we obtain

j

[
l

]~A(l); B} = +fi O(l)~ <OlAIn) <I1IBIO)exp i fi(Eo - En)

+ ~ O(- l) L <OIBI'~)<I1IAIO)exP [i ~ (En - Eo)]
(6.4)

n I ,

The Fourier transform of ~A(t)B}, is given as

~A; B}E = f~oo dl ~A(l); B} exp(iEljft) (6.5) r

lf we straightforwardly insert Eq. (6.4) joto Eq. (6.5) we encounter improper
integrals. For example, the first term of Eq. (6.4) gives an improper integral
of the type .,

fooodl exP[i ~ (Eo - En + E)]

To overcome ibis problem we may define the Fourier transform to include
a convergence factor exp( -ltl'1), where 'I is a smali, real, positive quantity.
After the integration is performed, we caD then take the limit '1-+ 0+ (Mat-
Luck, 1967). The Fourier trans form of the. GF may then be expressed as

I. ,,:f: <OIAII1)<I1IBIO) ,,<OIBII1) <I1IAIO)
~A;B}E = Im L. . + L. .

,,~o+ n Eo - En + E + "1 n En - Eo + E - "1
(6.6)

A physical interpretation of the GF may naw be obtained by considering
the content of Eq. (6.6). If A and B are nurrber conservir.J (i.e., they butlI
contain equal numbers of creation and al1l..:.;'atj,,: 0perators) then the
states In) musi contain the same number of electrons as the reference stale
l°) to give a nonvanishing GF. However, if A contains, for example, one
maTe creation operator than annihilation operator, then In) musi contain
N :f: 1 electrons (notice that the fact that the second-quantized H is inde-
pendent of N is naw becoming convenient). From the frequency spectrum
of ~A; B»E it is clear that the GF contains information about ~nergy differ-
ences. lf A and B are of the one-particie excitation form r+s, then poles of
Eq. (6.6) occur at the energy differences En - Eo referring to electronic

excitation energies. The residues give the overlap amplitudes <OlAI") <"IBIO),
which, for example, express the electric dipole transition probabilities when
A and B refer to the electronic dipole moment operator. If A is of the form r +

(so that B is an annihilation operator s), then the energy differences arising
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in Eq. (6.6) raIl joto Iwo classes. The lirst factor, which bas (Olr+ In) (lIlsIO)
as its amplitude, clearly bas to do with ionization potentials E~ - EZ- 1.
The second factor, involving amplitudes (Olsln)(nlr+IO), relates to electron
affinities EZ+1 - E~.

The time derivative of Eq. (6.1) may be written as

d

i'l dt ~A(t); B) = c5(t)(OI::!:A(t)B + BA(t)IO) + ~[A(t), H]B)

= c5(t)(OIBA ::!: ABIO) + ~[A(t), H]B) (6.7)

where we have used the facts that A(t) satislies the Heisenberg equation of
motion

d

il1dt A(t) = [A(t),H] (6.8)

and that the Heaviside function is the integral of the Dirac c5-function

O(t) = foo c5(T)dT (6.9)

The Fourier transform of Eq. (6.7) then becomes [the delinition of the
Fourier transform of the GF always contains the exp( -'lItl) convergence
factor, although henceforth we do not explicitly express this fact]

E~A;Bh = (OIBA::!:ABIO)+ ~[A,H];Bh (6.10)

As we see later, Ibis result will prove useful in interrelating GFs when A and
B refer to the position and momentum operator, respectively.

Although the above spectral representation of ~A; Bh in Eq. (6.6)displays
the content of its frequency dependence and amplitudes, this equation is not
actually used to compute ~A; B)I>' To do so would involve computing, by
stationary-state methods described in earlier chapters, the energies and
wavefunctions l°), Eo, 1/1),and En. The philosophy of the GF method is to
avoid doing all of these stale calculations by obtaining an equation that caD
be solved directly for ~A; B)I>' In this manner one then attempts to obtain
an object (~A; Bh) that contains (through its poles and residues) stale
difference information directly.

B. SUPEROPERATOR ALGEBRA

1. Superoperator Resolvent

To demonstrate how one goes about linding an equation that permits
~A;Bh to be directly computed, leI us return to Eq. (6.1)and rewrite the
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time dependenceof A(t)as

A(t)==exp(~ H)Aexp( -~ H)
it 1

(
it
)

2

= A + fi[H,A] + 2! fi [H, [H, A]]

1

(
it

)
3

+3! fi [H,[H,[H,A]]]+'"

(
it ~

).. ==exp fi II A (6.IIJ

where the so-called superoperator il (pickup and Goscinski, 1973) is defined
by

HA == [H,A]

In terms of this superoperator, {A(t); Bl; can be expressed as

(6.12)

{A(t);Bl; = +~O(t)(°l(expG tH)A )BIO)

+ ~ O(-t)(OIBexpG til )AIO)
(6.131

[notice t "it the extra parentheses are needed in the first term on the right-
hand side v' Eq. (6.13) to ensure that il only operates on AJ. The Fourier
transform can 1 ""Wbe carried out to yield

{A;Bl;r; = :t (OI«Ef + O)~IA)BIO)+ (OIB(Ef+ Ol-lAlU> (6.141

where the unit superoperator is defined by

fA ==A (6.151

lt is conventional to combine the twa term s present on the righl-hand
side of Eq. (6.14) into a single factor by introducing the so-called super-
operator binary product. This product, between twa operators C and D, is
defined as

(cjD) ==(aIC+ DIO) :t (OIDC+IO) (6.16)

with the plus sigo pertaining to cases when C and D conlain odd numbers
of creation or annihilation operators (e.g., r+ s+t or u). With this definition,
the above GF caD be written as

{A;Bh = (B+I(El + il)-IIA) (6.17)
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In writing«A;Bh in this waJ, we say that we have expressed the GF as a
superoperator matrix element of the superoperator resolvent (El + R) - 1.

2. CompleteSets of Operators

The tools needed for evaluating the above matrix elements of the super-
operator resolvent are based upaD the idea of operators (of the same "type"
as A and B+) forming complete sets (Manne, 1917; Oalgaard, 1979).For
example, if A and B+ are number-conserving operators (e.g.,r+s), then the
set of operators (IX> P > y > .. . ; p > q > r > . . .)

{h} = {l,P+IX,p+q+PIX,p+q+r+ypIX,...} (6.18)

when operating on an N-electron ket corresponding to a single determinant
in which <P,.. <PP' <PY' . . . are "occupied" and <pp,<Pa,<P". . . are not occupied,
forms a complete set of N-electron kets. Similarly (IX>P> y > . . . ;p >
q> r>"')

{h} = {r+,r+p+IX,r+p+q+ap,...} (6.19)

and

{h}= {a,apr+,apyr+s+...} (6.20)

form, respectively,complete sets of(N :t 1)-electronkets when operating on
the above "referenceket". Manne and Dalgaard have shown that the above
sets of operators form complete sets of N- and (N :t 1)-electronkets even
when operating on amulticonfigurational referencestale l°) as tong as the
referenceket (whichdefinesa, p, y,... ; p,q,r,...) is not orthogonal to l°).

The above results having to do with completenessof operator manifolds
permit us to write a resolution of the identity as

1 = L hklO) (Olh +hIO)k-ll (Olh,+
k/

(6.21)

where the set {hk} is aDYof the above three sets of operator manifolds and
(O

l

h + hlo);, 1 is the k, l element of the inverse of the matrix having elements
(O hi:h/lO). The completeness relation mentioned above cannot be used in
a straightforward manner in manipulations having to do with the super-
operator resolvent because the superoperator hillary product appearing in
«A; Bh is more complicated than the scalar product occurring in Eq. (6.21).
The complete set ofoperators for N- and (N :t l)-electron kets may,however,
be used to generale a resolution of the identity that caD be used within the
superoperator hillary product. The completeness relation for a superoperator
hillary product may be written as

r= IT+)(T+IT+)-l(T+1 = LITt)(T+IT+);,l(T'+1
k/

(6.22)
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where T + for one-electron creation or annihilation operators A and B+

becomes (a> P> y > . . . ; p> q > r> . . .) (Dalgaard, 1979)

JT +
} - {T+' T + . 'r + .

}l - l' 3, 5""

= {p+,a+ ;p+q+a,rx+p+p;p+ q+r+ap,a+ P+y+pq;. ,.} (6.23)

For number-conserving operators A and B +, {T+} becomes

{T+} = {Ti; T4;...} = {p+a,a+p;p+q+ap;a+p+pq,...} (6,24)

To better appreciate the meaning of Eq. (6.22), we write in detail same
e'ements of the "overlap" matrix (T: IT,+) for the one-electron addition
operator case (recalI the definition of the "occupied" and "unoccupied"
orbitaIs, qJa,cPr)

(a+ Ip+) = (Olap+ + p+ala) = (jap = O

(a+ Ip+q+P) = (Olap+ q+p + p+q+palO)

= (Olp+ q+ ap + p+ q+palO) = O

(r+ Ip+ q+ a) = (Olrp+ q+a + p+q+ariO)

= Orp(Olq+aIO) - brq(O!p+aIO).

(6.25)

(6.26)

(6.27)

It is elear ~-omthe above equations that, in the superoperator binary produet,
each of the I :-rerators contributes both to the (N + 1)- and to the (N - ')-
electron aspecL of the problem. For example; in writing the binary produet
(,.+Ip+q+a), we (md (Olr, which refers to the adjoint of an (N + I)-electron
ket, whi'e riO) becomes an (N - I)-e'ectron ket.

3. The Superoperator Resolvent

In summary, the idea of a complete set of operators has been extended to
the superoperator binary product so as to introduce the powerfu' COllCept
of a completeness relation. This comp'eteness relation can now be exp'oited
to derive an equation tha! permits {A; Blh to be expressed in a computa-
tionally moce usefu' form (Simons, 1976). We begin by writing the identity

(T+ IT+) = (T+I(Ei + H)(Ei + H)-IIT+) (6.28)

which, by inserting the reso'ution of the identity in Eq. (6.22), becomes

rr+ IT+) = (T+IEi + RIT+)(T+ IT+)-I(T+I(Ei + R)~ lIT+) (6.29)

This equation can be arranged to yield

(T+I(El + H)-IIT+) = (T+IT+)(T+IEl + HIT+)-I(T+ IT+) (6.30)
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The operators B+ and A, which define the desired GF in Eq. (6.17),when
operating on 1O),caD be expanded in terms of the set {T+} operating on
l°):

AIO)= T+IO)(T+ IT+)-l(T+ lA) (6.31)

and the GF in Eq. (6.17) may thus, using Eqs. (6.30) and (6.31), be written
as

(A;B}E = (B+I(Ef + H)-lIA)

= (B+IT+)(T+IT+)-I(T+I(EI- H)-IIT+)(T+IT+)-I(T't/IA)
= (8+ IT+)(T+IEI + HIT+)-I(f+ lA) (6.32)

/

Equation (6.32) constitutes the working equation for deriving approximate
forms for the GF. Notice that the original GF, which involved the matrix
representative of an inverse superoperator (El + H)-I, bas been expressed
in termsoftheelements(B+ IT:),(T,+ IA), the"overlap" (T: IT,+),and matrix
elements of the superoperator Hamiltonian (T: IRIT,+). These latter two
matrices are analogous to the expressions that give ordinary resolvent
matrix elements in terms of configuration interaction Hamiltonian matrix
elements and configuration overlaps.

4. Pole and Residue Analysis

From Eq. (6.32), which expresses the desired GF, it is elear that the pole
structure (values of E at which (A; B}E bas poles) is determined entirely
by the ma trix (T+ lEI + RIT+)-I. This matrix bas poles when det[(T+IEI +
RIT+)] vanishes. Thus, the problem of finding the poles of (A; Bh, which
give ionization or excitation energies, caD be solved by examining the
superoperator generalized eigenvalue problem

2)T:IRIT,+)U/j = -Ej L(T: IT,+)U/j
/ /

(6.33)

which in matrix notation may be written as

Au. = -E.SU jJ J

The poles of (A; Bh occur thus at the eigenvalues E = Ej of Eq. (6.33)
and the eigenvectors enter in the evaluation of the corresponding residues.
To iIIustrate how the residues caD be determined, we rewrite the GF in
Eq. (6.32) so as to be in spectral form, assuming that Ais hermitian and that
S is positive definite (this is not always the case as we discuss in Section
6.E.2.a).Premultiplying Eq. (6.34)by S-1/2 gives

(S-I/2As-l/2)(SI/2Uj) = -Ej(SI/2Uj)

(6.34)

(6.35)
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The vectors Vj = SI/2Vj are ordinary eigenvectors oCH' ==S-I/2f!S-I/2, and
therefore H' caD be expressed in spectral form as

~, ~ +
H = L..Vj( - Ej)Vj

j
(6.36)

Because the Vjare eigenvectors of a hermitian matrix (H'), they form a
unitary matrix (V),which diagonalizes H'. Thus, one caD write the resolvent
ma trix as

(E~ + H)-I = S-I/2(Et + HrIS-I/2 = S-'/2V(E1 - E)-IV+S-I/2

= U(E1 - E)-IU+ (6.37)

where the diagonal matrix E contains the eigenvalues Ej'
By using Eq. (6.37), the expression for «A; B»,.; given in Eq. (6.32) caD

be rewritten in a form that clearly displays its pole and residue structure:

«A; Bh = (B+ IT+)U(E1 - E)-IU+(T+ lA)

Thus, the residueat pole Ej is given by

I (B+ IT:)UkPji(T,+ IA)
k.1

(6.38)

(6.39)

C. Al>l:10XIMATION METHODS

1. Operato~ Manifold Truncation

Although the above equations, in principle, permit one to find the poles
and residues of aDY GF (defined by the choice of B+ and A), it is never
really possible to employ a complete set of operators {T:}. Therefore, one
is faced both with mak ing some physically motivated choice of a finile
number of soch er:} operators and with choosing a reasonably accurate
reference wavefunction lO). Clearly the choice of lO) dictates which excila-
tion or ionization energies one obtains erom the poles of «A; B:h. The
choice or B+ and A determine whether one is interested in single-particie
excited states (A = j+j), primary ionization potentials (A = j), or shake-up
ionization potentials (A = !je). For example, by using as 1°) the 2S2 con-
figuration and A =r, one caD obtain ionization energies to the 2s22p or
2S1 and other anion and cation 'states; with A = m+(l, the 2sIlp excited
states may be reached. The truncation of the complete operator set {T:}
then determines, together with the approximation marle to get 1°), the
accuracy to which the resultant poles of «A; B~E describe the excitation
or ionization energies and their corresponding residues. Choices or {T+ }
most, of course, take joto consideration the srace and spin symmetry of
the states generated by T+IO). As a res~lt, th.e inherent symmetry or each
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T+ most be eoupled to that of l°) to give puce symmetry excited or jonie
stalego Beeause the reasons for mak ing specifie ehoices of A and B+ are
rather elear, we now foeus on explaining the strategies for ehoosing l°) and
truneations of {T:}. In the following seetions and in onr treatment of the
polarization propagator, we eonsider iwo different approaehes for attaeking
ibis problem. The fiest is based on a perturbation anaJysis wbite the seeond
is based on seJeeting a muJticonfiguration referenee stale and an appropriate
projeetion manifoJd.

2. Order Analysis

The most widely used, and historically oJder, approaeh involves pertur-
bation analysis ofthe GF using RSPT to obtain elements of(T+IEI + RIT+)
and (B+ IT+)(T+ lA) eorreet through a ehosen order (order is then assumed
to be related to accuracy). By decomposing the electronic Hamiltonian H
and the reference wavefunction l°) in perturbation series

H = Ho + V (6.40)

l°) = 1°°) + lO') + 1°2)+ . . . (6.41)

one then attempts to evaluate (T: IEl + R ITt) to sufficiently high order to
guarantee that the poJes of primary interest are obtained accurateJy through
a chosen order. If one is algo interested in calculating residues that are
accurate through some order, then the chosen operator manifold and
referenee stale l°) musi be taken to suffieient size and order to guarantee
this. We return to the problem on how to ehoose {T+} so as to determine
primary poles and residues accurate through a ehosen order in Section
6.c.4.

3. Hermiticity Questions

Earlier in this ehapter, we noted that the question of the hermitieity of
(T: IR ITt) bad tl? be examined in individuaJ eases (i.e., it was not auto-
matieally vaJid). When a perturbation expansion is used to determine the
reference stale, we may moce explieitly stale the conditions under which
the matrix is hermitian by examining the difference between the (kl)th and
the compJex conjugate of the (lk)th element of the superoperator
HamiItonian. When ibis differenee

(T:IRIT,+) - (T'+IRIT:)* = <OI[[T,+,TkJ,HJIO) (6.42)

is equaJ to zero, the superoperator Hamiltonian is hermitian.
When the referencestale l°) is determined through a certain order n in

RSPT, (1O)"= Ii: °10i» the Schrodinger equation is solved through the
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same order:

RIO)n = EnlO)n+ O(n+ 1) (6.43)

where En = LI=OEli). Inserting (6.43) joto (6.42) then states that Eq. (6.42)
is zerb through order n and that, as a result, the superoperator Hamiltonian
matrix is hermitian through that same order. This theorem is quite useful
for iwo reasons. First, it guarantees that the superoperator Hamiltonian
matrix will have no accidental or spurious nonhermitian terms ifit is properly
calculated. Second, it is onen easier to compute (TtIRIT,+) tban (T,+IR!Tn
(e.g., (p+q+allll"+) is easier than ("+IRlp+q+O()because the latter elemenls
require that the Hamiltoniao be commuted with p+ q + ex).Thus, we caD
choose to calculate the "easier" matrix elemeots and to theo obtaio the others
through hermiticity (i.e., by equating the complex conjugate of the former
to the I t.er).

4. ' 'perator Space Partitioning

We:. ~xtgo joto moce detail concerning the explicit evaluation of «A; B/h
for A = '~+, B+ = 1+ [referred to as the electron propagator (EP) or one-
particie J F] and for A = e I, B = i+j [referred to as the polarization
propagator (PP) or iwo-particIe GF]. However, it remains for us lo show
one moce approximatioo step that is onen employed in searching for the
poles of (ES + H)-1 in Eq. (6.37). Because, according to Eq. (6.38), all
element s of ibis inverse matrix possess poles at all of the Ej, it is possible
to search for the desired poles by computing a single element or a submatrix
of (ES + H)-l. That is, if the operator manifold is partitioned joto, sar, iwo
classes {T:} = {;rn + {T,;}, then because (ES + H) blocks joto four
submatrices

(ES + A)= (ESaa + Aaa ESab + ~ab )ESba + Aba ESbb + Hbb

one can solve for aDYelement(s) of (ES + A)-l in terms of the above four
submatrices. For example, it is easily show n that

(ES + H),;~.l= [(ESaa + Aaa) - (ESab + Aab)(ESbb + Hbh)- J(ESha + Hba)]-I

(6.45)

(6.44)

Even if the space {T/n includes a single element, if treated properly and to
all orders, Eq. (6.45) will yield all the poles of (ES + A)- 1.

It is, of course, natural to wonder both why one would be 'interested in
so partitioning (ES + H)- J and what ibis bas to do with an approximation
scheme for calculating «A; Bh. It onen toros out that if the sels {T:} and
[T,n are chosen properly, all the "olf-diagonal" elements (ESab+ Hab)
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(and hence ESba + Aba) contain only terms that Breof fiestor higher order,
whereas (ESaa + Aaa)contains zeroth- and (perhaps) higher-order terms. If,
therefore, one restricts the search for poles to energy ranges in which (ESbb +
Abb)-1 is not elose to being singular, then the term (ESab + Aab)(ESbb+ Abb)-l
(ESba + Hba)caD be assumed to be of second or higher order. This restric-
tion of the energy search range is often motivated by knowledge that the
zeroth-order poles of(ESaa + Haa)-l Bre good approximations (e.g., through
Koopmans' theorem for the IP) to the desired poles. If one is interested in
calculating poles that Bre accurate to, gaJ, second order, then the second-
and higher-order pieces of (ESab + Hab)and the first- and higher-order
pieces of (ESbb + Hbb)-I caD be neglected. In this waJ, one is often able to
greatly simplify the calculation of certain poles of «:A;B:h [those far erom
the singularities of (ESbb + Hbb)in the above example J.

Given a choice of {T:} and {T:} that permits a pole (say Ej) of «:A; B'h
to be evaluated through a certain order, it still remains to examine whether
the same partitioning will yield residues, which are given in Eq. (6.39),
accurate to SOfie chosen order. Thus, if (B+IT:) and (T:IA) are of zeroth
and higher order, whereas (B+IT:) and (T:IA) Bre of fiest and higher
order, it is convenient to so partition {T:} since the contributions to the
desired residues caD moce easily be order analyzed. This point is marle more
elear when analyzing the residues of the polarization propagator in Section
6.EA.

5. Nonperturbative Approaches

The perturbation theory approach to computing approximations to
«:A;B»" bas been widely used with significant success. However, its funda-
mental premise (that U is "smaIr') is known to break down under circum-
stances that are relatively widely appreciated (e.g., for Xl LgH2 at large
internuclear distance, the contribution of the la: configurationcan not be
accurately represented by RSPT). For this reason, researchers have begun
to explore the possibility of systematically calculating GFs in which the
reference stale lO) is taken to be of the MCSCF form. The MCSCF nature
of lO) turns out to be very convenient in a GF analysis because the GBT
results in hermiticity of certain blocks of the (T: IRIT'+) matrix.

The primary formai difficulty that arises in implementing such MCSCF-
based GFs bas to do with developing systematic procedures for truncating
(and perhaps partitioning) the {T:} operator srace. Because we have now
lost the concept of order, we must turn to SOfie other criterion for choosing
aD appropriate operator manifold. In the rew deve1opments of the MCSCF-
based e1ectron (Banerjee et al., t 978) and polarization propagators (Yeager
and ]Clrgensen, 1979; Dalgaard, 1980) that have been marle to dale, the
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{T:} manifold was chosen by examining the functions T:IO) and T.IO),
which result from the application of the T: operators to l°) as they occur
in the superoperator binary product. Decisions wece then marle to guarantee
that these functions contained an ofthe dominant singly and doubly excited
configurations needed to yield pro per orbituJ relaxation and electron
correlation (or bond-breaking) effects, respectively. For example, the

. operator manifold {T:} = {,.+s,s+,.".> s; 1")<°1,1°)</11}bas becHused to
express an MCSCF-based PP. The stale projectors 1")<01 and 1°)<"1 can
be viewed, when they act on lO), as compact representations of the set uf
{T:} operators given in Eq. (6.24). It is thus possible to choose another set
of operators than the one of Eq. (6.24) to describe accurately the poles and
rt'c;iduesof the PP. The decision to choose one truncation of {T:} over the

'Iler is usuany based upon considerations involving the dimension
of the resulting (T+IHIT+) matrix and the ease of calculation ofthe requisite
superoperator matrix elements. The fiest choice described above (involving
the stale projectors 1")<°1,10)<"1)seems to be especially promising because,
tS Dalgaard hus demonstrated, .this set of operators yields a PP whose poles
i'.1d residues automatically guarantee equality between electric dipole
transition moments computed within either the so-called length or velocity
representations. This is especiany convenient because one then bas a con-
tinuous range [flam the single-configuration time-dependent Hartree-Fock
(TDHF) or random-phase approximation (RPA) through the present
MCSCF case to the fun CI] of PP approximations ulI of which preserve
their lengthfvelocity equivalence. Another reagan for choosing the above
set of operators for use as {T:} lies in the fact that the resultant (T: IHIT,+)
matrix elements ale no dilferent than those arising in the original MCSCF
calculation of lO> [e.g.. (,.+sIHII,,><Oj) arises in <OIU.[H.S]]IO> of Eq.
(2.24)]. Also, if one wece to consider the elfect of an external one-eIectron
perturbation on the MCSCF stale 1°), one would find the same operators
{,.+s.s+",I"><OI.IO><,,nappearing naturally in the response of lO> to the
external perturbation, as in coupled multiconfigurational HF.

6. Discussion

Because of the high research °activity level on how to use an MCSCF
reference in the GFs (EP and PP), it is not presently elear how to optimally
choose truncated sets of {T:} operators. It is likely that many workers will
carry out test calculations involving mafiJ choices of the pertinent operator
manifolds before ibis situation is improved. Moreover, questions concerning
when and how to partition the resulting (T:IHITt) matrix so as to redlIce
the dimension of the matrix whose poles ale to be found remain unanswered
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for the case oCan MCSCF reCerenceCunction.Again, what is missing is same
concept oCorder (or sile or importance) in terms oCwhich to make decisions
about how to partition the operator maniCold. Il is aur opinion that signiC-
icant progress will be marle on these important questions within the near
Cutureand that, as a result, MCSCF-based GF methods will become common
tools in the quantum chemist's library.

Having given an introduction to the Cundamental properties oCGFs and
to the techniques that are used to obtain GFs whose poles and residues are
accurate to a chosen precision, we naw move on to consider the commonly
used EPs and PPs in same detail. We should mention that the resulting
working equations arising in the EP and PP cases have algo been derived
through the so-called equations-oC-motion (EOM) Cormalism (SchaeCerand
Miller, 1977, Chapter 9). This EOM Cormalism Cocuses on setting up the
superoperator generalized eigenvalue problem oCEq. (6.33) and, as a result,
is equivalent to the propagator development herc. We do not enter joto a
closer discussion oCthe EOM development herc because, for the EP and
PP treated below, this tool offers no new insight or convenience.

D. THE ELECfRON PROPAGATOR

If we choose the A and B+ operators to be oCthe one-electron addition
form (r+,s+), then the GF {A;B»E is known as the EP:

{r+ ;S»E = (s+I(El + 1/)-llr+) ==Gsr(E) (6.46)

This choice oC A and B+ is marle because we are interested in studying
primary ionization events [ionization potentials (Cederbaum, 1973; Pickup
and Goscinski, 1973; 0011 and Reinhardt, 1972; Purvis and Ohm, 1974)
and electron affinities (Simons and Smith, 1973; ]ergensen and Simons,
1975)], which may be reasonably described through acting with a single-
electron operator (r+ or r) on the reCerence stale 1°). To obtain computa-
tionally useCulexpressions for G,,(E) specific choices must be marle for the
reCerence stale l°) and for the operator maniCold {T+} in Eq. (6.32). We
des'cribe a CewoCthe most commonly employed choices oCthese quantities
and the resulting GF.

1. Koopmans' Theorem

The simplest approximation to the EP is obtained by taking the reCerence
stale to be a single configuration HF waveCunction and the projection
maniCold to be

{T+} = {Tt} = {ex,p+} (6.47)
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..

The EP in Eq. (6.32) then reads

- + + + + («+IEI + BI«+) (p+IEI + BI«+))
-I

(«+1"+)G... - «5 1« )(s Ip )) (p+IEI + BI«+) (p+IEI + Blp+ (p+I"+
(6.48)

The matrix elements appearing in Eq. (6.48) can easiJy be evaluated because
\...fthe single-determinant nature of 1°) :

(5+ 1111+)= <01[5,"'+]+10) = «>sm

(5+ Ip+) = «>sfl

(P+IEI + I1ly+) = «>flyE+ <OI[P,[H,y+]]+IO)
= E«>fly+ Itfl)' + L<Pkllyt)<oletIO)

kI

(6.49)

(6.50)

= (E + By)«>fly (6.51)

(m+IEI + RIIt+) = (E + Bm)«>"," ({j.52)

(III+IEI + Rlcx+)= O (6.53)
Here {Bj}denotes HF orbital energies. Using these results, Eq. (6.48) may be
expressed as

Gsr = L «>sm«>rm+ L «>sy«>ry
m E + Bs y E + Bs

By comparing the spectral representation of the GF in Eq. (6.6)with Eqs.
(6.48) and (6.54) we see that the pole of Eq. (6.54) at E = -Bm represents
an approximation to the electron affinity,wbiJe the pole at E = - Br COf-
responds to an ionization potential. The residue (the square or the transition
amplitude) at E = - Bm is «>smc)r""while the residue at E = - Br is c)s)'c5.r.
Ali transition amplitudes corresponding to primary ionization events thus
become equal to unity at this level of approximation. The above resull
expresses the EP analog of Koopmans' theorem. To go beyond Koopmans'
theorem, heller choices musi be marle for lhe reference stale and operator
manifold.

(6.54)

2. Rayleigh-Schrodinger Order Analysis

As discussed in Section A, RSPT has been widety used to develop syste-
matic approximations to G(E). Here the unperturbed I-Jamiltonian Ho is
tak en to be the HF Hamiltonian [Eq. (3.34)] and the orthonormaI basis
spin-orbitals are HF spin-orbitals having orbital energies Bj:

HO = L Bjj+j
j

(6.55)
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The reference function lO) caD be expressed, as in Chapter 3, as a perturba-
tion series in powers of the residual electron-electron interaction. The EP
is then used to describe the primary ionization events consistent through a
certain order by expanding the reference stale in powers of the fluctuation
potential and by choosing the projection manifold of Eq. (6.23) to be suf-
ficent1y large, the meaning of which will be discussed later. In this section,
we show how to determine the primary ionization events consistent through
zeroth, fiest,second, and third order. To do gO,it proves sufficient to consider
the truncated manifold

{T+} = {Tt;Tn. (6.56)

This conelusion is by no means obvious but should become elear shortly.
One must, in principie, examine the interaction between Tt, Tj and the
T;, Ti, etc., operators to conelude that these higher operators have no
etTect on the poles deseribing the primary ionization event through third
order (Redmon et al., 1975).

With the above choice of the projection manifold, the EP of Eq. (6.32)
takes the form

(
A e

)
-l

(Tt Ir+»)Gs,(E)= «s+ITi)(s+ITj» eT M (Tj Ir+)
(6.57)

where the matrices in Eq. (6.57) ale defined as

A = (TtlEf + BITi)

C= (TjlEf+ RITi)

M= (TjlEf + RITj)

(6.58)

(6.59)

(6.60)

The poles of the GF ale determined entirely by the inverse matrix of Eq.
(6.57). Since OUTinterest is in describing the primary ionization events, we
partition the inverse matrix as in Eqs. (6.44) and (6.45) with T: = Tt, and
T: = Tj. We then determine the poles that describe the primary ionization
events erom the partitioned form of the inverse matrix

p-I (E) = (A - eTM-IC)-1 (6.61)

By using H = Ho + U [see Eqs. (3.34) and (3.35)] and lO) = 10°) + 101)
+ . . ., we may carry out a detailed order analysis ofeach ofthe four matrices

A, 'l\ C, and M. For example, we write A as
00

A= L Aj
i=O

(6.62)

where the tabel i indicates the order of the contributions to the A matrix.
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Below we show all the contributions to the matrix A through third order:

.. (AO)jk= E(Ool[j,eJ+IOo) + (Ool[j,[HO,k+JJ+IOO) = (E + I:j)c5kj

A1=A2=O

(6.63)

(6.64)

(A3)jk= (011[j,[U,eJJ+101) + (021[j,[U,eJ+IOO)

+ (Ool[j,[U,eJJ+IO2) = I(jillk/) (I K~~K~~- IK~?K~?)il a> f/ q> p
p a

+ I«jbllkp) +(jpllkb»K~ (6.65)
pll

where the perturbation theory correlation coeillcients are given in Eqs. (3.53)
and (3.55). It should be noticed that both Al and A2are identically zero. This
ract will be sItowo to lead to the conclusion that the Koopmans' theorem
approximation to G(E) is accurate through first order. We algo list belowali
ofthe matrix elements ofthe C and M matrices, which are required to evaluate
P(E), and hence to obtain poles or G(E), through third order:

Co =0

(C1)pqa,j= (OOI[<x+ap,[U,j+JJ+IOO)= (pallj<x)

(Cl>af/m.j= - (aPlljl1l)

(C2)pqa.j = t I (iallby)K~~+ L [(imllyp)K:~ - (imllya)K~;J
1'11 ym.

(6.66)

(6.67)

(6.68)

(6.69)

(C2)af/m.j= -t L (imllpa)K~~+ L [(iyllpa)Kp':- (iyllpP)K:':l (6.70)
pq yp

(Mo)nma,qpf/ = bnqbmpbaf/(E + 6n + 6m - 6a)

(MO)lIy';,af/q= bllabyf/bpq(E + 611+ 61' - 6p)

(MO)nma.yllp = O

(6.71)

(6.72)

(6.73)

(Ml )nrna,qpf/= - bqn(mPllpa) - bpn.<nPllaa)

+ bqm(lIPllpa) + baf/(l1IlIllpa) + bpn(IIIPlla!X)

(Ml>IIJ'Poaf/q = byf/«(jallap) + b,sa(yaIIPp)

- bJ'a(baIIPp) + bpq(byIIPa) - b,\f/()'allrxp)

(M l)nma.,sj'p= O

a. Pole Structure tllrougll Secolld Order

The poles or the EP consistent through zeroth order are determined by
including all zeroth-order terms in P(E) [Eq. (6.61)]. Since C contains no
zeroth-order contributions, we find that

Po(E) = Ao

(6.74)

(6,75)

(6.76)

(6.77)
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which is the Koopmans' theorem result ance again. A determination of P(E)
through fiest order would not contain any moce terms than are already in Ao
since AI = Oand Co = O.The lowest-ordercorrection to Aogivenby CTM- JC
occurs in second order. In reaching this conclusion, we used the fact that the
order of a term that is a product of several matrices is determined by adding .
up the individual orders of the matrices appearing in the term. The term
C~MOICI would thus have been offirst order irGo bad not vanished. An EP
that contains only the Ao matrix is identical to the EP obtained in Section
6.0.1 and results in Koopmans' theorem-level estimates of electron affinities
and ionization potentials. The success ofusing Koopmans' theorem to assign
peaks in photoelectron spectra relies on the fact that corrections to Koop-
mans' theorem fiest appear in second order.

Proceeding naw to compute all terms in Eq. (6.61) through second order,
we find

P2(E)= Ao- clMoJcJ (6.78)

since A2 = O. In all of the matrices in P2(E), only the zeroth-order part of
the reference stale 10°) contributes, as can be seen by examining Eqs. (6.66)-
(6.76). Inserting the expressions for the individual matrix elements of CI and
Mo given in Eqs. (6.67), (6.68), (6.71)-(6.73) joto Eq. (6.78) gives explicit
expressions for the elements ofPiE):

[P2(E)]jk = (E + t:j)c5jk- L: (jallpq)(pqllka)
p>q E-t:", + t:p + t:q'"

'"

- L: (jpllap)(aPllkp)
p E + t:",+t:(J-t:p

"'>/1

(6.79)

Such second-order EPs have been used (0011 and Reinhardt, 1972; Purvis
and Ohm, 1974) to compute atomie and molecular ionization potentials,
electron affinities, and even eIectron-atom shape resonance positions and
lifetimes with som e success. Based uran the experience gained to dale, how-
ever, we cannot expect the accuracy of this approach to be better than
:!::O.5eV, even for systems that are described reasonably well by a single-
configuration reference function. Often, this numerical accuracy is not satis-
factory and hence the above formalism must be advanced to higher order (or
replaced by another development that does not depend uran the Rayleigh-
Schrodinger order concept). An example of such a second-order EP calcu-
lation is given in Problem 6.1.

b. Pltysicallnterpretation

The physical interpretation ofterms arising in clMo JCI in terms of orbital
relaxation and electron pair correlation effects bas been carried out by several
workers. To give same feeling for the physical content ofthe terms in (P2)ij,we
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examine the diagonal i = j = t term, which would be expected to be the
dominant contributor in the case of adding an electron to spin-orbital 4J"
Then, through second order, erom Eq. (6.79) we have

(P ) - E " l<tmIICltJ)12
211-&,+ + L.

a.>p.m&m+C,-Ca.-Cp

- L l<tClllta)12- L l<tClllpQ)12
q*';a. Cq- Ca. p>q*'Cp+ Cq - c,- Ca.a.

(6.80)

Clearly this term will vanish (G will have a pole) near E = -&" which is the
Koopmans' theorem estimate. The correction to Koopmans' theorem ex-
pressed in the three sums occurring above caD be given physical meaning in
the following manner. The second sum gives the orbital relaxation contribu-
lian to the jon-neutral energy difference. By expanding the HF orbitais ofthe
jon in terms ofthose ofthe neutral and then computing the ion'senergywith .
these orbitais correct through second order one could derive this term within
a wavefunction picture (pickup and Goscinski, 1973).The fact that this sum
bas an orbital energy denominator involving oni y a single orbital excitation
energy (6q- ca.)bas to do with the fact that, in a configuration interaction
language, this term arises erom single spin-orbital excitations (4Ja.--+4Jq).The
numerator l<tClllta)12caD be identified as the square of the perturbation
matrix element coupling orbitais 4Ja.and 4Jq.The perturbation is the coulomb
and exchange potential caused by the electron that bas been added joto 4J"
The third sum in Eq. (6.80) gives the approximate correlation energy of an
eIectron in 4J,with the remaining N electrons (in 4Ja.)and hence bas to do with
double excitations (4J,4Ja.--+4Jp4Jq),which would arise in a CI description of
such pair correlations. Finally, the first sum describes the changes in the
correlation energiesbetweenpairs of orbitais 4Ja.,f/Jpdue to the fact that spin-
orbital 4J,is occupied in the jon (and hence unavailable for correlating f/Ja.and
4Jp),but was not occupied in the neutral paTent molecule.

c. Tllird-Order Al1alysis oj Pole Structure

To obtain the expression for P(E) that contains all terms through third
order (Simons and Smith, 1973; jorgensen and Simons, 1975; Cederbaum,
1973), we introduce the matrices given explicitly in Eqs. (6.63)-(6.76) joto
Eq. (6.61)and neglect the fourth-order terms. This allows us to write Eq. (6.61)
as

P(E) = Ao + AJ - q(Mo + MI)- ICI - C1(Mo+ M1)-IC2

-C1(Mo+MI)-IC1 (6.81)

The inverse matrix (Mo+ MI)- l caDfurther be decomposed joto orders by
performing the expansion

(Mo + M1)-1 = Mol - MoiMIMoI + Mo,IMIMoIMIMo. +... (6.82)
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which caD be used in Eq. (6.81) to identify tht; ~--MSto keep through third
order:

PJ(E) = Ao + AJ - CTMolCI + CIMol~. .MOICI
- CIMi)IC2- cIMo ICI (6.83)

At this third-order level of approximation, the EP bas been sueeessfully
applied to a large number of inorganie and organie moleeules. The ionization
potentials (Von Niessen, et al., 1979) and eleetron affinities (Simons, 1977)
thus obtained are usually reliable to within :1:0.3eV.

d. Diagrammatic AllalY$is

The derivation of the EP eonsistent through a certain order may alterna-
tively be performed in a waJ very similar to that used in MBPT to express
the staLe energy and wavefunetion. As in MBPT, the result is expressed in
terms of a set of diagrams. In this seetion we give the results of performing
sueh a diagrammic perturbation analysisofthe EP. The eontribution to P(E)

beyond the (E + tj)(;jj is, in the diagrammatic analysis, referred to as the self-
energy or optical potential matrix E(E). The self-energy ma trix E(E) in a
given order II is expressed in terms of a set of Hugenholtz diagrams. The
diagrams, which enter in order n, are determined by applying the rules in
Table I of Chapter 3, with fule 3 modified sueh that when one is connecting
Iines eaeh diagram bas to have one ineoming and one outgoing line. The
translation of a Hugenholtz diagram joto an algebraic expression is, as in
MBPT, performed by translating the Hugenholtz diagram joto one of its
equivalent Brandow diagrams (Fig. 6.1; see Section 3.G). The algebraic ex-
pression for the Brandow GF diagram is obtained by applying the rules of
Table II of Chapter 3 with role 3 modified sueh that an energy parameter
equal to (-I)hE is added to each factor in the denominator L. to!- Lp tp if

Hugenholtz Brandow

~ t~~~o.
A A FIG. 6.1. AIl Hugenholtz and Brandow second-

order self-energy diagrams.

~ .r.~~--~o'
B B
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the sum of the number of internat hole and particie lines is an odd integer.
Here It is the number of internat hole lines in the diagram. Linesare counted
as internat only if they lie between the vertices from which the GF's two
free lines originate. If the GF's two free lines start at the same point, only
those hole lines that exist horizontal to this point are counted. For example,
diagrams A and C of Fig. 6.2 contain one and zero internalline, respectively.
Diagram G of Fig. 6.2 bas one internat hole line and thus cuch denominator
would get a - E factor added in.

If /-1°is taken to be the HF Hamiltonian, then, as in MBPT, all diagrams
containing the loop structure )o cancel with the corresponding diagrams
having the potential symbol >< { in the same location. No fust-order dia-
gram s then enter in the diagrammatic perturbation analysis. In second order
only the two diagrams displayed in Fig. 6.1 enter. To obtain some experience
in applying the rules in Table II ofChapter 3,we list the analytical expressions
for these two diagrams:

A = L(t)I( _1)1+l (jallpa)(pallka)
pq -E+Eo:-Ep-Eq
o:

(6.84)

B = L(t)l( -1)2+ I (aPI Ijp) (kPI laP)
0:/1 E+Eo:+E /I -E
p p

(6.85)

The second-order contribution to the EP given above is, of course, identical
to the one derived in Eq. (6.79).

In Fig. 6.2, we list the nonvanishing third-order self-energy diagrams.
These may, of course, also be identified with corresponding terms of the

~<$/~~~
A B C D E F

~ 0 ~ ~ 0 ~
G H I J K L

~ ~ ~ ~ ~ ~
M N o P Q R

FIG. 6.2. Ali third-order Hugenholtz self-energy diagrams.
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third-order expression of PJ(E) in Eq. (6.83). The sum of diagrams A and B
represents the fiest two terms of AJ in Eq. (6.65), while diagrams C-F may
be identified as orginating erom the last term of Eq. (6.65). The term
C1Mo .M.Mo 'C. gives rise to G, L, M, and R, while H-K and N-Q may be
shown to originate erom C1Mo 'C. and CTMolC2. The analytical third-order
expression thus gives a compact representation of the diagrams in Fig. 6.2.

E. THE POLARIZATlON PROPAGATOR

1. Introduction

IfwechoosetheoperatorsA andB+ both to be the electricdipolemoment
operator r, then the spectral representation of the resulting GF reads

~r;rh = \im L
{

<Olrlm><mlrIO>. + (Olrlm><mlrIO).
}

(6.86)
a-+O m E - Em+ Eo+ ItI E + Em- Eo- I"

The residue at the pole E = :t (Em- Eo) contains the transition dipole
matrix element between the states l°) and Im),

<Olrlm)= L(r)j.<Olj+slm)j.
(6.87)

where

(r)j. ==<cPArlcP.) (6.88)
"'

!,

j
j
~,
!
i

Since r is a number-conserving operator, the reference stale l°) and the
stale Im) must contain the same number N of electrons. The poles of this
so-calledpolarization propagator (PP) thus occur at the excitation energies
E = :t (Em- Eo) of the system described by l°>, while the corresponding
residuesgive the squares ofthe electricdipole transition moments 1<0Irlm)12.

The real part ofthe above GF may be expressedby combining terms over
a common denominator as

Re~r;rh = - L 2(Em- Eo)I<0Irlm)12
m E2 - (Em- Eo)2

(6.89)

which is identical to the conventional expression for the frequency-dependent
polarizability tensor (the frequency being represented by E).

To get some experience in using the PP to express second-order frequency-
dependent and -independent properties and to indicate som e problem s that
may appeal when using the PP in finite basis set calculations, we now derive
alternative but formally equivalent expressions for the frequency-dependent
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polarizability. We may employ Eq. (6.10) to reexpress the propagator
~r; r}E as

E~r;r}E = (OI[r,r]IO) + ~[r,H];r}E = i~p; rh

where we haveused(in a.u.)

(6.90)

[f, II] = ip (6.91)

For E #- O,iE-I ~p; r}E may alternatively be used to calculate the frequency-
dependent polarizability. Near E = O, however, we expect iE- l «p; rh
(which should, in principle, equal ~r; r}E) to have diffieulty in finite-basis-
set ealculations becauseof the explieit appearaneeof the E- l faetor. That
is, unless «p;r}E, as a calculated ruBelion of E, is proportional to E near
E = O, one might obtain ineorreet behavior of iE- l~p; r}E here.

Applying Eq. (6.10) ODcemore to Eq. (6.90) gives

E«p;rh = (OI[p,r]IO) + ~p;[H,r]}E = (OI[p,r]\O) - i«P;P}E (6.92)

Using the second-quantized forms for p and r, we caD explicitly calculate
the commutator in Eq. (6.92)as

[p, r] = L (p)ij{r)kl(Jjki+l - Jj/e j)
ijkl

= L[(pr)jl - (rp)jl]j+ l
jl .

= -i L Ijl.;+l
jl

(6.93)

where I is the unit tensor operator whose elements are Ijl = Jjrl, and

(WX = (wy = (1)"" = I, (WY = (W" = (I»)" = O (6.94)

Clearly Eq. (6.93) is valid only if the basis set is complete so that we caD
write (pr)jl - (rp)jl = (pr - rp)jl = -iJjll. We may now rewrite Eq. (6.92) to
obtain one further expression for the frequency-dependent polarizability

1
«r;rh = E2(NI + ~P;P}E) (6.95)

where the number N of electrons in l°) arises by evaluating I Lj (OI;+iIO).
As with i~pjr}EE- l, finite-basis-set ealculations of this form for the polar-
izability through the propagator ~p; ph would be expected to have difficulty
near E = O beeause the small-E portion of ~P,P}E' which should exactly
cancel the NI factor may, in a finite basis, not lead to exact cancellation.

We have naw diseussed how frequency-dependent polarizabilities can be
obtained direetly erom the PP ODcea closed algebraic equation for ~r; r}E
is found. Other seeond-order properties caD equally wen be determined by
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replacing A and B+ with other one-electron operators (e.g., the dominant
term in the indirect nuelear spin-spin coupling constant results when A
and B+ are taken to be the Fermi contact Hamiltonian).

In the following, we concentrate on how approximate elosed expressions
may be obtained for the ~r;r~E form ofthe polarization propagator. From
aur treatment of the PP it should become elear how to determine other
second-order properties corresponding to other choices for A and B + .

2. The Single-ConfigurationTOHF Approximation

In a simple and very commonly used approximation to the PP, the refer-
ence stale l°) is chosen to be a single-configuration (but not necessarily
single determinant) HF wavefunction.The operator manifold {T+} then is
taken as the set of particie-hole excitation and deexcitation operators used
for optimizing the referencestate:

T+ = {T;} = {Q+,Q} = {m+(X,(X+m;m(X} (6.96)

With these choices, the propagator takes the form (as expressed in Eq. (6.32)]

. - + (Q+IEI+RIQ+) (Q+IEI+RIQ» )
-I

(Q+lr»)~r, rh - «rlQ )(rIQ» (QIEI+ RIQ+) (QlEI + RIQ) (Qlr)

(6.97)

Since the one-particie density matrix is diagonal for the chosen HF reference
stale, we have

(QIQ+) = (Q+ IQ) = {(O[s+p,r+(X]IO)} = {O} (6.98)

and

S,a.sp == (Q+ IQ+),a,sP = (OI[(X+r,s+PJIO) = (J,l'ap(va- v,) (6.99)

and similarly

(rIQ+)sp = (vII - vs)(r)ps (6.100)

where v"is the occupancy of spin-orbital cP",Equation (6.97) may be written
in moce compact notation as

~r;rh = «rIQ+)(rIQ»(SE + Al1

Bl1

Bl1 )
-1

(Q + Ir»)-SE + Al1 (Qlr) (6.101)
j
1

j

\

where the matrices A11and Bil are identical to those defined in connection
with the MCSCF orbital optimization in Eqs. (2.29) and (2.30) except that
l°) is taken hece to be the single-configuration HF function. These matrix
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elements are evaluated explicitly in Problem 5.2 and used in Problem 6.2
to carry out a PP calculation.

Equation (6.101) is said to express the time-dependent Hartree-Fock
(TOHF) or the random phase approximation (RPA) to the PP (J"rgensen,
1975). The TOHF (or RPA) approximation has been derived in a variety
of ways, each of which tends to stress a certain aspect or point of view. In
the folIowing, we examine the physical content of the TOHF approximation
and tfY to point out various consequences of using it for calculating the
frequency-dependent polarizability, oscillator strengths, and excitation
energies.

a Pole (/Iul Residue Aftalysis

We now demonstrate how the TOHF propagator may be transformed to
a spectral form s;milar to the one appearing in Eq. (6.6). The poles of Eq.
(6.1Ol) caD be determined through solving the nonhermitian eigenvalue
problem

(Ali BII

)(
Z

)- E(
S O

)(
Z

)\BII Ali Y - O -S Y

whose dimension is the sum of both the number of nonredundant particIe-
hole and hole-particie operators. The solution of Eq. (6.102) may altema-
tively be obtained through performing a series of transformations involving
matrices of oBIJ the dimension of the particIe-hole operators (Linderberg
and Ohm, 1977; j"rgensen, Olsen, and Yeager, 1981).To achieve this reduc-
tion in the matrix dimension, we first write Eq. (6.102) in component form as

(6.102)

AIIZ + BIIY = ESZ

BIIZ + AIIY = -ESY

Successively adding and subtracting the above two equations gives

(6.103)

(6.104)

(A11+ Bl1)(Z + Y) = ES(Z - Y)

(Au - Bll)(Z - Y) = ES(Z + Y)

Equation (6.105) may then be rearranged,

Z + Y = E(Au + Bll)-IS(Z - \)

(6.105)

(6.106)

(6.107)

and inserted joto Eq. (6.106) to give

S-I(A11 + BI.)S-I(AIl - BI.)(Z - Y) = E2(Z - Y) (6.108)

The eigenvalues of Eq. (6.102) are thus determined by the nonhermitian
eigenvalue problem given in Eq. (6.108) for E2. lf Ali - Bil is positive def-
inite, we caD form the (AIl - Bll)1/2 matrix and premultiply Eq. (6.108)
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with (Ali - BII)1/2, thereby achieving the hermitian eigenvalue problem

(Alt - BII)1/2S-I(AII + BII)S-I(Alt - Blt)1/2(Alt - Blt)1/2(Z- Y)
=E2(AII - Blt)1/2(Z - Y) (6.109)

which bas eigenvalues E2 and eigenvectors equal to (Ali - BII)1/2(Z - Y).
The eigenvalues of the nonhermitian eigenvalue problem in Eq. (6.102) caD
thus be determined erom a hermitian eigenvalue problem of only the dimen-
sion of the particie-hole operators. When S is singular or nearly singular,
it may be useful to solve Eq. (6.108) or (6.109) using the inverse eigenvalue
equations with eigenvalues 11E2. Equation (6.108) then becomes

(Ali - BII)-IS(AII + BII)-IS(Z - Y) = (lIE2)(Z - Y) (6.110)

To interpret how transition moments are determined within the TDHF
approximation, we continue transforming the propagator to its spectral
form. We use the eigenvalues and eigenvectors of Eq. (6.108) together with
Eq. (6.107) to determine the Z and Y matrices. Equation (6.102) implies that
if the set (~)are eigenvectors corresponding to the eigenvaluesw, then G>

are eigenvectors with -w eigenvalues.This allows us to write Eq. (6.102)
in a form that displays its positive and negative eigenvaluespectrum

(Ali BII

)(
Z Y

) (
S O

)(
Z Y

)(
w O

)Bil Ali Y Z = O -S Y Z O -w

or alternatively as

(ES + Ali Bil

)(
Z Y

)= (
S O

)(
Z Y

)(
E1 + w O

)Bil -ES+AII y Z O -S Y Z O E1-w

(6.112)

(6.111)

Because of the appearance of the metric matrix (~ -~) in Eq. (6.102)the
(~)eigenvectors may be normalized according to

(Z, Y)A(~ -~)(~)~= JA~
(6.113)

To obtaina spectral representation of the propagator that contains a unit
metric, one must transform the set of particie-hole and hole-particie oper-
ators to the representation where they give a diagonal metric with unit
elements. This transformation is carried out using the excitation operators
defined below:

0+ = Q+Z + QY

0= Q+Y+ + QZ+

(6.114)

(6.115)
]
.~
.~
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For example, it is straightforward to show using Eqs. (6.98),(6.99),and
(6.113)that

(0+ 10+) = (Z+,y+)(~ -~)(~) = 1
(6.116)

This condition then implies that the fuli metric matrix involving these new
excitation operators becomes

(0+ 10+) (010+))= (
1

(0+ 10) (010) O

O

) (
z+ Y+

)(
S O

)(
Z Y

)-1 = y+ Z+ O -S Y Z (6.117)

The spectral form of the propagator is then obtained by taking the inverse
of Eq. (6.112),premultiplyingwith (~ ~),and using Eq. (6.117):

(
ES + AlI

811

811 )
-1

-ES + AlI

=(
Z Y

)(
E1 +w O

)
-1

( Z:y Z O E1 - w - Y
Y+

)-Z+ (6.118)

Introducing Eq. (6.118) joto Eq. (6.101) finally allows us to write the prop-
agator in spectral form

+
1

2[ 1 + 1 ]~r;rh = ~I(rlo}.) E - m}. E + w}.
(6.119)

A comparison of Eq. (6.119)and the spectral representation of the propagator
given in Eq. (6.86) shows that the pole at E = w}.correspouds to a total
energy difference E}. - Eo. The pole at E = ""-aJ}.corresponds to the same
to tal energy difference E}.- Eo, and the propagator therefore is au eveu
function in the excitation energy E}.- Eo. The pole at E = w}.bas a residue
of -1(rIO;W, which using Eq. (6.6) may be identified as -1<0Irl),)12. The
pole at E = -w}. bas the residue l(rIO;W, which is equal to 1<0Irl),)12.The
transition moments <Olrll1)may thus be determined from the residue at
either ofthe poles E = :t w}.. ILshould be noted that the above development
allows E}. - Eo to be either positive or negative corresponding to excitation

energies from ground or excited stalego However, in applications where l°)
refers to an excited stale, Eq. (6.108) must be used to determine the excitation
energies, because A - 8 is not then positive definite.

b. Tlre Stability Col1ditiol1

lf imaginary or negative roots are encountered when solving the non-
hermitian eigenvalue problem in Eq. (6.108), the RPA approximation is said
to have an instability. If AIl - 811 is positive definite, instabilities are not
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encountered if the matrix (AI1 - 811)1/2S-I(AI1+ 811)S-I(AI1 - 811)1/2
in Eq. (6.109) is positive definite; that is, if

X(AI1 - 811)1/2S-1(AI1 + 811)S-I(AI1 - 811)1/2XT> O (6.120)

for aDYvector satisfying IX!> O. Defining the vector

y = X(All - 811)1/2S-1

we may write Eq. (6.120) as

Y(A11 + 811)yT> O (6.122)

which says that Ali + 811 bas to be positive definite to ensure that Eq. (6.120)
is fulfilled. Thus if Ali - 811 is positive defmite and AlI + 811 is not,
then an RPA instability will be encountered. Although it is not obvious
erom the previous derivation ofthe solution to the RPA problem, it may be
shown by transforming the RPA eigenvalue problem to an equation similar
to Eq. (6.108)(but with Z + y occurring as the eigenvector) that if Ali + 811
is positive definite, then an RPA instability is encountered if Ali - 811 is
not positive definite. Hence if both AI1 :l: 811 are positive definite, insta-
bilities are not encountered in the RPA approximation. If both Ali :l: 81 I
are nonpositive definite, an explicit solution of Eq. (6.108) bas to be de ter-
mined before it be elear whether an instability is encountered. If Ali :l: 811
are both non-positive-definite, negative excitation energies (EA - Eo) are
obtained in TDHF approximations. Soch negative excitation energies may
correspond to excitations erom higher to lower "excited" stalego
- As was demonstrated in Chapter 2, the curvature of the energy hyper-
surface at a stationary point corresponding to the reference stale lO) is
governed by the same Ali - 811 matrix [Eq. (2.80)] as occurs hece in the
TDHF. Hence, if the HF wavefunction correspondsto a local energy mini-
mum, Ali - 811 would be positive definite. In aur derivation of the energy
optimization conditions as given in Chapter 2, we restricted aur orbital
variations to involve anty real variational parameters (i.e., we assumed real
spin-orbitals). If we bad instead examined the variations in the energy re-
suIting erom purely imaginary orbital variational parameters, the second
derivative of the Latal energy would involve the matrix Au + 811. Hence,
the conditions that Ali :t 811 be positive definite most be met if the HF
reference stale is to represent a local energy minimum both with respect to
real and imaginary orbital variations. Therefore, imaginary excitation ener-
gies arise in RPA if one of the matrices AI1 :l: 811 is non-positive-definite
and the other is positive definite. If negative excitation energies are obtained
in the RPA approximation both AI1 :l: 811 are non-positive-definite and
the reference stale lO) then represents a saddle point on the energy hyper-
surface.

(6.121)
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c. Co/lnectionwith CoupledHartee-Fock Tlteory
Having defined the TOHF problem and having shown how excitation

energies and oscillator strengths are determined, we naw demonstrate that
the above TOHF propagator reduces, for E = O, to the equation obtained
in Chapter 5 for the second-order response pro pert y as expressed in the
coupled Hartree-Fock (CHF) approach. For E = O,the TOHF polarization
propagator given in Eq. (6.101) becomes

«r;rh=o = «rIQ+)(rIQ»(:::
Inserting unit matrices in the form

811

)
-I

(Q+ je»)At I (Qlr)
(6.123)

UU + = 1 (6.124)

where

u= ~G -~) (6.125)

before and after the above inverse matrix, allows us to express the inverse
matrix as

(At I BII )-I = U(AI1 + 811 O )-1 U+
811 Ali O Ali - 811

Because the dipole operator r is real, the elementary definition of the super-
operator scalar product given in Eq. (6.16) caD be used to write

(6.126)

(rIQ) = -(rIQ+)

which, together with Eq. (6.126), allows us to rewrite Eq. (6.123) as

(6.127)

«r;rh=o = 2(rIQ)(AI1 - BII)-I(Qlr) (6.128)

Comparing this expression to that of the CHF approach [Eq. (5.16)] shows
that these twa ways or writing the frequency-independent polarizability are .

indeed identical.

d. Equivalence oj Lengtlt and Velocity
Oscillator Strengths

Another important and attractive feature of the TOHF approximation
(and its MC extension described belo w) is that the oscillator strengths com-
puted within the dipole length and dipole velocity approximations become
formally equivalent. provided that a complete basis is used in the calculation.
From Eq. (6.119) it is elear that the transition moments in the dipole velocity
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approximation would given by

(plOn = (OI[p,O;]IO) (6.129)

which erom Eq. (6.91) is equivalent to

- i(OI[[r, H], 0:]1°) (6.130)

Using the matrix identity of Eq. (6.42) together with the BT theorem in the
form

(OI[[r,O;],H]IO) = O

we caDexpress the above as

(6.131)

(pl°1) = -i(OI[r,[H,O:]]IO) = -ir(O\[Q+ + Q,[H,O;]]IO) (6.132)

where r denotes a row vector that contains the particie-hole matrix elements
(r)m...Equation (6.132) may be rewritten, using the definitions of O;
[Eq. (6.114)]and the Au and B11matrices, as

I + (
Alt Bu

)(
Z

) (
S O

)(
Z

)(p O.d = - i(r,r) Bu Au y). = -w).i(r,r) O-S y). (6.133)

The last equality sigo follows erom the eigenvalue relation Eq. (6.102). Since

«rIQ+)(rIQ» = (r,r)(~ -~)
(6.134)

we may finally rewrite Eq. (6.133) as

(plO;) = -iw).«rIQ+)(rIQ»(~\ = -iw).(rl°1} (6.135)

'herc the last step followserom the definition of the excitation operator in
q. (6.114).Equation (6.135)states that oscillator strengths calculated in

he dipole length and in the dipole velocityapproximation becomeidentical
provided that the commutator relation in Eq. (6.91)is valid.Violation or the
commutation relation [Eq. (6.91)]occurs when a finite basis is used in the
calculation. .

The TDHF approximation thus has three very characteristic features that
nake it especially useful as a means for calculating excitation energies and
)scillator strengths. In ground-state calculations it indicates via imaginary
:xcitation frequencies if the ground stale is not slabie under the type or one-
:Iectron perturbation given by the choice of A and B+. A singlet instability
s thus encountered if A and B+ are chosen to be the dipole operator, whereas
riplet instabilities are obtained if A and B+ are chosen to be, for example,
.he Fermi contact Hamiltonian. Second, when the energy parameter E is
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set equal to zero, one obtains the same expression for the second-order
properties in the TDHF method as in the CHF approach. Finally, the
oscillator strengths ca\culated within the dipole length and the dipole velocity
approximations are formally equivalent. These attractive features are unique
to soch an approximate theory.

3. The Multiconfigurational Extension of TDHF

In maDY calculations on highly correlated or open-shell molecules, it
toros out that a single-configuration reference stale description of 1°) is
inadequate even ifoptimized orbitaIs are used to describe lO).1fthe excitation
operators of interest belong to the to tany symmetric irreducible representa-
tion of the Hamiltonian's point group, the results obtained are normany
better than if one attempts to calculate properties whose operators are not
to tany symmetric (e.g., tripiet operators). It is wen recognized, for example,
that the singlet excitation energies for a closed-shen molecule, are described
relatively wen (to about 10% accuracy) within the TDHF approximation,
wbite the description of the tripIet excitation energies is very poor. In fact,
tripIet instabilities are often encountered when using the above TDHF
method.

Approximations that go beyond the simple TDHF approximation are
therefore needed. We consider iwo soch approaches hece. The second method
outlined below is based on a RSPT analysis in which reference stale lO) is
expanded in powers of the residual electronic interaction [given by U in
Eq. (3.35)] and the projection manifold {T+} is chosen to be large enough to
guarantee that all terms in the PP are determined consistent through second
order. In light of ibis order analysis, it will be seen that the TDHF approxi-
mation corresponds to the approximation that is consistent through fiest
order in the electronic repulsion. Before presenting ibis RSPT treatment, we
address another approximation that goes beyond the single-configuration
TDHF approximation. This extension, which is based opon an MCSCF
description ofthe reference stale lO), bas the same three useful characteristics
mentioned above in describing the single-configuration-based TDHF
description. The multiconfigurational time-dependent Hartree-Fock
(MCTDHF) approximation thus provides a formalism in which oscillator
strengths in the dipole length and velocity approximation remain equivalent
as one ranges continuously through (MCTDHF) from a single-configuration
description (TDHF) all the way to the run-CI limit.

a. Choice oj RejerelIce Fullctioll alld Operator Mallifolcl

Having now motivated the consideration of moce sophisticated reference
states, lei us develop the above-mentioned approximation in some detaiL
In the MCTDHF approach (Yeager and J0rgensen, 1979; Dalgaard, 1980)
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an MCSCF wavefunction is used as the reference stale. The projection mani-
fold {T+} is then chosen to be the same nonredundant (see Section 2.B.7)
set of orbital and configuration space excitation [Eq. (2.26)] and deexcitation
operators that were used for optimizing the MCSCF reference stale

{T+} = {Q+,R+,Q,R} (6.136)

b. Hermiticity Problem

This choice of 1O)and {T+} then permits (r; r)E to be written in a form
analogous to that given in Eq. (6.97). In computing the requisite matrix
elements, one notices that the elements giving the coupling between orbital
and configuration space operators do not obey hermiticity:

(Q+IRIR:) - (R:IRIQ+)* = (OIHQln) - Eo(OIQln) :F O (6.137)

In the limit where one has in l°) an exact eigenstate

HIO) = EoIO) (6.138)

the lagi iwo term s in Eq. (6.137) cancel, and the matrix representative of il
within the {T+} basis consequently becomes hermitian. Therefore, we are
certain that this nonhermitian aspect of the problem is an artifact (i.e., it
arises because we do not have an exact 1°». To fOTcethe matrix to be her-
mitian even for approximate choices of 1°), we equate (Q+IHIR+) with
(R+IHIQ+)*. That is, we simply require the superoperator Uamiltonian to
operate on the orbital space (Q+, Q) when the coupling elements are eval-
uated. This choice yields a propagator that for E = Ogives the same result
for second-order properties as obtained in the coupled multiconfiguration
UF approach. An added advantage of this order of operations is that the
osciIlator strengths in the dipole length and in the dipole velocity approxi-
mations become Cormally equivalent. If we bad chosen an alternative means
oCimposing hermiticity on tbe matrix, soch would not be tbe case.

c. SpectralRepresentationoJ the Propagator
Inserting the projection manifold defined in Eq. (6.136)joto Eq. (6.32)

gives

(r;r)E = [(rIQ+)(rIR+)(rIQ)(rIR)]

(

Q + Ir»

)

x (E(
8 A

)+ (
A B

))
-1 (R+ Ir)

-A -8 B A (Qlr)
(Rlr)

(6.139)
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where

8 - (O\[Q,Q+JIO) (O\[Q,R+JIO»)- (O\[R,Q+JIO) (OI[R,R+JIO)

A - ( OI[Q,QJIO) (OI[Q,RJIO» )- (OI[R,QJIO) (OI[R,RJIO)

and 8+ = 8* and A + = -A*. The elements oC,for example, (OI[Q,R+JIO)
are given by

(OI[s+r,ln)(OIJIO) = (Ols+r\lI) . (6.142)

(OI[R;,RmJIO) = <Ol[In) <°l, l°) <ml]l°) = -(mili) = -15m" (6.143)

(6.140)

(6.141)

The A and B matrices are identical to thosedefined in Eqs.(2.29)and (2.30)
and moce explicitly written out in (2.42) and (2.44).Of course, now the
referencefunction l°) is the MCSCF stale; in the TDHF approximation it
wasthe single-configuration SCF stale. In Problem 5.3,the A and B matrices
are evaluated for a single molecular ion, and in Problem 6.3 the data are
usedto perform an MCTDHF calculation on that system.

Becausethe metric in the MCTOHF approximation [Eqs.(6.140)and
(6.141)] basa mocegeneral form than the one in the TDHF approximation
[Eqs. (6.98) and (6.99)] some minor modifications are required in the proce-
dure described in Section E.2.a. to get the propagator into spectral form.

By carrying out transformations of the MTDHF eigenvalue problem,
similar to that done in Eqs. (6.102)-(6.108),we obtain the resuIt analogous
to Eq. (6.107) (Jorgensen et al., 1981)

Z + Y = E(A + B)-1(8- A)(Z - Y) (6.144)

to Eq. (6.108)

(8 - A)-I(A + B)(8 + A)-I(A - B)(Z - Y) = E2(Z - Y) (6.145)

and to Eq. (6.109)

(A - B)I/2(8 - A)-I(A + B)(8 + A)-I(A - B)I/2(A- B)I/2(Z- Y) (6.146)
= E2(A - B)I/2(Z - Y)

Using theseequations, a spectral-representation may easily be derived as
was clonein the single-configuration case in Eqs. (6.109)-(6.119).

d. Special Characteristics ofthe MCTDHF Propagator

The MCSCFreferencestale representsa stationary point on the energy
hypersurface. If imaginary excitation energies are encountered, for example,
in an MCfDHF ground-state calculation, the minimum point is not stable



154 6 Green's Functions

(does not eorrespond to a loeal minimum) oRder the type of(spatial or spin
symmetry) one-eleetron perturbations deseribed by the operators A and B+.
AIso, as in the single-eonfiguration TOHF, the frequeney-independent polar-
izability obtained in the MCTOHF approximation beeomes identical to that
resuIting erom the multiconfiguration eoupled HF approaeh. The proof of
this equivalence folIows exactly the same lines as for the single-configuration
case; we refer to that proof for further details [see Eqs. (6.123)-(6.128)]. The
essential points of the proof are as follows. For E = O,Eq. (6.139) reduces to

(

Q+ Ir»

)
~r;r~E=O = (r\Q+)(rIR +)(r\Q)(rIR>J(: :) -I (~I~) (6.147)

(Rlr)

By next inserting the unit matrix or Eq. (6.124)before and after the above
inverse matrix and then using Eq. (6.127),we caD write the frequeney-
independent polarizability in the form

«r; r»E=O = 2[(rIQ)(rIR)](A - B)-IO~I::)
which is identical to the expression obtained in the multieonfiguration
eoupled HF calculation ofEq. (5.15). It bas further been proven by Oalgaard
(1980) that the oscilIator strength ealculated within the dipole length and
dipole veloeity approximations become identical if a complete basis is used
in (he MCTOHF calculation. A proof that follows lines very similar to the
DRes given in Section E.d for a single-eonfiguration case bas been given
(Albertsen et al., 1980).

The MCTOHF approximation thus bas the same eharaeteristics as the
single-configuration-based TOHF approximation. We therefore have the
possibility of determining approximate stale veetors that, at aDY level of
approximation, show these characteristics as the number of configurations
included in the MCSCF referenee stale is inereased erom the single-eonfigu-
ration case through the fulI-CI limit. Initial ealeulations using the MCTOHF
approximation have yielded very promising results. We now move to deserib-
ing an extension of the TOHF approximation that is based on perturbation
theory.

(6.148)

4. Rayleigh-SchrodingerAnalysis

The perturbation extension of the TOHF method is obtained by develop-
ing systematie approximations to the PP that are consistent through a
certain order in the perturbation (Oddershede, 1978).These approximations
are based opon expanding the referencestale lO) in powers of the residual
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electron-electron interaction as defined in RSPT [see Eq. (3.14)] and by
choosing the projection manifolds {T:} to be sufficient1y "large" to ensure
that the resulting matrix elements of the PP propagator are consistent
through the desired order.

In the EP case, aur goal was to determine the primary poles (the ionization
potentials and electron aillnities involving low-energy ionization oC the
parent molecule) through second or third order. In the analogous PP calcu-
lations, the primary poles correspond to those possessing dominant particIe-
hole nature; we attempt to determine these poles through a chosen order.
Because the residues at a given pole contain information about the transiOll
amplitudes for the given type of excitation, perturbation methods mayaiso
be employed to evaluate these residues through a specified order. Further,
since the PP expresses the reference states' frequency-dependent polarizabil-
ities, this response quantity mayaIso be calculated consistent through the
desired order by using a PP consistent through that order.

a. Choice oj Operator Space

As the unperturbed Hamiltonian, we choose the same HF Hamiltonian
as was employed in the above EP development, and we use a basis set of
real orthonormaI spin-orbitals. We develop an approximation to the PP
that yields the primary excitation energies and the corresponding transition
moments (and the frequency-dependent polarizability) consistent through
second order in the residual electronic repulsion (Nielsen et al., 1980). To
determine the poles belonging to the principal excitation energies, the corre-
sponding transition moments, and the frequency-dependent polarizability
through second order, it proves sufficient to consider the truncated projection
manifold

. {T+}= {T;;Tn (6.149)

This conclusion is by no means obvious. One musi, in principle, examine
the elfects of T:, T~, etc. on the ma trix elements (T+IRIT+), (B+IT+),
(T+ lA), and (T+ IT+) to conclude that these higher operators caD have no
elfect, through second order, on the computed poles and residues of the PP
(Oddershede and Jergensen, 1977).

b. Pole and Residue Structure oj tlte Propagator

With the above choiceof the operator projection manifold,the PP propa-
gator [Eq. (6.32)]becomes

I + I + (T;IEi + RITn
«r;r~E= [(f T2)(rT4)] (T1IEi+ RIT;)

(T;IEf + RIT1»)
-I

(T; Ir»)(T1IEf+ RIT1) (T1Ir)
(6.150)
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Introducing the shorthand notation

Mjj = (TtIEI + RITj) (6.151)

we may partition the inverse matrix of Eq. (6.150), as was clone in the EP,
to yield

(M22 M24 )
-1

M42 M44

(

M22 - M24MilM42)-1
= (-MilM42(M22

-MilMilM42)-I.

-(M22 - M24MilM42)-IM24Mil

)
Mil..,. MilM42(M22

- M24MilM42)-IM24Mil
j

(6.152)

By substituting the inverse matrix joto Eq. (6.150) and multiplying out the
factors we obtain

{r;r»E= [(rITi)- (rIT:)MilM42]P-l(E)[(Ti Ir)- M24Mil(T: Ir)]

+ (rIT:)Mij(T: Ir)
==W2(E)+W4(E) (6.153)

where

P(E) = M22 - M24MilM42 (6.154)

The principal poles of the propagator occur at. the eigenvalues of P(E).
Therefore, to obtain these poles consistent through second order, we require '

P(E) to be determined consistent through that same order. To compute the
transition amplitudes consistent through second order requires that the
quantity F(E) defined by

F(E) ==[(rITi) - (rIT:)MilM42] (6.155)

which contains zeroth- and higher-order factors, algo be evaluated consistent
through second order. Finally, if the frequency-dependent polarizability is
to be calculated through second order, both W2(E) and the W4(E) should be
computed through that order. Let us now analyze. in moce detail which of
the above matrices have to be evaluated explicitly through which order to
guarantee that the above quantities are calculated consistent through second
order.

c. Second-Order Analysis oj Pole Structure

We consider initially the calculation of the excitation energies that are
determined as poles ofP-1(E) [Eq. (6.154)]. After introducing the individual
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components Q, Q+, Q+Q+, and QQ, we may carry out an order analysis
of the individual matrices appearing in P(E). We consider initially the matrix
M22, which is expected to be the dominant contributor to P.

M _(E(Q+ IQ+)+(Q+\RIQ+)
zz - (QIRIQ+)

(
ES + A B

);: B -ES +A

(Q+IRIQ) )-E(QIQ)+(QIRIQ)

(6.156)

where

S = (Q+ IQ+)

A = (Q+IRIQ+)

B =(Q+IRIQ)

(6.157)

(6.158)

(6.159)

and where we have used the fact that

(Q+ IQ)my,n"= (OI[Y+I1I,b+n]IO) = O (6.160)

is identically zero through any order. This M22 is the same matrix that
occurred in the earlier TDHF treatment of the PP except that naw 1°)
represents an RSPT expansion or the rererence stale. As an example or how
to carry out the order analysis, we consider the S and A matrices:

SmtJ,niJ = (0\[ tX+ 111,n+ PJIO)

= (oOI[tX+m,n+pJIOo)+ (IOI[tX+l1I,n+PJIO') + 0(3)

= (SO)mtJ,niJ+ (SZ)mtJ,niJ+... (6.161)

where

(SO)mtJ,niJ = bmnc5tJiJ

(SZ)mtJ,niJ= !bmn L K~~Krr - !btJ/I L K~.fK~S
pq p
y ~

(6.162)

(6.163)

and, as in the EP analysis, the superscripts on 1O°), 1°1), etc, denote the
orders or these terms, No fiest-order term s thus appeal in S because lO')
contains only doubly excited configurations. The elements or A ale given by

. AmtJ,niJ= (°l [tX+';I,[H,n+p]JIO)

= (OOI[tX+m,[Ho, n+ P]JIOO) + (OOI[tX+m,[U, n+PJ]IOO)

+ (oOI[tX+m,[U,n+PJJIOI)+ (IOI[tX+m,[Ho,n+pJJIOI)+ 0(3)

(6.164)
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In the A matrix zeroth-, first-, and second-order terms appeal. The Ao, At,
and A2 matrices ale given by

(Ao)",..",P= (6", - 6p)(j"",(j..P

(A1)",..",P= (Pmllna)

(A2)",..",P = 1<>..p L (1tyllqn)K:': - 1(j"", L (P1tllqp)K::
"yq "q"

+ (S2)",..",P(6" - 6/1)

(6.165)

(6.166)

(6.167)

The 8 rnatrix may similarly be shown to contain only first- and second-order
terms 8 = 8t +2' The 81 matrix is given in Problem 5.2 and

(82)",..",P= - L {(pqll1tm)K~: + (aqll1tn)K;l:}
q"

- 1 L (pqllnm)K5: - 1 L (aPII1t<»K:'i
"q ,,6

(6.168)

In the term M24MilM42, the M42 matrix contains no zeroth-order terms
and since MJ4 = M42, we only need keep M42 through fiest order and M44
through zeroth order to obtain

M24MilM42 (6.169)

through second order. The nonvanishing parts oC the matrices M42 and
M44 become

(C.)""'P..",y = (OOI[a+p+mn,[U,p+y]]IOO)

= (j"",(ynllap)- (j",,(ymllap)
+ <>..y(mnllpp) - (j/ly(mnllixp)

(Do)"",/I..",qy6= E . (OOI[a+ p+mn,p+ q+y<>]IOO)

+ (0°1[a +p+mn,[Ho,p+q+y(j]]1°°)
= (E + 6..+ 8p- 8",- 8")<>",,(j,,,q(j/ly<>d

(Do)../I"""6yq,,= (- E + 8.. + 8/1- 8", - 8")<>",,(j,,,q(j/ly(j..6

(6.170)

'II

(6.171)

(6.172)

The excitation energies as computed through second order may thus be
obtained as poles oC

(

[ESO+2 + Ao+1 +2

P-1(E) = -cl°o1C1]
81+2 )

-1

81+2

[ -ESO+2 + AO+1+2

-cl0o1C1]

(6.173)
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We should algo Dole that Eq. (6.173), when used to determine the excitation
energies consistent anty through first order, reduces to the inverse matrix
occurring in the TDHF approximation described in Section E.2.

d. Second-Order Analysis oj Transition Mol11ents

When the excitation energies are determined through second order we
might algo wish to determine the corresponding transition moments con-
sistent through the same order. This would require us to evaluate the eigen-
vectors of p- t(E) and to further evaluate F(E) of Eq. (6.155) consistent
through second order. Because the eigenvectors of P(E) become energy
dependent, specialized techniques are required to determine the transition
moments (Oddershede et al., 1977).

To determine F(E) consistent through second order, we introduce the
individual components ofQ +, Q, etc., which then permits the first component
EgeeEq. (6.155)] ofF(E) to be expressed as

(rIQ+) = <oOI[r,Q+]IOO)+ <tOI[r,Q+]IOI)

+ eOI[r,Q+]IOO) + <001[r,Q+]102) + 0(3) (6.174)

which contains zeroth- and second-order contributions. The values of

(rlQ +)0are given in Eq. (6.100).The auly 1°2) terms that contribute to (rlQ + h
are those which contain singly excited configurations relative to 1°°). The
matrix (rIQ+Q+) bas no zeroth-order elements; thus from the expression
for F(E), it is obvious (because M42 is of at least first order) that auly the
first-order elements of (rIQ+Q+) caD contribute. Explicit expressions for
(rIQ+h and (rIQ+Q+)t have been obtained (Nielsen et al., 1980).The
expression for F(E) consistent through second order may then be written as

F(E) = {(rIQ+)0+2 - (rIQ+Q+hOotC\>(r\Q)0+2 - (rIQQ)tOotcd
(6.175)

which may be used to calculate the transition moments correct through
second order. If we wish to calculate the transition moments correct anty
through first order, F(E) reduces to {(rIQ+)o,(rIQ)o}, which is identical to
the expression for F(E) used in the TDHF approximation. Therefore, we
again see that in the TDHF approximation, both the excitation energies and
the transition moments are calculated correct through first order.

e. Frequency-Dependent Polarizability

To obtain the frequency-dependent polarizability correct through second
order requires that the W2(E) be evaluated consistent through second order
as described previously and further that W4(E) be calculated through second
order. By introducing the individual compnents Q+Q+ and QQ we caD
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reduce W4(E) to

W4(E) = (rIQ+Q+).Do-I(Q+Q+ Ir)1 + (rIQQ)tDo-t(QQlr)t (6.176)

Since W4(E) contains no fiest-order terms, the frequency-dependent polar-
izability is thus determined consistent through fiest order in the TDHF
approximation [which contains no analog to W4(E)].

f Diagrammatic Analysis

We have previously show n how the results of MBPT and the perturbative
analysis of the EP may be interpreted in terms of a set of diagrams. The
perturbative analysis of the PP may be given a similar interpretation. We
sketch in the following how the diagrammatic analysis of the PP propagator
may be carried out. Initially, we limit ourselves to considering how the
TOHF approximation may be understood in terms of diagrams. We con-
sider the TOHF PP approximation in the SCF spin-orbital basis, where it
reads

BI

)
-I

(Q+ je»)-E1 + Ao + At (Qlr)
(6.177)

which is identical to Eq. (6.101). The poles of the inverse matrix appearing
in Eq. (6.177) may be determined erom a partitioned form of the inverse
matrix with T: + T: of Section C.4 equal to Q+ + Q. The analog of Eq.
(6.45)then becomes

«r;r~E = [(rIQ+)(rIQ)] (E1 + Ao + At

Bt

P-I(E) = [E1 + Ao + Al - Bt(-E1 + Ao+ AI)-IBI]-I (6.178)

P(E) may be given a diagrammatic interpretation by expanding the inverse
matrix as

(- E1 +Ao+AI)-1 =( -E1 +AO)-I -( -E1 +Ao)-tAI( -E1 +AO)-I

+( - E1+AO)-IAI(-E1 +Ao)-tAI( -E1 +AO)-I +. . .
(6.179)

We then obtain

P(E) = E1 + Ao + Al - Bt( - E1 + AO)-IBI

+ BI(-E1 + AO)-IAt(-E1 + AO)-IBt -'" (6.180)

In Fig. 6.3 we have displayed the diagrammatic representation ofEq. (6.180)
in terms of Hugenholtz diagrams. Using !he rules in Table II of Chapter 3
for interpreting diagrams with the modifications to fule 3 similar to those
discussed in Section 6.0.2.d, we may interpret the At matrix as giving rise
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X + r+ N+oo+ ~ooJl
A B c o

FIG. 6.3. The RPA diagram series, which caD be summed to infinite order.

to diagram A in Fig. 6.3. The fourth, fifth, etc. terms in Eq. (6.180) may
similarly be interpreted as giving rise to diagrams B, C, etc. in Fig. 6,3.
The TDHF approximation to the PP propagator thus corresponds to sum-
ming the infinite series of diagrams represented in Fig. 6.3. We emphasize
that an explicit summation of ibis whole series of diagrams is obtained when
poles of the PP are determined as described in Section E.2.

A propagator that determines the poles consistently through second order
is determined erom a partitioned form of Eq. (6.173) to be

P2(E) = E1 + Ao+1+2 - cloc)lc1 - B1(-E1 + AO)-IBl (6.181)

All terms of order higher than iwo have been neglected in Eq. (6.181). In
Fig. 6.4 we have displayed all the second-order PP diagrams. The A2 matrix
gives rise to diagrams A and B in Fig. 6.4, whereas the term - CTOo1C ]

gives diagrams C through H. The last term in Eq. (6.181) corresponds to
diagram l in Fig. 6.4. This diagram is the' second diagram in the above
described TDHF series. We again stress that a deterroination of the poles
of the PP that contain all diagrams through second order [Eq. (6.181)]
differs erom the approximation we derived in Section E.4.c, which conlained
all malrices of the PP through second order. A diagrammatric inlerprelation
of ibis group of matrices would further contain maDY series of diagrams
lhat would be summed to infinite order. One of these series would be lhe
TDHF series given in Fig. 6.3. We do not go further joto the diagrammatic

I ~ ~
A B

l l
c D

~~~~\t1\
E F G H I

Fig. 6.4. Ali Hugenholtz seco,nd-order PP diagrams.
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interpretation of the PP herc; rather we refer the reader to the moce com-
prehensive discussion given in the literature (Oddershede and jergensen,
1977).

PROBLEMS

6.1

l. Use the formulas for the second-order matrix P2(E) appearing in
Eq. (6.79) to express the 2 x 2 matrix relevant to evaluating the ionization
potential and electron affinitiesof the minimal-basisHeH + problem.

2. Using the SCF orbital energies and two-electron integrals given in
Problem 2.1, insert numerical values for the requisite integrals and orbital
energiesto expresseach ofthe elementsofthe 2 x 2 matrix P2(E)as functions
of E.

3. Use the approximation (P2)11 = Oto compute the value of E at which
the primary ionization potential of HeH+ would be expected. This is dane
by using the Koopmans' theorem estimate in the denominators occurring
in the self-energyterms and then solving for the "corrected" value of E.

4. Use the approximation (P2)22= Oto compute the value of E at which
the primary electron affinity of HeH + would be expected.

5. Are the values of E found in questions 3 and 4 the only values of E
that make (P2)11or (P2)22vanish?

6.2 Carry out a TOHF calculation for HeH +. using the minimai basis
data of Problem 2.1.The SCF calculation was carried out in Problem 2.1,
and the matrix elements necessary for carrying out the TOHF calculation
are given in Problem 5.2.

1. Oetermine the excitation energies and transition moments in the
TOHF approximation.

2. Oetermine the frequency dependent polarizability tensor for E = O
and for E = 0.1 a.u.

6.3 Carry out an MCTOHF calculation for HeH+ that bas an MCSCF
reference stale containing the configurations 1(12and 2(12and that uses the
data of Problem 2.1. The MCSCF calculation was carried out in Problem
2.6, and most ofthe matrix elements necessary for carrying out the MCTOHF
calculation are given in Problem 5.3.

l. Oetermine the excitation energies and transition moments in the
MCTOHF approximation.

2. Compare the excitation energies and transition moments obtained
herc with the results of the fuli-CI calculation of Problem 5.1. Why are the
twa sets of results identical?

3. Oetermine the frequency-dependent polarizability tensor for E = O
and for E = 0.1 a.u. in the the MCTOHF approximation. Compare the
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MCTDHF polarizability with the coupled multiconfiguration HF result of
Problem 5.3 and the fuli-CI result in Problem 5.1. Why do these three results
~? -

SOLUTIONS

6.1
1. Because we have a closed-shell reference stale, one caD compute

(P2)ij for i and j having m. = :!:1/2. The terms having spins i ==(x,j = p,
vanish since lO) is an eigenfunction of Sz. Let us take i andj to be (Xspin:

(P2)ij=biiE+6j)- L <iyllmll)<nmljjy)L <imIIYb)<yc5ljjm)
m<n 6m + en - ey + E y<~ ey + 6~ - 6m + E

y m

Because HeH + bas only one occupied orbital, the second sum above must
have y = lu(X, J = lup, and (because i is (Xspin) m = 2up. Likewise, the
fiest sum must have In = 2u(X,II = 2up, and hence y = lup. Therefore,

(P2)ij = bij(E + ei) - <i1122)<22!jl) - <i2111)<11\j2)
262 - 61 + E 261- 62 + E

2. (P) = E - 1.6562 - 0.0159 - 0.0382
2 11 1.1984+ E - 3.0835+ E

(P) = E - 0.2289 - 0.00002 - 0.0159
222 1.1984+ E -3.0835 + E

0.0006 0.0246
(P2)12 = (P2hl = + 1.1984+ E + -3.0835 + E

3. (P2)1l ~ O, E - - 0.0159 0.0382
- 1.6562+ 1.1984+ 1.6562+ 1.6562- 3.0835

= 1.6350

This iteration process could then be continued by using this value of E
to form a new (P2)11erom which a new E could be obtained.

4. (P2h2 ~ O, E = 0.2289 0.00002 - 0.0159
+ 1.1984 + 0.2289 + 0.2289 - 3.0835

= 0.2233

5. No. Shake-upionizationsoccurnear E = el - 2e2and E = 62 - 261'
These arise due to the E dependence of the denominators in the above self-
energy terms.
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6.2

1. The singlet excitation operator 2: I",+ 2; 1/1gives rise to the overlap

S21,21 = (2:1", + 2; lpl2: 1",+ 2;lp) = 2.00

because of the closed-shetl reference stale. For these excitation operators,
the A and 8 matrix elements given in Problem 5.2 become

(Al1b.21 = 2.1464, (Bl1ht,21= -0.2522
The nonvanishing matrix element of r in Problem 5.2is

(0Iz(2: I",+ 2: 1",)1°)= 2(2IzI1) = 1.0884

The TDHF excitation energy obtained from Eq. (6.109) is

El = 1.0657

and the corresponding eigenvector is

Z = 0.7083, Y = 0.0418, (zIOi2)= 1.0884(0.7083- 0.0418)= 0.7255

2. The nonvanishing components of the polarizability tensor are

«Z;Z~E=O = 0.9878 = 21(z1Oi2W
Et

«Z;Z~E=O.1 = 0,9965 = 21(z1Oi2WEt
Et - (0.1)2

6.3
1. From Solution 5.3we caDform the elementsofthe 2 x 2 S matrix

S21.21 = (2: I",+ 2; 1/112:I",+ 2; lp)= (011: I",+ 1;lp - 2:2", - 2;2pI0)

Using the density matrices of Solution 5.3,we find

S21,21 = 2(0.9968) - 2(0.0033) = 1.9870

S21,ll) = (2: I",+ 2; lplln)(OI)= (°1(1:2",+ 1;2p>ll)(OIO)= O
SII),I!) = (II) (O liii) (Ol) = 1.0000

A - 8 =(
2.4251 0.4248

)0.4248 2.2643

(A - 8)1/2 = (
1.5510 0.1393

) (A - 8)-1/2 = (
0.6501

0.1393 1.4983' -0.0604

(
1.9870 0.°

)0.0 1.0000

- 0.0604

)0.6731

S=
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From Eq. (6.109) we know that we need (A - B)'/2S - '(A + B)S- '(A - B)I/2

to find the E2 eigenvalues:

(A - B)I/2 -I = (
0.7806 0.1393

)S 0.0701 1.4983'

Then

S-I(A -B)I/2 = (
0,7806 0.0701

)I 0.1393 1.4983

(A - B)I/2S - I(A + B)S- I(A - B)I/2 =(
1.2998 1.0247

)1.0247 5.1724

The iwo eigenvalues are E2 = 1.0454 and E2 = 5.4266, and the corres-
ponding eigenvectors are (0.9705, -0.2410) and (0.2410,0.9705). The excita-
tion energies are E = 1.0225 and 2.3295; (Z - Y) is obtained for each stale,
according to Eq. (6.109) as

- - 1/2 (
0.9705

)- (
0.6455

)(Z - Yh - (A- B) -0.2410 - -0.2208

Z - Y) = ( - )- 1/2 (
°.241°

)=(
0.0981

)( 2 A B 0.9705 0.6386

The (Z + Y) for each staLe caD then be obtained from

or from

(Z + Y)= E(A + B)- IS(Z - Y)

to yield

E-'S-'(A - B)(Z - Y)

(
0.7242

)(Z + Y), = -0.2209 ' (
0.1100

)(Z + Yb = 0.6388

Solving for Z and Y for each state and then renormalizing (Z, Y) for each
staLe soch that

(ZY)(~ ~~)(~)= 1= ZSZ - YSY
we obtain

(
0.6926

)ZI= -0.2233 '

(
0,1596

)Z2 = 0.9747 '

(
0.0397

)Y, = -0.0001

(
0,0092

)y 2 = 0.0002
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The desired transition moments are given by (rIO+), with

0+ = Z(Q.il.!l> <Ol>+ Y(Q21,10><11>

The data of Solution 5.3 tell us that

(rIQ.il) = 1.1076= -(rIQ21)
(rlln><°l>= -0.1551 = -(rIIO><nl)

and so

I + (
1.1076

) (
1.l076

)(r O. ) = (0.6926,-0.2233) -0.1551 - (0.0397,-0.0001) -0.1551

= 0.7578

Likewise,

(rIOi) = 0.0146

2. The fulI-CI calculation gave excitation energies of 1.0225 and 2.3295,
which is exactly what we get hece. The CI transition moments are 0.7578
and 0.0144, which are almost identical to ours. The MCSCF reference stale
is identical to the fuli-CI wavefunction even though it contains only the
1a2 and 2a2 configuration. This is true because the orbitais used in the
MCSCF wave function are optimized orbitaIs. The projection manifold
operating on lO>then yields two moce linearly independent functions, which,
taken together with 1O),form a three-dimensional space capable of deseribing
the results of the fulI 3 x 3 CI problem. We thus have both the exact re-
ference stale and a complete projection manifold {T+}, and the MCTDHF
calculation therefore is able to reproduce the fulI-CI result of Problem 5.1.

2

3. CXu = 2 L l(zIOIW(Ef- E2)-tEJ
j=1

[
0.75782 0.01462

]E = 0.0, CXu = 2 1.0225 + 2.3295 = 1.1234

E = O l = 2[°.75782(1.0225) 0.01462(2.3295)]= 11344. , CXu 1.0454- 0.01 + 5.4266- 0.01 .

Ali three calculations have the potential of giving the full-CI result as dis-
cussed in question 2.
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Coulomb integral, 7
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Coupled c1uster

amplitudes, 93, 94, 95, 96, 97, 98. 110

energy, 93,94,96,99

equations, 93, 95, 96, 97, 98,101, 1I0

operator, 91

response, 1I0
wavefunction, 91

Coupled Hartree-Fock, 108, 117, 149
Coupled multieonfiguration Hartree--Fock,

108, 1l4, 1l7, 133, 151, 154

Creation operator, 1,2,8, lO, I I

Curvature, 18,27, 148

D

Density matrices

one- and two-electron, 4, 7, 26, 37, 42, 50,
50,56,62, 118

transition, 27, 62, 118

Diagrams

c1osed loops, 81

equivalent pairs, 81
hole line, 81

external, 84

horizontal cut, 81

infinite order summations, 8,3 97, 161

linked, 76, 79, 82, 94

particIe line, 93

external, 84

properties, 112

rules, 79, 81, 84
shifted denominators, 84

Dipole moment, 103, 105, 106
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Dipole operator, lO, 116, 123
Double commutator, 24, 32, 120

E

Electron affinities, see lonization energies
EIectron cIusters, 90, 91

disjoint, 92

Electron configuration, 19,39,42,43

Electron pair interaction, 90, 92

Electron pair correlation, 138

Electron propagator, 122,134, 162

diagrammatic analysis, 140
ionization energies, primary, 134, 135, 138,

162

perturbation analysis, 135, 136, 137, 139

physical interpretation of, 138
poles, 136, 137, 139
residues, 135

spectral representation, 135 .
EIectron-spin operator components, 8, 9, lO,

14,15

Energy hypersurface, 18, 19, 23, 24, 33, 148
Equations of motion, 134

Exchange integral, 7

Excitation energies, 104, 123, 142, 147, 148,
151,155,162

Excitation level, 91, 93, 96

Expectation values, 103

Exponential matrix, 12, 13, 17,21,22

Exponential operator, 10, II, 22
Extrema, see Stationary point

F

Fermi contact Hamiltonian, 14, 16, 144

Fermi statistics, 2, 3

Field gradient, 113, 115
Finite dilference method, 106

Finite field approach, 105, 109

First-quantized operators, 5, 6
Fluctuation potential, 90
Fock operator, 36,48,94, III

Fock potential, 36, 74, 82, 84, 86
undefined blocks, 37

V" - I potential, 38
Force constant matrix, 115

Force vector, 113, 114

Frequency spectrum, 123
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G

Gaussian orbital, S, 116
Generalized Brillouin theorem, 24,25,27,31,

32,34
Gradient, see Force vector
Green's function, lOS, 122

Fourier transrorm, 123, 124, 125
hermiticity, 130, 132
multiconfiguration-based, 132
perturbation analysis, 130
pole, 127, 128, 129,130,131
residue, 123, 128, 129, 130, 132
time derivative, 124
working equation, 128

H

Hartree-Fock, 19
orbitals, 41
virtual orbital, 41

Heisenberg equation or motion, 124
Heisenberg representation, 122
Hellmann-Feynman theorem, 109, 115
Hessian matrix, 24, 25,27,28
Hugenboltzdiagrams, 79,86,140,161
Hyperpolarizability, 105

Integral transrormation, 31, 36, 39

Intermediate normalization, 60, 69

Ionization energies, 104, 124, 135, 138

shake-up, 129, 163
Ionization potential, see Ionization energies
Iterative natural orbitaIs, 42, 104

K

Koopmans' tbeorem, 134, 137, 138

L

Linear convergence, 34, 36, 50, 57

Local maximum, 18, 27
Loca! minimum, 18,27
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M

Many-body perturbation theory, 74, 76, 78,
95, III

energy, 78, 79,82,83,86,97,98
wavefunction, 84

Matrix diagonalization

perturbation method, 43, 44, 45, 52

power method, 43

Mode damping, 28
Molecule dissociation, 85

Ma,lIer-Plesset perturbation theory, 74

energy, 74
wavefunction, 77

Multiconfigurational Hartree-Fock response,
106, 111

Multiconfigurational self-consistent field, 19,
28,31,32,42,53,104,114

Multiconfigurational time-dependent Har-
tree-Fock, 151, 162

equivalence of length and velocity oscillator

strengths, 152, 154

hermiticity in, 152
poles, 153
residues, 153

stability condition, 153

N

Natural orbital, 42
Newton-Raphson method, 97,114
Nonhermitian eigenvalue problem, 145, 146
Nonorthogonal orbita! transformation, 34
Nonorthonormal spin orbitais, 2, 104
Normal marle, 27
Nuclear displacements, IB, 114, 115
Number operator

occupation, 3
total, 3

o

One-electrQn operator, 5, 6
One-step second-order method, 24, 25, 26, 27,

31,34,53,64
Operator manifolds

complete, 126, 166
partitioning, 131, 132, 136, 160
truncation, 129, 133,136, 144, 151, 155
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Operator Tank, 9,10,14,15
Optical potential, see Self energy
Orbital and configuration coupling matrix

elements, 25, 28
Orbital energies, 36, 49, 74
Orbital relaxation, 41,138
Orthogonal complement, 20, 28, 108
Orthogonal transformation, see Unitary

transformation
OrthonormaI orbitais, II, 12
Oscillator strength, 149

p

Pair creation operator, 9

Particie-hole operator, 144

Partitioning, 25,131,136,160
PaDli principie, 2, 4

Perturbation theory

energy expression, 70, 71, 72, 73, 77

response, III
wavefunction expressions, 70, 76, 77

Polarizability

frequency-dependent, 117, 142, 143, 155,
156, 159, 162

frequency-independent, 105, 106, 1l7, 142,
143, 149, 154

Polarization propagator

diagrammatic analysis, 160, 161
excitation operator, 147

perturbation analysis, 154

pole, 142, 145, 146, 147, 154, 155, 156, 158,
161

residue, 142, 145, 146, 147, 154, 155, 156,
159

spectral representation, 146, 147
Polarized orbital, 52

Positivedefinite, 147,148

Potential energy surface, 113, 115
minima, 113, ll5

saddle point, 113, 115

stationarypoint, 115,116
Projection operator, 69

Q

Quadratically convergent, 24, 25, 31, 32, 34,
36,40,52,53,57,114
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R

Random phase approximation, see Time-
dependent Hartree-Fock

Rayleigh-Schrodinger perturbation theory,
68,72,74,76,77,85,103, III, 130

Reduced linear equations method, 98
Redundant operators, 28,41, 58,64, 72
Reference function, 4, 64, 90, 91, 122, 130,

153

Reference srace, 43
Replacement operator, 4, lO
Resolution of identity, 126
Resolvent, 69, 71
Response properties, 103, 105, 106, 108
Restricted Hartree-Fock, 38

s

Saddle point, 18,27
Second-quantized operators, 5, 6
Self-consistent field, 36,49,50
Self-energy, 140, 141, 163
Size consistency, 47,54,55,72,73,76,77,79,

82,85,92,99
Slater-Condon rules, 5, 6, 56
Slater determinant, I, 2, 5, 68
Slope, 18,27
Spectral representation, 124, 128, 153
Stability conditions, 147, 150
Stationary point, 18, 19,20,24,27,35
Step lengths, 27
Superconfiguration interaction, 32
Superoperator

binary product, 125, 126, 127, 133
completeness relation, 126, 127
eigenvalue problem, 128, 134
Hamiltonian, 125, 128, 130
resolvent, 126, 128, 131
unit, 125

Symmetry considerations, 39, 37,129,151
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T

Tensor operator, 8, 9, lO, 151
doublet, 9

singlet, 9, 10,26, 59, 62

triplet, 9, 10, 14, 15

Time-dependent Hartree-Fock, 133,144,160,
162

diagrammatic analysis, 160, 161

equivalence of length and velocity oscillator
strengths, 149, 150

normalization condition, 146, 147

poles, 149, 150, 158, 159
residue, 145, 147, 158, 159

stability condition, 147, 148, 150

Transition moment, IM, 116, 142, 146, 149,
159,162

Transition properties, 103, 104

Two-electron integral, 5, 26
derivative of, 116

Two-electron operator, 5, 7

Two-step procedure, 24, 26, 27, 28, 31, 53, 64

u

Unitary exponential operator, see Unitary
transformation

Unitary group
generators, 30
graphical, 46

Unitary transformation
configuration, 20, 21, 22, 29, 30, 53
orbital, 10, II, 12, 14,22,29,30,51,53

Unrestricted Hartree-Fock, 38

v

Vacuum ket, 2, 4
Variational parameters

linear, 18, 19, 21, 32, 35, 39,64
nonlinear, 18,21,40,64


