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Preface

In this book we address several modern quantum chemical tools that are
presently being applied at the state-of-the-art level to electronic states of
atoms and molecules. We have attempted to concentrate on topics for
which textbook coverage does not currently exist in an entirely satisfactory
form. The emphasis is on quantum chemical methods whose developments
and implementations have been presented in the modern literature primarily
in the language of second quantization. We do not assess the precision of the
numerical results provided by these methods because many of the techniques
discussed are relatively new and their precision limits have not yet been
established.

There is little mention of specific molecular systems that might be ex-
amined using these tools. We have developed an integrated set of problems
with detailed answers, all of which can be worked by hand, to illustrate the
practical implementation of the techniques developed. These problems
appear at the end of each chapter, and we recommend that they be worked
as an integral component of the respective chapters. Excellent treatments
of the following very important aspects of quantum chemistry already exist
in several texts and are therefore not included in this book: questions of
basis set choice, efficient evaluation of requisite one- and two-electron
integrals, fast and space-efficient methods for transforming integrals from
one basis to another and for storing such integral lists, or the use of orbital
symmetry correlation concepts in deciding which electronic configurations
must be included for specific molecules. The emphasis here is on describing
the structure of the various methods rather than on discussing their numerical
implementations.

The choice of topics and depth of presentation were guided by our view
of the active research workers who are likely to benefit from this book.
Many leading theoretical chemistry research groups have only recently
begun to make use of second quantization-based techniques. It is not
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likely that the full potential of these methods will be realized until those
quantum chemists who possess the most sophisticated computational
tools and experience become more involved in their use. A presentation
that is limited to explaining how working equations of these methods are
derived and how the equations are implemented in practice should be
especially useful and timely. This monograph is intended to be of use both
to the research worker in quantum chemistry and to graduate-level students
who have already taken introductory courses that cover the fundamentals
of quantum mechanics through the Hartree—Fock method as applied to
atoms and molecules. The purpose of this book is more to teach than to
survey the literature in the research areas covered. We assume that the
reader is familiar with linear algebra, matrix representations of operators,
Slater- and contracted Gaussian-type basis functions, the Slater—Condon
rules for evaluating determinantal matrix elements of one- and two-electron
operators, and the construction of Slater determinant wave functions
having proper space-spin symmetry.
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configuration interaction
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electron propagator
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Chapter 1 | Introduction to Second-
Quantization Methods

In the vast majority of the quantum chemistry literature, Slater determi-
nants have been used to express antisymmetric N-electron wavefunctions,
and explicit differential and multiplicative operators have been used to write
the electronic Hamiltonian. More recently, it has become quite common to
express the operators and state vectors that arise in considering stationary
electronic states of atoms and molecules (within the Born—Oppenheimer
approximation) in the so-called second quantization notation (Linderberg
and Ohrn, 1973). The electron creation (r*,s*,t*,u*) and annihilation
(r, s, t,u) operators occurring in this language were originally introduced for
use in physical problems that actually involved creation or destruction of
particles, photons, or excitations (e.g., phonons). In a majority of the applica-
tions of the second-quantization techniques to quantum-chemical problems,
no electrons or other particles are created or destroyed. Thus, the operators
{r*}, {r} usually serve merely as a convenient and operationally useful
device in terms of which quantum-mechanical states, operators, commuta-
tors, and expectation values can be evaluated. In this chapter, we examine
how the electronic Hamiltonian, other quantum-mechanical operators, and
state vectors are represented in this second-quantization language. We also
show how to describe unitary transformations among orthonormal orbitals
in an especially convenient manner. In subsequent chapters we make use of
the tools of second quantization to describe many approximation techniques
(e.g., Hartree—Fock, perturbation theory, configuration interaction, multi-
configurational Hartree—Fock, cluster methods, Green’s functions), which
are currently in wide use within the quantum chemistry community. The
need for such approximation methods is, of course, motivated by our inability
to exactly solve electronic structure problems for more than one electron.
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A. ANTICOMMUTATION PROPERTIES OF CREATION
AND ANNIHILATION OPERATORS

Slater determinantal wavefunctions involving orthonormal spin-orbitals
¢, can be represented in terms of products of creation operators on the
so-called vacuum ket |vac),

rrst ... l+|\"30> “— (N!)_'uz dell¢| it ¢’,¢’rl = Id’l Cig ¢s¢rl (1.1)

The Fermi statistics present in such wavefunctions can be expressed either
in terms of a sign change arising upon permuting columns of the determinant
or in terms of the following fundamental relation among the r* operators:

[r,s*],=r'st +s'r" =0 (1.2)
Note that this equation also states that the state vector cannot contain the
same spin-orbital twice (the Pauli principle) since r*r* = —r*r* = 0. Before

we go further, we should stress that Eq. (1.1) does not equate Slater deter-
minants to the product of r*s* - - - operating on |vac). It simply claims that
there is a one-to-one connection between the two objects.

The Fermion annihilation operator r, which is the adjoint of the creation
operator r*, can be thought of as annihilating an electron in ¢, and is
defined to yield zero when operating on the vacuum ket

rlvac) =0 (1.3)

The annihilation and creation operators fulfill the following two anticom-
mutation relations (Raimes, 1972):

[rns]y =rs+sr=0 (1.4
[rns*]s =rs* +s5*r=96, (1.5)

which together with Eq. (1.2) comprise the essential relationships used in
the application of such second quantization operators to quantum chemistry.
For nonorthonormal spin-orbitals, Eq.(1.5) is replaced by [r,s* ] . ={&,| ¢,
where the overlap appears explicitly.

The interpretation of Eq. (1.2) in terms of permutational symmetry of
determinants is clear. To make the analogous content of Egs. (1.4) and (1.5)
more transparent, we now examine some of the implications that follow
from these equations. Let us first examine Eq. (1.5). For r = s, this reads
rr* + r*r = 1. When operating on a ket in which ¢, is “occupied,” the first
term (rr ) clearly gives zero, since according to Eq. (1.2) terms violating the
Pauli principle vanish. The second term (r*r) yields

rtectut ccort oo wtlvac) = (=1 rtertetut oo -whivac)  (1.6)

where k, is the number of creation operators standing to the left of r* in
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the original ket. If this is, according to Eq. (1.5), equal to the original ket,
then we must have

ttut oot oowt|vac) = (= Drertrrtttut oo whvac)

=(=1fr*t*u* - - whlvac) (1.7)
The last equality in Eq. (1.7) implies that rr*, when operating on a ket that
does not contain ¢,, leaves that ket unchanged, and that r*r, when acting
on a ket in which ¢, is present, leaves that ket alone. When r*r operates on
a ket in which ¢, is not present, it gives zero. Thus r*r tells whether orbital
¢, occurs in a ket. For that reason, it is often referred to as the occupation
number operator n, = r*r. It is also conventional to introduce the total

number operator N as N = ), n,, which when operating on any ket gives
as its eigenvalue the total number of electrons in that ket.

In the case r # s, Eq. (1.5) implies that r operating on any ket that does
not contain ¢, yields zero, since

rs*t*u* - -wt|vac) = —s*retut - - whvac) =0 (1.8)

by repeated use of Eqgs. (1.5) and (1.3). When the kets contain both ¢, and
¢,, both the rs* and s*r terms vanish. For s*r operating on a ket that
contains ¢,,

stretut - ortwtlvac) =(—DPstetut - whvac)
=t 'u’ ---s"whlvac) (1.9)

which is simply a new ket with ¢, replaced by ¢,.
Finally, we should attempt to elaborate on the meaning of Eq. (1.4). Let
us consider the action of rs (r # s) on a ket in which ¢, and ¢, are present:
rsetut coort eost ooowtvac) = (= 1)t rersstrtetut - - wtvac)
which by Eq. (1.5) reduces to
(= Dethr(l —s*syrtetut - - - whlvac) (1.10)

The term involving s*s vanishes because s|vac) =0, and hence we have
(again using r|vac) = 0)

(=l *etut - owrvac) = (— Dt rrtut - owtlvac) (11D
If instead we consider the action of sr, we obtain

St oyt gt awtvac) (1R e st ta " et hac)

={=D"S1rtut o cwtiac (1.12)

which is opposite in sign to the result of the rs operation. Thus, the statement
rs + sr = 0 simply means that the effect of annihilation displays Fermion
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statistics. For r = s, Eq. (1.4) reads rr = —rr = 0, which also expresses the
Pauli principle and Fermi statistics.

Although Egs. (1.2)-(1.5) contain all of the fundamental properties of the
Fermion (electron) creation and annihilation operators, it may be useful to
make a few additional remarks about how these operators are used in
subsequent applications. In treating perturbative expansions of N-electron
wavefunctions or when attempting to optimize the spin-orbitals ¢, appearing
in such wavefunctions, it is often convenient to refer to Slater determinants
that have been obtained from some “reference determinant” by replacing
certain spin-orbitals by other spin orbitals. In terms of second-quantized
operators, these spin-orbital replacements will be achieved by using the
replacement operator s*r as in Eq. (1.9).

In subsequent chapters, we shall be interested in computing expectation
values of one- and two-electron operators. By expressing these operators in
terms of the above creation and annihilation operators,-the calculation of
such expectations values reduces to the evaluation of the elements of the
one- and two-electron density matrices (0|i*|0> and <0|i*;j* Ik|0) (Davidson,
1976). If the wavefunction |0 is expressed as a linear combination of kets
each given in terms of creation operator products [],.o r*|vac), the one-
and two-electron density matrices can be evaluated in terms of the expansion
coefficients of |0) in these kets. The average occupation of an electron in spin-
orbital ¢, becomes a particular element (0|r* |0} of the one-particle density
matrix. If we wish to compute, say, {0|t*u|0), where |0) =[], ., r*|vac),
we may proceed using the anticommutation algebra obeyed by the creation
and annihilation operators, to yield

KOt ulod = [T [T <vac)r'e*ur*|vac)
e0re0

= (vac|ryry_y - rytturfrs <o orylvac)
= §,, (vaclryry_y o ryttrir - rf|vac)
—vaclryry_y crgttrfuri ey o orylvac)  (1.13)

which, by “anticommuting” u through to the right (so as to eventually
generate ulvac) = 0) and ¢* through tq the left (to eventually generate
vac|t* = (tlvac))* = 0), and using {vac|vac) = 1, yields a nonvanishing
matrix element only when ¢ = u and u is one of the elements of |0) (the
“occupied” spin orbitals in [0)). This result can be summarized as follows:

Ojt*u[0) = 8,7, (1.14)

where v, denotes the occupation number of orbital ¢, in |0).
This expresses a general rule of how to obtain matrix elements of a re-
placement operator. The rule is the second-quantization analog of the
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Slater-Condon rule (Condon and Shortley, 1935) for evaluating matrix
elements of a one-electron operator. In practical calculations one would,
of course, use this rule as well as the other counterparts of the Slater—Condon
rules.

B. EXPRESSING QUANTUM-MECHANICAL OPERATORS
IN SECOND QUANTIZATION

Having now seen how state vectors that are in one-to-one correspondence
with N-electron Slater determinants can be represented in terms of Fermion
creation and annihilation operators, it still remains for us to show how to
express one- and two-electron operators in this language. The second-
quantized version of any operator is obtained by simply demanding that
the operator, when “sandwiched” between ket vectors of the form [ ], r *|vac),
yield exactly the same result as arises in using the first quantized operator
between corresponding Slater determinant wavefunctions. For an arbitrary
one-electron operator, which in first-quantized language is Y\, f(r)), the
second quantized equivalent is

N
Y AP flports o El fir) (1.15)

where the sums (r, s) are over a complete set of orthonormal spin-orbitals
¢, and ¢,. The analogous expression for any two-electron operator is

1 P
EY z <¢r¢slg|¢l¢u>r+s+ut i Z g(rhrj] “16)
2 r.5tu 2 ij=1

Here (d),tf),|g]¢,¢,,) represents the usual two-electron integral involving the
operator g:

{Dpslgldidbn> = _[d’?(lkb,"‘ (2)9(1,2)p(1)¢.(2)d1 d2 (1.17)

When g(1,2) = r;5, we often express these integrals in short-hand notation
as (r‘s[ru). It should be noted that the order of the creation and annihilation
operators appearing in Eq. (1.16) must be as presented in order to guarantee
that the proper sign will result when expectation and transition value
matrix elements of such operators are formed. These spin orbitals {¢,} are,
in most practical applications, obtained as linear combinations of atomic
orbital basis functions

¢, = 52, Craka (1.18)

where o and f are the one-electron spin functions. The y, are usually taken
to be Slater-type orbitals or contracted Gaussian orbitals, and the C,, are the
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linear orbital expansion coefficients. In what follows, we assume that the y,
are real orbitals. This means that the Gaussian or Slater orbitals are given
in cartesian form rather than in terms of spherical harmonics.

A few clarifying remarks are now in order. First, one should notice that
the first-quantized forms of the above operators contain explicit reference to
the number of electrons N, whereas the second-quantized operators do not.
This means, for example, that the kinetic energy operator

PRCAES YAl ST

is independent of N. The kinetic energy operator of the beryllium atom is
identical to that of the Be*, Be?*, Be, etc., ions. Of course, nuclear inter-
action operators (—Z, Y 1~ |r; — R,|™!) do contain reference to nuclear
charges in their second-quantized version,

YD) =Zr =R, Ypdr*s

but nowhere does N appear. In second quantization, the only reference to N
comes from the ket vectors [ [,.o r*|vac), which contain N creation oper-
ators. This property of operators in the second-quantized language plays an
important role, for example, in Green’s function methods for calculating
ionization energies. The fact that the same Hamiltonian can describe neutral
and ion states permits the Green’s function to be expressed in terms of a
single Hamiltonian.

In examining the above expressions for the second-quantized one- and
two-electron operators, it should become clear, for example, that the one-
electron operators, which contain r*s, can “connect” two N-electron kets
(corresponding to N-electron Slater determinants) that differ by at most one
spin-orbital label. That is, r*s can cause only a single spin-orbital replace-
ment. Similarly, the two-electron operators containing r*s*ut can connect
kets differing by at most two spin-orbital labels.

To summarize, we have constgucted state vectors that obey Fermi-Dirac
statistics through introducing creation and annihilation operators that
fulfill the anticommutation relations of Eqgs. (1.2), (1.4), and (1.5). The anti-
commutation relations allow us to build the Slater—Condon rules directly
into the operators in the second-quantized language. The operators thereby
lose their dependence on the electron number N. The only dependence on
N in the second-quantized language appears in the state vectors |0). In
contrast, in the first-quantized language the dependence on N appears in
both the operators and the wavefunctions.

Because it is important that one fully understand how the above forms of
arbitrary one- and two-electron operators are related to the Slater—Condon
rules, let us now consider an example of how one uses these operators. Let
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us compute the expectation value of the electron—electron interaction
operator for the three-electron state 2s; 157 15, |[vac). We know from Slater-
Condon type rules that we should get J, ;; + 2J, ,, — Ky,.,,, where J and
K are the usual coulomb and exchange integrals:

Jy = <ijlij (1.19)
Ky = ijljiy (1.20)
The second-quantized approach involves evaluating

i 1
5 Y (vac|ls,lsp2s,rt st ut2s) Lsy 1s;) [vac) <, e |p>
12

r.5.0u

which involves the two-particle density matrix.
The application of Eq. (1.5) in the form rs* = §,, — s*r permits the
annihilation operators u, t to be anticommuted to the right in the above
and the creation operators r*s* to be moved to the left. This strategy
permits us to identify all of the nonvanishing contributions (those arising
from the §,, terms) and to eventually obtain u|vac) or (vac|r*, both of
which yield zero. The process of moving ut to the right is carried out as
follows:
ut2s, sy 1s)|vac) = u(d,,,, — 25, )55 s, [vac)
= [6125,(Ours, — 1sp W)ls, — u2s; (8,5, — 155 D)ls,; ]jvac)
oz [arls,‘suls’ (5,23.“(5"1,‘1?”
— (25, — 257 u)(Jyys, — Lsg D)5 ]|vac)
= [6,2,_6”“#13: a 6:25.6n1s_1s; T 61:2.5,‘5(1;,15:
+ 6-;23,6!13,15; + 5:]5353113,25: 20 5”3,5«15,25;]""3(:)
(1.21)
The treatment of {vac|ls,1s,2s,r*s* goes through in exactly the same manner
and yields the adjoint of the above result, with r replacing t and s replacing u:
(vac|ls,Isg2s,r*s* = (vac|[8,25,0515, 15 — 8,2.9515. ls,., 85250
T 632s,6rls,ls8 = ‘srlw‘sxlx_z"

r1splS
(5,“”2\‘1]

(1.22)
Then by forming the scalar product (vac|ls,15,2s,r* s * ut2s, lsr+ Is, |vac) and

using, for example, the fact that (vac|ls,1s, |vac) =1 and (vac|ls,2s, |vac) =
0, one obtains

rl!,

‘srrzhrsnsls;: o (srrls,ésul.t, + 65"28.,6"].15 it rsslwi'.s,,(il'rls,.
2 (sl'!‘ls,qésuls. + 5"13_5“[3]; =4
= 6rst¢6urls, —0 0 .

|1r23,5ls'1 3g: ‘surlsﬂélsZsa

o

ur2s,1s1s, 1515, rulsg — (Srsls,ﬁmis.
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where the triple-indexed delta function J;; means §;;0;. This result, when
multiplied by $(¢,¢,|1/r,,|#.¢.> and summed over r, s, t, u, indeed yields

Jls,ls + 2"'13,23 s le.ls

C. TENSOR OPERATORS

To gain further experience and understanding, let us also consider how
specific operators that are familiar in first quantization-notation are mapped
into their second-quantized analogs. The z projection of the total spin S, is
given by

S, =2 ¢S | >r"s (1.23)

which, if the m, dependence of the spin-orbitals is made explicit (¢, = 3¢,),
becomes

S. = 3h 2 AP B [rs sa = 17 55] (1.24)

Because the orbitals @, are assumed to be orthonormal, spatial integration
further reduces this to

Se=Y.[rdr,—rgrglih (1.25)

r

where thesumis over the orbitals @, . The spin-raising and -lowering operators
§; = S, + iS, are, in second quantized form,

Se =Y @IS clports =3 hr}r,, (1.26)
S_=Yhrpr, (1.27)

In addition to the operators discussed above, it is often important in
quantum-chemical applications to evaluate commutators of pairs of opera-
tors. For example, to show that the creation operator r; is of doublet spin
character (i.e., has the potential to change the total spin eigenvalue of any
function upon which it acts by +34h) it is sufficient to demonstrate that
[S..r})=3hr} [S_,r;]) =hrj,and [S,,r}] = 0. As an example of how to
evaluate such commutators, let us compute [S,,r,; ] and [S_,r, ]:

h
T QZ[‘:% — tytg,ra ] (1.28)
Now

I:‘ar: e r:[: le = atrr: = t:r:ta T r:‘:'[a = 6Irt: (129)
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and also
tytgra —Talgty= —tarity—rglgty=0 (1.30)
Therefore,
[S..rs] = 4hr) (1.31)

Before moving on, we wish to clearly point out an important consequence of
performing commutation between operator pairs. For example, notice that
although each term in the commutator arising in Eq. (1.29) involves three
operators (e.g., t; t,r.), the final result contains only one operator. This
reduction of the operator “rank™ always arises when performing such com-
mutators. We usually say that an operator such as r*s has one-particle rank,
whereas r*s* tu has two-particle rank. Such rank lowering is an important
feature, which is explicitly brought about in the second-quantized language
and which is used on numerous occasions in Chapter 2. Because the second-
quantized operators contain no reference to N, this cancellation can be
achieved at the operator level. The same cancellation occurs in first-quanti-
zation calculations but not until determinantal matrix elements are taken.
The commutator involving S _ can be written as

[Sortl=h) gt ri]=h) (gt —rit5t)
r ]
=h) Outy —tgrite—ratgty)
[}

= hr} (1.32)

(Again, note the reduction in particle rank.) The importance of this result is
that r* when operating on any eigenfunction of S (e.g., S?|0) = hs(s + 1)|0))
will yield a function whose S, eigenvalue mh is increased by 3h

S.r 0> = rfS.|0> + $hr}|0) = (m, + Hhr}|0)

As defined in group theory (Tinkham, 1964), general tensor operators of rank
L obey [J,,TL] = phTE and [J4,TE]) = h[L(L + 1) — p(p + D]'2TE, .
where J refers to angular momentum. Our operators r,, ry correspond to
L =14, pn = +}. These operators, together with their corresponding annihi-
lation partners(r, = TY},,,r; = — T'}/3), can then be combined, using vector-
coupling coeflicients to generate two-or-more-electron creation operators
having various total spin values. For example, the two-electron pair creation
singlet tensor operator is

1
T0,0) = — [r}sf — rist] (1.33)
5
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whereas the two-electron triplet (with various M,) tensor operators are
T (L,)=rSsS
T.(l,—=1)=rgs5
1
7

The operators that create singlet and triplet coupled one-electron replace-
ments are

(1.34)

T:;(l,O) o [l”:s; + r;s:]

1
Q;(O?O)gﬁ(r:sa + P';Sﬂ), Qr:(l; )= _r:sﬂ
: (1.35)
+ + + + +
rs{l?_l)= Fg Sa» qrs(190)="'_ FaSqa—Tgs
q [ \ﬁ [ 755
Such tensor operators often occur when one- and two-electron operators are
expressed in the second-quantization language. For example, the electronic
part of the electric dipole operator ed + ), r; becomes ), , e& * (¢ |r|¢.>
t*s, which after spin integration reduces to

Y €8 - (P Je|P ) [td s, + tg 5]

1,8

which contains the singlet-spin tensor operator.

D. UNITARY TRANSFORMATIONS OF ORBITALS

Having now been introduced to the basic properties of Fermion creation
and annihilation operators as they express N-electron wavefunctions and
quantum-mechanical operators, as well-as to the strategy involved in mani-
pulating these operators, we are nearly ready to consider the efficient use of
these tools in expressing wavefunctions as they are actually employed in
state-of-the-art quantum-chemical studies. It frequently occurs that we are
in possession of a set of orthonormal spin orbitals that, although their
construction was straightforwardly achieved, may not represent an optimal
choice for the problem under consideration. Hence, it is natural to consider
how one can describe unitary transformations among these orbitals within
the second-quantization language. We have already shown that the replace-
ment operator r*s yields, when operating on a ket in which ¢, is occupied,
a new ket with ¢, replaced by ¢,. Now we wish to demonstrate that the
exponential operator exp(i) defined as

exp(id) = 1 + i + %(:’A)(il) 4 s (1.36)
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where
A=3 4r's (1.37)

r.s

yields, when operating on any ket (and hence when operating on any wave-
function that is expressed as a linear combination of kets), a new ket in which
each spin-orbital of the original ket (¢,) is transformed into a new spin-orbital
¢, (Dalgaard and Jorgensen, 1978). Let us therefore consider the effect of such
an exponential transformation [exp(id)] on an arbitrary ket. Using the fact
that [exp(i2)] ! = exp(—il), we may show the following:

exp(id)] t3 - - - ty|vac) = exp(id)t{ exp(—id)exp(id)t] exp(—id)
-+ - exp(id)ty exp(—il)exp(il)|vac) (1.38)
which because A|vac) = 0 becomes
iyiy - -~ iy|vac) (1.39)
with the modified creation operators being defined by
Ty = exp(id)t, exp(—id) (1.40)

By now expanding both of the above exponential operators, we obtain

:2
W= i+ 5 AR ]+ (1.41)
Because
Aaf]=Y A [rtsel] =3 4, (1.42)
[AIA L T] = Y Ands® =Y (A)gs* (1.43)

Eq. (1.41) can be rewritten

:2
=t iy A+ lii Y (Ad),,s*

3
B % ?“‘“w* Ry g[exmill]s.,ﬁ* (1.44)

The exponential matrix exp(id) appearing in Eq. (1.44) is defined through the
power series appearing in that equation. However, as we show below, this
matrix can be computed from the 4 matrix in a much more straightforward
and practical manner.

If we want the transformation described by exp(il) to preserve ortho-
normality of the spin-orbitals or, equivalently, to preserve the anticommuta-
tion relations [see discussion following Eq. (1.5)]

[t+,5]+ = [f+9§]+ = 6:3 “45)
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then certain restrictions must be placed on A. This restriction, of course,
requires the above transformation to be unitary. Using Eq. (1.40) and

[exp(id)]* = exp(—iA*) (1.46)
then
5§ =exp(il*)sexp(—il*) (1.47)
We therefore have
755 + 3T = exp(id)t* exp(—id)exp(id*)sexp(—id*)
+ exp(id*)sexp(—id*)exp(i)t* exp(—id) (1.48)

Now if the operator 2 is required to be hermitian, which then makes the
elements A,, form a hermitian matrix

At =Y Arts)t =Y etr=Y L str=1 (1.49)
r.s r.s r,s
then Eq. (1.48) will reduce to

Y5+ 51" = exp(id)(t*s + st*)exp(—ild) = &, (1.50)

which means that the above transformation does indeed preserve the anti-
commutation relations. The fact that the 4 matrix is hermitian implies that
the transformation matrix exp(il) occurring in Eq. (1.44) is unitary since

[exp(id)]* = exp(—id*) = exp(—id) = [exp(id)] ! (1.51)
This means that the orbital transformation
¢, = Y [exp(id) ], ¢, (1.52)

is also unitary and hence preserves orthonomality.

When the matrix 4 is hermitian, it can be divided into real and imaginary
parts

A=a+ix (1.53)
where the matrix « is real and symmetric (a,, = a,,) and the matrix x is real
and antisymmetric (k,, = —k,,, i.e, k,, = 0). The operator A may also be

divided,

A=Y A rts=Y (o, + i Jr's
rs rs

=Y o rtr+ Y arts+st)+i ) krts—str)  (1.594)
r r>s r>s

into three terms each of which are hermitian. Since we have assumed earlier

that the spin-orbitals are real, orbital variations in exp(id) described through

the o, parameters must vanish identically because these variations would
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map the real orbitals into complex orbitals. When the variations described
by the a,, parameters are eliminated, the unitary transformation described by
exp(id) becomes an orthogonal transformation exp(—x«). In what follows,
when we refer to a unitary transformation, it is usually the orthogonal
transformation described above.

To see how one can express the exp(id) matrix most compactly, let us
introduce the unitary transformation u, which diagonalizes 4:

udu* =4 uw’ =vtu=1, d,=4,4d (1.55)
Then

2
exp(id) = 1 + id + '2—11,1+
iz
=uut + iudut + 57 udutudut +---

"2 l‘3
= i S il +
_u(1+1d+2!dd+3!ddd+ )u

= uexp(idju* : - (1.56)
Because d is diagonal (dd),, = 6,,d? and hence [exp(id)],, = 6,,exp(id,).
Therefore the elements of exp(id) are easily given by

[exp(id)],s = Y. u, explidu,} (1.57)

This equation gives a compact and efficient expression for the orbital trans-
formation matrix appearing in Eq. (1.52).

Having seen how the operators of second quantization can be used to
express wavefunctions and quantum-mechanical operators, let us now move
on to the problem of choosing wavefunctions that yield optimum descrip-
tions, in an energy optimization sense, of the stationary states of atomic and
molecular systems.

PROBLEMS

1.1 Show the following identities to be valid for the operators A, B,
and C:

[4B,C] = A[B,C] + [A,C]B = A[B,C], — [4,C].B
[4B,C], =[A,C].B + A[B,C]

N
[A41A, - Ay, B]= Y A4, ey [AGBlA,, - - Ay
=1

I
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1.2

1. Show by performing the following commutators and anticommuta-
tors that one achieves a lowering of the particle rank of the operators in-
volved:

Gykt), [0tttk r*]ls,  [r*s[i%)e*o]]
2. By how much (what order) has the rank been lowered in each case?
1.3 Show that the operators {q,",(1,i); i = 1,0, —1} given in Eq. (1.35)
are tensor operators in spin space with S = 1.
1.4 The Fermi contact Hamiltonian may, in first-quantized language, be
written as

L
He = ;Z?g B-ySi-1°6(r; — R,)
where I? is the spin of nucleus a, and g is the electronic gyromagnetic ratio,
p the Bohr magneton, y, the nuclear gyromagnetic factor, S the electron
spin, and 4(r) the Dirac delta function. Show that this Hamiltonian, in
second-quantized language, may be written as

4
He = ¥ 5 0BraBtRIGRI—a: (1, DU — il3)

+ g (1, — D)4 + i1%) + /2¢,5(1,0)12]

where ¢(R,) is the amplitude of orbital s at nucleus a and the ¢* operators
are defined in Eq. (1.35).

1.5 Given two orthonormal orbitals ¢; and ¢, expressed as linear
combinations of two not necessarily orthonormal basis functions yx, and

Xb:
D12=0;120a+ by 22

1. Show that the two-dimensi?nal unitary transformation given in Eq.
(1.52), which in this case is described by a ¥ matrix

K= e
. 0
involving one parameter «, can be expressed as
exp(—x) = cosk e + sink 2 s
p i 0 1 —1 0/ \ —sink cosk

2. Apply this transformation to the orbitals ¢, , for x = 10° to obtain
new orbitals ¢, , and express @, , explicitly in terms of x,, xs, 1.2, by.2-
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SOLUTIONS

1.1

[AB,C] = ABC — CAB = ABC — ACB — CAB + ACB
< A[BC] + [A.CIP= A[B.C), —[ACl.H
[AB,C], = ABC + CAB = ABC — ACB + ACB + CAB
=[A,C).B + A[B,C]
[AAy- - Ay,B] = A1A; - AyB — BAyA, -~ Ay
=AIA2"'ANB“‘A1A2“'BAN
+A|A2"'BAN—BAIA2"'AN
= A4, [ANaB] + A4,A4; - [AN—I!B]AN
+ A1A2 R AN—ZBAN—lAN e BA]AZ A AN

etc. Clearly, by continuing to move the B to the lefl, we generate all terms in
the series:

i N
1.2 ‘ZIAI"'AJ_I[AJ-,B]A_H_I"'AN
- 3=
1. [t k* 1] = i*jk*l — k*litj

= 5}*!“"’ = i“k“ji g 6”k+j + k"+lj
= 6}'{’“‘” = (5,,‘k+j
[t rt] = 8,i*j*l— 8,1 %k

Hence

[s,[i*jtlk, r* )]s = S (sitjtl + itjtls) — 8, (sitj k + i*j* ks)
= O (0sf 1 — 05" 1) — §,,(05j k — S5 " k)
[itjt?v] =0,i"v—d,t7)
Hence
[r*s,[itj.t*v]] = 8;[r*s,i*o] — &i[r*s,tj]
= 00" v — 8,,i*5) — 6;,(,5r*j — 6,t*s)
2. In the first problem we lowered the rank by one, in the second by

two, and in the third by two.
1.3

1
(a2 (1, M) = {—r:sﬂ, =i ,,}
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Consider the M = 0 component only (the others are treated in like fashion):

[S..q5(1,00] =3 J_[Jaju Jodpsta s —rysglh/2

{5jrj:sa ] 6}»-}.;5& fine 6}3":}.0. i 6}3'.;.;#} =0

z"ﬁ?

[S+9Q:.;(1!O)] = Z e [j:jﬂ!r:sa g r;s,]

ﬁa«

i ; ‘-sjrfer Sﬂ Jsra.]ﬂ}

h
= —a 8 — ﬁhq;(l, 1)

Wy

= h e
LS—;Q;“,O)] — Z[j#*}mr:su g ?;S‘g]

ﬁ

\/— Z {5jrfﬂ Sq = 5;3"‘8.;'«}

= 27’112 l‘;sa = ﬁh‘?;(l! o l)

We have thus shown that g,;(1,0) has the properties of a tensor operator of
S =1 with M, = 0.

1.4 Using Eq. (1.15), the second-quantized Fermi contact Hamiltonian
may be written as

Hy = ZZ 3 ~ gBre<9, IS I°0(r — Ry)|p)rs

a rs

1
[2 (S + S5+ 5. (S — 513

s

T E Z 3 qB)’a&*{Ra}&a(Ra)( L™ sﬂla ; f;s,f:

a rs

= ): 3 gB?,<¢.

a rs

+ s,;:] 5(r— R,

1 1 1 1
+ 5 resgly — % rg Sl + 3 rt s, — 3 I:r;s,)
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From the definitions of {g*(1,i),i = 1,0, — 1} in Eq. (1.35), the final results
given in the problem follow directly.

1.5
1.
1 0 ke 1 0 x 0
BECH e -k o) i W s ]
0 L TN &
—x ol Bt e
then
) 6.1\ il Sl 0
s ot ) i (SR g Ak At a8l

L
i Kl 0 s 01 e COSK Sink
B, 10 1 6F Niwnw coex
2.

($1‘52}=(¢1¢z)( o Smx)=(XAXB}(Z: az)( cosk SIUK)

Since

—sink CcoOSk b, /\ —sink cosk
k= 10° = 0.174 rad, cosk = 0985, sini = 0.174

S 0985a, — 0.174a, 0.174a, + 0985a,)
(@162) = (tats) (0.935b1 —0.174b, 0.174b, + 0.985b, )
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Chapter 2 | Energy and Wavefunction
Optimization Methods

A. INTRODUCTION

The total electronic energy of a system described by a state |0) is given as
E = {0|H|0), <0j0y =1 (2.1)

In approximations commonly used to describe the true state function, |0)
may depend on variational parameters C,, C,, . . ., C;, which may be expan-
sion coefficients describing either the linear combination of configurations
in |0) or the orbitals [ Eq. (1.18)] appearing in these configurations. The total
energy forms an energy hypersurface in these parameters E(C,,C,, ..., C).
We wish to determine stationary points or extrema of the energy hypersurface
that, of course, occur when

LG L OB =B, =12 2.2)

In this chapter, the problem of making E(C,,C,, ..., C) stationary will be
treated for both linear and nonlinear parameters that arise in treating the
most common quantum-chemical energy expressions. The first derivatives
of the total energy determine the slope-at a given point of the energy hyper-
surface, while the second derivatives of the total energy

BE(C,C,s .« -, CHIE,OC, 2.3)

determine the curvature of the energy hypersurface and thus may be used
to characterize the stationary point as a local minimum, a saddle point, or
a local maximum. In attempting to find excited states of a given symmetry,
one must use care to guarantee that the procedure does not permit a collapse
to the lowest state of that symmetry. Procedures such as constraining the
class of wavefunctions given by {C;} to be orthogonal to the ground state
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or monitoring the dominant components (largest C;) of each wavefunction
are commonly used to avoid this difficulty.

In the first optimization procedures we examine below, the parameters
C; characterize a unitary transformation of the wavefunction within the
space of both orbital and configuration variations. To determine a stationary
point (SP) on the energy hypersurface in this case, we derive an iterative
scheme that is quadratically convergent both for ground and excited states.
We use knowledge of the first and second derivatives of the total energy to
determine the iterative step lengths that we have to take to reach the SP. If
the energy hypersurface were parabolic in all of the parameters considered,
we would reach the SP in one step. The iterative nature of the solution
originates from the nonparabolic terms in the true energy hypersurface,
whose description we truncate after quadratic terms.

To be more explicit about the kinds of variational parameters that com-
monly arise, we write the wavefunction |0) as a linear combination of the
orthonormal basis states {|¢,>} that may originate from several electronic
configurations:

0> =} |6>Cho (2.4)

Each of the states l¢’e> is formed from a single electronic configuration and
is defined as

|¢,> =1 r*|vac) (2.5)
reg

where the product l—],Eilr r* refers to an ordered set of creation operators.
The coeflicients C,, are the expansion coefficients for the considered state
|0> within this configuration basis {|¢,>}. Variations of the spin-orbitals
{#,} are commonly expressed in terms of variations in the linear expansion

coefficients describing the {¢,} within an atomic orbital basis. [ Eq. (1.18)].
In a multiconfigurational self-consistent field (MCSCF) calculation (Dal-
gaard and Jergensen, 1978; Schaefer and Miller, 1977, Chapters 3 and 4),
we consider both the configuration expansion coefficients and the orbitals
as variational parameters. The optimization techniques required to determine

~ an MCSCF wavefunction are discussed in Section B. In a configuration

interaction (CI) calculation, the coefficients C,, are determined from Eq. (2.2)
under the assumption that the orbitals are fixed. We discuss various ap-
proaches to the CI problem in more detail in Section D. The Hartree-Fock
(HF) approximation assumes that the reference state refers to a single
configuration but the orbitals (or creation operators) are allowed to vary
and are determined from Eq. (2.2). Several techniques that have been put
forth to generate optimal HF orbitals are considered in more detail in
Section C.
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B. MULTICONFIGURATIONAL SELF-CONSISTENT FIELD

1. Unitary Transformation of the Wavefunction

Let us now describe how one determines SPs on the energy hypersurface
when the wavefunction has the form given in Eq. (2.4). We allow variations
to occur in both the orbitals and the configuration expansion coefficients.
In Egs. (1.52) and (1.57) we have described how the orbital variations may
be carried out by performing a unitary transformation among the orbitals.
The variations in the expansion coefficients may be described in a similar
manner (Dalgaard, 1980). The expansion coeflicients for the state |0) form
one column of a unitary matrix in which the remaining columns are the
expansion coefficients for the orthogonal complement states within the
configuration space being considered:

|"> = Z ‘¢'a>cw (2.6)
a

The states {|0), |n>} and {|¢,>} thus are related through a unitary transfor-
mation matrix C. Variations in the expansion coefficients C,, may be achieved
either by a direct variation of these linear parameters or alternatively in
terms of parameters S,, describing a unitary transformation among the
states {|I>}. The operator

S=Y Sill><m| @7
i,m

when applied on the set of states {|k)} results in a general transformation
among the states {|k>}. The operator exp(iS) therefore may be used to
describe a general unitary transformation among the states {|k)>}.

This unitary transformation shows great resemblance .to the unitary
transformation exp(id) in Eq. (1.36). The operator S is hermitian and the
parameters S,,, form a hermitian matrix that determines the unitary trans-
formation to be performed. Since we consider only real orbitals here, it
becomes sufficient to use only the imaginary part of the variational param-
eters S,,,, denoted iP,,, [analogous to using only the ix,, part of A in Eq. (1.54)],
and the S operator then takes the form

S=i T Pull><r| = |m><i) (28)

Further, because our interest is in optimizing the total energy for the state
|0, we need only include the m = 0 parameter P, in Eq. (2.8), which then
limits the operator S to be of the form

S=i T Puln><0] = [0)<r) < gy
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where the elements P,, are real. The matrix P is a real antisymmetric matrix
that, in its lower triangle, has all zero elements except for the elements P ,:

0 =Py —~Bgy i =l
P 0 0
P= o 0 (2.10)
0

The nonlinear variational parameters P,, are one less in number than the
linear expansion coeflicients C,,. This is due to the fact that a normalization
condition has to be imposed on the linear expansion coefficients {C o} if
they are used as variational parameters, whereas variations described by the
parameters P,, automatically preserve the orthonormality of the states.

Let us now carry out the above unitary transformation. We obtain by
expanding the exponential

exp{iS)|m> = [l + iS +%{i5]2 + 313 (iSP? + - -:||m>. (2.11)

The second term in the expansion may be written as

iSimy =i Y, Po(|n><0] — [0><n))|m) = =3 |ID P, (2.12)
n#0 1

The last identity follows by the definition of the (sparse) P matrix in Eq. {2.10).
The third term in the expansion in Eq. (2.11) may be determined through
successive applications of Eq. (2.12) to be

+ 3iSiS|m) = —3iS Y |IDPim =3 Y |PDP piPim (2.13)
1 p.l

Successive terms in the expansion of the exponential in Eq. (2.11) are deter-
mined in a similar manner, after which it becomes obvious that the terms
may be summed to give an exponential matrix

exp(iS)|m) = ¥ [I>[exp(—P)]im- (2.14)

The actual evaluation of the exponential matrix in terms of the unitary
transformation that diagonalizes iP may be carried out in a manner analo-
gous to that described in Eq. (1.57) for exp(id).

Because of the especially simple nature of the above P matrix, the unitary
transformation in Eq. (2.14) may be carried out analytically. We obtain by
collecting together the terms arising in the (1/n!)(iS)"|m) factors as sine and
cosine components:

exp(iS)|0) = cos x|0) — { sinx ) P,oln> (2.15)
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exp(iS)|m) =|m) + P, :_c sin x|0) +% (cosx—1)Ppo Y. |n)P,  (2.16)

where

X2 =Y P2 @.17)

A unitary transformation of the reference state may now be described as
[0> = exp(id) exp(iS)|0) (2.18)

Using the technique of Eq. (1.40) to transform all of the creation operators
appearing in ]0) and in exp(iS) (i.e,, those in ]I)), we can write

[0> = exp(iS)[0) (2.19)

where § and [0) are defined as in Eqs. (2.9) and (2.4), respectively, with
creation operators 7" referring to the transformed set of orbitals. The unitary
transformation of the state |0) can thus be thought of as first carrying out a
unitary transformation among the orbitals in [0 and S and then performing
a unitary transformation in the configuration space [Eq. (2.19)]. This same
transformation can be viewed in a somewhat different manner. One may
interpret it as first performing the configuration transformation involving
all untransformed orbitals (or creation operators)

exp(iS)[0)> = ;[exp(—P)]mU) (2.20)

as given by Eq. (2.14) and then transforming the orbitals in the functions
|n) to give

exp(i2)[exp(iS)[0>] = Y. [exp(—P)]io| T (221
[}
where

|T> = exp(id)|i) (2.22)

Of course, both of these interpretations of Eq. (2.18) amount to nothing
more than two ways of working at the same configuration and orbital
transformation,

An alternative description of a unitary transformation of the reference
state involves using the exponentials in Eq. (2.18) in the opposite order. This
form implies that the reference state may be rewritten as

10> = exp(is)[0) (2.23)

where the creation operators in [0) refer to the set of transformed orbitals,
while the creation operators in § correspond to the nontransformed set.
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The subsequent evaluation of exp(iS)[0) would be very difficult because it
would involve the computation of overlaps between states (n|[0) involving
both transformed and nontransformed orbitals. This would complicate tre-
mendously the determination of the transformed state |0>; we therefore
consider in the following only the unitary transformation of the reference
state given in Eq. (2.18).

2. Variation of the Total Energy

The total energy corresponding to the transformed reference state is given
as

E(4,5) = {Olexp(—iS)exp(—il)H exp(il) e_xp(iS)|0>
= (O|H|0> — iCO|[S + 4, H]|0> + 3<0|[S,[H, S]]|0>
+ 3<0|[A,[H, A110> + <O|[S,[H,A]]|0> + - - - (2.24)

By introducing a matrix notation in which the variational parameters «,,
and P,, form row and column vectors, we can rewrite Eq. (2.24) as

E(4,5) = E(0,0) — 2[KP}(?) + (kP)(A — B) (:) - Pl (2.25)

We have introduced in Eq. (2.25) the short-hand notation for the operators
Q' =Ir'sife>5, R'={n>®©}} (2.26)

and defined the matrices
W = <0|[Q, H]|0> (2.27)
V = (0|[R,H]|0> (2.28)

A=(A“ Alz):(<01[Q,H,Q*]|0><01[[Q.H].R*.]|0>) 5
Az Az)  \COI[R.[H,Q*TJ0X<O|[R. H.R*Jj0> )~

g _ (B Biz)_ (<Ol[Q.H.Q1|0><0|[[Q. H]. R]J0>
B,y B/ \CO|[R,[H,Q]/05<0|[R, H,R][0)

For convenience, we have introduced the double commutator, defined as

[0.H,0"]=4{[Q.[H.0* 1] + [[Q,H].0"]} (2.31)

which arises naturally in A,,, A,,, B,,, and B,, because
<O|[4,[H,A]]|0> — <O|[[A, H],A]|0) = <O|[[A,A),H]|0) =0 (2.32)

and an analogous result for S. The matrices W, V determine the first-order

(2.30)

B8z variations of the energy function, which at a SP on the energy hypersurface
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are zero. The condition that V and W are zero at a SP is often referred to as
the generalized Brillouin theorem (GBT).

The matrix A — B defines the second-order variation of the energy func-
tion and is often referred to as the Hessian matrix. The double-commutator

form of the Hessian matrix allows these second-order terms to be expressed
as a quadratic form.

3. One-Step Second-Order Procedure

As stated previously, a SP on the energy hypersurface is obtained when
dE(4,S) = 0. Neglecting third- and higher-order terms in the energy function
[which rigorously no longer makes E(4,S) a true expectation value] we
obtain from Eq. (2.25), by differentiating with respect to x and P,

W K
_(v) +(A - B)(P)= 0 (2.33)
K (W
(P) =(A-B) l(v) (2.34)

as the conditions for a SP. The matrices x and P may then be determined
from Eq. (2.34) and a set of transformed orbitals and states obtained from
Egs. (1.52) and (2.14), respectively. If the energy hypersurface contained no
higher than quadratic terms, we would reach a SP in one iteration of the
above procedure. The third- and higher-order terms in the energy function
do, however, require that an iterative scheme be applied to determine a SP.
The iterative scheme may be described as follows: From an initial guess of
orbitals and a choice of the configuration space, we determine a set of ap-
proximate eigenstates |n) (e.g, by performing a configuration interaction
calculation). The matrices V, W, A, and B are then determined and Eq. (2.34)
is solved to give the matrices k and P. A transformed set of orbitals and
states may then be obtained from Egs. (1.52) and (2.14) and the procedure
repeated until the numerical values of W and V are smaller than a specific
tolerance. The above described approach has included all terms in the energy
function through second order and is therefore quadratically convergent.

We therefore denote this scheme the one-step second-order approach (Yeager
and Jergensen, 1979).

or equivalently

4. Two-Step Procedure

Another approach, which differs slightly in its realization of the iterative
procedure, has also been used and is referred to here as the two-step second-
order scheme. It may be described as follows: After an initial guess of orbitals,
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a configuration interaction calculation (see Section D) is carried out to deter-
mine the starting set of CI eigenstates |[>. We then have

(m|H|I) = EJ,, (2.39)
: and the V matrix
‘ V, = (O|[R,, H]|0) = <O|[|0><n|, H]|0) = 0 (2.36)

becomes equal to zero. Equation (2.34) may then be partitioned (Lowdin,
1968) to give (using B,, = 0)

k=[A;; =By —(A;; — Bp)A (A — Byy)]™'W (2.37)

and the k matrix can be determined from this set of linear equations.

A transformed set of orbitals may now be obtained using this k in Eq.
(1.52) and a new CI calculation (diagonalization of (I|H|m)) carried out.
This process is then continued until convergence is reached. In the two-step
second-order procedure, Eq. (2.34) is thus always applied in a basis where
the states are determined from a Cl calculation. The matrix P is never ex-
plicitly calculated. In contrast, in the one-step procedure the configuration
expansion coefficients of |0) and |n) are determined from the unitary trans-
formation given in Eq. (2.14), where P is obtained from Eq. (2.34) rather
than from a CI calculation.

The terms A, — B,, coupling the configuration and orbital space vari-
ation have been neglected in many calculations. In many cases, these terms
show little effect on the convergence rate of the procedure. It should, however,
be pointed out that a quadratically convergent scheme is only obtained when
these coupling terms are included.

5. Explicit Hessian and Generalized Brillouin
Matrix Elements

Let us now consider the evaluation of some of the matrix elements appear-
ing above. In the one-step procedure we have to calculate

(A0 = ((}}[R,,,, H, R:]|0> = (ml!ﬂn) - 5,,,,,<U|H|(}> (2.38)
. and

V, = CO|[R,, H]|0)> = (n|H|0> (2.39)

The elements A,, and V thus contain all matrix elements contained in a
configuration interaction calculation within the considered configuration
space. When the iterative MCSCF procedure has converged, all elements of
V are zero and the interactions between the reference state ]0} and the residual

states are thus eliminated. The diagonal and off-diagonal matrix elements
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of the Hamiltonian in the residual space {|n)} may, however, all be non-
vanishing.

In the two-step second-order approach, the CI calculation that is carried
out in each step prior to the evaluation of the matrices simplifies the evalua-
tion of V and A,,. The V matrix becomes, as stated earlier, zero and the
A,, matrix :

(A22)mn = Ol Em — Eo) (2.40)

becomes diagonal. These simplifications remain in each step of the iterative
process because a CI calculation is performed in each iteration.

Except for A,, and V, the form of the matrix element in the one- and
two-step procedures are the same. The matrix elements of W, A, ,, and B,
may be derived from Egs. (2.41) and (2.42) by index substitution. The excita-
tion operators in these equations have singlet spin symmetry, since they
arise in the operator A, which must preserve the symmetry of |0) in forming
exp(i1)|0). These matrices can be expressed in terms of one- and two-electron
integrals and the one- and two-electron density matrices as given below.
" Note that no more than two-electron density matrices appear in W, A,
and By,:

QO|[t} uy + t5 ug, H]|0) = 3 b, <0Jt7 p,|0)> — 3 1y <Ol p7 1,0)
ap ap ;

3 (pa| e + X < ]rsHPr (241)
pgr ) grs 5
(frizft)ewr, (w Ge.. .
(O|[I:k, + lg kg, [H,tu, + rﬁ'uﬂ]]lﬂ) e

= Iy 3 COl1 0 + by 3 <Ot Kgl0> — G4 Y hup<O|ly P[0
] a pa

By Z "N(U|P; k,lO) — Oy Z <P4|”>qukr — Oy Z (“Q|”3>P:w :
P par

grs

Th E(Pﬂ“)ﬂmn = Z(“H"S)Pusr = Z(kplrt>plpur
rq pr

rs

+ Z <kp| Ir)ﬁplur - z <“‘I| ls).prqslc + Z (uQISI )pqrsk (2'42)
pr qs qs
where €01
Piju = ;}KOli:j:—k;J,lO) (243)

and ¢ and ¢’ run over the electron spin indices « and .
The elements of A,, and B,, reduce as follows:

CO|[[0> <l [H, t uy + t71,]10> = n|[H, t u, + tug]|0>  (244)
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and an explicit final formula for Eq. (2.44) may be obtained from Eq. (2.41)
by replacing the one- and two-electron density matrices with the correspond-
ing transition density matrix elements.

6. Mode Damping

The GBT matrix and the Hessian matrix arising in the one-step second-
order procedure determine the energy slope and curvature, respectively,
for a given point on the hypersurface. When a SP point has been reached, the
eigenvalues of the Hessian matrix thus can be used to characterize this point.
We have reached a local minimum if all eigenvalues are positive. Mixed
positive and negative eigenvalues correspond to a saddle point on the energy

: hypersurface. In employing the two-step procedure outlined above, one no
& longer has the opportunity to characterize the state by its Hessian eigen-
values, because the full Hessian matrix is not employed and the partitioned
Hessian of Eq. (2.37) does not have the same eigenvalues as the full Hessian.

Some insight into the step lengths (x, P) that should be taken in second-
order procedures may be obtained by transforming the second-order equa-
tion to a form in which the Hessian matrix is diagonal. Let us consider initially
the diagonalization (by the unitary matrix U) of the full A — B matrix ap-
pearing in the one-step second-order equation

A—-B=UsU* (2.45)

Equation (2.34) then becomes
K w
(lf s_l(v) (2.46)

K
):u (P) (2.47)
W (W
()-v (%) 28

Each normal mode on the energy hypersurface is decoupled and hence may
be described independently. This is particularly useful in the initial iterations
of an MCSCF calculation, where third- and higher-order terms may be
important and even dominate as a result of the poor initial guess of the
. orbitals. The second-order scheme may, in such cases, be forced to take step
lengths (&, P) that are too large. The normal mode analysis of Eq.(2.46), which
3 displays the slopes (W, V) and curvature (g) of each mode independently,
g then becomes a convenient tool to use for changing the step length for those

b BRI
Il

where
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modes that take very large steps. This is done by restricting the allowed size
of the & and P matrix elements. In ground-state calculations where the
Hessian matrix has to be positive definite, we may even change the direction
of the step (i.e., change the sign of &) if small negative eigenvalues g; appear.
This situation occurs frequently in the initial iterations of actual calculations.
If the matrix elements that couple the orbital and coefficient optimization
(the A,, — B,, matrix) are very small, K then predominantly refers to the
orbital optimization while P refers to the coefficient optimization. In these
cases, it is reasonable to impose some different limits upon the size of the
maximum elements of the step length vectors & and P. At present, there is
little experience on how to optimally make these restrictions although results
of initial calculations indicate that the basic philosophy is correct. When
strong coupling occurs between the configuration and the orbital space,
more refined damping schemes may need to be introduced (Yeager et al.,
1980).

In the two-step second-order procedure, damping may only be performed
in the space that is dominated by the orbital space. From applying the unitary
transformation to Eq. (2.37) we get

K=¢'W (2.49)
where
At — By — (A — B1a)A3; (Ayy — Byy) = UeU? (2.50)
K=U"x (2.51)
W=U*W (2.52)

Because the reference state [0) and its orthogonal complement states |n)
are determined from a CI calculation, it is not generally possible to impose
constraints on the step lengths in the configuration space. Further, the CI
steps are not necessarily taken along the normal modes. In particular, when
strong coupling elements exist between the configuration and orbital spaces,
large fluctuations in the amplitude of the dominant configuration may be
encountered, which may lead to difficulties in converging to the state under
consideration.

7. Elimination of Redundant Operators

Having now given a general discussion of quadratically convergent second-
order MCSCF methods together with some analysis of how such techniques
might best be implemented, we can move on to describe other MCSCF
methods, as well as to give more detail about the numerical requirements
of such calculations. Before doing so, however, it is important that we
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address a technical point that must be understood if one is to be successful
.. in carrying out such MCSCF calculations.

. . The unitary transformation of the reference state given in Eq. (2.18) has
* as generators the operators r*s of A and |n){0| of S. It is possible that the
- operators r*s and |n)(0| span the same space. That is, the effects of the
~ operators r* s may be expressed in terms of those of the state projections in
: the configuration space. To determine whether the effects of a given operator
- r*s can be expressed in terms of the kets {|m)}, we examine the following
i difference ket:

[>=rts|) = Y mdmlrt sl (2.53)

.. If the norm of | /) vanishes, then |f) itself vanishes and hence r*s|I» can be
- exactly represented as a sum of the {|m>} functions. The norm of | /> vanishes
when

S =0=ls rrts|ly = Y st rlm)d Cmlr *s| > (2.54)
:".'.or, in other words, when

Y |[Kmlrt s = st et sty (2.55)

When both the operators r*s and s*r fulfill Eq. (2.55), for any state |I> the
variations described by the parameters A,, will be denoted as redundant.

" The search for redundant variables may, of course, alternatively be per-
¢ formed in the configuration space { {|#,>} since this space is reldted to the
aspaoe {I!) through a unitary transformation. Because the states {r*s|¢$,>)
& are normalized to unity, the search for redundant variables may be .u:hle\ ed
by investigating whether the sum

LKl sléol’ (2.56)

is equal to zero or one for any state |¢,).

-~ We now show how orbital changes caused by redundant variables can
£ be represented as configuration changes caused by S and can thus be elimi-
‘nated from the energy optimization procedure. The redundant set of oper-
ators form a hermitian operator

2,1" *s (2.57)

e The operator 1, which contains all of the r*s that are not redundant also
forms a hermitian operator

= ¥ Ar's (2.58)
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Since the operators in Eq. (2.57) are generators of a subgroup of the unitary
group, exp(il) may be factorized to give

exp(il) = exp(il’) exp(il”) (2.59)

Equation (2.59) is thus a representation of an arbitrary group element ex-
pressed as a left coset of this subgroup. Expressed in other words, the unitary
transformation that is described by exp(il) may alternatively be described
by the unitary transformation exp(id’) exp(iA”). It should be pointed out that
there exist no simple relations between the A,, parameters and the A, and
Ay, parameters. With the above factorization of the “redundant” part (1),
the unitary transformation of the reference state may be written as

[0> = exp(ir’) exp(ir”) exp(iS)|0)
Since |f) in Eq. (2.53) is zero for any product of redundant operators,
exp(id”)|I> =Y |p> < p|exp(iA”)|I> (2.60)
r

Using this relation together with Eq. (2.14) gives
[0> = exp(i2')exp(i2”) . |1 > [exp(— P)]io
I

== exp(il') Y |p> {p| exp(id”)|I> [exp(— P)]io (2.61)
.l

The matrix {{p|exp(id”)|l>} is unitary since the scalar product of Eq. (2.60)
with {g| exp(—i1") gives

T <alexp(—i2")|p><plexp(+id")|I> = &,
r
Therefore, the product matrix
2. <plexplid”)|1> - [exp(— P))io (2.62)
1

must consequently also be unitary. Because a single unitary transformation
of the form given in Egs. (2.10) and (2.14) is sufficient for optimizing the total
energy, the redundant variables may be left out when optimizing the energy.
That is, the A" factors can do nothing more, in a wavefunction optimization,
than can be done by the exp(iS) operator.

8. Practical Considerations

So far, no attention has been given to the spatial and spin symmetry
features of the reference state. The theory we have outlined thus far may
hence be described as unrestricted multiconfigurational HF. In most appli-
cations (Eyring et al., 1967), we require the reference state to have a certain
symmetry (i.e., the reference state should transform according to an irreduc-
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ible representation of the Hamiltonian’s point group). For the wavefunction
symmetry to be conserved under a sequence of unitary transformations, the
operators A and S have to be tensor operators belonging to the totally sym-
metric irreducible representation. In this way, the symmetry of the wave-
function would be conserved during the iteration procedure.

Calculations of the matrix elements that are used to define the above
procedures requires knowledge of the one- and two-electron integrals in the
MCSCF spin-orbital basis. Therefore, a two-electron integral transformation
(Schaefer and Miller, 1977, Chapt. 6) has to be performed in each step of
the iterative procedure. MCSCF approaches, in general, require such re-
peated two-electron integral transformations to be performed. Since these
transformations may, in many cases, be the computationally most demanding
step of the calculation, it becomes very important to use MCSCF procedures
that converge reliably in a minimum number of iterations. We have chosen
to emphasize here the one- and two-step second-order procedures because
they are quadratically convergent and because they allow a controlled
(damped) “walk” to be performed on the energy hypersurface when cubic
and higher-order terms and/or coupling between orbitals and configuration
optimizations are important.

9. Generalized Brillouin-Theorem-Based Procedures

So far we have used the condition that the energy function be stationary to
define MCSCF schemes. The existence of a stationary point on the energy
hypersurface requires that the GBT be fulfilled at this point. Hence, iterative
MCSCF procedures may alternatively be developed by insisting that the
GBT be satisfied as the iterative procedure converges. A quadratically con-
vergent scheme may be obtained by further insisting that the error in the
GBT matrix in the (n + 1)th iteration should be the square of the error in
the nth iteration. Denoting the operators and states in the (n + 1)th iteration
with a tilde and those of the n'th with no tilde, using Egs. (2.18) and (1.38)
we obtain

W, = <0|[Q, H]|0) = <0|[Q, H]|0) + iKO|[Q, [H,2]]0)

+iC0|[[Q, H],5]|0) + O(x2, P?) (2.63)
V.1 = O|[R,H]0Y = <O|[R,H]|0) + iCO|[R,[H, A]]|0)
+ iCO|[R,[H,51]|0> + 0(<2, P?) (2.64)

since, for example,

<0|[Q,[H,2]]]0y — <O|[[Q, H],4]|0> = <O|[[Q, ], H]|0)
= x(0|[[Q,Q — 0* ], H][0>
= 0(x?}) (2.65)
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The last identity arises because the GBT is not fulfilled until convergence is
reached, and thus <O|[[Q,Q — Q*], H]|0> is of order  itsell. The double
commutator may be introduced in Eq. (2.63), and Egs. (2.63) and (2.64) may
then be combined to give

(:’v)awl B (\“;)" = - B}"(;) + 0(x*, P?) | (2.66)

where we have used Egs. (2.27)-(2.30). A quadratically convergent scheme
is thus obtained when the k and P matrices are determined from

W K
(V )n =(A — B),,(P) (2.67)

which is identical to the one-step second-order equation [Eq. (2.33)]. Hence
the one-step second-order procedure described earlier can also be viewed
as arising from the GBT.

Most MCSCF procedures that have been employed to date (Schaefer and
Miller, 1977, Chapters 3 and 4) have concentrated on deriving iterative
schemes based upon only insisting that

(O|[H,r*s]0) =0 (2.68)

in each step of the iterative procedure. As successive sets of MCSCEF orbitals
are determined in each step of the iterative procedure, the configuration space
equivalent of the GBT (0|[ H, |n)><0|]|0> = 0is achieved through performing
a CI calculation within the limited configuration space.
To see how Eq. (2.68) can be used to define an iterative process, let us con-
sider the first two terms in the expansion of exp(id)[0):
0> = Y Kk, (r*s—s*n)|0) (2.69)
This first-order approximation to the true exp(i4)|0)> then leads us to consider
the variational wavefunction
0> ~ Xo|0> + Y X,.(r*s — s*n)|0) (2.70)
containing the linear variational parameters X, and {X,,}. The optimal
values of these parameters may then be determined from the superconfigura-
tion interaction (SCI) secular problem (Banerjee and Grein, 1976)

HX = ESX (2.71)
The SCI Hamiltonian matrix elements are defined as

Hq,s = O|H(r*s — s*n)|0) 2.72)
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which for real orbitals reduces to Eq. (2.68):

Ho s = CO|[H,r*s]|0> = H,y (2.73)

The other matrix elements of H are
Hoo = <O|H|0) (2.74)
H = Or*s —s*N*H(t u — u*0)|0> (2.75)

The scalar product matrix S is defined in a similar fashion (e.g., Sy, =
{Or*s — s*r|0> = 0) and the eigenvector X has the components X =
{X o, X,.}. The GBT therefore states that in the so-called SCI secular problem
[Eq. (2.71)], the state |0> should be noninteracting with its single excitations
(r*s — s*1)[0)>. Once this occurs, Eq. (2.71) will have, as one of its eigenvalues,
the MCSCF energy {0|H|0>. The other eigenvalues, as in all variational
secular problems, represent upper bounds to other true energy levels.

The eigenvector X obtained from the SCI secular problem can be used to
define a transformation of the orbital appearing in [0). To see how this
transformation arises, we rewrite Eq. (2.70) as

|0 = X},'”[X’g + Y X' X {rts— s*r}]z Coldy  (276)
r>s g
The effect of Z,,x(r‘”s — s*r)X,, on each configuration lr,f)s> results in two

new configurations in which spin orbital ¢, is replaced by ¢, and vice versa.
For example, the effect on 1*2* - - - N*|vac) is to give

N
¥ [Z X P25 - i=D*r*i+ 1)*---N*
i=1r>i

- Y X dt2r i Drra+ Dt - N*] vac) (2.77)

r<i

If the spin-orbitals occupied in any configuration |¢,> are denoted by ¢,,
then the above SCI wavefunction in Eq. (2:76) can be expressed as

0y =X %Y Cull [X0f+ +) Xt =) X, ] [vacy + O(X}) (2.78)
g teg r>t r=t

That is, the wavefunction used in the SCI calculation (Eq. (2.70)) is identical,
through first order in the X, parameters, to a new linear combination of
configurations with the same C,, coefficients but with orbitals ¢, that can be
expressed in terms of the original orbitals as

Fi=Xob + Y. Xpb,— Y X, 0, (2.79)

r>t r<t
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Because this orbital transformation is not properly unitary (the {@,} are
normalized and orthogonal only through first order in the X,,), the set {{,}
must, in each iteration, be orthonormalized (by, for example, the Schmidt or
Loéwdin procedure).

The SCI iterative procedure thus consists of guessing a starting set of
orbitalsand generating the {C,,} expansion coefficients from a CI calculation.
The SCI secular problem is then constructed and solved (to give X) after
which the new orbitals {,} are computed as in Eq. (2.79) and subsequently
orthonormalized. These new orbitals are then used to perform a new CI
calculation to generate new {C,,} coefficients and hence a new SCI secular
problem. This iterative procedure is continued until convergence is achieved
at which time the GBT is fulfilled. A significant drawback of most SCI
procedures as now implemented is that they do not treat the coupling between
orbital and configuration optimization. SCI methods that treat both optimi-
zations on equal footing represent a significant improvement. In situations
for which strong coupling exists between the orbital and configuration space,
the above-described two-step SCI process might thus be expected to converge
slowly. As we mentioned above, the quadratically convergent one-step second
order procedure discussed in the preceding section could also be viewed as
being defined, through Eq. (2.66), to make the GBT obeyed. It is then impor-
tant to explore how the two iterative methods, both of which can be stated
through the GBT, differ. The difference arises from terms in

(0| exp(—iS) exp(— iA)H exp(iA) exp(iS)[0)

that are quadratic in S or A and that arise from the second-order components
of the individual exponential operators. For example, (0|HiZi2|0) and
<0|iSiSH|0) arise in the exponential formulation but do not arise in the
expectation value of the SCI wavefunction given in Eq. (2.69). The neglect of
second-order terms and the requisite reorthogonalization of the MCSCF
orbitals differentiate between the two methods and render the SCI approach
not quadratically convergent.

Because SCI approaches to the MCSCF problem are not based upon
extremizing the full second-order energy expression described above, their
convergence ralte is linear rather than quadratic, although in practice such
SCI methods may sometimes demonstrate approximate quadratic con-
vergence. Because the SCI energies result from solutions of an eigenvalue
problem, each SCI energy is an upper bound to the respective true energies
(ground and excited). The values of X;;obtained from the SCl secular problem
[Eq.(2.71)] when used to carry out orbital modifications [ through Eq. (2.79)]
yield a new multiconfigurational wavefunction whose Hamiltonian expecta-
tion value is, because of the subsequent orthonormalization needed, no
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longer identical to the eigenvalue E that was obtained from the SCI secular
problem.

In the unitary second-order method, the energy expression E(A, S) given in
Eq. (2.25), when truncated after terms linear and quadratic in 4 and S, is no
longer an expectation value of H and thus no longer bounds the ground-state—
total energy. Thus, the stationary points of E(4,S) do not form rigorous
upper bounds to the respective true ground- and excited-state energies. Of
course, there are good reasons to believe that, in the neighborhood of an
eigenstate, E(4, S) can be well approximated by this quadratic hypersurface.
Moreover, the values of P and x obtained from making E(A, §) stationary,
when used in Egs. [l.SZ}_vanq' (2.14) to obtain |6>, do give a proper upper-
bound energy through (0|H|0).

Having now discussed how one can go about optimizing the electronic
energy of an MCSCF wavefunction, we turn our attention to two special
subclasses of this procedure; the single-configuration SCF problem and the
frozen-orbital CI problem. Because we choose to view these situations as
special cases of the above MCSCF problem, we obtain a specialized view of
SCF and CI theory. There already exist in the literature extensive and clear
treatments of SCF and CI as they are more commonly treated within the
linear variational framework. Hence we have not attempted to cover the more
conventional aspects of these topics here.

C. SINGLE-CONFIGURATION SELF-CONSISTENT
FIELD METHODS

1. Quadratically Convergent Scheme

Let us consider a situation in which we choose to work with a one-con-
figuration wavefunction for which the orbitals are allowed to vary. This
single configuration |0) may still consist of a linear combination of deter-
minants whose (fixed) coefficients are determined by the space and spin
symmetry imposed on [0). The orbital variations may be described by exp(i2)
and an optimal set of orbitals determined as in the previous secticn [by
simply neglecting terms involving exp(iS)]. The second-order Eq. (2.33) then
reads

W=(A, -8B« (2.80)

where A,, and B,, are defined in Egs. (2.29) and (2.30). A quadratically
convergent scheme for optimizing orbitals may be described as follows. Given
an initial guess for the “occupied” orbitals, we use Eq. (2.80) to determine
k, and then we use Eq. (1.52) to generate a transformed set of orbitals. This
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process is repeated until convergence is reached. This process requires, even
in the one-configuration case, a partial two-electron integral transformation
in each step of the iterative procedure. For a single-configuration case, a
more restricted two-electron integral transformation can be used in each
step if, instead of the above quadratic procedure, one uses an approach that
is based on the Brillouin condition alone. These so-called first-order BT-
based self-consistent-field (SCF) procedures are, however, not quadratically
convergent, much as the SCI method treated earlier is only a linearly con-
vergent MCSCF method.

2. Brillouin-Theorem-Based Methods
The HF or SCF approaches based upon the BT itself,
(0|[H,r+s]|0) =0 (2.81)

introduce a decomposition of the Hamiltonian into a Fock operator (which
the spin-orbital basis is chosen to diagonalize) .

F=Yh,+VJr's=Y er'r (2.82)

where h,, is the one-electron part of the Hamiltonian. A Fock potential

Ve vor's (2.83)

and the electron repulsion term W combine with F so that
H=F-V+ W (2.84)

The one-electron Fock potential V is thus far arbitrary. Different choices
for V correspond to different choices of the spin-orbitals {¢,} and their
corresponding orbital energies {¢,}, since we require the ¢, and ¢, to obey

hrx =+ Ks 5 'SH‘EI' {285}

The BT [Eq. (2.81)] can now be used to determine V and hence to determine
the spin-orbitals ¢,. By inserting the H of Eq. (2.84) into Eq. (2.81) we obtain

0 = <O|[r*s, H]|0) = (&, — £)<0|r*s|0> + Y. (¥;,<0]j* 50> — V,,<0*j[0)
i
+ *Z (<sk| i1 <O k110> + <k |jr> <O|1* k* js|0D) (2.86)
Jd.J

where

Cif] |kty = Cijlkty = Cijlik> (2.87)
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Since the one-electron density matrix is diagonal for the single-configuration
case considered here, we have

Olr*s|0) = 6,4, (2.88)

where v, denotes the occupation number for orbital ¢, in |0>. Because ]0)
may consist of a linear combination of determinants, the v, are not neces-
sarily zero or unity. The Fock potential determined from Eq. (2.86) is then

Vov, — v = Y (<sk| | <O K]0 + CIk||iry <OJIt Kk js|0)) (2.89)
kIj

which is only defined from the Brillouin condition when v, — v, is nonzero.
Notice that the symmetry of the Fock operator defined in Eq. (2.82) is deter-
mined by the symmetry of the above Fock potential. This in turn depends
upon the symmetry of the density matrices appearing in Eq. (2.89). As a
result, the Fock operator may not have the same symmetry as the full elec-
tronic Hamiltonian for specific choice of the reference state [0).

Before discussing various possibilities for how to choose the part of the
Fock potential that is not determined from the BT, let us describe the itera-
tive procedure that can be used for obtaining a set of optimized orbitals
given any final choice for the form of the full Fock potential. From an initial
guess of orbtials, we use Eq. (2.89) together with one of many choices of
the remainder of the V to determine a Fock potential. The Fock matrix
F = h + V(which is hermitian) is then diagonalized, and a new set of orbitals
is determined, which are then used to set up a new Fock potential. This
(first-order) process is continued until convergence. The above HF iteration
process is nothing but a variant of the commonly used Roothaan SCF pro-
cedure (Roothaan, 1951, 1960).

3. Choices of the Nondefined Blocks of the
Fock Potential

The part of the Fock potential not defined through the Brillouin condition
is often chosen on physical ground [e.g., to have the resultant orbital energies
represent ionization potentials and electron affinities (via Koopmans’ theo-
rem) ] (McWeeney and Sutcliffe, 1976). For a reference state containing a set
of occupied spin-orbitals that we denote by o, f§, y, 6 and a set of unoccupied
spin-orbitals denoted m, n, p, g, the Fock potential in Eq. (2.89) is defined by
the BT only between occupied and unoccupied orbitals. From Eq. (2.89) we
get

Vi = 3, <my| |y (2.90)
:
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One commonly used choice of the remaining blocks of V results in a Fock
potential that can be expressed as

V=73 (nyllsydrts (291)

TiFsS

where r and s run over all spin-orbitals. With this choice, the orbital energies
represent (through Koopmans’ theorem) the ionization potentials and elec-
tron affinities of |0>. Of course, other choices of the nondetermined part of
V have been made in the literature. For example, the (unoccupied—unoccu-
pied) part of the Fock potential (V,,,) has been chosen to correspond to a
so-called VV~! potential (Kelly, 1964), thereby making the virtual orbitals
more suitable for use in the calculation of excitation energies.

Calculations such as the one discussed above do not involve imposed
symmetry restrictions on the reference wavefunction. Hence this approach
is referred to as the unrestricted Hartree-Fock (UHF) method. When sym-
metry restrictions are imposed upon the reference wavefunction the resulting
calculation is denoted a restricted Hartree—Fock (RHF) calculation. When
the simplest RHF type calculation is carried out for a closed-shell reference
state (i.e., one having doubly occupied orbitals), the nondefined part of the
Fock potential (the occupied—occupied) and (empty—empty) part is often
chosen to have the same form as the (occupied—empty) part defined from
the BT. We then would obtain for the entire Fock potential

V=3 @2¢ry|sy> — <ry|ysd)rd s, + 1 sp) (292)

r.s

where the indices r, s, and y refer to orbital indices and the subscripts «, 8
denote the electron spin m, component. The orbital energies ¢, then corre-
spond to approximate ionization energies. For a state that has some doubly
occupied and some partially filled orbitals, the choice of the nondefined
blocks of the Fock potential is less obvious. The BT defines the blocks that
connect(occupied-partly occupied), (occupied—empty),and (partly occupied—
empty) orbitals. The (occupied—occupied), (partly occupied-partly occupied),
and (empty—empty) blocks of the Fock potential are not defined through
the BT and many choices have been suggested. One common feature of any
of these choices is that the sets of orbitals one obtains in a converged calcu-
lation using any arbitrary choice of the nondefined Fock matrix blocks would
represent the same SP on the energy hypersurface. The physical interpre-
tations of the orbital energies do, of course, depend on the actual choices
made for these “diagonal blocks” of V. For this reason, much work has been
devoted to finding particular choices of diagonal blocks that are optimal for
particular physical situations. It is not our intention to provide a lengthy
discussion of the merits and weaknesses of numerous such methods. Rather,
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we merely wish to stress that the undetermined blocks of V represent a certain
freedom or flexibility that can be exploited to generate orbitals whose orbital
energies have some approximate physical meaning.

4. Practical Considerations

Although it is not obvious from Eq (2.89) that a two-electron integral
transformation is not required to set up the Fock potential matrix for a
general reference state, it becomes clear upon actually working out the
matrix elements for a particular case. For example, for either a spin-
unrestricted reference state or a closed-shell reference state, the Fock po-
tentials of Egs. (2.91) and (2.92), respectively, are seen to involve only a
two-index transformation [e.g., sum over y in Eq. (2.92)].

From the above discussion it should be clear that the first-order procedures
based upon using the Brillouin condition to define V suffer from some draw-
backs. They involve arbitrary choices of certain elements of V (this is related
to the invariance of |0) under certain orbital rotations). They are not qua-
dratically convergent and may thus suffer from convergency difficulties. On
the other hand, the freedom in choosing elements of V (including the diagonal
blocks) is useful when one wishes to cause the resultant orbital energies to
have certain physical interpretations (e.g., Koopmans’ theorem of ionization
energies or excitation energies). The exp(il) approach to HF orbital opti-
mization is quadratically convergent but contains no orbital energies for
use in physical interpretation. It avoids the problems related to arbitrary
choices by simply eliminating from the orbital optimization operator space
those operators (r*s — s*r) that are redundant and that therefore have no
effect on the energy to be extremized.

D. CONFIGURATION INTERACTION METHOD

1. Connection with Second-Order MCSCF Theory

Next we consider the optimization of the total energy when orbital relax-
ation is not explicitly accounted for in the calculation. The optimization of
the total energy may then be carried out either in terms of the configuration
expansion coeflicients C,, of Eq. (2.4) or in terms of the parameters P of
Eq (2.9). Let us consider initially the optimization of the total energy when
the configuration expansion coeflicients of Eq. (2.4) are used as linear vari-
ational parameters. The total energy then becomes

E(Cy0,Ci0,...)= Z Cg'ncg(}<¢’g'|H|¢’g>/ZIC_.;012 (2.93)
.9’ q
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where we have assumed that the configuration basis states |¢,) are ortho-
normal. Because the energy function contains no higher than quadratic
terms in the C,, determination of stationary points of the energy function

BEIC 5. Chaiia 50 (2.94)

leads to a set of eigenvalue equations in the configuration expansion coef-
ficients

HC, = EC, (2.95)
where H is the matrix representative of the Hamiltonian
Hg, = <¢9|H|¢o'> (2.96)
and the eigenvector
Co = {C10C20 """ Cpo} 297

determines the values of the set of parameters at the SP, where the value of
E is E,. In fact, the same eigenvalue equation, Eq. (2.95), can be used to
determine all extrema of the energy within a given configuration space be-
cause the energy function contains no more than quadratic terms in C.
Equation (2.95) is referred to as the CI eigenvalue equation.

The optimization of the total energy might alternatively be expressed in
terms of the variation parameters P [in exp(iS)]. The energy function E(S)
would not be quadratic in these parameters P but would contain cubic,
quartic, etc. terms in P. An explicit solution from which to determine a SP
of the energy function when this unitary exp(iS) operator is used is very
difficult to establish; hence an iterative procedure is required to determine
SPs of the energy hypersurface. One iterative scheme that is quadratically
convergent is obtained if the terms that refer to the orbital optimization
[exp(id)] are neglected in the MCSCF derivation performed in Section B.
The second-order Eq. (2.33) then would read

V=A,P (2.98)
where A, , is defined in Eq. (2.29) as

(A22)mn = <m|H|n) — 8,,.CO|H|0) (2.99)

V. = <O|[R,,H]|0> = {n|H|0) (2.100)

and the indices n, m are different from 0. The iterative procedure may be
described as follows. For an initial set of configurations (|0), |n)) the matrices
A, and V can be formed. The matrix P then is determined from Eq. (2.98),
and Eq. (2.14) is used to obtain a transformed set of states [one can use
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alternatively Egs. (2.15) and (2.16)], and the whole process is repeated until
convergence is obtained. The state [0> that would be determined in this
iterative procedure would, of course, be the same as that obtained by solving
the CI eigenvalue problem.

In the derivation of Section B we considered the energy function to depend
on both orbital variation parameters and the configuration expansion coef-
ficients. By freezing the orbital variation parameters, we prohibit orbital
relaxation effects from being considered explicitly. To obtain with a Cl
calculation, which does not permit such orbital relaxation, the same quality
as in an MCSCF calculation would require the inclusion of many more
configurations, whose purpose would be to compensate for the neglect of
explicit orbital relaxation. These additional functions would include a large
number of singly excited configurations, but some double, triple, etc. excited
configurations would also be needed to fully compensate. If all configurations
arising from a given orbital basis were included in a CI calculation (full CT),
the need for considering orbital relaxation effects explicitly would, of course,
not be present because all orbital variation parameters (1) would then be
redundant variables. However, the number of configurations required to
perform a full CI calculation is usually prohibitively large even for systems
of modest size. Because CI expansions converge very slowly (as a function
of the dimension of the CI secular problem) and the requisite computer
time increases very rapidly as more and more configurations are included,
efforts must be made to optimize the convergence of a CI calculation by
facing two major problems. First, we must make a reasonable choice of
orbitals to use in the calculation, and second, the configurations that are to
be included in the calculation must be picked by some physically motivated
procedure.

2. Choice of Orbitals for Use in Cl

The most commonly used set of spin-orbitals for setting up a CI matrix
eigenvalue problem is the set of orbitals obtained in a RHF calculation.
These orbitals form a particularly convenient set in the sense that they ful-
fill the BT (i.e., there are no matrix elements connecting the HF ground
state and singly excited configurations). However, these orbitals are not
especially well suited for use in the CI problem if one desires a reasonably
short CI expansion to give high precision. One major problem with the
HF orbitals comes from the fact that the electrons in the virtual canonical
HF orbitals “feel” an N-electron potential and not an N — 1 electron poten-
tial, as would be physically more proper.

One partial solution to this problem is to use a set of orbitals obtained
in a MCSCEF calculation for setting up a ClI matrix problem whose dimension
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is much larger than that of the MCSCEF calculation. The orbitals would then
be relaxed with respect to the configurations included in the MCSCEF calcu-
lation. Since this MCSCF function normally would include the dominant
configurations, a very large fraction of the orbital relaxation effects would
would thus explictly be accounted for in the following CI calculations.
Another set of orbitals that has been used as a basis for CI calculations
is the so-called iterative natural orbitals (INO) (Bender and Davidson, 1967),
which are obtained in the [ollowing manner: From a limited number of
configurations (the same in all iterations) a reference state |0) is determined
by the CI procedure. This reference state is then used to set up the one-
electron density matrix (O|r*s|0)>, which upon diagonalization gives a set
of “natural orbitals.” These orbitals are then used for setting up a new CI
problem, a new reference state |[0) is then determined, and the procedure
is continued until a self-consistent set of natural orbitals is determined.
Clearly, the INOs are not identical to the MCSCEF orbitals discussed earlier.
The former are obtained by diagonalizing the first-order density matrix,
whereas the MCSCEF orbitals are determined by minimizing the electronic
energy. The use of INOs in CI calculations is motivated by Lowdin’s (Lowdin,
1955) analysis, which showed that such orbitals result in the most compact
configuration expansion of |0 (i.e., the fewest configurations being required
to generate a wavefunction of a given overlap with the true wavefunction).
The choice of configurations to include in an INO calculation requires
particular attention. If the configuration list only includes configurations
that are doubly excited with respect to each other, any set of orbitals would
be natural orbitals. To make the natural orbital concept useful, the list of
configurations has to contain configurations that are singly excited with
respect to each other. For example, for the ground state of the beryllium
atom, a natural choice of configurations in an MCSCF calculation would
be 1522s? and 15?2p®. In the INO calculation, the configuration list would
further have to include 1s?2sns and 1s22pnp,n = 3,4, 5, ... . These configu-
rations would then, to a certain degree, simulate the orbital optimization
paramelters K,,,, and k,,,, contained in the MCSCF calculation.

3. Selection of Configurations

Let us now move on to discuss some basic ideas (Schaefer and Miller,
1977, Chapter 6) behind selecting the number of configurations to be included
in the CI calculation. With a well-chosen set of orbitals, it is thought that a
very small fraction of all possible configurations gives the most important
contributions to the total energy. Estimates of the importance of the indi-
vidual configurations may be obtained from a perturbation theory analysis
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of the CI secular problem [Eq. (2.95)). An order analysis based upon
Rayleigh—Schrodinger perturbation theory (RSPT) shows immediately the
order in which any particular class of configurations enters into the wave-
function. For example, for a set of HF orbitals of a closed-shell system, only
the doubly excited configurations contribute to the first-order wavefunction
(see Section 3.F). Estimation of the coefficients of the individual configura-
tions through perturbation theory may then be used to select the important
configurations by specifying a certain tolerance for the coefficient (or the
energy contribution) below which the configurations are not included. For
cases in which several configurations are very important to the description
of the system, these configurations may be used to form a so-called reference
space whose coupling with other configurations can then be estimated
through perturbation theory. Another approach is based on performing a
series of (n + 1)-dimensional CI calculations among the n-dimensional refer-
ence space and a sequence of configurations that are obtained as low-order
excitations out of these reference functions. The criterion for rejecting con-
figurations tested in this manner usually has to do with the energy lowering
of one or more of the n reference-state energies caused by the “added con-
figuration” (Buenker and Peyerimhofl, 1974).

4. Treating Large Cl1 Matrices—Direct Methods

When any such preselection of configurations has been performed, one is
often faced with the problem that 10-300,000 configurations have to be
included in the final CI calculation. Conventional matrix diagonalization
routines such as the one used in the Householder algorithm, which modifies
the elements of the matrix as it proceeds, cannot be used to determine the
eigenvalues and eigenvectors of the CI matrix. For this reason, specialized
approaches have been developed (Schaefer and Miller, 1977, Chapters 7 and
8) to determine a few selected roots (usually the lowest) of such very large
CI matrices. One very important feature of these methods is that they do
not entail modification of the CI matrix while determining a particular root.
To clarify this point, we describe two such techniques, which are referred
to as the power method and the perturbation theory method. Although
much more efficient approaches have become available, we have chosen to
discuss these techniques because they stress, in a simple manner, the basic
principles underlying the direct determination of particular eigenstates. In
the power method one considers a sequence of operations of the Hamiltonian
matrix on an, in principle, arbitrary initial guess of the state vector C°:

£ O | Sl | S SRR (2.101)
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The information content of the converged vector lim,_, ., H"C® can be under-
stood by expanding the vector C° in terms of the (unknown) exact eigen-
vectors C; of the Hamiltonian matrix

HCI = E1C‘ (2'102)
C? =3 ak,, a,— e (2.103)

By assuming that the eigenvalues of H are ordered such that
|Eo| = |E\| = |Es) =20 (2.104)

we obtain the formal result
E- n
HnCU = EB aoco + Z aj " Cj {2.105)
j=1 ED

which, because |E;/E,| < 1, reduces for large n to
H"C® = a,E3C, (2.106)

Of course, to arrange the energy ordering assumed above, one might have
to subtract from all diagonal elements of H a constant that depends on the
largest positive diagonal H;; element. This constant would then be added
back onto the resultant E,, value to obtain the true lowest desired eigenvalue.
Hence we see that, for large enough n, the vectors H"*'C° and H"C® should
be proportional, with their proportionality constant equal to E,, and C,
should be the eigenvector of the Hamiltonian matrix having the largest
eigenvalue E,. Notice from Eq. (2.106) that the norm of H"C® grows with
n; therefore, normalization of the eigenvector C° may be required during
the above iterative scheme. E, and C, are obtained without ever modifying
the elements of matrix H; only simple row-by-row multiplication of H with
a vector is involved. In fact, as we show below, one can even circumvent
the explicit reference to elements of H by using integral-driven matrix multi-
plication techniques. Such steps become advantageous when one must avoid
having to read through the integrals many times. The convergency rate of
the power method is governed by the ratio E,/E, and by the choice of C°.
An inappropriate choice of the initial state vector C° may lead to slow
convergence (e.g., if a, vanishes, the power method, in principle, cannot
converge to C,). Once one has obtained the desired E, and C,, the next
eigenvalue of H can be found by employing H + |Eg||C,)>(C,| instead of H
in the next application of the power method. The lowest root of this

(H+ iEol |Co> (Coi)
matrix should then be E,.
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The power method as outlined above is not very widely used in large-scale
CI calculations because it is not usually very rapidly convergent. In contrast.
variants of the perturbation method described below do constitute viable
approaches to finding eigenvalues of large CI matrices. In the basic pertur-

bation method one introduces a decomposition of the full CI Hamiltonian
matrix

H=H"+V (2.107)

In what follows, we make the simplest possible choice of H?; we take it to
be the diagonal part of H. Another choice of H? that has been widely used.
(Davidson, 1975) involves taking H® to be a certain small subblock of H
(with H,, elements filling the remaining diagonal entries of H®), which
involves the Hamiltonian matrix elements of the most dominant configura-

tions in the desired eigenvector. Given a choice of H’, the CI secular problem
becomes

(H° - E)C= -VC (2.108)
By iterating on this equation according to the prescription
CH=(E W) e 8 (2.109)

one generates successively higher approximations to the desired C vector.
Corrections to the eigenvalue E are achieved at each iteration by premulti-
plying Eq. (2.108) on the left by the transpose of C° to yield

(E° — E)C%'C = —(CY'VC (2.110)

Initial estimates C° and E° must, of course, be made consistent with the
choice of H°. For the diagonal choice of H?, C° would correspond to a unit
vector C° = (1,0,0,. .., 0) and E° to the diagonal element of H (E° = H ).
If H® were taken to be a small subblock of a very large H matrix, Eq. (2.108)
could still be solved perturbatively since the dimension of the matrix (H® — F)
to be inverted would not be large. The iterative scheme contained in Eqs.
(2.109) and (2.110) generates successively higher-order corrections to the
desired energy and eigenvector.

To demonstrate how such perturbative methods lead to so-called direct
CI techniques, let us consider a simple application of Egs. (2.109) and (2.110)
to a CI wavefunction consisting of a dominant HF configuration |y > plus
all pair excitations of the form |p2> = m;) my pyp|dye>. The elements of
the V matrix can be easily written in terms of two-electron integrals

Vitb.mu = {ppt|mm) (2.111)
Vigens = Oalv¥| > + 8, {mm|nny (2.112)
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whereas

(¢’HF|HOI¢HF> = Ey (2.113)

and (#}|H®|$7' > is the Hamiltonian expectation value for the doubly excited
configuration r(,b;' >. The matrix product VC*"~ ! appearing in Eq. (2.109) can
be written as follows:

2 VaewCh Y = Y (wvlkkyCp (2.114)
kv kv

2 VoD =Y (v pupdCO V) + Y (mm|kkdCE ™ (2.115)
kv v k

Using theseresultsin Eq.(2.109) we obtain an explicit formula for the elements
of C™:

Clik =Y (E — Eyg) ™ '{wv|kk)C,™ Y (2.116)
kv 3
= (E—<gp|HOpy>) ! (2 |y 0+ 3 Cmm| Kk Cly “) (2.117)
¥ k

By writing out the elements of V and H? in terms of the integrals, we see that
the iterative scheme for the evaluation of C and E can be written entirely in
terms of sums over integrals and C”"~" and E values from the preceding
iteration. This fact allows this perturbation scheme to be programmed on a
computer in an integral-driven manner. That is, as the two-electron integrals
Cij|kly are brought into the core memory of the computer, all contributions
of each successive integral to all of the sums appearing in Egs. (2.116) and
(2.117) can be evaluated, multiplied by appropriate factors, and added to the
appropriate expansion coefficients. In this way, the computer is required to
read through the (presumably long) list of two-electron integrals only once
for each iteration. In this way, one avoids the explicit construction and storage
of the Hamiltonian matrix, which may be very large and much larger than
the number of two-electron integrals.

Techniques that permit the working numerical equations [e.g., Eqgs. (2.116)
and (2.117)] to be expressed as sums over explicit two-electron integrals are
referred to as integral-driven direct CI methods. The perturbation solution
described above is only a simple example of such methods. For more general
classes of CI wavefunctions, the expressions for the V matrix elements are
more involved. However, the basic structure and philosophy of the direct CI
techniques remain as outlined. These techniques have proven to be quite
useful in carrying out large-scale CI calculations, and such integral-driven
strategies have been used to efficiently implement the graphical unitary group
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approach (GUGA) for electronic structure calculations (Paldus and Boyle,
1980; Shavitt, 1978; Brooks and Schaefer, 1979).

5. Size Consistency

Thus far, we have concentrated on describing how the CI procedure is used
in practical applications and how it can be viewed as relating to the MCSCF
method. It is important to realize that even though difficulties having to do
with large CI matrices may be overcome, a serious problem remains inherent
in nearly all of the above methods. To understand the difficulty, consider how
one might perform a calculation of a potential-energy curve for the diatomic
Be,. Assume that a prior calculation on a single beryllium atom indicated
that the 252 and 2p? 'S configuration should be included in order to describe
the electron correlation in beryllium. Then to describe the correlation in Be,
in a balanced manner (i.e., such as to yield a 2s* + 2p?* level description of
both beryllium atoms upon dissociation), one must include the 2s32s2,
2522pd, 2p22sk, and 2pi2p3 configurations, where A and B label the two
beryllium nuclei. Hence, although a double-excitation CI or MCSCF could
be employed for Be, one needs to include (certain) quadruple excitation
(relative to 2s%2s3) for Be,. Clearly, for more complex molecular clusters
one would need to include even higher level excitations (e.g., eightfold for
Be,) to achieve a qualitatively balanced description of the complex and its
fragments. This is, of course, essential if one is trying to compute energy
changes (bond energies and energies of formation) for chemical reactions.
Then one must use a method that yields the same value for the molecular
complex energy (e.g., Be,) when evaluated at large interfragment separation
as the sum of the fragment (e.g., two beryllium atoms) energies evaluated
separately within the same method. Such methods are said to be size con-
sistent (Pople et al., 1977). The use of a restricted CI or MCSCF wavefunction
(e.g., doubly excited for Be,) could indeed yield a smooth potential-energy
curve free of obvious pathological behavior. However, such a wavefunction
would preferentially describe the electron correlation in the complex (Be,)
near its equilibrium geometry and would dissociate to yield fragments that
are described to a lower correlation level (e.g., the 2s32s3 configuration
would dominate).

The size consistency problem may be less significant if an appropriate
configuration selection is performed at each geometry on the molecular
potential surface, but the problem still remains as to how to efficiently choose
configurations that describe equally well an entire potential energy surface.
It may in fact be more straightforward to achieve this goal using an MCSCF
wavefunction, since the orbital optimization thereby included can make the
configuration expansion length short enough to be physically understood
and hence correctly chosen. As we discuss in more detail in Chapter 3, this
question relating to achieving a balanced description of a molecule and its
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fragments is important and not easily addressed within a variational frame-
work.

6. Discussion

Because the CI technique has been the most widely used approach to
treating electron correlation problems, many advances have been made in
matrix storage techniques, two-electron integral transformations, the use of
unitary group tools, matrix eigenvalue and eigenvector determinations, and
configuration selection processes. We by no means intend to treat these
advances here; many of them are reviewed well in Chapters 6-8 of Schaefer
and Miller (1977). It is essential that one realize that the monumental develop-
ment of exactly these same data management methods is what makes it
possible to implement not only efficient CI computer programs but also
highly efficient MCSCF, HF, coupled-cluster, and Green'’s function routines.
To implement any of the above quantum-chemical methods in a state-of-the-
art manner,one must make extensive use of many of the advances in numerical
methods and data handling that the scientists who have been instrumental in
developing efficient CI programs have made.

PROBLEMS

2.1 Using the one- and two-electron integrals given below, carry out an
SCF calculation for the 16?HeH * ground state using a first-order procedure.

1. By expanding the molecular orbitals {¢,} as linear combinations of
atomic orbitals {y,,},

¢k = Z anx;l
I

and using the definition of the closed-shell Fock operator given in Eq. (2.92),
show that the Fock eigenvalue equation can be written in terms of the atomic
orbital basis as

Fc = Sce
where the overlap matrix is
S = <u|v>
the elements of the Fock matrix are

Fuw = Cullvy + 3 P,y (2K p| vy — Cuplovy) (A)
po

h is the one-electron operator in the Hamiltonian, and the charge bond
order matrix P is defined as

I *
Ppa s z Cpkcok
k
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2. Show that the HF total energy for a closed-shell system may be writ-
ten in terms of integrals over the orthonormal HF orbitals as

oce occ

E(SCF) =2 Y < Jhld> + §{2<kf|k1> — Ckl|IkY} + Y (Z,Z,/R,)  (B)

v

3. Show that the HF total energy may alternatively be expressed as

oce

E(SCF} = {sk e <¢I¢|h|djk>} s Z(zltZ\'/Rur) ‘C}

'EX

where the {g,} refer to the HF orbital energies.

To carry out an SCF calculation on the ground state of HeH"* at R =
1.4 a.u., the following information is to be used. The orbital exponents of
the Is, Slater orbitals of the He and H are 1.6875 and 1.0, respectively. The
atomic integrals required to carry out the HF calculation are (in a.u.)

O S e

hyy = —26442,  hy=—17201, hy,=—1513, (b= Glhld),
|11y = 10547,  (11]21) = 04744,  (12]12) = 0.5664,
22|11y = 02469,  (22]21> =03504,  (22|22) = 0.6250

where 1 refers to ls,,. and 2 to lsy. In this and the following problems we
shall employ the indices 1 and 2 to label either the molecular orbitals or the
atomic orbitals whenever doing so is not confusing. We shall reserve the
notation 1o and 2¢ primarily for describing the orbital occupancies arising
in the wavefunctions. As an initial guess for the occupied molecular orbital
use ¢y ~ lsy,.

4. Form, with this initial guess of the occupied molecular orbital, a
2 x 2 Fock matrix, using Eq. (A) for F,.

5. Solve the Fock matrix eigenvalue equations given above to obtain
the orbital energies and an improved occupied molecular orbital. In so
doing, note that the normalization condition {¢,|¢,> = 1 = C[SC, gives
the needed normalization condition for the expansion coeflicients of the ¢,
in the atomic orbital basis.

6. Determine the total SCF energy using Eq. (C) at this step of the
iterative procedure. When will this energy agree with that obtained by using
the alternative expression for E(SCF) given in Eq. (B)?

7. Use the ¢, molecular orbital from question 5 to determine a new
Fock matrix.

8. Determine a new set of orbital energies and an improved occupied
molecular orbital.
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L 9. Determine from Eq. (C) the SCF total energy at this step of the
iterative procedure.

The iterative process may be continued until convergence. As a conver-
&enoe criterion, assume that the difference between the SCF total energy
n two successive iterations must be less than 10~° a.u. Listed below are
the HF total energies (in a.u.) obtained during the iterative procedure beyond
the two iterations performed above:

—2.842151, -—2.843221, —2.843393,
—2.843420, —2.843425, —2.843425

10. Show, by comparing the difference between the SCF total energy at
bne iteration and the converged SCF total energy, that the convergence of
he above SCF approach is linear or first order.

11. Is the SCF total energy listed above in each iteration of the SCF
brocedure an upper bound to the exact ground-state total energy?

The converged self-consistent set of molecular orbitals ¢, and ¢, is

@1 = 09000 15, + 0.1584 sy, ¢ = —0.8324 Lsyy, + 1.2156 sy,

12. Show, using the one- and two-electron integrals in the molecular
prbital basis,

Ry = —2.6158,  (1|h|2) = 0.1954, 2y = —1.3154
(11|11 = 0.9596, 121y = —0.1954,  (12[12) = 0.6063,
{12]21) = 0.1261, (22[21) = —0.0045,  (22|22) = 0.6159

hat the converged values of the orbital energies are
g = —16562, g, = —0.2289

13. Does this SCF wavefunction give rise (at R — oo) to proper dissocia-
on products?
2.2 Now carry out an SCF calculation for the same closed-shell HeH*

ystem using a second-order SCF procedure. Some of the integrals used in
roblem 2.1 will be useful again here.

1. Show that the one- and two-electron density matrices decouple as
bllows for a closed-shell reference state:

YO s,J0> = 6,2v,, T <Ol s t,1,J0> = (46,8, — 26,8V,

here v, is the occupation of orbital ¢,. That is, if ¢, is an occupied orbital
= 1, and if ¢, is unoccupied v, = 0.
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2. Show that the A,,, B,;, and W matrices of Egs. (2.29), (2.30), and
(2.27), respectively, may be written for a closed-shell system as

(As apma = CO\UBE s + B3 o H,m o, + my 2,[0>
= 2| b + iy + 1y 5 (201> = )
~ 6mn§{2<arlﬂy> — Lay|vB>}
+ 2nor| fmy — <nrx!mﬁ>]

(BI l)nﬂ,ma e <0![ﬁ: L o ﬁ; ﬂ,g,H,iI: m, i+ a; "'.B]|0>
= 2[(mn|Pa) — 2(mn|op)]

Wi = <O| [0 m, + oy mp, H]|0D = Z[hm

+ Y {2<my|oyy — <m}’|ya>}:|

Again use as the initial guess of the occupied molecular orbital Isy,.

3. Given this guess for ¢, , determine the virtual or unoccupied molecular
orbital ¢, using a Schmidt orthogonalization procedure. The atomic
integrals required are given in Problem 2.1.

The second-order SCF procedure requires knowledge of the integrals in
the basis of the set of initial orthonormal molecular orbitals (¢, and ¢,
obtained above). The one- and two-electron integrals in this basis are given
below (in a.u.):

by = —26442, hys = —1.2870, hy, = 00223
(L1 = 1.0547, (11]21y = —0.1663,  <12]12) = 0.5567,
22|11y = 0.0765, 22|21y = 00171, (22]22) = 0.6200

where, as before, 1 denotes the occupied and 2 the unoccupied molecular
orbital.

4. Determine the SCF total energy that corresponds to this initial guess
of molecular orbitals.

5. Determine the 4,,, B,,, and W matrix elements.

6. Determine the k matrix and the unitary matrix X = ¢~

7. Determine the new improved set of orthonomal molecular orbitals
resulting from applying X to ¢, and ¢,.

The one- and two-electron integrals may now be evaluated in the set of
improved molecular orbitals and the iterative procedure thus may be con-
tinued until convergence is obtained. The HF total energies obtained during
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the iterative procedure become
—2.80504513, —2.84303574, —2.84342526, —2.84342527

8. Show by comparing the difference between the SCF total energies at
successive iterations and the converged SCF total energy that the con-
vergence of the above SCF approach is quadratic or second order.

2.3 Given the one- and two-electron integrals in the SCF orbital basis
found in Problem 2.1, carry out a two-configuration CI calculation on HeH *
using the 162 and 202 configurations.

1. First obtain expressions for the CI matrix elements H;; (i, j = 162,20?%)
in terms of one- and two-electron integrals.

2. Show that the resultant CI matrix is (ignoring the nuclear repulsion
term)

—4.2720 0.1261
0.1261 —2.0149

3. Obtain the two CI energies and eigenvectors for the above matrix.
4. Show that the lowest-energy Cl wavefunction is equivalent to the
following two-determinant (single configuration) wavefunction:

i@ ¢, + b'2¢p )a(a'*dp, — b'2¢,)p|
+ |(@' ¢, — b' 2P )a(a'*P, + b'2¢,)p|]

involving the polarized orbitals a'’?¢, + b'/?¢,, where a = 0.9984 and
b = 0.0556.

24 Using the same information as in Problem 2.3, carry out a three-
configuration CI calculation on HeH* at R = 1.4 a.u. using the l¢2, 202,
and 1020 electronic configurations.

1. First express the proper singlet spin-coupled 1620 configuration as
a combination of Slater determinants.

2. Compute all elements of the 3 x 3 CI matrix.

3. Obtain the eigenenergies and corresponding normalized eigenvectors
for this problem.

2.5 Use the perturbative method described in Section D4 on the CI
matrix eigenvalue problem of Problem 2.4 to find the lowest eigenenergy and

its corresponding eigenvalues. Use as the initial guess for the eigenvector
C° = (1.0000,0.0,0.0) and take

—4.2720 0 0
W= —2.0149 0
0 0 —3.1988

and E° = —4.2720 for the first iteration. Use the energy computed using
Eq. (2.110) to start the second iteration, but notice that the C'!? vector you
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then obtain is so much different from C® that convergence of the process
is not likely. Therefore, average these C'® and C'" to obtain a new damped
C'" for use in determining C'2).

2.6 Perform a one-step second-order multiconfiguration HF calculation
on HeH™*, using the minimum Slater basis of Problem 2.1. The multicon-
figuration reference state will include the two configurations 16 and 202
As an initial guess of orbitals use the set of single-configuration HF orbitals
of the principal configuration 162 The HF orbitals were determined in
Problem 2.1, and the one- and two-electron integrals in the HF basis are
given there. The initial guess of the configuration state functions (denoted
|0> and |1)) will be the ones determined in the two-configuration CI calcu-
lation given in Problem 2.3.

1. Determine all of the nonvanishing one- and two-electron density
matrix elements

C0}r's|0), COfr's"tu|0)

and the nonvanishing one- and two-electron transition density matrix
elements

(1rts|oy, (1|rts'tu]0)

2. Determine the V, W, A, and B matrix elements,

3. Determine the k and the P matrix elements via the one-step second-
order MCSCF method.

4. Determine the transformed set of orbitals and states (|0) and |I>}.

5. Discuss whether the orbitals and states obtained after the first iteration
of the one-step second-order MCSCF procedure (question 4) differ from
the orbitals and states that would be obtained after the first iteration of the
two-step second order MCSCF procedure. If they differ, describe how they
would be obtained in the two-step procedure.

From the orbitals and states obtained in question 4 new one- and two-
electron integrals and one- and two-electron density and transition density
matrix elements may now be evaluated, and the iterative procedure thus
continued. The multiconfigurational HF total energies obtained during this
iterative procedure are

—2.85044942, —2.85066435 —2.85066436

6. Show by comparing the difference between the MCSCF total energies
ateach iteration and the converged MCSCF total energy that the convergence
rate of the used MCSCF approach is second order.

7. How must the converged MCSCF ground-state total energy compare
with the ground-state total energy obtained in the full CI calculation?
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8. Write a priori the ground-state total energy that would be obtained
if we used the three configurations 102, 262, and lo'2¢' in an MCSCF
calculation.

9. Write a priori the ground-state total energy that would be obtained
from a converged two-configuration MCSCF calculation that used the|lo?)
and |1620) configurations.

2.7 Consider n HeH* molecular ions, which do not interact because
they are infinitely far from one another.

1. Write the electronic Hamiltonian for this system in a basis consisting
of orthonormal orbitals that are localized on each of the HeH* molecules.
Retain only those contributions that are nonzero. In so doing, describe
each HeH* molecule with a bonding and antibonding SCF orbital pair.

2. Show that a CI calculation that includes the HF ground-state wave-
function consisting of the antisymmetrized product of orbitals localized on
the n ions having 1¢? occupancy, and all doubly excited configurations leads
to the following CI matrix of dimension n + 1:

nEHF BB B Ol
BaC ' 9 0
B0 C 0
B 0 O C
B e

where

C = E}s — Eyr + nEy, B = (11|22) = (1¢?|H|20?)
Eye = 2hy, + (11|11) = (1d?|H|lo?),
EdXe = 2hy; + (22|22) = (20*|H|20%)
As in other problems, 1 and 2 denote the bonding and antibonding SCF
molecular orbitals, respectively, for an isolated HeH* molecule.

3. Show that the correlation energy for n infinitely separated HeH*
molecules is

E

_ —Eur + Efir [(— Eyr + Efe)’
corr 2 4

+n<11[22>2]”2

4. Use the HeH™* SCF orbitals and results from Problems 2.1 and 2.3
to evaluate for n = 2, 4, 10, 100, and 1000 the correlation energy obtained
for n infinitely separated HeH* molecules. Show that the correlation energy
increases as n'/> when n becomes large. How would the correlation energy
increase in a size-consistent model ?
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Bartlett and Purvis (1981) have found that for H, and He the percentage
errors caused by size inconsistency in double-excitation CI calculation vary
as follows:

n Error H, (%) Error He ()
2 1.5 0.8
4 48 24
10 12.3 6.5
100 480 348
1000 79.1 708

5. Argue why the two-basis function HeH* problem is likely to under-
estimate the non-size-consistent contributions when compared with results
obtained in more accurate calculations on HeH*.

SOLUTIONS
2.1
L V= \;(2<f}'ln> = <iv|wd)
Let
$i= ‘é Cuidpr b, = Z i
Then
=,hzwr(C‘-,,C.,r,,){CueC,.g)(Z'(u\’lﬂ'V') = {pv|vp'))
= Z CoiCu iV
where

Vaw = X, Po 2o | vy = Cpv|v)), Py =Y C,\C

¥

Likewise

<¢‘| =3 %Vz o ;:(deir i RA|)|¢f> =2 h‘J z Cm uJ L

(T

Ry = <xn| il it g(z:lflr = R;ID'X;J'>

As a result F¢; = g;¢; can, by expanding ¢; as above, be expressed as

hiJ‘ + I/:J z CllfC j{hﬂﬂ uu}
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Then using
(élld’;) e 6:1 Z C,ul j.tjl

we have

Y CulesSeu — hyp — VauJCuj =0, forall i j
np'

This can only be true if
2y + Vi — ;8,,)Cpiy =0
s

This is FC = SCe.

2. The Slater-Condon rules tell us that the Hamiltonian expectation
value for a single Slater determinant in which spin orbitals ¢,, ..., ¢y are
occupied is

y |
B E; (il — 4V - ;(ZA/lf Rl + 5;[(*”“) — <kl|Ik>]

For a closed-shell system the orbitals are doubly occupied and therefore

1=, ¢y =B, b3 = ¢, by = 1P, etc, where ¢y, §,, etc. label the
occupied orbitals (not spin-orbitals). Hence by carrying out the spin inte-
gration in the above energy expression and using the fact that each orbital
is doubly occupied, we obtain

occ

E=2 Z AL ES Z {2<kl|kly — Ckl|lky)

where labels now refer to orbital index. The term ¥, ,(Z,Z,/R,,,) must then
be added on to obtain the total energy (including nuclear repulsion).

3. [Ifthe occupied orbitals ¢, obey F¢, = &,¢, then the above expression
for E can be rearranged to give

occ occ occ

E= g {{hulhldr> + g [2¢kI|kly — Ckl|IkY]} + ij<¢,lh£¢.,>

The first two terms in this expression can be recognized as (¢|F|¢$,>, where
F is the closed-shell Fock operator whose potential is defined in Eq. (2.92).
Hence

ocC

E= Z {Du|F|r> + Z (ulhlbi>

5 al 10 00 s —1.5895 —1.0369
LA Bar T\ —-1.0369 —0.8342
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5. g, = —16048, g, = —02348, ¢, = 09194 Is,. + 0.1296 Is,,

6. Egor = —2.8005. The two expressions will agree only upon conver-
gence of the SCF when F¢; = g;¢);, which was assumed in writing the ex-
pression for E containing the orbital energies.

7 p= 0.8453 0.1192 . —1.6246 —1.0836
0 \0.1192 00168/ 10836 08712

8. & = —1.6469, &, = —0.2289, ¢y = 09032 1y + 0.1537 sy

10. Escr — EY  (Escr — ESY)
0.001274 0.000002
0.000204 0.000000
0.000032
0.000005
0.000000

Second-order convergence requires that the error in the (n + 1)th iteration
is the square of the error in the nth iteration, In the first iteration above the
error is 0.001274; thus in the next iteration the error should be (0.001274)% =
0.0000016 if we used a second-order procedure. Since the second iteration’s
error is 0.000204, the convergency of the above SCF procedure is linear
rather than quadratic.

11. The converged SCF total energy calculated from Eq. (C) is an upper
bound to the ground-state energy, whereas the SCF total energy from Eq. (C)
during the iterative procedure is not a bound. It is only at convergence that
the expectation value of the Hamiltonian for the HF determinant is given
by Eq. (C).

12. The SCF orbital energies are determined to be

e = C|IkY + Y {2¢kI|kIy — <k Ik}
1

from which the orbital energies follow straightforwardly.
13.  Yes, the 162 configuration does dissociate properly because at R — oo,
the lowest-energy state is He + H*, which also has a 162 orbital occupancy.
22

1. Since ¢, and ¢, are either occupied or unoccupied ), (0|} s,|0> van-
ishes unless both ¢, and ¢, arein [0). Hence ) , (O0|r, 5,|0> = 9, 2v,. Likewise,
in Y ,, <Olry s7.t,u,|0) all four spin-orbitals must be in [0>. Then

Ol st 10> = 6,0 u,|0> — OJr, 1,5, u,]0>
= 050y — 03050 t,:0> + <O 1, ,52]0)

= (Ss:‘Srn R (ssu(srléan’
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where all orbitals are occupied. Clearly ) ,,- {O|r. s}t 4,|0) vanishes when
one or more of the four orbitals are unoccupied, and its equals 46,4, —
26,,9,, when all four orbitals are occupied.

2. Equation (2.42), when combined with the results of question 1, give

(A1 npma = 204phpm + 0 — 8,205 — 0 — 0 = §,,, z?:[(aﬂﬁ}!)ﬁl — 2{ay|yB>]
—0—0—3 {ny|ym)é,52 + 4<na| fm)
¥
+ 045 3, <ny|my>4 — 2{na|mp) + 0 + 0
¥
By )pme=0+0-0-0-0-0-0- 4(mn|0t,8) + 2(mn|ﬁa)
+0+0+0+0
Using Eq. (2.41) we find
Wom = 2hpe — 0 — 0 + 3" [4<my|ay) — 2{my|ya)]
¥

3. ¢y = lsy
¢2 = lS“ e <ls“| 13“&) ISH' = lSH — 0.5784 1811,

Normalizing ¢, requires that we divide by the square root of 1 + (1sy| 15>
— 2{1sy| Lsy>? to obtain

¢, = 1.2259 15, — 0.7091 15,4,

The coefficient matrix C whose elements C,, are the orbital expansion coef-
ficients then becomes
e 1.0 -0.7091
Thel LW
4, —2.8050

5. The excitation from molecular orbital 1 to 2 is nonredundant. The
relevant matrices thus become one dimensional:

Ay, = 18713, B, = —0.1530, W = —0.2880

Mt 0.0 0.1423 o 09899 —0.1418
: -\ -0.1423 00 2 ~\0.1418 0.9899

o i 0.8893 —0.8437
SR T 1.2135
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8. Escr — ESY  (Escp — ESY)
0.038380113 0.00147303
0.00038952 0.0000001 5
0.00000001

The error in the (7 + I)th iteration is the square of the error in the nth
iteration.
2.3
1. <la?|H|1a?) = 2hyy + <1 1|1 1), {20%|H|26?) = 2h,,
+ (22|22, (1e?|H|26%) = {11]22)
2. (lo?|H|le?) = (—2.6158)2 + 0.9596 = —4.2720
{26%|H|20%) = (—1.3154)2 + 0.6159 = —2.0149
(16?|H|26%) = 0.1261
3. E_ = —42790, E, = —20079, C_ = (09984, —0.0556),
C, =(0.0556,0.9984)
4. 5[l@'?¢, + b'2P,)ala' ¢, — b2 )
+ |(a“2¢ — b )a(a' 2, + b )]
— (@', + b'$,)a'"2p, — b''2¢,)
\/_
+(a'py — b'2p)a'Pd, + b2 h,)](af — P)
= (a b, — b, (@f — B)/y/2
= ald’lwf’lﬁl s bld’zaﬁbzﬁl

1. The singlet function with 162¢ occupancy is

1
— [1a2p| -1 B2
ﬁ[l Bl =1 p24(]
2. (1020|H}102)=‘/L§[2h,2+2(11|2]>]=ﬁ[0‘l954-0.!954]=0
1
lo20|H|26%Y = —[2h,, + 2(22|21>
(lo20|H[20%) ﬁ[ 2 121)]
= /2[0.1954 — 0.0045] = 0.2699
1620|H|1626) = hyy + hyy + (12|12) + (1221)
= —2.6158 — 1.3154 + 0.6063 + 0.1261 = —3.1988

The other matrix elements are derived in Problem 2.3.



60 2 Energy and Wavefunction Optimization Methods

3. The 3 x 3 CI matrix

—4.2720  0.1261 0.000

—2.0149 0.2699

—3.1988
then has as its eigenvalues E; = —4.2792,E, = —3.2567,and E; = — 1.9497.
The corresponding eigenvectors have, as coefficients of |lo?|, [2¢?|, and
|lt720|, (0.9982, —0.0573,0.0143), (—0.0261, —0.2098,0.9772), and (0.0530,
0.9761, —0.2109), respectively. The ground-state total energy, including

nuclear repulsion, is —4.2792 + (2/1.4) = —2.8506.
2.5 First iteration:

E°—E=—(C%)VC°=0

and so we use E = —4.2720 in the first iteration to calculate C'V:
0 0 0
CM = (E - Ho)‘ l\!’C”, (E1 — HO)_1 =0 —0.4430 0

0 0 —0.9318

(Actually, the 1,1 element of this matrix is ill defined. However, this does
not cause trouble here since VC® has zero as its first entry. In general, how-
ever, this trouble arises wherever E° is taken to a diagonal element of H%):
0.0
VvC° = 0.1261
0.0

Therefore,

0.0
Ch = | —0.0559
0.0

A problem now arises: C'") does not obey intermediate normalization, which
was assumed in deriving Eq. (2.110) for E. Hence we must damp the itera-
tion process by averaging C'" and C° to obtain a better C'" (which must
then be intermediate normalized):

i 1.0000 0.0 1.0000
CH = 3 0.0 + 3 —0.0559] —» [ —0.0559
0.0 0.0 0.0

One finds that by not damping, the successive C™ computed (using E =
—4.2790) are wildly oscillating.
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C™ = [(0.9989,0,0.0140), (0.0, —0.0573, —0.0035), (1.0000,0.0004,0.0139),
(1.000,0.0797,0.0001), (1.0000, 0.0386,0.0138) ]

However, once the damping is introduced, we can proceed to find C* values
in a stable manner.

1.0000
E°— E=—(C%*VC = —(0,0.1261,0) { —0.0559 | = 0.0070
0.0000

and so E = E° — 0.0070 = —4.2790. Now compute C'?:

— 1429 0 0
(E1 —H%) ' = 0 -04417 O
0 0 —0.9258
and
— 1429 0 0 0 0.1261 0 1.0000
C? = 0 —0.4417 0 0.1261 0 0.2699 | | —0.0559
0 0 —0.9258/ \0 0.2699 0 0.0000
Then
- 1.0003
C? = [ —0.0557
0.0140

which upon intermediate normalization becomes

1.0000
C? = | —0.0557
0.0140

For the third iteration,

1.0000
E° — E = —(0,0.1261,0) | —0.0557 | = 0.0070
0.0140

Therefore, E = —4.2790 and so (E1 — H%) ™! is unchanged:

0 0.1261 0 1.0000 1.0003
C® = (E1-HY)" {01261 0 0.2699 | | —0.0557 | = | —0.0574
0 0.2699 0 0.0140 0.0139
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which when renormalized becomes

1.0000
—-0.0574
0.0139

To compare these results with those of the CI Problem 2.4, we must nor-
malize C** so that 1 = (C*)T(C®). This procedure gives

0.9983
C? = | -0.0573
0.0139

which is to be compared with the CI eigenvector

0.9982
Ca = [-00573
0.0143

The CI energy —4.2792 compares well with our third iterate E = —4.2790.
26

1. Let 1 and 2 denote the 1¢ and 2¢ orbitals, respectively:

il=<0  <il =]
<ilt}1,]0) 0.9970 0.0555
<il2) 2,j0> 00031  —00555
i1} 15 1,1,00> 0.9970 0.0555
CijIF15242,)0>  —-00555  —0.0031
Cij25271,1,00>  —00555 0.9970
<225 2,2,)0> 00031  —0.0555

Since the states |0), |I) have singlet symmetry, interchange of « and
spin gives the same matrix elements, e.g., Ci|1. 15 1,41,]0> = Ci|17 1. 1,1,0).
Change of the sequence of the creation (or the annihilation) operators does,
of course, change the sign of the matrix elements.
2. Wy, = (1|H|0> =0, since |1) and |[0) are determined from a CI
calculation:
Wi =<0|[152,+ 1525, H]|0> = 2[h,,<0|15 1, — 2, 2,{0)>
+<{22|21)<0J25 21 252, + 1} 15 2,2,]0>
+ I 21)<0|1 15 151, 4 15152,2,0>]
= —0.0224
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Azy 20 =CO|[1S 2, + 1525, H,27 1,+ 25 15][0)
= 2[(hys — hy DCO[1F 1, — 25205 — €22|22)<0[2; 2 2,2,/0)
— LU0 17 1,1,005 — 2¢11|225€0]1; 17 2,2,/0
— CU12)C0[1} 12 1,1, + 27 21 2,2,]0)
+ Q1205 €0|1} 17 1,1, + 212§ 2,2,)0]
=2.1606

=2[(2¢22] 11> +2¢21 |21 — (11| 11> — (22{22)<0)1 1 2,2,]0)
— (21134012 25 2,2, + 1213 1,1,]0>]
= —0.2400
(A21)|1>.21 =(l|[H,2: 1¢+2;13:”0):2[h12<1|1:1ﬂ—2:25|0>
— U 1 0,4 2223 1,100
— (22' lZ)(llZ;Z: 1, 42020 2ﬂ2¢|0>]
=0.4020
(B21)y1y.21 = CI|[H, 1,2, + 15 2,]|0>
= 2y 12 20— 110> — <220 203 |23 2 2,20 + 1 15 2,2,J0)
— (11 IZl)(lll: Iplgl + 15 15242,05]
= —0.0198

3. Since A — B is a 2 x 2 matrix, we invert it easily and obtain the
numerical value of k,, and P,, through (§) = (A — B)"'(¥). Hence the x
and P matrices are

_( 00 0007\ (00  —00018
*=\-00097 00 ) ~\oo0o18 00

4. By applying exp(—x) as shown in Problem 1.5 to the HF orbitals,
we obtain

¢, = 08919 Isye + 0.1701 Isy, ¢, = —0.8410 Lsy, + 1.2140 15,

Likewise, transformation of the two CI eigenstates through exp(—P) gives
rise to two new MC state vectors whose expansion coefficients are given by

ok 0.9984 00574
~\ —00574 09984
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5. Since we used the states of a CI calculation as the initial guess for the
reference state in the one-step MCSCF procedure, the orbitals of the one-
and two-step MCSCF approach become identical when the first iteration
is carried out. The states obtained in the next iteration of the two-step
MCSCF approach would, however, be determined from a new CI calculation
(which requires transformed integrals) and would thus differ from the states
obtained in the one-step MCSCF procedure.

6. Eucscr — ER3%  (Emcscr — ERSS)?
21494 x 1074 46 x 1078
1x10°® 1 x 107'¢

The error in the (n + 1)th iteration is the square of the error in the nth
iteration.

7. The MCSCF and the full CI calculation have the same number and
kind of variational parameters; hence the total energies obtained in the two
calculations should become identical. The |162¢) configuration included in
the CI wavefunction is treated in the two-configuration MCSCF function
through the 2*1 k,, orbital optimization parameter.

8. In an MCSCEF calculation that uses 12, 262, and 1¢'2¢", the 26* 10
excitation operator becomes a redundant excitation operator and hence the
orbital optimization step need not be included. The three-configuration
MCSCF calculation thus becomes identical to the three-configuration CI
calculation.

9. Again, two configurations plus one degree of orbital optimization
freedom span all of the configuration space needed to generate the full CI
wavefunction. Hence the converged MCSCF energy would equal the full
CI energy here.

2.7

I. In the one- and two-electron integrals appearing in the second-
quantized form of H, we neglect all integrals involving orbitals on different
HeH™* ions. Hence .

n l n
A=1\11i,j=1a20 ijkl=1e,20 A=1
€A €A
where A labels the n HeH* ions.

2. Let us denote the reference HF determinant by HF. Then doubly
excited configurations involving excitation of the Ath HeH" ion can be
represented as (2,2, 1,1,),/HF) = |4). Doubly excited configurations in
which one orbital is excited on each of two HeH"* ions will not give rise to
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nonvanishing CI matrix elements since the one- and two-electron integrals
that arise in evaluating such CI elements would vanish because of the large
separation between the two ions.

The CI matrix elements arising from the functions |HF » and {|4)} are
(HF|H|HFY = Y (HF|H JHF) = n{10?|H|10%) = nEys
A=1

(This result follows since [HF ) = []%-, (1, 1,})|vac));

(HF|H|A) = (16*|H|20?) (the same for all A4)
CAH|A") = 6,,[20%|H|26%) + (n — 1)Eyyz]  (the same for all A)

3. The components of the eigenvalue problem (HC = EC) for the matrix

shown in question 2 can be written as

nEueCyr + ). BC4=ECyr, BCyr+CC,p=EC,, A'=1,...,n
A=1
Solving for C 4. in terms of Cy and substituting into the first equation gives

”E"FC“F e Z B[E S C]_ lBCl—IF — EC"F
A=1

This equation will have a nontrivial solution for Cy; only if
nEye + B’n(E -~ C) ' = E
This quadratic equation can be written as
(E = C)nEyg — C) + nB? = (E — C)?
the solutions of which are
E — C = }{nEyp — C + [(nEyr — C)* + 4nB?]'7?}
Using the definitions of C and B, the ground-state energy becomes
E=nEyp+3{ —(Efir— Enp)— [(Efir — Eug)® +4n{11]22)2)V2} + Efyp— Eyp
The correlation energy then becomes
Ecoe = E — nEyg = ${Efir— Enp — [(Efir — Eqg)® + 4n(11]22)2]'72)

4. From Problem 2.1 we find (11]22) = 0.1261 and from Problem 2.3,
(lo‘sz|laz> = Eyr = —4.2720 and (2JZ[H]202) = Efir = —2.0149. There-
fore (Efs — Eye = 2.2571),

: 2257 2 1/2
E..= 2—25?1 - I:(—Z;—H-{) + n(0. 126]]2—|
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Evaluating E_,,, for n = 2, 4, 10, 100, and 1000, and comparing it to n times
the correlation energy of 1 HeH* ion, we find

n ' D nE .. (n=1) Error (%)
1 —-0.0070 —-0.0070 0.0
2 —0.0140 -0.0140 0.0*
4 —0.0278 -0.0280 0.7
10 —0.0684 —-0.0700 23
100 —-0.5637 —0.7000 19.5
1000 —-3.0156 —7.0000 56.9

* If one were to carry more significant figures,
this result would be 0.3%,. 2

For large n, the analytical expression of question 3 clearly varies as n'/2,
Comparing our results for n = 100 and n = 1000, we find a ratio of 3.0156/
0.5637 = 5.35, which is not (1000/100)!/2 = 3.16. Thus n = 100 is not yet
in the large-n range. The ratio for n = 10 and n = 100 is 0.5637/0.0684 = 8.24,
which is even further from (100/10)!/% = 3.16. Hence one must go beyond
n = 100 before this large-n behavior is realized.

5. Within our small basis the HeH™* is undercorrelated because the 2¢
orbital is much higher in energy than would be expected for the lowest
excited ¢ orbital of HeH™*. Therefore, our correlation energy, which arises
from the 1o? — 207 excitation is smaller (because (11|22) is smaller and
2¢, — 2¢, is larger) than one would obtain if one were to use a better atomic
orbital basis on HeH*. As a result the (11]|22) appearing in the above
expression for E,,,, is “too small” and (Efjz — Eyg) is “too large.” This leads
to an underestimate of E_,,,.
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Chapter 3 | Perturbation T heory

A. INTRODUCTION

As an alternative to the variational approaches described in Chapter 2,
we may use perturbative approaches to solve the Schrodinger equation.
Our purpose in this chapter is not to survey the many developments and
applications that have been made of perturbation methods. Rather we
attempt to cast the most familiar perturbation theory (Rayleigh-Schrédinger,
RSPT) in the language of second quantization and then demonstrate how
this tool can be used to compute state energies and wavefunctions. In
Chapter 5 we extend this treatment to property average values and second-
order response properties. We also illustrate some of the strengths and
weaknesses of RSPT by comparing it with other perturbative and non-
perturbative methods.

To begin, let us assume that the total electronic Hamiltonian H is de-
composed into two pieces

H=H°+U (3.1)

the former of which is assumed to be “larger” in a sense that will be clarified
shortly. We also assume that we have available the complete set of eigen-
states of H® (including the continuum, in principle)

HOKY = EQ|k®) (32)

This latter assumption often places substantial practical restrictions on the
forms of HY that are possible. For example, choosing H° to be the N-electron
Fock operator (or its second-quantized equivalent) would be quite reasonable
because the |[k°) are then the usual Slater determinantal wavefunctions,
which one is often actually able to obtain to reasonably high precision. On
the other hand, choosing H® to include some factors (e.g., r;; ') of the inter-
electronic distance is probably not practical because one cannot usually

68



B.  Derivation of General Energy and Wavefunction Expressions 69

obtain the eigenstates {|j°)} to high precision. Of course, the physical
context and requisite accuracy relevant to each specific problem must
ultimately dictate how one can most effectively split H into H® + U.

B. DERIVATION OF GENERAL ENERGY
AND WAVEFUNCTION EXPRESSIONS

Given the above decomposition of H, we now express the Schrodinger
equation

H|j> = Ej> (3.3)
as (March et al.,, 1967)
(6 — HO)|j> = (& — E; + U)|j> (3.4)

where the energy parameter &, which has simply been added and subtracted,
will be used shortly to define different kinds of perturbation theories. The
normalization of the exact state |j> will now be chosen such that |j> has
unit projection along its zeroth-order component |j*)

100> =15 (3.5)
The total wavefunction |j) can now be written in terms of the projector Q,
Q=1-1]/<"
as
1> =15 + 2l (3.6)

Making use of the fact that H°Q = QH", which is easily seen to be valid
from definition of Q, we can operate on Eq. (3.4) with the projector Q to
obtain a closed expression for Q|;>:

Q
QLY = QeI 16— 1006 — £+ V)l a7

The factor of Q, which when applied to Eq. (3.4) gave Eq. (3.7), is needed
because the resolvent (§ — H®)™! is singular at & = EY. The presence of Q
guarantees that (§ — H°)™' never operates on a state (|j°)) that would
cause a singularity at this value of EY. Clearly (6 — H®) "' is singular at
other values of & (& = Ej, k # j) but we need not be concerned with these
singularities as long as the parameter & is held in the neighborhood of Ef
and away from the other EP. This would, of course, be difficult to achieve
in systems such as metals, which possess many closely spaced (nearly degene-
rate) energy levels. Equation (3.7) is then inserted into Eq. (3.6) to yield the
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integral equation
[i> =1i% + (& - H)™'Q(€ - E; + U)|> (3.8)

If Eq. (3.8) is iterated, one obtains an order-by-order expansion of the
wavefunction

1> = go [(6 - H)'Q@& - E; + Ui (3.9)

Multiplying Eq. (3.3) on the left by (j"[ we get
E;= E} + (j°|U|i> (3.10)

which then may be used to obtain a perturbative expansion of the energy
in the perturbation U:

E,-E})= Zo GOULE — HO Q& — E;+ U)Ji®  (B.11)
We now consider two especially relevant choices of the, in principle, arbitrary
parameter &. If & is taken to be equal to E;, then the above perturbation
series describe the Brillouin-Wigner approximations to |j> and E;. The
choice & = E{ yields the Rayleigh—Schrddinger perturbation series.

To express any of the above perturbation expansions in terms of creation
and annihilation operators, we simply write |j°), H° and U in the second-
quantized manner. The zeroth-order Hamiltonian is virtually always taken
to be a one-electron operator

H® = E(%IH”I@)VI (3.12)

involving a one-electron potential V,

H= —iV2_ Y ZJr—RJ|'+V (3.13)

With this choice, the perturbation U becomes

U=1 Y <ijl kit = Y il V]idit (3.14)
4 i i
If the spin-orbitals {¢,} are chosen to diagonalize H°,
H® = Y (@ JHd Dk k=) ek *k (3.15)
k k

then the zeroth-order wavefunctions {|j°)} are simply N-electron Slater
determinants (or their second-quantized equivalent) involving these same
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spin orbitals {¢,}. This choice of H? is especially convenient because the re-
solvent (§ — H®) ™! becomes diagonal (and hence easy to treat) within this
representation.

To gain some experience in the evaluation of perturbation contributions
to |j) and E; and to motivate an analysis of a fundamental weakness of the
Buillouin—Wigner perturbation theory (BWPT), let us now consider a few
examples. First, we evaluate the first-order correction to the energy that
arises from the n = 0 term in Eq. (3.11):

1
ES® = CiOIULI®D = g X 5 D ol k> — <Gk 117 kv
ij

(3.16)

which by straightforward application of Slater—Condon-like rules to com-
pute the above density matrices, yields

1
g = 5 Y, vy = Y yviw. (3.17)
m.ye jo ME jo :

Note that because E{"’ contains no reference to the parameter &, RSPT and
BWPT have identical first-order energies.

C. SIZE CONSISTENCY PROBLEM IN THE ENERGY

Next, we consider the second-order energy and, in particular, we examine
E for a system consisting of two noninteracting subsystems (a and b). For
this case, the Hamiltonian H separates into

H=H?+U,+ H?+ U, (3.18)

and the zeroth-order states become (antisymmetric) product states (recall
that |j°> labels our specific state of interest whereas |[k°> labels the other
states):

5> = 172752, (K>} = {Ikais >, liaky >, [kaky >} (.19

The second-order energy expression from Eq. (3.11) reduces, using Q| j°> = 0,
to :

E® = (j°|Ue — H°)'QU|;® (3.20)
Expressing Q in the conventional sum-over-states manner gives

0=1-j%= ¥ k< (321)
KO# o
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and Eq. (3.20) becomes
EP = Y (jlUK®)<KO|U|j®/(& — E) (3.22)
kO # jo

Now, introducing the fact that we are dealing with two noninteracting
subsystems [through Eqgs. (3.18) and (3.19)] and breaking the sum over
k° into three sums corresponding to the partitioning of |k°) given in Eq.
(3.19), we obtain
g — v K2RV + Uk | 5. [<GajblUa + Unljakid]"
: kz d’ 7 E?b P E;’n kg 5 o E.?a e EE&
o 5 2RIV, + Uk
K2.kp ¢ — Eou = EE»

Using the orthonormality of the spin-orbitals and the fact that the systems
are noninteracting permits the simplification of the above matrix elements.
For example,

Ciais|Ua + UplkQjny = ialUdkd>,  <jais|lUs + Unlkoky> =0 (3.24)
Thus, we finally obtain

alUdkd® | < [KislUslks>[?
E(_z] it |<J'a| a|™a oy b b|"™b
P e -mtye-E -,

Notice that this total second-order energy is not, in general, a sum of the
second-order energies of the two separated species because of the appearance
of the Ej, and EY, terms in the denominators. We therefore say that the
general (i.e., with arbitrary &) perturbation theory energy is not size con-
sistent (Pople et al., 1977). However, if & is chosen, as in RSPT, equal to
& = E) = E}, + Ej},, then we indeed obtain a perfectly size-consistent
result:

(3.23)

(3.25)

EP = E + EP (3.26)

It is clear that the first-order energy expression {j°|U|j®) is also size con-
sistent. Because this size consistency property is important, especially if we
are interested in using perturbation methods to study molecular fragmenta-
tion, the use of RSPT must be favored over BWPT (& = E;) or any other
perturbation theory derived from alternative choices of &.

Even if we now decided to use only RSPT to compute |j> and E;, another

potential difficulty arises when we consider the third- (and higher-) order
energies

E}S! = (_folUQ(E? o Ho)_lUQ(E? A HO)_IUUU)
- E{"(OlUQ(EY — HO)2U | (3.27)
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Because E{' is an extensive property (i.e., size consistent), we should expect
possible size inconsistency from the last term in E{¥ if the (second-order)
factor in front of E{" is also extensive; E{*) would lhen contain terms that
are proportional 10 the square of the system's size (for identical noninter-
acting subsystems). Let us now look at this situation more closely. By intro-
ducing the spectral representation of the projector Q given in Eq. (3.21).
E{» can be written as

5 GOUKO KU <I°|uli®
o (ED—EJ(E? — ED)

3 - 3 <j0|U}k0><kU1ULf“>
J |U|J >Z (E?— EE)Z

(3) —

(3.28)

It is now important to demonstrate that the k® = [ terms appearing in the
first sum above exactly cancel the size-inconsistent terms in the second factor.
This cancellation can be brought about by combining these terms as

Uuku 2
s Zlfé"l tE")}'L [<KIU K> = <jO|U]j] (3.29)

Now, if we consider A for the special case of two noninteracting subsys-
tems (analogous to what was done above for E}z‘}. we see that the terms
CkO|UIK®Y — ¢ j°|U]j°> decompose, under partitioning of k® [as in Eq. (3.19)].

into T
X
Cak§|Ua + Uljakd> — <j2islUsliais> = <kJUskD> — CRlULLiR>  (3.30)
(notice that reference to system a has disappeared here) and
N

CkaislUa + Uylk2ipy — <jaiplUdjain» = <kalU k> = <jalUdlja>- (331)

(reference to system b has disappeared here).
The states {|k2ky>} give no contributions because the first factor in Eq.

(3.29) (j°|U[Kk®) becomes identically zero for these states. This then permits
A to be written as a sum of terms referring totally to system a:

Uk
i ~Z‘fé3| |E>}| [ = CBIULD] (332

and an analogous expression for A,. Hence A is size consistent even though
each of the two terms arising in it [see Eq. (3.29)] are not. When k° # [°
the first term in Eq. (3.28) may also be shown to be size consistent and E}'“
therefore is size consistent. RSPT energies are in general size consistent
even though substantial regrouping of terms as in E{) may be necessary
before it can be realized.
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If one wishes to use RSPT to perform ab initio quantum-chemical calcu-
lations that yield size-consistent energies, then care must be taken in com-
puting the factors that contribute to any given E{". For example, if E{’ were
calculated as in Eq. (3.28), limitations of numerical precision might not give
rise to the exact cancellation of size-inconsistent terms, which we know
should occur. This would certainly be the case for an extended system (for
which the size-inconsistent terms would dominate). In addition, it is unpleas-
ant to have a formalism in which such improper terms arise in the first place.
It is therefore natural to attempt to develop approaches to implementing
RSPT in which the size-inconsistent factors are never even computed. Such
an approach has been developed and is commonly referred to as many-body
perturbation theory (MBPT). The method of implementing MBPT is dis-
cussed once we have completed the present treatment of RSPT.

D. M@LLER-PLESSET PERTURBATION THEORY
FOR ENERGY

A very common choice of the potential V used to define H as in Eq. (3.13)
is the HF potential

V=YY Chky||ludk*i (3.33)

kJd pej

where the sum over u runs over those spin-orbitals that are occupied in the
specific zeroth-order state (the Slater determinant |j°)) whose perturbation
we are examining. The unperturbed Hamiltonian H® is then given in terms
of the HF orbital energies as

HY=)% gktk (3.34)

k
With the above choice of H° now made, the perturbation U becomes

Y Gl kit =Y, Y <kl |kt (3.35)

1
4w k1 pejo

These choices of H® and U, when used in RSPT, give rise to what is commonly
called (Pople et al., 1977) M¢ller—Plesset perturbation theory (MPPT) and
the expression for E{" reduces to the familiar form

E}“-—w% PRI (3.36)

n,ve jo

The RSPT expression for E{*’ can also be expressed in terms of orbital
energies and two-electron integrals. The kets [k®) appearing in Eq. (3.22) for
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E? refer to kets that are singly, doubly, etc. excited relative to the reference
ket | j°>. Because of the BT, {j°|U|k®) vanishes when |k®) is a singly excited
ket. Kets |k®) that are triply excited and higher also give no contribution to
{j°|U|k®>. Hence, E{? as given in Eq. (3.22) would contain only contributions
from the doubly excited kets,

jO\Urts* Bl j°> = Capl|rs) (3.37)
and therefore

g _y _leBllrp

a<pbr+ & — 8 — &

r<s

(3.38)

To obtain more insight into the structure of the size-consistent and -in-
consistent terms, we derive an explicit expression for the quantity A appearing
in Eq. (3.29) within MPPT. Realizing that only the doubly excited deter-
minants |k°) contribute in Eq. (3.29) because of the BT, we obtain

- g Ll

2 50177]50
Gty = = o7 [CRlUk> = GOULT - (339
where
=m*n*faj) (3.40)

The expectation value difference contained in the square brackets can be
expressed in terms of elementary two-electron integrals and, since U =
W — V, HF potential matrix elements as

2. [<my||my> + Cnyl Iy — <oyl |oey> — <By||By>] + Cmn fmny — <af| 2B
YT':E.S
= m|VIm)y — (n|V|n> + (| V]o) + <B|V|B> (3.41)

By then introducing the explicit form of V given in Eq. (3.33) this expression
can be reduced to

<mn||mn) + <afllap) — (1 + P )1 + P,g){mof |nf) (3.42)

where P,,, means interchanging the indices m and n. Upon inserting this into
Eq. (3.39) one obtains

|(o:[ﬂ Imn)l

A:
m<n (£a+5ﬂ Em

a<f

— (1 + P, (1 + P,)<mo|np>] (3.43)

¥ [<mn||mn) + C(apl||ap>



76 ' 3 Perturbation Theory

The expression for A given in Eq. (3.39) may be written as a product of two
independent disjoint sums since part of the first term (™ [U| ¢ » and the
whole second term ¢ j°|U|j°> in the square bracket consists of a sum that is
independent of the sum m < n and « < . Equation (3.39) thus contains a
product of two disjoint terms. When the terms in the square brackets are
collected together in a different manner, Eq. (3.39) reduces to Eq. (3.43),
which cannot be divided up into disjoint sums. The expression for A given
in Eq. (3.43) is thus linked. It is the linked nature of the size-consistent terms
that is used in MBPT to assure that size-consistent terms alone will appear

in the many-body perturbation expressions for the electronic energy and
other state properties.

E. THE PERTURBED WAVEFUNCTION

Having now carried out some detailed analysis of the RSPT expression
for E;, let us turn to the perturbative corrections to the wavefunction 17>
The first-order RSPT wavefunction is, according to Eq. (3.9),

|/ = (Ef — H)'QES — E; + U)|j°) (3.44)
which, because Q|j°) = 0, reduces to
|7 = (E] — H%)~'QU|;°) ; (3.45)
By inserting the spectral representation of Q [Eq. (3.21)], we obtain

‘ KU
i = ko); —_'Eol U 2 o (3.46)

As we did above for the energy, it is instructive to analyze |j'"’) when it
pertains to two noninteracting subsystems (a and b). For this special case,

the sum in Eq. (3.46) separates into terms pertaining to each of the isolated
systems:

0
k20 *Z————-mé‘(,lu"lh liSke>  (347)

*I!I

k[) 0
T Z< IU 1Ja>

Thus, we see that, through first order, the wavefunction |j) contains only
terms of the form |07, |j%y, and |k js»; terms such as |k2k{) are not
present. One might have expected that, for two noninteracting subsystems,
the total wavefunction should be a (antisymmetric) product of the wave-
functions for each subsystem and that terms like [k2kY) would, thus, be
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The expression for A given in Eq. (3.39) may be written as a product of two
independent disjoint sums since part of the first term (™ [U| 7 » and the
whole second term ¢ j°|U|;j°) in the square bracket consists of a sum that is
independent of the sum m < n and « < f. Equation (3.39) thus contains a
product of two disjoint terms. When the terms in the square brackets are
collected together in a different manner, Eq. (3.39) reduces to Eq. (3.43),
which cannot be divided up into disjoint sums. The expression for A given
in Eq. (3.43) is thus linked. It is the linked nature of the size-consistent terms
that is used in MBPT to assure that size-consistent terms alone will appear

in the many-body perturbation expressions for the electronic energy and
other state properties.

E. THE PERTURBED WAVEFUNCTION

Having now carried out some detailed analysis of the RSPT expression
for E;, let us turn to the perturbative corrections to the wavefunction 17>
The first-order RSPT wavefunction is, according to Eq. (3.9),

/"> = (E§ — H°)'Q(EJ — E, + U)|;° (3.44)
which, because Q|j®) = 0, reduces to
/"> = (Ef — H°)~'QU|;% ' (3.45)
By inserting the spectral representation of Q [Eq. (3.21)], we obtain

kU °
i =ko); ————"_Eol L 2 k0 (3.46)

As we did above for the energy, it is instructive to analyze |j") when it
pertains to two noninteracting subsystems (a and b). For this special case,
the sum in Eq. (3.46) separates into terms pertaining to each of the isolated
systems:

-y Sl <k°IU 1;2>

0
[ Z——m—ﬁg{,w”l“’)| k> (3.47)
[+ ks

| =
Thus, we see that, through first order, the wavefunction |j) contains only
terms of the form |0y, |j%>, and |k js»; terms such as [kk0) are not
present. One might have expected that, for two noninteracting subsystems,
the total wavefunction should be a (antisymmetric) product of the wave-
functions for each subsystem and that terms like [k2kY) would, thus, be
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present. The RSPT first-order wavefunction certainly does not possess this
product-separable property.

It is natural to ask how the RSPT can have the physically consistent
property that its energy is extensive whereas its wavefunction does not reduce
to a product form for noninteracting systems. The answer has to do with the
manner in which the total energy E; is computed in perturbation theory:

E; = (OH|j> (3.48)

In contrast, the total energy is obtained, in variational approaches, by eval-
uating the expectation value

E; = (IH|i/Kli> (3.49)

Because of the structure of the matrix element appearing in Eq. (3.48) it is not
possible for terms such as |kJky > to contribute directly to the RSPT expres-
sions for E; even though these factors are certainly contained in the exact

wavefunction }j} (they will occur as higher order RSPT wavefunction cor-
rections). That is,

CaislHIkkY> = (j2ip|HY + HY + U, + Uplkdkp> =0 (350)

In a sense then, the first-order RSPT wavefunction contains faults (absence of
|kSkY>) that do not adversely affect its ability to yield, through

EP = (UL (3:51)

a size-consistent second-order energy. The same form of the wavefunction
(J7> = |j° +|i'")) when used in the expectation value [Eq. (3.49)] would
not yield a size-consistent result; one would have to add on the |k)kp> terms
to generate size consistency in the expectation value. This implies that in a C]
or MCSCF calculation one must use these disjoint excitations |kjk; > (e.g..
|oZa 2> for two H, molecules) in order to guarantee that the expectation value
formula for the energy is size consistent. This necessity that one include, in a
Cl study of a composite system, excitation levels (in Slater determinants) that
are higher than those included for the individual constituent fragments is a
problem of the CI and MCSCF methods.

F. M@LLER-PLESSET WAVEFUNCTION

If the unperturbed Hamiltonian H® is taken to be the‘H F Hamiltonian, the
first-order MPPT wavefunction [ Eq. (3.46)] can be expressed in terms of the
doubly excited kets r*s* fa|j”) (again BT makes the contributions due to
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singly excited kets vanish):

lj‘”) = z K;;r+s+ﬁa|j°) (3.52)
a<f
where
oo oodieh (3.53)

E 1+ & —¢8 — &

The explicit expression for the second-order wavefunction for this (HF) H°
case contains singly, doubly, triply, and quadruply excited kets
i =¥ Kr*a]j%> + ¥ Kor*s*Bolj%

F.a

a<fp
r<s

+ X KGyrtsTeyBeli + X KgrtsTttutoypali®)
a<fi<y a<f<y<d
r<s<t r<s<t<u

(3.59)
where, for example,

K, = l(z <ry| |mny {mn| [yor) + % {By| |oemy {mr| |yB)

2 mn (Eu Sy Er)(sy T Ey — &y — gm) m (Eu g 3,.](8), o e Eﬂ TR Em)
Y b7

(3.55)
G. MANY-BODY PERTURBATION THEORY

Having now completed our treatment of RSPT, let us return to the problem
of finding a mechanism for explicitly computing, in any given order, only
those terms in EY or |j™) that are size consistent. Recall that RSPT, as
normally expressed, contains size-inconsistent terms that cancel when
grouped together properly, but that nevertheless appear in the formal RSPT
expression. Recall also that the size-inconsistent terms could be characterized
by a factorization into products of two or more terms that did not share
common summation indices. In MBPT, the formal cancellation of size-
inconsistent terms in RSPT is carried out explicitly (Brueckner, 1955a,b;
Bartlett and Silver, 1975; Kelly, 1969; Lowdin, 1968; Brandow, 1977). For-
mally, we may thus write E{> as

EPRSPT) = (j|UQ(ES ~ H)™'U(E] — HY)™'QU|j°>
— E{'C°lUQ(E] — H*)*U|;%
= (J°|U(E] — H%)~"U(E] — H°)"'U|j°), = Ef(MBPT)  (3.56)
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or E{” in general, using Eq. (3.11), as
EP = (OIUYE] — HO) QUi (3.57)

The subscript L indicates that only the size-consistent terms in that expres-
sion are included. The term involving E{" in Eq. (3.56) give rise to purely
size-inconsistent terms. In MBPT, the size-consistent terms are said to be
linked, while the size-inconsistent terms are referred to as unlinked. If all
of the unlinked terms were trivial to identify, such as the second term in
E*(RSPT), one could merely exclude them. However, as we demonstrated
earlier, there are also unlinked contributions in the first term in E}"(RSPT]
that cancel those in the second term and that are not easily identified. It is
the strength of MBPT that it allows us directly to identify all the linked
terms of RSPT. The derivation that shows how to identify the size-consistent
or linked terms is rather tedious and is described in detail in many textbooks
(March et al., 1967; Raimes, 1972; Linderberg and Ohrn, 1973). We do not
carry out that derivation but simply familiarize the reader with the language
of MBPT and report the results of the derivation. The implementation of
the MBPT method for evaluating only the linked contributions to E{" is
commonly given in terms of a set of diagrams, the numerical values of which
are the desired size-consistent components. We use the so-called Hugenholtz
diagram rules to determine the number of diagrams, which enter in a given
order (n) in the perturbation. In Table I, we report the rules for constructing
these diagrams and in Fig. 3.1, the Hugenholtz energy diagrams that enter
up through second order are displayed. The translation of the Hugenholtz
diagrams into algebraic expressions is commonly performed by translating
the Hugenholtz diagram into one of its equivalent Brandow diagrams
(Brandow, 1977). The algebraic expression for the Hugenholtz diagram is then
obtained by applying the rules given in Table II to the Brandow diagram.

Table 1

Rules for Constructing All Hugenholtz Diagrams for a Given Order n

1. Represent each of the two-electron interactions (W) with a dot having two incoming and
two outgoing lines (e.g. X ) and each of the one-electron terms (— 1) with a solid line
having one endpoint at which one line is entering and one leaving (e.g.>—=) (H = Iy +
W — V)

2. To a given order n in the perturbation, write all possible ways (on a time axis) of drawing
m(m=0,1,...,n)dots and n — m solid lines with one endpoint.’

3. Connect the lines entering and leaving a dot and a solid line with one endpoint in all
possible different ways such that the resulting diagrams are linked. A linked diagram cannot
be pulled apart into two separate diagrams without cutting lines. An example of an unlinked
diagram is given in Fig. 3.3A.
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Hugenholtz Brandow
3 O-----0
A A
e

FIG. 3.1. First- and second-order
Hugenholtz and Brandow energy diagrams.

¢
1
v
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A Hugenholtz diagram is translated into one of its equivalent Brandow
diagrams when the dots (which represent the two-electron interaction) are
extended into dashed lines, where one arrow is entering and one leaving at
both end points of the dashed line, e.g, A — .~--<. The Hugenholtz
diagram in Fig. 3.2, may, for example, be translated into one of the eight
Brandow diagrams given in Fig. 3.2. At first glance, these eight diagrams
look very different, but when applying the rules in Table II, their algebraic
expressions become identical. To illustrate this and to get some experience
in applying the rules in Table 11, we evaluate Brandow diagrams A and E
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Table 11

Rules for Evaluating Brandow Diagrams.

1. Label the diagram with general “hole” (a, 1, 7, . . .) (down arrow) and “particle” (m.n.p, .. .)
(up arrow) indices. A line that starts and ends at the same interaction is labeled with a hole
index. An example of the labeling is given in Fig. 3.2A.E.

2. The numerator of the diagram contains products of the one-electron integrals (il any) and

the antisymmetrized two-electron integrals. The indices of the one- and two-electron
integrals are assigned according to the rule

{out|—V]in)
¢left-out, right-out| |left-in, right-in}
Examples:
Pwfla- = pl=V>
[AVCLAV i <pqllop>
9\/3__,(‘: 5 <pallor>

3. The denominator corresponding to a given diagram is obtained by taking a factor equal
to the sum of the hole orbital energies minus the sum of the particle orbital energies for
each horizontal cut the eye draws between successive pairs of either dotted or solid lines.
These n — 1 individual factors are then multiplied to form the denominator.

4, Multiply the diagram by (3)", where n is the number of “equivalent pairs™ of lines. Two
lines form an equivalent pair if they both begin at the same interaction, both end at the
same interaction, and both go in the same direction (e.g., Fig. 3.1C has two pairs, Fig. 3.3A
has one pair, and Fig. 3.2A-H has no pairs).

5. Multiply each numerator by (—1)'** where h is the number of hole lines in the diagram
and [ the number of closed loops. A closed loop is formed when one can trace from one
endpoint of an interaction along the direction of an arrow and end up back at the same
point without ever having to cross an interaction (dashed) line (Fig. 3.3A contains three
loops, Fig. 3.2C contains two loops, and Fig. 3.2B has one loop).

6. Sum over all particle and hole states that occur in the diagram.

Hugenholtz Brandow

G H

Ty 650

FIG. 3.2. Translation of a third-order Hugenholtz diagram into corresponding Brandow
diagrams.
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in Fig. 3.2. We obtain, using the labeling of particle and hole lines given in
the figure

A= 3 (= 1prs Sl imed <l s Cop 1B

ol (6, +6,—5,—8)e, +86,—8&,—8)

mnp

(3.58)

Diagram A contains three hole lines and three closed loops. Diagram E may,
in a similar way, be expressed as

E=Y (—1)*3 oyl |mp> < Bm jan) <mp| |By>

;v (e, +E, ~ 5 — ENEy T &, — £, —¢,)
mnp

(3.59)

since E contains two closed loops. Interchanging a and n in the second elec-
tronic interaction in E gives a minus sign and A and E thus become identical.

The reason for including only the linked diagrams in the expression for
E{" is further clarified by examining the value of an unlinked diagram, e.g.,
the one given in Fig. 3.3A:

A= (=)' Y plVImy (uVIpdi(—1)22 >;<aﬁllaﬁ> (3.60)

Because, for two noninteracting subsystems, both of the disjoint sums occur-
ring in Eq. (3.60) are size consistent (i.e., proportional to the size of the system),
the product would not be size consistent. Hence, unlinked diagrams corre-
spond directly to non—-size-consistent factors, which should not be included.

If H? is taken to be the HF Hamiltonian, so that ¥ = V¢ of Eq.(3.33), then
certain simplifications occur. In particular, all diagrams containing the loop
structure ©f cancel with corresponding diagrams having the potential
symbol >— in the same location except in first order. For example, dia-
grams B and C of Fig. 3.3 cancel since the value of diagram C is

(mp| |0!I3> (“ﬂl l”P)( T <"| Vilp|m>)

=1(_1)2+2 61
Lot g(s,+£,—£P—s,,}(£,+t:,—sp—sm) Hah)
mnp
which, because
<nlVglmy = 3 < |mpe (3.62)
I

Eﬁ_-o : -O O z O
A o i 0
FIG. 3.3. Diagram A is unlinked and diagrams B and C demonstrate the cancellation
of the Fock potential.
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is equal to (but opposite in sign from) diagram B:

=§(-1P* Y <mpl B> <npel [mpd <o | |np)

o (&o + 85— 8, — 8 )E, + 85 — &, — &)

mnp

(3.63)

Because of the cancellation of X and < that occurs in all orders beyond
first, we need only consider diagrams A, B, and C in Fig. 3.1 to determine the
energy consistent through second order when V = V.

The first-order diagrams shown in Fig. 3.1A,B combine as follows:

A+B=35(—12*"2Y (af|lop> + (= D' Y (= K| Vg| >
aff o
-1 Y <ap||p> (3.64)
aff

The second-order contribution may be written as

C= Z( G | i $aplirsd<re|lef> (3.65)
&+ 8 —8& — &

Both the first- and the second-order contributions are, of course, identical

to the RSPT expression for E{" and E{* given in Egs. (3.36) and (3.38),

respectively.

In the application of MBPT to certain physical problems, it has been
noticed that special families of diagrams seem to make important contri-
butions to the energy in all orders. Attempts have been made to identify
such diagrams and then to evaluate their energy contributions in a manner
that permits these terms to be algebraically summed through all orders.
One example of such a family of diagrams is shown in Fig. 3.4. We can apply
the rules for Brandow diagrams given in Table I1 to each of these diagrams
to obtain

-0 y- 2 SoBllrs)<rs 1B

S ity (3.66)

- (s Capl|rs) {ap||ap ) Crs||ap>
(B) = (3)° g{ )2+ o (3.67)
(C) 2] (%)2 Z(_ 1)2+6 (aﬁl ll’S) (aﬂl |aﬁ)2(rs| iaﬁ> (368}

O 6D D

FIG. 3.4. A sequence of diagrams lhat can be summed to |nﬁn|te order.

(e, + & — & — &)°.



84 3 Perturbation Theory

It should be clear that expression for higher-order diagrams analogous to
Fig. 3.4A but with one or more additional interaction lines connecting o and
B would involve higher powers of {ap||«B>(e, + &5 — &, — &)~ '. Therefore,
the series represented by the sum of Fig. 3.4A-C is an easily summed geo-
metric series of the form y + yx + yx? + yx3 + - - - . The result of summing
this series is to yield

(2 Y CaB|rsy<rs| |aB (e, + 85— &, — &) ' [1 — Caf| [ ) (e, + g —6,—8) ']}
i (3.69)

which can be rearranged to read

%Z(um s> <rs| |aBD (e, + &5 — €, — & — <aB||oef>) " (3.70)
af

rs

We see that the result of summing the class of diagrams given in Fig. 3.4
is to generate an expression that is identical to the value of Fig. 3.4A except
for the “denominator shift” of —{ap||ap).

In addition to expressing E; in terms of diagrams, we may write the per-
turbation corrections to |j) in this language. A few first- and second-order
Brandow wavefunction diagrams are shown in Figs. 3.5. The rules for eval-
uating these diagrams are similar to those for the energy except in two ways.
First, in counting the number of hole lines to determine the sign (—1)",
the external hole lines are not included. Second, each free external line
has associated with it an excitation operator and an orbital energy term. For
example, the value of diagram D in Fig. 3.5 is

D=4(—1)*2 Y <pq|[aB><op] lvg>

" (6. + &85 — &, — &)(e, — &)

p*[0% (3.71)

As was the case for diagram contributions to E, the factors Yo and >— that
occur in equivalent locations, for example, in Figs. 3.5A,B, exactly cancel
when V is V. The cancellation in Fig. 3.5A,B is the diagrammatic expression
of the BT; that is, the first-orcs:r wavefunction contains no singly excited
configurations. '

The kind of perturbation theories (RSPT and MBPT, in particular) de-
scribed above have proven to be useful quantum-chemical tools. However,
these methods are expected to fail whenever the perturbation (the electronic

i SV

FIG. 3.5. All first- (A-C) and one (D) second-order wavefunction diagrams.
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fluctuation potential if H® is the HF Hamiltonian) is not small or if the
system under study is not well described in terms of a single Slater deter-
minant. This would be the case, for example, when one or more of the states
|k°> is energetically close to |j®> (i.e, E? — Ef is small). This arises often
when one breaks chemical bonds. Also, it is often not possible to describe a
system in terms of a single determinant whose spin-orbital occupation is held
constant throughout a large position of nuclear configuration space [e.g.,
LiH(16220?) gives improper dissociation into ionic states at large R]. For
these reasons, there has been recent research activity aimed at developing
MBPT for a multiconfigurational reference state, but such tools are not yet
commonly available. Thus although MBPT is indeed a size-consistent theory
in that it yields total energies proportional to the size of the system for a
collection of noninteracting subsystems, it still may suffer from the improper
dissociation problem common to most single-configuration-based theories.
Size consistency and proper dissociation are different characteristics. The
question of proper dissociation has to do with whether the wavefunction
contains configurations that can yield proper dissociation products and
whether the method used to compute the amplitudes of these configurations
(e.g., CI, MBPT, MCSCF) can be trusted to be accurate as dissociation
occurs. The MBPT may indeed contain the 1622630 configuration needed
to dissociate LiH, but the amplitude of this configuration (which dominates
at large R) cannot be obtained from an MBPT calculation based upon using
the 162262 configuration as [0°) unless a very high correlation level is
considered. Hence although MBPT would yield a size-consistent energy for
two or more noninteracting LiH molecules (each at their equilibrium bond
lengths) it fails to describe even one LiH molecule at large bond lengths.

PROBLEMS

3.1 Using the orbital energies and two-electron integrals found in
Problem 2.1, carry out a RSPT calculation of the first-order wavefunction
[162>™" and the second-order energy E® for the case in which the zeroth-
order wavefunction is taken to be the 162 Slater determinant.

1. Show that the first-order wavefunction is given by

[16%)" = —0.0442]202)

2. Why does the |1620) configuration not enter into the first-order
wavefunction?

3. Normalize the resultant wavefunction that contains zeroth- plus
first-order parts and compare it to the wavefunction obtained in the two-
configuration CI study of Problem 2.3.
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4. Show that the second-order RSPT correlation energy of HeH™ is
given by —0.0056 a.u. How does this compare with the correlation energy
obtained from the two-configuration CI calculation?

5. Show that the second-order RSPT energy of a collection of n non-
interacting HeH* ions reduces to n times the correlation energy of one
such ion. ;

3.2 Using MBPT, determine the third-order contribution to the correla-
tion energy for the HeH *.

1. Write all Hugenholtz diagrams that contribute in third order when
the perturbation U = — V + W consists of the electronic repulsion W and a
one-electron perturbation V.

In the following, assume now that V = V..

2. Which of the diagrams of question 1 cancel?

3. Write the algebraic expression for the diagrams in question 2 that
did not cancel.

The third-order contribution to the correlation energy for the HeH™* of
Problem 2.1 can now be determined, using the HF orbital energies and the
one- and two-electron integrals in the HF basis that is determined there.

4. Determine the third-order contribution to the correlation energy for
the HeH* system.

5. Compare the third-order contribution with the second-order con-
tributions determined in Problem 3.1 and the full CI correlation energy.

SOLUTIONS
3.1

; <rs||ap) ,
(tix PR e 0
L %Erﬂs_%_%r s* pa|j*>

In our case a = loa, f = laf, r = 200, s = 20p:

(22|11) 0.1261

2L i 10 2 2

el 2, —81)126 ? = 3102289 + 1.6562] Re>
= —00442]26%)

2. The BT gives {10%|H|1620) = 0; hence the |162¢) configuration does
not enter into the first-order wavefunction.

3. |0) = |le?) — 0.0442|26%). To normalize, we divide by
[1 + (0.0442)2]'2 = 1.0010:

0> = 0.9990|162) — 0.0441|202)
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In the CI, we got
0> = 0.9984|16%) —0.0556|20%)

ST L e (012617
' 26, —¢,)  2[—02289 + 16562]
= —0.0056 a.u.

From the two CI energy, compared to the SCF energy {(l1o?|H|10%), the
correlation energy is —4.2790 — (—4.2720) = —0.0070 a.u.
5. E is generally given by

|<mp| B

a<p bt Eg— &, —E
m<p

r

For n noninteracting HeH* ions, the integrals (mpT 'a:ﬁ) involving orbitals
on different ions vanish. Thus all four orbitals in {mp||xf> must be on the
same ion. Hence

2
BNty |<._"'p|,,|f'_fﬁ?.|_
A=1\a<p b T Ep — &y — &
m=p on A
where A runs over the n HeH* ions.
32

1. See Fig. 3.6, where the Hugenholtz diagrams are displayed.

2. Diagrams D1-X1 cancel with diagrams D2-X2 such that D1 cancels
D2, El cancels E2, etc.

3. The Hugenholtz diagrams in Fig. 3.6A-C are translated into the
corresponding Brandow diagrams in Fig. 3.7A-C, respectively. Each of these
diagrams is then evaluated according to the rules to give

Ay <ap||mn) (mn||pg) < pql B )

mnga Ble,. teg—ey— &), +6p—6,— e;}

By 1 Cap||mn)<yo|[aB > Cmnl [yd)

afiyd 8 (Ea A Sﬂ — &y — sﬂ){sy + €5 — &y — ﬂ")
mn i

c o5 ol collpy

o GtE -t 5 —)
affy
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FIG. 3.7. The only nonvanishing third-order Brandow diagrams arising with HF orbitals.
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_ <11]22)¢22|22)¢22|11)

4, A & = 0.0012
_(11122)(11]1])(22“1)_
B= s = 0.0019
e (l]|22>(22|l]>((12|212) - 2(12‘12)) — _0.0042
2(gy — &)

A+ B+ C= —-00011

5. Second order, —0.0056; second + third order, —0.0067; full CI
—0.0072.
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Chapter 4| The Coupled-Cluster
Method

A. INTRODUCTION

The CI and MCSCF methods described earlier suffer from one significant
weakness. The slow convergence of the wavefunction as the configuration
size is increased is a problem that becomes more severe as the number of
electrons in the system grows. In fact, for extended systems the finite CI or
MCSCF wavefunctions (because they contain only a finite number of electron
pair interactions) become infinitesimal portions of the exact wavefunction.
Perturbation theory methods, whose wavefunction usually also contains
only finite numbers of interactions, sometimes provide some relief because
the total energy is not calculated as an expectation value. However, it is
often not appropriate to assume that the usual fluctuation potential (true
electron—electron interaction minus the HF potential) is small, i.e., to assume
convergence of the perturbation series. Moreover, it is quite often important
to be able to properly treat systems that are not adequately described by a
single-configuration zeroth-order reference wavefunction (such as is assumed
in most perturbation theories).

B. FORM OF THE WAVYEFUNCTION

The coupled-cluster (CC) method (Cizek and Paldus, 1971; Harris,
1977a,b; Bartlett and Purvis, 1978) is an attempt to introduce interactions
among electrons within clusters (predominantly pairs) as well as coupling
among these clusters of electrons and to permit the wavefunction to contain
all possible disjoint clusters. For example, we know, from the early work of
Sinanoglu (1962) and others, that electron pair interactions are of utmost
importance and that contributions of quadruply excited configurations to

an
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|0> arise predominantly as products of doubly excited configurations. CC
wavefunctions in which such electron pair interactions (clusters) are assumed
to dominate still contain terms that describe disjoint products of electron
pair clusters just as Sinanoglu’s observations would suggest. In fact, for a
system containing an even (odd) number of electrons N(N + 1), one has
products of 2, 3, .. ., N/2 disjoint pair clusters in the CC wavefunction. The
mechanism for introducing these cluster interactions is to write the wave-
function |0) in terms of a so-called cluster operator T acting on a reference
function describing noninteracting or noncoupled electrons |0°):

|0> = exp(T)|0°). 4.1)

The reference function [0°) has, in nearly all CC developments to date, been
limited to a ket corresponding to a single Slater determinant. In the treatment
given in this chapter, we therefore restrict our attention to this single deter-
minantal case. The cluster operator T generates one-, two-electron, etc.,
clusters

T=Tpsda bt -4 Iy 4.2)
with
T,—3 tr'e (4.3)
|
T,=-) tgrts*po (4.4)
4 aff

rs

etc. (the greek indices a, B, 7,... denote spin-orbitals occupied in |0°);
r,s, t,u, ... denote unoccupied spin-orbitals). To make some connection
between the CC wavefunction of Eq. (4.1) and the more conventional CI and
MBPT expressions for |0), we expand the exp(T)|0°) and collect terms of
common excitation level:

1
exp(?‘)|0°)=(1 +T,+ Tz+—2—, Tf+T3+§li T3+ T, T,+ T,
AT R 1 2 ]
+“"i T1+”j‘i T2+T3Tl+ii T’?2+"' 0 > {45}

By grouping the terms of a given excitation level together, we see that the
CC waveflunction can be rewritten as

exp(T)0°> =(1 + C, + C, + C5 + - -)|0°> (4.6)
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where the configuration excitation operators C,, C,, . .. are
1
C,=T,+ 31 13 (4.8)
- 1
Cy=T5 + 3 T+ T,T, 4.9)
=T, lT4 lT’ TsT lT’T 4.10
Ce= shgitn s sl 45 Tyl (4.10)

etc. We thus see, for example, that the quadruple excitations that would be
obtained in a CI or MCSCF treatment can be viewed within the cluster
framework as consisting of five separate parts. The T2 component is thought
to be the dominant term because it represents the simultaneous interactions
of two distinct pairs of electrons (e.g., electron pairs that occupy spatially
different molecular orbitals). The T, term is usually expected to be quite
small since it describes the simultaneous interaction of four electrons. The
single-cluster contributions to C4, C;, and C, can be made small by using
- MCSCEF orbitals.

If our normal description of chemical bonding in terms of electron pair
bonds is correct, it is likely that a description of molecular structure in
which T, is treated to high order [e.g., through exp(T,)] while T, T,, T,,
etc. are either neglected or treated less rigorously, is quite accurate. For this
reason we consider developing systematic procedures for truncating the
expansion of T given in Eq. (4.2). By truncating [approximating the cluster
operator T to some low-order (say pair clusters T,)], the resultant wave-
function contains not only these low-order clusters T,|0°) but also disjoint
clusters [e.g., (1/2)T,T,[0°), (1/3)T,T,T,|0°), etc.] that involve more
highly excited configurations than are present in T,|0°). Of course, these
higher-order excitations [e.g., quadruply excited for (1/21)T,T,|0°)] are
present in |0) only to the extent that their amplitudes can be described in
terms of products of the amplitudes belonging to the smaller clusters (e.g.,
t:ptys)- The fact that the product factors T,T,|0°) contain only disjoint
clusters arises because the operator product (r*s* ---af---)(t*ut - -y6---)
vanishes if any of the hole (a,f,v, . . .) or particle (r*,s*,t*, .. .) indices are
equal. An essential point of the CC approach is that even low-order trunca-
tions of T (which are usually based upon the physical assumption that
electron pair interactions dominate) lead to a wavefunction that contains all
of the disjoint higher excitations needed to make the resultant energy (and
other physical properties) size consistent.
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C. EQUATIONS FOR THE CLUSTER AMPLITUDES

The cluster amplitudes ¢} - are determined by insisting that exp(7)|0">
satisfy the usual Schriodinger equation (or at least certain projections of this
equation)

Hexp(T)|0°) = Eexp(T)|0%) (4.11)
which upon premultiplying by exp(— T') gives
exp(— T)H exp(T)|0°> = E|0°) (4.12)

The above exponential series gives, when expanded and collected together
as commutators,

(H +[H,T] + % [[H,T].7] + % [[[H.T].7].7]

+ 4', [[[H,T].T].T], T])

0 = Ej0°) (4.13)

The series truncates (exactly) after four commutators regardless of the level
at which (T,) T is truncated (if at all). This exact truncation is a result of the
fact that H contains at most two-electron operators, which involve four
general (particle or hole) operators i *j* Ik. Therefore [ H, T'] contains at most
three general operators, [[ H, T |, T ] contains two,and [[[[H,T ], T], T].T]
thus contains only (excitation) operators of the form r*s* - - - aff - - - . These
excitation operators clearly commute with T'; thus the next (fifth) commutator
in the series vanishes. The CC expression of the Schrodinger equation hence
yields a quartic equation for the cluster amplitudes (t;;...) appearing in T.

A closed set of equations for the desired amplitudes is obtained by insisting
that the final Schrodinger equation [Eq. (4.13)], when projected against a
set of low-order excitations out of [0°), yield zero. The particular excitations
are usually chosen to include up through n-fold excitations from |[0°> in the
case where T has been truncated at T,. The resultant set of algebraic equa-
tions will then be equal in number to the number of amplitudes ¢7;."" in T.
Once these amplitudes are obtained by solving the resultant nonlinear
equations, the total electronic energy is computed by projecting Eq. (4.13)
onto [0°>. We should stress that the energy expression thereby obtained is
not variational in 'the sense that it is not given as an expectation value of
the Hamiltonian. The quantity ;

<0° exp(T *)H exp(T)|0°)/<0°| exp(T *) exp(T)|0°)
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would give rise to a variational energy expression but the resultant commu-
tator expansion of the exponential operators would not truncate because T*
contains operators of the form a*f* -+ - rs- - -, which do not commute with
T. It is the presence of exp(— T), rather than exp(T"), in Eq. (4.12) that
gives rise to the exactly closed quartic equation for T. Moreover, the presence
of the commutators in the expression for E and the fact that T contains only
particle creation and hole annihilation operators makes the CC-calculated
energy contain only linked terms (in the sense discussed in Chapter 3). This
then makes E contain only size-consistent terms.

D. HARTREE-FOCK ORBITALS AND T =T,

Most CC calculations carried out so far have used the approximation
T ~ T,. In this section, we treat this model in some detail since doing so
will give us more insight into the structure of the CC equations. The physical
motivation for approximating T =~ T, relies on the fact that if the set of HF
orbitals are used, the BT suggests that single excitation T, operators, which
largely serve to optimize the spin-orbitals, should be less important than T,.
It is, however, now commonly felt that one should include both T, and T,
50 as to obtain a balanced or coupled description of the orbital and electron
pair cluster optimization. Let us, however, continue our analysis of the
T =~ T, case.

To see what the solution of the above discussed nonlinear equations
actually involves, let us examine these expressions in more detail for a case
in which the spin-orbitals {¢,¢s,...,9,,..., $,} are eigenfunctions of a
HF operator having orbital energies {e, ‘- ¢, - - -}. The decomposition of
the Hamiltonian H into H® + U is then given as in Eq. (2.84) by

H=H+ W — Vg 4.14)
where H° is the HF Hamiltonian

H° =Y giti 4.15)

W is the full electron interaction term in Eq. (2.84) and V- in the HF potential
[Eq. (2.91)].

The commutator expansion of exp(— T)H exp(T) in Eq. (4.12) given in
Eq. (4.13) demonstrates in an elegant manner that when Eq. (4.13) is projected
against low-order excitations {{}..%| =<0°y - -- Bar*s* --- n*, it gives equa-
tions that are at most quartic in the cluster amplitudes ¢;3..% . However, it
turns out that for finding equations for t;} it is equally simple to expand the
exponential operators directly. To determine the total energy E, we project
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Eq. (4.12) against [0°) to obtain
E = (0°| exp(— T,)H exp(T,)|0°)
= C0°l(L = T, + H(T))H(L + T, + HT,)* - -)|0%)
= 0°|H|0°) + <O°|HT,|0°)
=Eus + Y, {Pa||mn)ely (4.16)

m>n
a>fi

where we have used the fact that 0°|T, = 0 because of the appearance of
r*s*fBo in T,. We have also used the fact that (0°|HT,T,|0°) vanishes
because T3]0%) is quadruply excited and hence cannot couple through H to

(0°|. The 77 amplitudes are determined by projecting Eq. (4.12) against
doubly excited kets (74| to obtain

0 = (7| exp(— T,)H exp(T,)|0°) @.17)

Expanding the exponential then allows one to see that the only nonvanishing
contributions are contained in

0= (MH( + T, + 4TH0%) + (W|(— THH(L + T,)|0°)  (4.18)

which shows that we obtain only a quadratic equation for the cluster ampli-
tudes when T ~ T,. Explicitly evaluating the matrix element appearing in
Eq. (4.18) then leads to the following nonlinear equation for the cluster
amplitudes:

(Em + Ey — &y — Sﬂ)!:';

= (mn||apy — Y {mn||pg>tEd — Y (yd||apdiTy
>

r>q

+ 2 (on| [ Bp>ezy — Cyml [Bp>ey — Coml |apd a5y + Cymi| |p) )
e

+ X <ol |pa> [e53es — 2(5Fe53 + 3e5))
’oe
— 2(e7epd + t2gg) + APy + 22epD) ] (4.19)
In the next sections we describe how solutions may be obtained to Eq. (4.19)

and we discuss the relationship of the solution thereby obtained to results
of MBPT.

E. PERTURBATIVE SOLUTION TO THE
COUPLED-CLUSTER EQUATIONS

We describe here how Eq. (4.19) may be solved in a manner that shows
the connection between the CC and the MBPT approaches. We solve
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Eq. (4.19) in an iterative manner by performing an initial guess of {¢;3} and
then inserting this value on the right-hand side into Eq. (4.19) to obtain an
improved set of values of {t;3}. These are then inserted back into the right-
hand side of Eq. (4.19) to again give us improved values of {tJ3}, etc. As an
initial guess of the cluster amplitudes we set those amplitudes that appear
on the right-hand side of Eq. (4.19) equal to zero. The motivation for this
choice is that the terms containing ¢ on the right-hand side of Eq. (4.19) are
assumed to be smaller than those on the left-hand side of this equation. We
then obtain the following expression for the amplitudes:

= (mnl | (e, + &, — &, — £5) " (4.20)

Inserting this value of t;7 into the CC expression for the total energy as
given in Eq. (4.16) yields

E = Eye + ), {Paf|mn){mn||aB)(e, + &n — €. — &))"  (421)

m>n
a>f

This expression is nothing but the result obtained in second-order perturba-
tion theory, which is written explicitly in Eq. (3.38).

A second iteration may be carried out by inserting into the right-hand
side of Eq. (4.19) the cluster amplitudes obtained above. If we then neglect
the terms that are quadratic in the ;7 amplitudes [the eighth through four-
teenth terms on the right-hand side of Eq. (4.19)], we obtain cluster ampli-
tudes that, when used to compute the energy E via Eq. (4.16) give the same
algebraic expression as is obtained in third-order MBPT (see Problem 4.1,
question 1). If these cluster amplitudes are then inserted into the right-hand
side of Eq. (4.19) (keeping the quadratic terms this time), we obtain new
amplitudes that, when used to compute E, give all contributions to the
fourth-order MBPT energy that arise from quadruple excitations [C, in
Eq. (4.10)]. From the form of our working equation, Eq. (4.19), it is further
clear that the quadruple excitations obtained in this way can only arise from
the 4(T,)? and — T, T, terms. These terms, in a sense, correspond to two
simultaneous interactions of two electrons (electron pair interaction). The
T, term, which corresponds to a true four-body interaction, first enters at
fifth order in perturbation theory, thus indicating that electron pair inter-
actions are much more important than true four-body interaction (Sinanoglu,
1962). All fourth-order energy diagrams can, of course, not be obtained by
approximating T with T, since both single and triple excitations contribute
in fourth order. To obtain all fourth-order diagrams in a CC calculation
would require both T, and T to be included in the cluster expansion.

The iterative process carried out when determining the cluster amplitudes
from Eq. (4.19) may be continued by inserting the cluster amplitudes from
one iteration into the right-hand side of Eq. (4.19) to obtain the new ampli-
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tudes. The converged result would then correspond to summing all diagrams
that contain double and products of double excitations through infinite order.

F. NEWTON-RAPHSON METHOD

Clearly, either the equations obtained by taking T~ 7, [Eq. (4.19)] or
the general quartic equation obtained from Eq. (4.13) are nonlinear and
multivariable. Such equations can be represented in matrix form (by defining
typ as the rs, off element of the t column vector) as

0=a+ bt + ctt (4.22)

where, for example a,, ,; = {rs||aB) [see Eq. (4.19)]. The solution of these
nonlinear algebraic equations represents a substantial practical difficulty in
implementing the CC method. To solve these equations one can employ the
perturbative analysis described above. This technique has the advantages
that it is straightforward to program on a computer and that it has a close
connection with MBPT.

An alternative to the above described perturbative procedure is the multi-
variable Newton-Raphson method. Such methods were used in the first
molecular CC calculations (Paldus et al., 1972). Here, one attempts to choose
t such that the vector f(t) defined as

f(t) = a + bt + ctt (4.23)

becomes equal to zero. This is done by expanding f(t) about the “point™
t,. Keeping only linear terms in this Taylor expansion and setting f(t) equal
to zero, one obtains equations for the changes At in the t amplitudes, which
can be expressed as

fat)=0= fi3(ty) + Z ( v “”)t Aty (4.24)

yd

The step lengths (corrections to t,) can be obtained by solving the above
set of linear equations and then used to update the t amplitudes

t=t,+ At (4.25)

These values of t can then be used as a new t,, vector for the next application
of Eq. (4.24). This multidimensional Newton—Raphson procedure, which
involves the solution of a large number of coupled linear equations, is then
repeated until the At values are sufficiently small (convergence). Given the
set of 1;; amplitudes, Eq. (4.16) can then be used to compute E. Although
the first applications of the coupled cluster method to quantum chemistry
did employ this Newton—Raphson scheme, the numerical problems involved
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in solving the large multivariable inhomogenous equations [Eq. (4.24)] has
led more recent workers to use the perturbative techniques discussed in
Section E. Within the perturbative framework, more sophisticated methods
have been developed to solve the large number of quadratic (for T~T,)
equations that arise. One such device is based upon the so-called reduced
linear equations technique, which has also been widely used to find selected
eigenvalues and eigenvectors of large CI matrices (Davidson, 1975).

G. SUMMARY

Although the CC method possesses several advantages over CI and
MCSCF approaches, the fact that the resultant set of CC equations that
determine the t;} - - - amplitudes are nonlinear and of very large dimensions
even for modest-sized systems, has made the practical applications of this
theory rather limited. An analysis of the relationships between the solutions
of the nonlinear CC equations and the solutions of corresponding CI secular
problems has recently been provided (Monkhorst and Zivkovic, 1978). This
analysis thus provides some reason for optimism concerning the possibility
of finding efficient mechanisms for solving the CC equations. However, at
present, the nonlinear nature of the equations to be solved still makes the
practical utilization of the CC method something toward which we are still
working. Research aimed at achieving efficient solutions of the quadratic
(or even quartic) coupled equations and at extending the CC development
to open-shell and multiconfigurational reference states is necessary if the
CC method is to become widely used in quantum chemistry.

PROBLEMS

4.1 Perform a CC calculation where T is approximated with T,.

1. Show that the CCequaltions may be iterated to yield cluster amplitudes
that, when used in the energy expression, give the MBPT third-order energy
expression [ see discussions following Egs. (4.20) and (4.21)]. The third-order
MBPT energy expression is given in Problem 3.2.

Carry out a CC calculation on HeH* using the minimum basis HF results
found in Problem 2.1. In performing this calculation follow the steps given
below.

2. First use a linear (truncated) form of the CC equation to determine
the numerical values of the 175 parameters and then use these parameters
to compute the corresponding correlation energy.

3. Argue that although the above linear form (question 2) of the CC
equation and the perturbative solution (question 1) yield amplitudes that



Solutions 99

have the same formal structure, the correlation energy of HeH* determined
in question 2 and in third-order MBPT (question 1 and Problem 3.2) differ.

4. Use the quadratic form of the CC equations (which clearly has two
solutions) to determine the values of the two sets of t;7 parameters.

5. [Evaluate the total energy and the correlation energy contribution for
both of these two sets of solutions.

6. Show that the CC equations in Egs. (4.16) and (4.18) and the CI eigen-
value equation that contains doubly excited states become identical for a
two-basis-function two-electron problem. Why do the two configuration CI
total energies of Problem 2.4 and the CC total energies of question 5 differ?

Consider now n HeH* molecules that are separated at infinite distance
with each molecule described by the localized SCF orbitals of Problem 2.1.

7. Show by carrying out a perturbative solution to the CC equations
as described in Section E that the correlation energy for the n HeH ¥ mole-
cules becomes identical to n times the correlation energy of a single HeH *
molecule and that the CC model thus is size consistent.

SOLUTIONS

4.1

1. When the CC amplitudes on the right-hand side of Eq. (4.19) are set
equal to zero, we get

tog = <mn||aP (e, + €, — &, — &) !

Inserting this value of ;' on the right-hand side of Eq. (4.19) gives the next
approximation to t7g:

(00 = (6 + €, — &g — €5)~ ‘[(mn| B> — Y Cmn||pg>eig — ¥ (o] |oapoemy

r>q y>4
+ E(()n[ |Bp>ear — Cym||Bpdeat — Cynflap >ty + (ymlloapdept ]

The first term in the square brackets results in the second-order energy
expression [ Eq. (4.21)] when used in Eq. (4.16).

The second term in the square brackets gives, when inserted into Eq. (4.16),
the correlation energy contribution

s <Ba |mn Cmn| |pg) < pq| |f
m>n{'e‘.m o g £y — &g — Eﬂ}{gp + sq Ty E,‘])
B>a
r>q

which is identical to diagram A in Fig. 3.7.
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The third term gives
.y < Pol jmny (o] [aB <mnl |yo)>

m>n (em ) €y — &y — sﬂ)(em + &y — Sy T EJ‘)

a>f
>4

which is identical to diagram B of Fig. 3.7.
The last four terms give

) i ffall”?_ &) 2 (<om||Bp>e? — Cym||Bp)ecy
m>n \m n (3 b7
a>f

— Cyn||apHtg? + ym| |apdese

Substitution of variables [e.g, in the first term we substitute (m — p, « — y,
y—= B, n—>m, f—a, p— n)] allows these four terms to be rewritten as

L5 Coy| [pmy < Bm| jony { pn| [yB>
ity b B, g — B le b B — 6, — )
}';;lﬂ

L Coy| [mp) { Bm| |and Cpn| |yB >
mrp BT i6 =B, E)ES R €, — &)
¥ a

np

e <o [pm < B |eny {pn| [yB)
pomibg ity = e Mo, tE we— o))
rx:;’y

o5 o> (Bl an><prl B

mspltm b B — 8, — &6, + B~ 8, — )
a=y

np

The above four terms when collected together give diagram C of Fig. 3.7.
Hence, all second- and third-order diagrams have been accountered for.
2. The only nonvanishing cluster amplitude is t}234 . Equation (4.19) gives

0= 22| 1) + £2238(2e, — 26, — (22|22) — (11| 1) +4¢12| 12> — 2¢12|21))
2228

which gives 17375 = 0.0559. Inserting this value in Eq. (4.16) gives the cor-
relation energy contribution

AE,,, = —0.0070 a.u.

Notice that although ¢7234 is positive, the correlation energy of Eq. (4.16)
is negative, because (fa|mn)y = —(11]22).
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3. Both the third-order MBPT and the approximation in question 2 use
a linear form of the CC equations. However in the MBPT solution (question
1) the cluster amplitudes used in Eq. (4.19) are determined from perturba-
tion theory, which results in a second- and third-order correlation energy
of —0.0066 (Solution 3.2, question 5). The nonperturbation solution of
question 2 is different from the one obtained in question | and gives a cor-
relation energy —0.0070.

4. The quadratic CC equation reads

0 = (22|11 + 1353h(2e, — 2¢, — €22|22) — <11]|11)
+ 412|12) — 212|21)) + (11| 22> 3338338
which gives
1234 = 0.0560, 13238 = —17.8432

5 13228-00560, E=—42791, E, = —00071
13220 = —17.8432, E=-20220, E,, =22500

6. The CC (Schrodinger) Equation (4.12) contains only linear terms in
T, when applied to a two-electron system:

(1 — THH(1 + T,)|0°) = E|0°)

When this equation is projected against {0°| and {}2}§| = (}}| one obtains

1alp
CO°|H|0%) + (O|H|??>t=E (A)
CG2H|0°) + CGH|32>t — 1(0°|H|0°) — 20|H|2> =0 (B)

where {317 is denoted t. Substituting Eq. (A) into Eq. (B) gives
CHH|0% + (G}H|i >t = Et (©)

Equations (A) and (C) are nothing but the CI eigenvalue problem written
out in component form for an intermediate normalized eigenvector with
components (1,¢). The CC total energies (—4.2791, —2.0220) and the CI
total energies (—4.2790, —2.0079) differ only because of numerical errors
caused by using four significant digits in the integrals.

7. When the cluster amplitudes in the nonlinear part of Eq. (4.19) are
set equal to zero (as in the first step of the perturbative solution), the only
nonvanishing cluster amplitudes that remain (see the solution to question 1)
are those involving all four orbitals in 173 located on the same HeH * molec-
ule. This result is due to the fact that integrals involving orbitals on different
HeH* molecules are zero. Continuing this iterative process does not intro-
duce cluster amplitudes that couple different HeH* molecules again because
integrals involving orbitals on two or more different molecules vanish. Hence,



102 4 The Coupled-Cluster Method

the CC equations separate into equations for each HeH* molecule. Conse-
quently, the correlation energy as computed via Eq. (4.16) for n HeH* mole-
cules will be n times the contribution from a single HeH* molecule.
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Chapter 5 | Physical Properties

A. CLASSES OF PROPERTIES

Given wavefunctions belonging to one or more states that are obtained
from an MCSCF, HF, CI, RSPT, or CC calculation, one is often interested
in subsequently using these wavefunctions to compute physical properties of
the system other than the total electronic energy. Below we discuss how the
three distinct classes of properties—expectation values, transition properties,
and response properties—may be evaluated, and we show also how stationary
points on the potential energy surface may be determined using a quadrati-
cally convergent procedure.

1. Expectation Values

State average values such as dipole and quadrupole moments and electron
spin densities are usually evaluated as expectation values of their corre-
sponding quantum-mechanical operators. For example, the electronic con-
tribution to the dipole moment operator is

=2 epilrlé;>iti (5.1
iJ

and theelectroniccontribution to the dipole moment of state [0) thus becomes
—(0Jr|0>. In evaluating expectation values, we must be careful that the wave-
function being used is of sufficiently high quality to permit accurate results.
For example, in computing the expectation value of the electronic contribu-
tions to the dipole moment beyond the SCF level, it is important to include
singly excited configurations in the Cl or MCSCF wavefunction. A perturba-
tion analysis of the order in which singly excited, doubly excited, etc. con-
figurations enter in the calculation of the dipole moment makes this statement
easily understood. The first-order RSPT function, which includes only doubly
excited configurations (relative to the single determinantal zeroth-order

103
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function |0°)), yields a dipole moment average value that differs from
<0°r|0°> only in second order since <0°r|zj; > vanishes as a result of the fact
that r is a one-electron operator. As both the singly and doubly excited states
contribute in second order, it becomes equally important to include both
singly and doubly excited configurations in the calculation. This observation
demonstrates the point that those configurations that are optimal for de-
scribing the total electronic energy may not be adequate for obtaining accu-
rate expectation values. This conclusion is now generally accepted as applying
to all types (MCSCF, CI, HF, CC) of wavefunctions and is important to keep
in mind when choosing which configurations to employ in any calculation.

Within the class of expectation values, we might also include calculations
of electronic excitation and ionization energies as differences in individual
state energies. The excitation and ionization energies are small numbers
compared to the individual state total energies. For this reason, alternative
procedures have been developed that can be employed to directly calculate
such excitation (and ionization) energies as well as their corresponding oscil-
lator strengths and that avoid the difficulties that might appear when sub-
tracting two large numbers the difference of which is a small number. These
direct evaluation techniques are based upon the so-called Green’s function
(GF) methods described in Chapter 6. The energy differences obtained either
from a GF or by subtracting two wavefunction expectation values no longer
have the upper bound property that individual state energies possess. Thus,
there is no fundamental reason to insist that excitation energies be calculated
as differences between state expectation values each of which are upper
bounds to two state energies.

2. Transition Properties

The second class of quantities in which one is likely to be interested we
refer to as transition properties. They include, for example, the electric dipole
transition moment (Or|n) between stationary states |0> and |n)>. The primary
difficulty in evaluating such transition moments has to do with treating the
overlap between nonorthogonal orbitals that arises in computing (0}i*jjn).
That is, unless |n) and |0) are both expressed as linear combinations of
determinants involving a common set of orthonormal spin-orbitals, the
determinants in |n) will not be orthogonal to those in |0>. Rather than being
an exceptionally rare situation, this is actually the most likely case. For
example, MCSCF calculations or INO-CI calculations on two electronic
states of a molecule invariably result in different optimal (MCSCF or INO)
orbitals for the two states. Although these nonorthogonality problems do
indeed make the evaluation of transition properties quite difficult, it is still
possible to compute the requisite overlap matrices and thereby obtain the
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desired quantity. However, this formidable difficulty provides strong moti-
vation for us to treat the evaluation of transition moments through the GF
framework as described in Chapter 6. Suffice it to say for now that these GF
methods are designed to yield both transition moments and electronic energy
differences directly rather than as matrix elements and energy differences of
two separate slates.

3. Response Properties

In addition to expectation values and transition moments, we have a third
class of important physical properties, which we refer to as second-order
response properties. To develop some understanding for the meaning of and
theoretical methods for studying these responses, let us investigate the
response of a state |0) corresponding to H to an external time-independent
one-electron perturbation (xH,)

H-H +aH, (5.2)

Such perturbations could, for example, include electric field (2 = & ) effects or
nuclear coordinate displacements. The total electronic energy in the presence
of the perturbation becomes a function of & and may (for small &) be expanded
in a power series

E(@) = <O|H + aH,[0) = E, — aE, — 1aE, — ta’Ey — 40*E, ... (5.3)

The terms that are nonlinear in « arise because the state wavefunction [0)
depends on a (i.e., the state has responded to aH ;, which gives rise to the name
“response property”). When, for example, o, represents a static electric
field (xH, = & ' r), E, yields the permanent electric dipole moment () of the
unperturbed state |0), E, gives this state’s polarizability («), and E,, E,, etc.
yield successively higher hyperpolarizabilities (f3, 7, etc.).
a. Finite-Field Approach

One way of determining the first- and second-order response properties
would be to calculate the total electronic energy of the system with aH,
present (using the CI, HF, RSPT, MCSCF, or CC method) for several small
values of « and to then attempt to fit these computed E(a) values to the series
given in Eq. (5.3). This numerical procedure is usually referred to as the
finite-field method. As an alternative to performing a least-squares fit to
Eq. (5.3) one may, by judiciously choosing the values of the field at which
E(x) is computed, employ versions of Eq. (5.3) that contain only odd or even
powers of « [E; = E(x) + E(—a)]. Furthermore, by combining computed
values of E, (x) and E . (2a), one can selectively remove higher (odd or even)
powers of a from the resultant equation. For example, by using —3E _(x) +
12E _(2x) one obtains E,a + O(a®) since the E o> was cancelled by taking the
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proper (—2, 1) combination of E_(x) and E_(2x). Alternatively, using E . ()
and E,(2x) one can obtain

—$E, (@) + 13E,(20) + 5E, + 0(°) = o’E, (5.4)

Again, notice the cancellation of the power of o two higher than the power
occurring in the property being evaluated. These finite-difference fits (Bartlett
and Purvis, 1979) of Eq. (5.3) to calculated values of E(«) then permit one to
obtain the dipole moment u from E, and the polarizability from E,.

Although the numerical procedure outlined above may permit one to
efficiently and precisely extract from computed energy values [E(x)] the
desired response properties, it by no means guarantees the accuracy of these
properties. The accuracy of the comguted response properties is determined
by the quality of the wavefunction |[0> used to evaluate E(a). It is not at all
straightforward to choose an atomic basis set that permits the orthonormal
molecular orbitals appearing in [0) to properly polarize in the presence of the
field. Furthermore, it is difficult to choose a set of configurations for use in
constructing |ﬁ) that is certain to yield the same accuracy in the computed
E(x) values for all values of the field strengths a. Because of these difficulties,
it is important to look for alternative methods for computing response
properties. In Section B, we outline an analytical approach to this problem
that does not involve fitting values of the energy that are computed at finite
values of the applied-field strength.

b. Analytical Approach

As an alternative that does not suffer from these difficulties, analytical
expressions for the response properties may be derived. If we are able to
obtain a closed-form expression for the response of a state wavefunction |0)
to the presence of the “field” aH |,

0> = A~12[|0) + of0'> + a?|0?> + - -] (5.5)

(A is a normalization constant), then this result can be used in Eq. (5.3) to
express the Hamiltonian expectation value (O|H + aH .[0> as a power series
in o, upon which the desired second-order response is identified as the multi-
plier of a2, Of course, for each specific choice of the form of |0> (i.e., MCSCEF,
CI, RSPT, CC) the prescription for evaluating Eq. (5.5) is different; the basic
approach is, however, identical for all such wavefunctions.

B. MCSCF TREATMENT OF RESPONSE

To illustrate the analytical approach, let us consider how an MCSCF
wavefunction would respond to a one-electron external perturbation of the
form

H-H+aH, +a’H, (5.6)

B R P b e gt g
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The total energy of the system in the presence of the external field may be
written as

E(x, 4, 5) = <O|exp(—iS)exp(—iA)(H + aH, + a?H,)exp(iA) exp(iS)|0)
= (O|H + aH, + «>H,|0> — iCO|[S + A, H + o«H,]|0)
+ 3C0[[S.[H,5]]]0> + 3<O|[4, [H,1]][0>
+ CO|[S,[H,A1]|0> + ... (5.7)

The values of P and k appearing in S and A, respectively, may be expanded as
power series in a:

S =50 4 a8 4 o252 4 ... (5.8)
A=29 4 qdV 4 2] 4 ... (5.9

Since the 4 and S operators are determined by making the total energy
expression in Eq. (5.7) stationary, the zeroth-order terms that appear in
Egs. (5.8) and (5.9) become zero because the state |0) was optimized in the
absence of the one-electron perturbation. The terms —iC0|[A" + SV, H]|0D,
which are of first order in @, and —i0|[A® + $®, H]|0), which are of second
order, vanish because of the GBT. Hence, in Eq.(5.7) all of the terms remaining
should be viewed as containing A"’ and S‘"' since we are only keeping terms
up through «? in our energy expansion.

Using Egs. (2.29) and (2.30), we may express the above total energy in a
form similar to the one given in Eq. (2.25):

E(x,,5) = E(0,0,0) + a<0|H,|0) + «2<0|H,|0)

& aZ(KP)(g) + &P)A — B)(:) L (5.10)

where the matrices F and G are defined as
F = (0|[Q,H,]|0> (5.11)
G = <O|[R,H,]|0) (5.12)

and Q and R are given in Eq. (2.26).

Since the total energy must be stationary in the presence of the external
perturbation, we may determine x and P from Eq. (5.10). Neglecting third-
and higher-order terms, we obtain by differentiating with respect to k and P

F K
—Za(G)+2(A—B}(P)=0 - (5.13)

which may be written as
K _— —_— o I
( ) =o(A — B) ( ) (5.14)
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Note that the A — B matrix is evaluated from Egs. (2.29) and (2.30) and does
not contain H, or H,. Using Eq. (5.14) to eliminate x and P in Eq. (5.10), we
obtain an expansion of the total energy as a function of a:

E(x) = O|H|0) + a(O|H|0> + a2(0|H,|0)

F
2 —1
o} (FG)(A — B) ( G
Notice that in this MCSCF result, the multiplier of a is equal to the expecta-
tion value of the perturbation operator H,. We have thus obtained an analyti-
cal expression from which to determine the desired first- and second- order
response properties. This analytical approach for determining the second-
order properties is referred to as the coupled multiconfiguration Hartree—
Fock (CMCHF) approach (Dalgaard and J¢rgensen, 1978).
If only one configuration is used for expanding the reference state |0> the
above development can still be used to give

E(2) = CO|H|0> + a<0|H,|0) + a2(0|H,|0)
— o?F(A,, — B,,)"'F + 0(o%) (5.16)

where A, and B, are defined in Egs. (2.29) and (2.30). This approximation

to second-order properties has been denoted the coupled Hartree—-Fock
(CHF) method.

) + O(®) (5.15)

C. CI RESPONSE PROPERTIES

In a CI approach to this same problem, the variation of the reference state
is described through variations in the configuration expansion coefficients.
These variations may be described either by the exp(iS) operator or through
the linear variational parameters C,,. Because orbital variations are not
considered in such a CI calculation, first- and second-order properties may
be easily determined from Eq. (5.15) by neglecting all terms that involve the
orbital optimization parameter x:

E(x) = <O|H|0) + a{0|H,|0)> — a®>GA;,'G + O(?) + «?(0|H,|0)> (5.17)

where
G, = <{n|H,|0> (5.18)
and
(A22)n = <m|H|n) — 3,,,<O|H|0) (5.19)

The matrix A,, contains the CI matrix involving all states |n) except the
reference state |0). Carrying out a CI calculation (with H not including «H,)
within this orthogonal complement space would lead to the following famil-
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iar expression for the second-order property:
GAZ'G = Y |KO|H,|n)|XE, — Eo) ! (5.20)

n#0

However, this diagonalization of <n|H|m) is not necessary; Eq. (5.17) still
gives the CI approximation to the desired second-order property. It should
be noted that the second-order properties obtained from Eq. (5.20) simulate
a finite-field CI calculation where the same orbitals are used to obtain the
total energy at various strengths of the field. Hence, it is appropriate to take
k = 0 in deriving Eq. (5.20) because the orbitals used have not been deter-
mined in the presence of the external field.

A finite-field CI calculation in which the orthonormal orbitals used to
construct |()> are determined via an SCF calculation in the presence of the
applied field could not easily be described in the analytical framework given
here. Taking k = 0 is not appropriate because the orbitals are “optimized”
with the field present. However, the orbitals are determined from a single-
configuration (SCF) calculation rather than through the simultaneous
optimization of k and P for a multiconfiguration wavefunction. Hence a
significant disadvantage of such a finite-field CI method is that it can not
easily be directly connected with the analytical response equation given
earlier.

D. THE HELLMANN-FEYNMAN THEOREM

It follows from the above MCSCF-based derivation that the Hellmann-
Feynman theorem is fulfilled both for SCF and MCSCF wavefunctions since
Eq. (5.15) yields, upon differentiation with respect to a,

dE(e)
do

a=

= (0|H,|0> (5.21)
0

It should, however, be pointed out that this result is a consequence of the
fact that the SCF and MCSCF wavefunctions |0) have been optimized with
respect to all variational parameters in |0) and that 1 and §' in Egs. (5.8)
and (5.9) therefore vanish. If the orbital optimization is carried out using
a limited number of the total set of variational parameters in |0), the ex-
pansions in Egs. (5.8) and (5.9) contain zeroth-order elements. The expansion
of the total energy E(x) would then contain first-order terms in o beyond
{0|H,|0> and the Hellmann-Feynman theorem would therefore not be
fulfilled. This is the case in a limited CI calculation where the orbital vari-
ations are not considered explicitly [ Eq. (5.9) contains zeroth-order terms].
Of course, the Hellmann-Feynman theorem is fulfilled in the full CI limit,
where the orbital optimization parameters are redundant.
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. THE COUPLED-CLUSTER RESPONSE PROPERTIES

The above described linear-response approach to calculating first- and
nd-order properties can also be applied within the CC and RSPT frame-
orks. In the former (Monkhorst, 1977) theory we consider the CC working

uations for a Hamiltonian to which a one-electron perturbation oH, has
pen added:

H(w) = H + aH, (5.22)
exp[ — T(2)]H(x) exp[ T(0)]|0°) = E(«)[0°) (5.23)

eglecting the variationsin the orbitals when the field is applied, the equation
rr E and the cluster amplitudes t;3"".

0% exp[ — T(oc)]H(a} exp[T(a)]|0°) E(a) (5.24)

d
r 5 |exp[— T(@)]H(@) exp[ T()]]0°) = 0 (5.25)

in be expanded in powers of the field a once the cluster operators T'(«) and
(o) are so expanded:

T(@)=T° + " + &2T? + - - - (5.26) ¢

E(x) = E® + «E"" + «2E® + - - - (5.27)

he resultant first- and second-order equations read

E® = (0% exp(— T°){H, + [H, T"]} exp(T?)|0°) (5.28)
0= {5 |exp(— TO){H, + [H, T""]} exp(T°)|0°) (5.29)

hd
E® = (0%exp(— T°){[H,, T"] + §[[H, T"V], T"]
+ [H, T®]} exp(T°)|0°) (5.30)
0= <;?J"""1°"P(— T°){[H,, T'""] + L[[H, T"], T™]
+ [H, T} exp(T°)|0%) (5.31)

spectively. The zeroth-order (in «) equations are, of course, nothing but
e original CC equations in the absence of aH,. We assume that we have
ready solved these equations. It is probably most reasonable to choose
™ and T'® to contain the operators r*s* ---af -+ -, which are of no
gher cluster size than those in T° (e.g., T® = T, + T, is quite likely to be
josen for physical and practical reasons).

The above first-order equation for T'" [Eq. (5.29)] expresses a set of linear
gebraic equations for the cluster amplitudes in T*, which can be written
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in matrix form as
D¢ = H, (5.32)
where the elements of H, and D, respectively, are
— G| exp(— TO)H, exp(TO)|0%,
lexp(—= TO)[H,p*q* - - - yd - - -Jexp(T?)|0%)

In principle, D and H, can be computed in terms of the known (unperturbed)
cluster amplitudes and integrals involving the H, operator. The second-order
equation that determines T can also be expressed as a set of linear algebraic
equations

Dt =C (5.33)
where D was given above and C has elements
~ < exp(=TO[Hy T] + 4L, TV T exp(T)0°

Clearly, the evaluation of C requires that Eq. (5.32) first be solved for T'".
Then given T and T, Egs. (5.28) and (5.30) can be used to obtain the
desired first- and second-order response properties as E'"? and E'®), respec-
tively. We should point out that the term T arising in this CC development
has no analog in the MCSCF treatment given earlier. The absence of such
quadratic terms in the MCSCF analog arises because, even if the energy
expression given in Eq. (5.7) contained the term —i{0|[S® + 2%, H]|0), it
would vanish by the GBT. In the CC treatment of E‘® one needs both T"
and T because the CC wavefunction does not obey a GBT. We should
also mention that, unlike the analogous result for the MCSCF response
properties, the CC linear response energy E'" is not simply equal to the
average value of H,. The term (0% exp(— T°)[H, T} exp(T°)[0°) has no
counterpart in the MCSCF expression for E'". In the event that the CC
unperturbed energy (0°|exp(— T°)H exp(T°)[0°) were stationary with re-
spect to variations in T, this term would vanish.

F. PERTURBATIVE CALCULATION
OF RESPONSE PROPERTIES

The RSPT or MBPT approach to computing response properties for
atomic and molecular system is, in principle, straightforward (Kelly, 1969;
Barlett and Silver, 1975). The perturbed Hamiltonian H + oH is decom-
posed into an unperturbed part H®, which is most commonly taken to be a
HF Hamiltonian, and a perturbation that contains both aH, and (I — H?):

H(x) = H® + aH, + H — H® (5.34)



112 5 Physical Properties

hen RSPT or MBPT is employed, as discussed in Chapter 3, to calculate
serturbation corrections to the system energy. However, the terms E}"’ are no
onger simply grouped together according to their order in the total per-
urbation aH, + (H — H°) but rather they are regrouped and labeled by
wo order indices E{"™, which tell their separate orders in aH, and (H — H®),
espectively. This additional decomposition is introduced because it is not
ractical to formulate a perturbation theory of the system’s response to
tH, in terms of the exact eigenstates of the full H.

The desired first- and second-order response properties of the state |j)
ire calculated by summing E{'"™ and E{*"™, respectively, over the index m
labeling order in H — H°):

ED= ¥ Em (5.35)
m=0

ED =Y E@m (5.36)
m=0

‘or practical reasons related to difficulty and expense in evaluating the
igher-order contributions to E{'"™ and E{*"™, the index m is usually limited
o rather small values.

Either the algebraic methods of RSPT or the diagrammatic methods of
ABPT can be used to evaluate E{""™ and E{*™, as described in Chapter 3
n terms of the usual orbital energies, two-electron integrals, and one-electron -
ntegrals involving H, ({¢,|H,|$,>). Because both forms of perturbation
heory yield energies that are size consistent, the evaluation of response
roperties as E'"’ and E'® guarantees that these properties will also be size
onsistent. As an example of how second-order properties may be evaluated,
ve display in Fig. 5.1 for a set of HF orbitals all of the zeroth- and first-order
in electron interaction) diagrams appropriate to a second-order response
roperty whose perturbation operator [aH, of Eq. (5.2)] is denoted by a
quare figure. The evaluation of each of these diagrams is treated in the

FIG. 5.1. All zeroth- and first-order dia-
grams for a second-order response property.
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manner described in Table I1 of Chapter 3 with the matrix elements of the
(one-electron) perturbation aH, being treated as the one-electron operator
V. For example, the value of diagram D in Fig. 5.1 is given by

D= {_])2+2 Z <ﬁ|“H1|P>(Pq||ﬁ}’>(}'|0th'1|q)

rq (ey + &5 — &, — £;)ep — ’;a’)
P ‘I

(5.37)

The evaluation of all the diagrams in Fig. 5.1 would thus give the desired
second-order property consistent through first order in electronic interaction.

G. MOLECULAR GRADIENTS AND FORCE CONSTANTS

The determination of minima and saddle points on the potential-energy
surface of a molecule plays an important role (Schaefer and Miller, 1977,
Chapter 4) in describing the electronic structure and chemical reactivity of
molecules. In this section, we show how such stationary points on a mole-
cule’s potential energy surface may be found by using an approach similar
to that employed in Section 5.B. We first consider how the electronic
Hamiltonian changes when the nuclear positions are changed from an
initial set of positions, R} to R, i.e, R, —» R} + u,. The electron-nuclear
interaction is the only term in the Hamiltonian that depends explicitly on
the nuclear position. Performing a Taylor expansion of this potential about

the point RY, we obtain
F—Rf™'=[r—Ri—u,| "' =|r—RY| ! —(u,-Wr—RY"*
+3(u, - VP e — RY| ™' + O(u))
(5.38)

We may thus identify the changes in the electronic Hamiltonian through
second order in the nuclear displacements (u,) as

W= Z + ZA(¢:I[(“A e V]lr = Rﬂl" !]ltfis)”S (5.39)
A

Va=2 —3Z (@, - VPr — R oot *s (5.40)
A .

Is

Here, V| clearly represents the forces on the electrons due to the nuclear
displacement, whereas V, describes electric-field gradient terms induced by
movement of the nuclei. A stationary point on the potential energy surface
occurs when the average value of the first-order term in zero:

O|W4]0> =0 (5.41)



1
14 5 Physical Properties

\s demonstrated below, stationary points on the potential-energy surface
hay be determined in a quadratically convergent procedure using an
Inalytical expression for the total energy that is accurate through second
rder in the nuclear displacement, and a Newton—Raphson procedure to
etermine the step length of the nuclear displacement. We now develop a
rocedure for carrying out such gradient calculations when |0) refers to a
CSCF wavefunction. Since the changes in the electronic Hamiltonian are
termined in Eqgs. (5.39) and (5.40) through second order in the nuclear
isplacement, an analytical expression of the total energy through second
der in the nuclear displacement may be determined from the coupled
ulticonfiguration HF expression for the total energy given in Eq. (5.15)
ce aH, is identified as ¥, and «’H as V,. The first-order term o< 0|H,|0>
Eq. (5.15) may be written as

Oy =Y u, -V, (542)
A

yhere the cartesian components of the force vector for displacement of
ucleus A are

Via= Vi Vi Vid (5.43)
rith
i d 0]-1 + .

Via=2 ZLd) FT Ir— RE[ ! |@<0l*s0),  i=x,y,z (5.44)
15

'he second-order term a?{0|H,|0) becomes

OWl0) =Y u, - V,, -u, (5.45)

A

vhere V, 4 is a tensor operator, the components of which are defined as

- o2

Yo=Y - ﬁmf'[ﬁ?@- e~ R ‘]I¢,><0|r+s|0>, ij=xyz (546)
Is 5

[he matrix oF given in Eq. (5.11) may similarly be written as

aF—_—zuA'FA (54?]
A

vhere

)
Vi o Z,.<¢J[f%,. Ir =Rl ']Id's)(ﬂI[Q»t*SJlO% i=xyz (548)

nd an analogous expression can be written for the «G matrix of Eq. (5.12).
'he last term of Eq. (5.15) therefore can be written as

2 uy D pup (5.49)
AB
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where the tensor operator D is defined through its components as

. SE F}
Dijp = (F4G)A —B)"! (G'j). hj=xyz2 (5.50)
B

The total energy that contains all terms through second order in the nuclear
displacement may thus be expressed as

E) = COH|0> + Y u, -V + Y u, My -uy (5.51)
A AB

where
M, = Vu‘sm — Dup (5.52)

is the force constant matrix. This expression contains Hellmann-Feynman
force terms in V, , field gradient terms in V, 4, as well as terms in D 5 that
describe how the MCSCEF orbitals and CI coefficients respond to displace-
ments of the nuclei. A stationary point on the molecular potential energy
surface is determined when 6E(u) = 0. Neglecting third- and higher-order
terms in the energy function given in Eq. (5.51) and differentiating with
respect to u thus gives

Vi+2Mu =20 (5.53)
where V, and u are column vectors containing the elements Vi ,, V4, Vi,

Vig,...and u}, v, u5, uj, ..., respectively. The elements of the matrix
M are defined as the components of the tensor operator M, in Eq. (5.52):

Maip; = Mifp,  iLj=x1,z (5.54)
The nuclear displacements are thus given as
u=—3M7'V, (5.55)

In the above derivation we have assumed that the atomic orbital basis
employed in forming the MCSCF orbitals was complete. This assumption
allowed us to write [in Egs. (5.39) and (5.40)] the Hamiltonian both at R,
and RY + u, in terms of the MCSCF orbitals, which were obtained from
an MCSCEF calculation performed at the “starting” geometry RY%. In most
molecular calculations, limited basis sets are used and the basis therefore
depends on the nuclear positions. This dependence was not considered in
the above derivation although it may be quite important depending on the
basis set used in any particular calculation. Let us now assume that we shall
attempt to describe the potential energy surface of a molecule by using an
atomic orbital basis that is attached to the atomic nuclei and that thus moves
with the nuclei. The above described formalism will be useful in locating the
desired stationary points on the potential surface if both the first and second
derivatives (with respect to nuclear displacement) of the dominant basis
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orbitals can be expanded in this basis. This can be seen by considering that
the coulomb potential |[r — R,|™" of Eq. (5.38), when integrated over an
electronic charge density p(r), yields an interaction energy that can be ex-
panded in powers of u, = R, — RY either by expanding |[r — R,| ™' as in
Eq. (5.38) or by expanding the charge density p(r — u,). The expansion of
this charge density then gives rise to the derivatives of the atomic basis
orbitals. This criterion—that the first and second derivatives of the important
basis functions can be expanded in the same basis—may, of course, in
principle never be met. For practical purposes we can, however, fulfill the
criterion if the basis consists of a set of gaussian functions. We know that
the nuclear displacement derivative of a gaussian function just is another
gaussian with one higher angular momentum value. Thus by including such
gaussian basis functions of higher angular momentum in the original basis,
we could gaurantee that the derivatives of the important gaussian atomic
orbitals will indeed bfdescribed within our finite basis. If the derivatives of
the basis functions cannot be expanded in the basis, the fulfillment of Eq.
(5.41) may not lead to an accurate stationary point. As an alternative to
including in the atomic orbital basis sufficient flexibility to describe the first
and second derivatives of the more important basis functions, one can ex-
plicitly evaluate derivatives of the one- and two-electron integrals (Thomsen
and Swanstrem, 1973). Suppose, for example, that s, p, and d atomic orbitals
were used in a calculation on CH,. Even if only the s and p orbitals were im-
portant in describing the orbitals having nonneglible occupation numbers,
one would have to include full sets of d and f orbitals in the basis to guarantee
that the second derivatives of the s and p functions could be described.
As a result, many two-electron integrals involving d and f functions would
have to be computed over the atomic orbital basis. On the other hand, this
can be avoided by calculating only the first and second derivatives of the
integrals over the s and p orbitals. These derivatives would then involve a
very restricted subset of integrals containing d and f functions. For example,
the second derivative of {pp|pp) would involve {pp|pf> and {pp|dd)
integrals; integrals such as (dd|dd) or (dd|fp) or (jfuf) could not arise.
The smaller number of difficult integrals arising in approaches that explicitly
evaluate integral derivatives rather than those using very large basis sets
has made these integral derivative schemes more commonly used in state-
of-the-art calculations.

PROBLEMS

5.1 Determine the excitation energies and transition moments for HeH *
using the full CI calculation for HeH* again making use of SCF data of
Problem 2.1. The nonvanishing matrix elements of the dipole operator
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r(x, y, z) in the atomic basis are
(Isylz|isue) = 02854,  (Lsylz|lsy) = 1.4

1. Determine the matrix elements of r in the SCF orbital basis.

In Problem 2.4, a full CI calculation was carried out on HeH* in the SCF
orbital basis.

2. Use the results of Problem 2.4 to determine the excitation energies and
transition moments from the ground state to the two excited singlet states of
HeH*.

3. Determine the frequency-independent polarizability and the f[re-
quency-dependent polarizability at a frequency E = 0.1 a.u. for HeH ".

5.2 Carry out a coupled Hartree-Fock (CHF) calculation of the frequen-
cy-independent polarizability tensor for the closed-shell HeH" system. To
achieve this goal, follow the steps given below.

1. Show that

O|[r,m, o, + mgog]10> = 2{Plr|pm>

2. Use the A,, and B,, matrix elements derived in Problem 2.2 to show
that the A, , and B,, matrix elements in a CHF calculation may be written as

(A Dnpoma = O|[ B 1z + Bg g, HomS o, + mg05]]0)
= 2((£, — €,)0n0qp + 2{nax| fm> — (nx|mpy))
(By npma = O|[n oty + ng B, HomS o, + my 0,]|0>
=2""mn|foy — 2{mn|af))

To obtain these results rou must use the definition of the Fock potential
given in Eq. (2.92) and as*'me that the orbitals are HF orbitals,

Now carry out the CHF calc .'~tion on HeH *, using the single zeta Slater
basis and the SCF data given in Problem 2.1. The nonvanishing matrix
elements of r(x, y,z) in the SCF basis are given in Solution 5.1, part I.

3. Evaluatethe matrixelementsofr, which enter into the CHF calculation.

4. Evaluate the A, and B,, matrix elements.

5. Determine the frequency-independent polarizability tensor in the CHF
approximation for HeH*.

5.3 Carry out a CMCHF calculation of the frequency-independent
polarizability tensor.

1. Show that

Ok, P . + Py apd|0) = Y {rgp <Oy ., + 55 45|0)> — £, <Olps' s, + pg 520>}

3

2. Show that
CO|[r, 1n)<0[Jj0> = ¥ r,,<O0lp. g, + pj qgln>
rq
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3. Indicate the simplifications that occur in the formulas for the A and
B matrix elements in Egs. (2.29) and (2.30), when converged MCSCEF orbitals
are used for evaluating the A and B matrices.

Now carry out the CMCHF calculation of the frequency-independent
polarizability tensor for HeH*, using the minimum basis given in Problem
2.1. The multiconfiguration reference state includes the two configurations
162 and 26%. A MCSCF calculation using these two configurations was
carried out in Problem 2.6. The one- and two-electron integrals in the
MCSCEF basis are given below:

(Ulh|1y = —2.6119, (2|h|2) = —1.3193, (1]h[2) = 0.2078
(11]11) = 09521, {12|12) = 0.6100, 12|11) = —0.1963
(11]22) = 0.1298, (22|21 = —0.0069, (22|22) = 0.6161,
where 1 and 2 denote the 1¢ and 2¢ orbitals, respectively, which are
lo = 0.8920 Isy, + 0.1701 1sy, 20 = —0.8410 s,y + 1.2140 15,
The MCSCEF states are

|0) = 0.9984|162) — 0.0574|26%),  E, = —2.8506
1> = 0.0574|162) + 09984]26%),  E, = —0.5863

4. Calculate the nonvanishing one- and two-electron density and transi-
tion density matrix elements of the form

Glrts w0y, <ilr*sl0y, <Olrtslid, i= o, 1>

The matrix elements of r in the atomic basis are given in Problem 5.1.

5. Calculate the matrix elements of r in the MCSCF basis.

6. Calculate the numerical values of matrix elements given in questions 1
and 2.

7. Determine the A and B matrix elements.

8. Determine the frequency-independent polarizability tensor in the
CMCHF approximation.

SOLUTIONS

5.1
1. (1fz]1) = 2(0.9000)(0.1584)(0.2854) + (0.1584)%(1.4) = 0.1165
2|z2) = 2(—0.8324)(1.2156)(0.2854) + (1.2156)*(1.4) = 1.4911
(12|12 = [(0.9000)(1.2156) — (0.8324)(0.1584)]0.2854
+ (0.1584)(1.2156)(1.4) = 0.5442
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2. Excitation energies are 4.2792 — 3.2567 = 1.0225 and 4.2792 — 1.9497
= 2.3295. Transition moments:

(1a?z|1e?) = 2¢1|2|1), (22t = KDY, (Qo¥zj2e?) =0

(102021020 = (1|z|1) + (2|2|2), (lo?|z|1620) = %(I[z[Z),

)
20%z|1620) = = (2|z|1).
|1 ﬁ< l2[1>
Therefore

<0|z| 1) = (0.9982)(—0.0261)2(0.1165) + (—0.0573)(—0.2098)2(1.4911)
+ (0.0143)(0.9772)(0.1165 + 1.4911) + [(0.9982)(0.9772)
+ (0.0143)(—0.0261) + (—0.0573)(0.9772)

0.5442
~0.2098)(0.0143)]( == )2
+( ) )]( 7 )
= 0.7578
0|22 = (0.9982)(0.0530)2(0.1165) + (—0.0573)(0.9761)2(1.4911)

— (0.0143)(0.2109)(0.1165 + 1.4911) + [(0.9982)(0.2109)
+ (0.0143)(0.0530) + (—.0573)(0.2109)

0.5442
+ (0.0143)(0.9761) ] (—)2
Nz

=0.0144

|<0lz|m]*(E, — Eo)
3 E)=12 L
an{ ] n=zl.2 (Err W5 Eﬂjz —E

0.5742  0.0002°
E=0, a,,=2[ +00{mJ=1‘1233

1.0225 * 2.3295

E =01, o 2[(0.5?42)(1.0225) (.0002)(2.3295}] L1342

1.0456 — 0.01 5.4266 — 0.01
5.2

1. COl[r,m)S o, + mgog][0> =3 <@, lr|d >0 p* g, m,f o, + mj )]0
= Z <¢i"[r|¢¢> <Ulp+“a‘sm=q Y 40 s,

+ p+°‘ﬂ‘sqm T m; q‘smal(])
= 2 ¢,|r|p.>
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2. Thedefinition of the Fock potential in Eq. (2.92) results in the following
definition of the orbital energies

hes + Y 2<ry|sy) = {ry|vs)) = b,e6,

and the 4, matrix element in Problem 2.2 therefore may be rewritten as
(A 1 l)nﬂ,ma T 2[(_81 + em)aaﬂamn e 2(na!ﬁm) i <ﬂ0’.|mﬁ>]

3. Let |l and 2 denote 1o and 20, respectively. As was shown in Problem
5.1 {1|z]2) = 0.5442. Hence

0|22 1, + 27 1,)|0) = 2(0.5442)
4 (Araian = 20, — & + 221[12) — (21|21)) = 2.1464,
(By1)ar.21 = 2(€22|11) — 2¢22|11)) = —0.2522

5. Only the zz component of the polarizability tensor is nonvanishing.
This component becomes 2 - 4 - 0.5442?/(2.1464 + 0.2522) = 0.9878.
5.3

1. Usingr =) r,(s}t, + s; t5) we obtain
st
Ol[r, s’ 4a + P5 45110) = X w0l 50 + 1555, P 4 + P7 95110D
st

Performing the commutations then leads immediately to the result asked for.
2. CO|[r,[n><0[]]0> = <Oleln> = 3 r,o<O|p.’ g, + p5 apln>
rq
3. The A, and B, matrices in Egs. (2.29) and (2.30) can, when conver-

gence is reached and the GBT is obeyed, be evaluated directly using Eq. (2.42),
which does contain the double commutator form.

. Jt Gl=qof =
Loy 0.9968 0.0573
j2;} 2,0y 00033  —0.0573
il 1,10> 0.9968 0.0573
Gt 14262,]0>  —00573  —0.0033
225 1,100 —00573 0.9968
2,24 252, J0) 00033  —0.0573

We also have 0|1, 1,]1> = 0.0573, 0|2 2,|1) = —0.0573. See text below
Solution 2.6, question 1.

5. zy, = 01271, z,, = 1.4805, z,, = 0.5574.
6. 0|z 271, + 2, 1,]10) = 22,,{<0|1} 1, — 27 2,]05} = 1.1076
O|2,[15€0[JJ0) = 22,101 1,]1)> + 225,027 2,|1> = —0.1551
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7. Formulas for the A and B matrix element are derived in Solution 2.6,
question 2:

_ (21756 04018 _(—02495 —00230
~\04018  2.2643)° ~ \~0.0230 0
04264 —0.0800
. (A-B) 1= j
e (—0‘0300 0.4566)

The zz component of the frequency-independent polarizability becomes

0.4264 —0.0800)( 1.1076

o, = 2(1.1076, -0‘1551)(_00800 04566 )\ —0.1551

)= 1.1232
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Chapter 6 | Green’s Functions

A. INTRODUCTION

Having now seen how methods that are based upon stationary-state
N-electron wavefunctions can be used to compute state energies and other
physical properties, we turn to examine a class of so-called response func-
tions or Green's functions (GFs) (Linderberg and Ohrn, 1973), which permit
a direct calculation of transition properties. For example, the one-particle
GF (electron propagator) yields ionization potentials and electron affini-
ties, whereas the two particle GF (polarization propagator) provides us
information about electronic excitation energies and oscillator strengths,
which then can be used to calculate many other observables (e.g., polariz-
abilities and spin—spin coupling constants). The general definition of a GF
belonging to the reference state |0) is given as

CA(t): BY = -?% 0(1)<0A(1)B|0 + % 0(— 1)<0|BA(1)|0) (6.1)
where 0(t) is the Heaviside step function

0(t) = {1,t > 0; 0,t < 0} (6.2)

and A and B are arbitrary operators in the second quantization form. A(t)
is the Heisenberg representation of 4,

A(t) = exp(iHt/h)A exp(— iHt/h) (6.3)

and B is the Heisenberg operator at ¢t = 0. If the operators 4 and B contain
an even number of creation or annihilation operators (e.g., r*s, or r*t*su)
the plus sign is used in Eq. (6.1). For operators A and B having an odd number
of such operators (e.g, 4 = r* or r*t*u, and B = r or rut*) the minus sign
is used. The reasons for these choices are made clear below.

122
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To understand the physical content of such GFs, we introduce between
the A(r) and B operators in Eq. (6.1) a resolution of the identity involving
a complete set of eigenstates |n). By inserting these resolutions and assuming
that the states |n) are eigenfunctions of H, we obtain

CA(t); By = J—r% 0(1) Y. €0} A|n> {n|BJ0y exp[i ?: (B, — E,,)]

] E
+ é G(—-I)Z(O|B|u)(n|A|0) exp[i B (E, — Eo}] (6.4)
The Fourier transform of { A(1)B}), is given as

CA:Byg = [ dt ¢A®W); BY expliEt/h) (6.5)

If we straightforwardly insert Eq. (6.4) into Eq. (6.5) we encounter improper
integrals. For example, the first term of Eq. (6.4) gives an improper integral
of the type y

- o o
fo dtexp[l E{EO —E, + E}]

To overcome this problem we may define the Fourier transform to include
a convergence factor exp{—|t|n], where # is a small, real, positive quantity.
After the integration is performed, we can then take the limit 7 — 0, (Mat-
tuck, 1967). The Fourier transform of the GF may then be expressed as

S i + (0] A|n) {n|B|0) <0|BJn)<n|4]0>
e D SE s E :‘n+§E.*Eo +E—in

(6.6)

A physical interpretation of the GF may now be obtained by considering
the content of Eq. (6.6). If A and B are number conservir | (i.e., they both
contain equal numbers of creation and anu..i'atic: operators) then the
states [n) must contain the same number of electrons as the reference state
|0> to give a nonvanishing GF. However, if A4 contains, for example, one
more creation operator than annihilation operator, then |n) must contain
N + 1 electrons (notice that the fact that the second-quantized H is inde-
pendent of N is now becoming convenient). From the frequency spectrum
of € A; BYg it is clear that the GF contains information about energy differ-
ences. If A and B are of the one-particle excitation form r*s, then poles of
Eq. (6.6) occur at the energy differences E, — E, referring to electronic
excitation energies. The residues give the overlap amplitudes ((}|A]n> (n|B|0>,
which, for example, express the electric dipole transition probabilities when
A and B refer to the electronic dipole moment operator. If A is of the form r*
(so that B is an annihilation operator s), then the energy differences arising
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in Eq. (6.6) fall into two classes. The first factor, which has (0|r;Ln)(nE|0>
as its amplitude, clearly has to do with ionization potentials Ej — EN 1.
The second factor, involving amplitudes {0|s|n){n|r*|0), relates to electron
affinities EN *! — EN.

The time derivative of Eq. (6.1) may be written as

ih j{ CA(t); BY = 6(1)<0| + A(1)B + BA(:}|O) + ([ A(t), H]B)

= 8(1)<0|BA + AB|0) + ([ A(1), H]BY (6.7)

where we have used the facts that A(r) satisfies the Heisenberg equation of
motion

ih % A(t) = [A(1), H] (6.8)
and that the Heaviside function is the integral of the Dirac é-function

wnzﬁmmﬂm (6.9)

The Fourier transform of Eq. (6.7) then becomes [the definition of the
Fourier transform of the GF always contains the exp(—#|t|) convergence
factor, although henceforth we do not explicitly express this fact]

EQA; By = (O|BA + AB|0) + ([A,H; By, (6.10)

As we see later, this result will prove useful in interrelating GFs when 4 and
B refer to the position and momentum operator, respectively.

Although the above spectral representation of { 4; B) ¢ in Eq. (6.6) displays
the content of its frequency dependence and amplitudes, this equation is not
actually used to compute {A4; B)»g. To do so would involve computing, by
stationary-state methods described in earlier chapters, the energies and
wavefunctions |0), E,, |n), and E,. The philosophy of the GF method is to
avoid doing all of these state calculations by obtaining an equation that can
be solved directly for {A4; B)g. In this manner one then attempts to obtain
an object ({A4; B)g) that contains (through its poles and residues) state
difference information directly.

B. SUPEROPERATOR ALGEBRA

1. Superoperator Resolvent

To demonstrate how one goes about finding an equation that permits
€A;B)g to be directly computed, let us return to Eq. (6.1) and rewrite the
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time dependence of A(t) as

; it
A = EXP(;‘_: H)A exp(—}—l H)

=A+ :,: [H, 4] + ili (D [1.[H, 4]]

4 % (}:)3 [H,[H,[H,A]]] + -

= cxp(: ﬁ)A (6.11)

where the so-called superoperator i (Pickup and Goscinski, 1973) is defined
by

AA=[H,A] (6.12)
In terms of this superoperator, € A(t); B can be expressed as

{A(t);BY = 4‘—}; 0{:)(0|(cxp(fit ;J?)A)B|0>

+%0(~—t)(0|3exp(£fﬁ)(4|0) (6.13)

[notice t ~at the extra parentheses are needed in the first term on the right-
hand side ™ Eq. (6.13) to ensure that A only operates on A]. The Fourier
transform can . ~w be carried out to yield

CA:BYg = + OJ((ET + )" ' )B|0) + CO|B(ET + M)~ ' A|0>  (6.14)
where the unit superoperator is defined by
iA=4 (6.15)

It is conventional to combine the two terms present on the right-hand
side of Eq. (6.14) into a single factor by introducing the so-called super-
operator binary product. This product, between two operators C and D, is
defined as

(C|D) = <0|C* D|0) + <O|DC*|0) ‘ (6.16)

with the plus sign pertaining to cases when C and D contain odd numbers
of creation or annihilation operators (e.g., r*s*t or u). With this definition,
the above GF can be written as

€A;BYyg = (B*|(ET + A)™'|4) (6.17)



126 6 Green's Functions

In writing {A4; B) in this way, we say that we have expressed the GF as a
superoperator matrix element of the superoperator resolvent (E1 + ).

2. Complete Sets of Operators

The tools needed for evaluating the above matrix elements of the super-
operator resolvent are based upon the idea of operators (of the same “type”
as A and B*) forming complete sets (Manne, 1977; Dalgaard, 1979). For
example, if A and B* are number-conserving operators (e.g., r*s), then the
setof operators (x> fi>y>---;p>q>r>+-")

(h} ={L,p*a,p*q*Po,p*q*r*ype, ...} (6.18)

when operating on an N-electron ket corresponding to a single determinant
in which @,, ¢4, ¢,, . . . are “occupied” and ¢,, ¢,, ¢,, . . . are not occupied,

forms a complete set of N-electron kets. Similarly (¢ > f>y>---:;p>
q =1 =
{h} = {r*,r*pta,rtptqtap,...} (6.19)
and
{h} = {o,afr*,afyr’s* ...} (6.20)

form, respectively, complete sets of (N + 1)-electron kets when operating on
the above “reference ket”. Manne and Dalgaard have shown that the above
sets of operators form complete sets of N- and (N + 1)-electron kets even
when operating on a multiconfigurational reference state |0) as long as the
reference ket (which defines «, 8,9, . .. ; p,q,r, .. .) is not orthogonal to [0).

The above results having to do with completeness of operator manifolds
permit us to write a resolution of the identity as

1= %: h|0)> <Olh *h|0> 4 ' <Olh (6.21)

where the set {h,} is any of the above three sets of operator manifolds and
{Olh*h|0)>; " is the k, | element of the inverse of the matrix having elements
{0l h|0)>. The completeness relation mentioned above cannot be used in
a straightforward manner in manipulations having to do with the super-
operator resolvent because the superoperator binary product appearing in
€ A; B is more complicated than the scalar product occurring in Eq. (6.21).
The complete set of operators for N- and (N + 1)-electron kets may, however,
be used to generate a resolution of the identity that can be used within the
superoperator binary product. The completeness relation for a superoperator
binary product may be written as

I= T |11 = LT TR (T¢ (6.22)
ki
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where T* for one-electron creation or annihilation operators A and B*
becomes (x> f >y >---;p>q>r>---)(Dalgaard, 1979)
T} = AT T3 T8
={r*a";p*q o0’ B pipTq rtapa BTy pg; ...} (623)
For number-conserving operators 4 and B*, {T "} becomes
{T'} = {T3;Ts:...) ={p e’ psp*qtap;a’frpg,...} (6.29)

To better appreciate the meaning of Eq. (6.22), we write in detail some
elements of the “overlap™ matrix (T |T,") for the one-electron addition
operator case (recall the definition of the “occupied” and “unoccupied™
orbitals, ¢,, ¢,)

(@*|p*) = Olap* + p*af0> = 5,,=0 (6.25)

(@ |p*q*B) = Olp*q* B + p*q"* 0>
=0lp*q*ap +p*q* a0 =0 (6.26)

(r*|p*q*o) = Orp*q*a+ p*qtarl0)
= 8,,{0g*o|0> — 8,,<0|p* 0. (6.27)

Itisclear -om the above equations that, in the superoperator binary product,
each of the « nerators contributes both to the (N + 1)- and to the (N — 1)-
electron aspect. of the problem. For example, in writing the binary product
(r*|p*q* o), we find (O|r, which refers to the adjoint of an (N + I)-electron
ket, while r|0) becomes an (N — 1)-electron ket.

3. The Superoperator Resolvent

In summary, the idea of a complete set of operators has been extended to
the superoperator binary product so as to introduce the powerful concept
of a completeness relation. This completeness relation can now be exploited
to derive an equation that permits ¢ 4; B) to be expressed in a computa-
tionally more useful form (Simons, 1976). We begin by writing the identity

(T*|T*) =(T*|(ET + A)ET + A)'[T) o (6.28)
which, by inserting the resolution of the identity in Eq. (6.22), becomes
(T|TH =(THET + AT )(TH|TH) (THEL+ D) '|T) (6.29)
This equation can be arranged to yield

(T*|(ET + B)7'[T*) = (THT*)T*|ET + A[T*)"'(T*|T*) (6.30)
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The operators B* and A, which define the desired GF in Eq. (6.17), when
operating on |0, can be expanded in terms of the set {T*} operating on

[0):
AJ0Y = THoX(T*|T*)"Y(T*|A) (6.31)

and the GF in Eq. (6.17) may thus, using Egs. (6.30) and (6.31), be written
as

€A;Byg = (B*|(ET + H)™'|A)
=(B*|T*)T*|T*) " "(T*|(ET - H)—1|T*}(r+|T+)—l(l\b/|A)
= (B*|T*)T*|E1 + H|T*)"'(T*|A) (6.32)

Equation (6.32) constitutes the working equation for deriving approximate
forms for the GF. Notice that the original GF, which involved the matrix
representative of an inverse superoperator (E1 + A)™!, has been expressed
in terms of the elements (B* | T}}),(T}" | A), the “overlap” (T} | T;"), and matrix
elements of the superoperator Hamiltonian (T, |H|T}"). These latter two
matrices are analogous to the expressions that give ordinary resolvent
matrix elements in terms of configuration interaction Hamiltonian matrix
elements and configuration overlaps.

4. Pole and Residue Analysis

From Eq. (6.32), which expresses the desired GF, it is clear that the pole
structure (values of E at which ¢ A4;B); has poles) is determined entirely
by the matrix (T*|ET + A|T*)~'. This matrix has poles when det[(T*|ET +
H|T*)] vanishes. Thus, the problem of finding the poles of {A4; B), which
give ionization or excitation energies, can be solved by examining the
superoperator generalized eigenvalue problem

AR ‘
;m |a|THu, E,;(T:l'r:)vu (6.33)

which in matrix notation may be written as

AU, = —E;SU; (6.34)
The poles of {A;B)g occur thus at the eigenvalues E = E; of Eq. (6.33)
and the eigenvectors enter in the evaluation of the corresponding residues.
To illustrate how the residues can be determined, we rewrite the GF in
Eq. (6.32) so as to be in spectral form, assuming that H is hermitian and that

S is positive definite (this is not always the case as we discuss in Section
6.E.2.a). Premultiplying Eq. (6.34) by S™!/? gives

(S~ '?As" ”2}{8”2Uj) S EJ(S”IU,-) (6.35)
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The vectors V; = §'/2U; are ordinary eigenvectors of H' = S~ '/?HS "'/, and
therefore H' can be expressed in spectral form as

A=Y V(—E)V} (6.36)
i

Because the V; are eigenvectors of a hermitian matrix (H’), they form a
unitary matrix (V), which diagonalizes H'. Thus, one can write the resolvent
matrix as

{Es + Fn—l = s—le(ET i F'r)—ls—lfz s S—HZVLET Ty E}'—tvls'-lﬂ
= U(E1 —E) 'U* (6.37)
where the diagonal matrix E contains the eigenvalues E;.

By using Eq. (6.37), the expression for € 4; B); given in Eq. (6.32) can
be rewritten in a form that clearly displays its pole and residue structure:

«A;BYg = (B*|THU(ET — E)"'UH(T|A) (6.38)
Thus, the residue at pole E; is given by
Y (B | THUGUMT | A) (6.39)
kI

C. AFIROXIMATION METHODS

1. Operato: Manifold Truncation

Although the above equations, in principle, permit one to find the poles
and residues of any GF (defined by the choice of B* and A), it is never
really possible to employ a complete set of operators {T, }. Therefore, one
is faced both with making some physically motivated choice of a finite
number of such {T,'} operators and with choosing a reasonably accurate
reference wavelunction |0). Clearly the choice of |(]) dictates which excita-
tion or ionization energies one obtains from the poles of {A;BY. The
choice of B* and A determine whether one is interested in single-particle
excited states (4 = i*j), primary ionization potentials (4 = j), or shake-up
ionization potentials (4 = ijk*). For example, by using as [0) the 2s* con-
figuration and A4 = j*, one can obtain ionization energies to the 25*2p or
2s' and other anion and cation states; with 4 = m*a, the 2snp excited
states may be reached. The truncation of the complete operator set {T, }
then determines, together with the approximation made to get |0), the
accuracy to which the resultant poles of ¢ A;B), describe the excitation
or ionization energies and their corresponding residues. Choices of {T*}
must, of course, take into consideration the space and spin symmetry of
the states generated by T*|0). As a result, the inherent symmetry of each
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T* must be coupled to that of |0) to give pure symmetry excited or ionic
states. Because the reasons for making specific choices of A and B* are
rather clear, we now focus on explaining the strategies for choosing |0) and
truncations of {T, }. In the following sections and in our treatment of the
polarization propagator, we consider two different approaches for attacking
this problem. The first is based on a perturbation analysis while the second
is based on selecting a multiconfiguration reference state and an appropriate
projection manifold.

2. Order Analysis

The most widely used, and historically older, approach involves pertur-
bation analysis of the GF using RSPT to obtain elements of (T*|ET + A|T™)
and (B*|T*)(T"* | A) correct through a chosen order (order is then assumed
to be related to accuracy). By decomposing the electronic Hamiltonian H
and the reference wavefunction |0) in perturbation series

H=H°+V (6.40)
[0> =10 +1]0'> + [0%) +--- (6.41)

one then attempts to evaluate (T,' |E1 + A|T}') to sufficiently high order to
guarantee that the poles of primary interest are obtained accurately through
a chosen order. If one is also interested in calculating residues that are
accurate through some order, then the chosen operator manifold and
reference state |0 must be taken to sufficient size and order to guarantee
this. We return to the problem on how to choose {T*} so as to determine
primary poles and residues accurate through a chosen order in Section
6.C4.

3. Hermiticity Questions

Earlier in this chapter, we noted that the question of the hermiticity of
(T |A|T;) had to be examined in individual cases (i.e., it was not auto-
matically valid). When a perturbation expansion is used to determine the
reference state, we may more explicitly state the conditions under which
the matrix is hermitian by examining the difference between the (ki)th and
the complex conjugate of the (lk)th element of the superoperator
Hamiltonian. When this difference

(TH|A|T}) — (THA|TH* = QO|[[T, T, H]|0) (6.42)

is equal to zero, the superoperator Hamiltonian is hermitian.
When the reference state |0 is determined through a certain order n in
RSPT, (|0>, = }7-4|0'>) the Schrédinger equation is solved through the
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same order:
H|0),=E,[0), +O(n+ 1) (6.43)

where E, = 7. E¥. Inserting (6.43) into (6.42) then states that Eq. (6.42)
is zero through order n and that, as a result, the superoperator Hamiltonian
matrix is hermitian through that same order. This theorem is quite useful
for two reasons. First, it guarantees that the superoperator Hamiltonian
matrix will have no accidental or spurious nonhermitian terms if it is properly
calculated. Second, it is often easier to compute (T, |A|T}") than (T} |A|T;)
(e.g., (p*q*a|fA|r*) is easier than (r*|A|p*q*a) because the latter elements
require that the Hamiltonian be commuted with p*q*a). Thus, we can
choose to calculate the “easier” matrix elements and to then obtain the others
through hermiticity (i.e., by equating the complex conjugate of the former
to the ) w.er).

4. /> perator Space Partitioning

We -.ext go into more detail concerning the explicit evaluation of { A; B
for A="%%, B* =" [referred to as the electron propagator (EP) or one-
particle GF] and for A =k*l, B=i'j [referred to as the polarization
propagator (PP) or two-particle GF]. However, it remains for us to show
one more approximation step that is often employed in searching for the
poles of (ES + H)™! in Eq. (6.37). Because, according to Eq. (6.38), all
elements of this inverse matrix possess poles at all of the E,, it is possible
to search for the desired poles by computing a single element or a submatrix
of (ES + H) . That is, if the operator manifold is partitioned into, say, two
classes {T/} ={T}} + {T,}, then because (ES + H) blocks into four
submatrices

ES,+H,_, ES, +H
ESyfyeli Yoo 6.44
( ) (ESM +R,, ES, + HM,) oo

one can solve for any element(s) of (ES + H)~! in terms of the above four
submatrices. For example, it is easily shown that

(ES + H).' = [(ES,, + A.,) — (ESu + ALES, + Ap) (ES,, + Ay)] !
(6.45)

Even if the space {T, } includes a single element, if treated properly and to
all orders, Eq. (6.45) will yield all the poles of (ES + A) ™.

It is, of course, natural to wonder both why one would be interested in
so partitioning (ES 4+ H) ' and what this has to do with an approximation
scheme for calculating ¢ A;B)g. It often turns out that if the sets {T, } and
{T)} are chosen properly, all the “off-diagonal” elements (ES,, + H,;)
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(and hence ES,, + H,,) contain only terms that are of first or higher order,
whereas (ES,, + H,,) contains zeroth- and (perhaps) higher-order terms. If,
therefore, one restricts the search for poles to energy ranges in which (ES,, +
Hys) ™! is not close to being singular, then the term (ES,, + H,,)(ES,;, + Hyp) ™!
(ESp, + H,,) can be assumed to be of second or higher order. This restric-
tion of the energy search range is often motivated by knowledge that the
zeroth-order poles of (ES,, + H,,) ! are good approximations (e.g., through
Koopmans’ theorem for the IP) to the desired poles. If one is interested in
calculating poles that are accurate to, say, second order, then the second-
and higher-order pieces of (ES,, + H,,) and the first- and higher-order
pieces of (ES,, + H,,) "' can be neglected. In this way, one is often able to
greatly simplify the calculation of certain poles of {A4; B). [those far from
the singularities of (ES,, + H,) in the above example].

Given a choice of {T, } and {T,'} that permits a pole (say E;) of {A4; B)
to be evaluated through a certain order, it still remains to examine whether
the same partitioning will yield residues, which are given in Eq. (6.39),
accurate to some chosen order. Thus, if (B*|T,") and (T, |4) are of zeroth
and higher order, whereas (B*|T,) and (T, |A4) are of first and higher
order, it is convenient to so partition {T,} since the contributions to the
desired residues can more easily be order analyzed. This point is made more

clear when analyzing the residues of the polarization propagator in Section
6.E4.

5. Nonperturbative Approaches

The perturbation theory approach to computing approximations to
€A;B); has been widely used with significant success. However, its funda-
mental premise (that U is “small”) is known to break down under circum-
stances that are relatively widely appreciated (e.g,, for X'X H, at large
internuclear distance, the contribution of the 162 configuration can not be
accurately represented by RSPT). For this reason, researchers have begun
to explore the possibility of systematically calculating GFs in which the
reference state |0) is taken to be of the MCSCF form. The MCSCF nature
of |0> turns out to be very convenient in a GF analysis because the GBT
results in hermiticity of certain blocks of the (T, |A|T;") matrix.

The primary formal difficulty that arises in implementing such MCSCF-
based GFs has to do with developing systematic procedures for truncating
(and perhaps partitioning) the {T,"} operator space. Because we have now
lost the concept of order, we must turn to some other criterion for choosing
an appropriate operator manifold. In the few developments of the MCSCF-
based electron (Banerjee et al., 1978) and polarization propagators (Yeager
and Jorgensen, 1979; Dalgaard, 1980) that have been made to date, the
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{T/} manifold was chosen by examining the functions T, |0> and T,|0),
which result from the application of the T} operators to |0> as they occur
in the superoperator binary product. Decisions were then made to guarantee
that these functions contained all of the dominant singly and doubly excited
configurations needed to yield proper orbital relaxation and electron
correlation (or bond-breaking) effects, respectively. For example, the
operator manifold {T;} = {r*s,s*r,r > s; |1)€0|,|0>(n|} has been used to
express an MCSCF-based PP. The state projectors |n){0| and [0)>{n| can
be viewed, when they act on |0), as compact representations of the set of
{T ) operators given in Eq. (6.24). It is thus possible to choose another set
of operators than the one of Eq. (6.24) to describe accurately the poles and
residues of the PP. The decision to choose one truncation of {T; } over the

aner is usually based upon considerations involving the dimension
of the resulting (T*|A|T*) matrix and the ease of calculation of the requisite
superoperator matrix elements. The first choice described above (involving
the state projectors |n)<0|,|0><n|) seems to be especially promising because,
is Dalgaard has demonstrated, this set of operators yields a PP whose poles
~1d residues automatically guarantee equality between electric dipole
transition moments computed within either the so-called length or velocity
representations. This is especially convenient because one then has a con-
tinuous range [ from the single-configuration time-dependent Hartree - Fock
(TDHF) or random-phase approximation (RPA) through the present
MCSCEF case to the full CI] of PP approximations all of which preserve
their length/velocity equivalence. Another reason for choosing the above
set of operators for use as {T,"} lies in the fact that the resultant (T, |A|T;")
matrix elements are no different than those arising in the original MCSCF
calculation of |0> [eg. (r*s|H|[n><0]) arises in (O[[A[H.S]]|0> of Eq.
(2.24)]. Also, if one were to consider the effect of an external one-electron
perturbation on the MCSCF state |0), one would find the same operators
1t sst e n>C0).J0> <n|} appearing naturally in the response of [0> to the
external perturbation, as in coupled multiconfigurational HF.

6. Discussion

Because of the high research activity level on how to use an MCSCF
reference in the GFs (EP and PP), it is not presently clear how to optimally
choose truncated sets of {T," } operators. It is likely that many workers will
carry out test calculations involving many choices of the pertinent operator
manifolds before this situation is improved. Moreover, questions concerning
when and how to partition the resulting (T, |H|T,*] matrix so as to reduce
the dimension of the matrix whose poles are to be found remain unanswered
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for the case of an MCSCF reference function. Again, what is missing is some
concept of order (or size or importance) in terms of which to make decisions
about how to partition the operator manifold. It is our opinion that signif-
icant progress will be made on these important questions within the near
future and that, as a result, MCSCF-based GF methods will become common
tools in the quantum chemist’s library.

Having given an introduction to the fundamental properties of GFs and
to the techniques that are used to obtain GFs whose poles and residues are
accurate to a chosen precision, we now move on to consider the commonly
used EPs and PPs in some detail. We should mention that the resulting
working equations arising in the EP and PP cases have also been derived
through the so-called equations-of-motion (EOM) formalism (Schaefer and
Miller, 1977, Chapter 9). This EOM formalism focuses on setting up the
superoperator generalized eigenvalue problem of Eq. (6.33) and, as a result,
is equivalent to the propagator development here. We do not enter into a
closer discussion of the EOM development here because, for the EP and
PP treated below, this tool offers no new insight or convenience.

D. THE ELECTRON PROPAGATOR

If we choose the 4 and B* operators to be of the one-electron addition
form (r*,s*), then the GF {A4; B) is known as the EP:

Kr*;sye = (s*|(E1 + A)7'|r*) = G, (E) (6.46)

This choice of A and B* is made because we are interested in studying
primary ionization events [ionization potentials (Cederbaum, 1973; Pickup
and Goscinski, 1973; Doll and Reinhardt, 1972; Purvis and Ohrn, 1974)
and electron affinities (Simons and Smith, 1973; Jergensen and Simons,
1975)], which may be reasonably described through acting with a single-
electron operator (r* or r) on the reference state |0). To obtain computa-
tionally useful expressions for G,(E) specific choices must be made for the
reference state [0) and for the operator manifold {T*} in Eq. (6.32). We
describe a few of the most commonly employed choices of these quantities
and the resulting GF.

1. Koopmans’ Theorem

The simplest approximation to the EP is obtained by taking the reference
state to be a single configuration HF wavefunction and the projection
manifold to be

{T*} ={T{} = {e,p*} (6.47)



D. The Electron Propagator 135

The EP in Eq. (6.32) then reads
sy s snf@IEL & Blat)y @*|E1 4+ A\ (']
Comils = Helln ”({pwanmm ®'|ET+Ap* ) \@*)
(6.48)

The matrix elements appearing in Eq. (6.48) can easily be evaluated because
o[ the single-determinant nature of [0):

(s*|m*) = O|[s,m*]|0) = d,, (6.49)
*[B") =04 (6.50)
(BY|ET + Ry*) = 64,E + CO|[B,[H.y*]]:|0>
Edg, + hgy + Y <BK| |yt Ok * 1]0>
kt

T {E T Sy)(SB}' (65”
(m*|ET + A|n*) = (E + €,)0,un (6.52)
(m*|E1 + Alx*) =0 (6.53)

Here {g;} denotes HF orbital energies. Using these results, Eq. (6.48) may be
expressed as

Gs,. i Z (ssm‘srm + Z 53}‘5“'

(6.54)
e O e D

By comparing the spectral representation of the GF in Eq. (6.6) with Eqgs.
(6.48) and (6.54) we see that the pole of Eq. (6.54) at E = —g,, represents
an approximation to the electron affinity, while the pole at E = —¢, cor-
responds to an ionization potential. The residue (the square of the transition
amplitude) at E = —g,, is dg,0,,, while the residue at E = —¢, is d,,6,,.
All transition amplitudes corresponding to primary ionization events thus
become equal to unity at this level of approximation. The above result
expresses the EP analog of Koopmans’ theorem. To go beyond Koopmans’

theorem, better choices must be made for the reference state and operator
manifold.

2. Rayleigh—Schridinger Order Analysis

As discussed in Section A, RSPT has been widely used to develop syste-
matic approximations to G(E). Here the unperturbed Hamiltonian H" is
taken to be the HF Hamiltonian [Eq. (3.34)] and the orthonormal basis
spin-orbitals are HF spin-orbitals having orbital energies &;:

H® =Y ¢;j*j (6.55)
o
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The reference function |0) can be expressed, as in Chapter 3, as a perturba-
tion series in powers of the residual electron—electron interaction. The EP
is then used to describe the primary ionization events consistent through a
certain order by expanding the reference state in powers of the fluctuation
potential and by choosing the projection manifold of Eq. (6.23) to be suf-
ficently large, the meaning of which will be discussed later. In this section,
we show how to determine the primary ionization events consistent through
zeroth, first, second, and third order. To do so, it proves suflicient to consider
the truncated manifold

{T*} ={Ti; T3} (6.56)

This conclusion is by no means obvious but should become clear shortly.
One must, in principle, examine the interaction between T, T3 and the
Ts, T3, etc.,, operators to conclude that these higher operators have no
effect on the poles describing the primary ionization event through third
order (Redmon et al., 1975).

With the above choice of the projection manifold, the EP of Eq. (6.32)
takes the form

A (] = T+ +
6B = TG ) (Tihy) 659

where the matrices in Eq. (6.57) are defined as

A = (T}|ET + A|T}) (6.58)
C = (T3|E1 + A|T}) (6.59)
M = (T;|ET + A|T3) (6.60)

The poles of the GF are determined entirely by the inverse matrix of Eq.
(6.57). Since our interest is in describing the primary ionization events, we
partition the inverse matrix as in Egs. (6.44) and (6.45) with T = T}, and
T, = T3;. We then determine the poles that describe the primary ionization
events from the partitioned form of the inverse matrix

P "YE)=(A-C™~!C)! (6.61)
By using H = H® + U [see Egs. (3.34) and (3.35)] and |0) = [0°) + [0*)
+ ..., we may carry out a detailed order analysis of each of the four matrices

A, \C. and M. For example, we write A as

At B (6.62)

i=0

where the label i indicates the order of the contributions to the A matrix.
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Below we show all the contributions to the matrix A through third order:
 (Aodi = ECO°|[,k*14]0%) + <0°|[ji [HOk*]].[0°) = (E +£)d,;  (6.63)
A,=A,=0 (6.64)
(A3 = <O'[i[U.k*]]4]0"> + <0%|[i[U. k"], [0
+ COULALU. K114 0% = X il Ikl > (;ﬂ KK — quh';’;*xsf)
v a

+ Y (ol [kp> + | [k6))K§ (6.65)
pd

where the perturbation theory correlation coeflicients are given in Egs. (3.53)
and (3.55). It should be noticed that both A, and A, are identically zero. This
fact will be shown to lead to the conclusion that the Koopmans' theorem
approximation to G(E) is accurate through first order. We also list below all
of the matrix elements of the C and M matrices, which are required to evaluate
P(E), and hence to obtain poles of G(E), through third order:

Co=0 (6.66)
(C )paaj = <O°| [ qp, [U,j* 11410 = {py| | jo) (6.67)
(C)apm.j = — <aP||jim) (6.68)

(L e %%(ial [Oy>KE + Y [Cim||yp) K& — Cim||yg> KE™ (6.69)

(Capm,j = — 3 2. <im||pa> K5 + Y [<iv| |pd KGP — Ciy| [pBYKZP] (6.70)
r e

(Mo)uma,app = OngOmpOaplE + €, + £, — &,) (6.71)
(Mo)syp.apg = 0500,80 pgl E + €5 + £, — €,) (6.72)
(MO)nnla.)'Jp T O [673}

(M Dumaaps = — Oqnlmp||pa) — 8 ,m<np||qo>
+ Sgmlnp||pa) + S,5<mn||pg) + 8, (mP||gx>  (6.74)
(My)syp.aps = 5}»,‘1(5‘” |ap> + 550:(}"}' 'ﬁf’)
— 8,0 |Bp)> + 8,,<0Y||Bx> — 5Crallopy>  (6.75)
(M )nma.syp =0 (6.76)
a. Pole Structure through Second Order

The poles of the EP consistent through zeroth order are determined by
including all zeroth-order terms in P(E) [Eq. (6.61)]. Since C contains no
zeroth-order contributions, we find that

Po(E) = A, (6.77)
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which is the Koopmans’ theorem result once again. A determination of P(E)
through first order would not contain any more terms than are already in A,
since A; = 0and C, = 0. The lowest-order correction to A, given by C'TM~!C
occurs in second order. In reaching this conclusion, we used the fact that the
order of a term that is a product of several matrices is determined by adding
up the individual orders of the matrices appearing in the term. The term
CiM,'C, would thus have been of first order if C, had not vanished. An EP
that contains only the A, matrix is identical to the EP obtained in Section
6.D.1 and results in Koopmans’ theorem-level estimates of electron affinities
and ionization potentials. The success of using Koopmans’ theorem to assign
peaks in photoelectron spectra relies on the fact that corrections to Koop-
mans’ theorem first appear in second order.

Proceeding now to compute all terms in Eq. (6.61) through second order,
we find

Pz{E) = AO e C-{Malcl (6‘?8}

since A, = 0. In all of the matrices in P,(E), only the zeroth-order part of
the reference state |0°) contributes, as can be seen by examining Egs. (6.66)-
(6.76). Inserting the expressions for the individual matrix elements of C, and
M, given in Eqgs. (6.67), (6.68), (6.71)—(6.73) into Eq. (6.78) gives explicit
expressions for the elements of P,(E):

il _ v <ollpa><pal ke
[PZ(E)]jk = (E + 31)‘5;1 p);q E_oto.+ .

@

_ y Sl <apl ko>

2 E+e,+e—c¢

Such second-order EPs have been used (Doll and Reinhardt, 1972; Purvis

and Ohrn, 1974) to compute atomic and molecular ionization potentials,

electron affinities, and even electron—-atom shape resonance positions and

lifetimes with some success. Based upon the experience gained to date, how-

ever, we cannot expect the accuracy of this approach to be better than

+0.5 eV, even for systems that are described reasonably well by a single-

configuration reference function. Often, this numerical accuracy is not satis-

factory and hence the above formalism must be advanced to higher order (or

replaced by another development that does not depend upon the Rayleigh—

Schrodinger order concept). An example of such a second-order EP calcu-
lation is given in Problem 6.1.

(6.79)

b. Physical Interpretation

The physical interpretation of terms arising in C]M; 'C, in terms of orbital
relaxation and electron pair correlation effects has been carried out by several
workers. To give some feeling for the physical content of the terms in (P,),;, we
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examine the diagonal i = j =t term, which would be expected to be the
dominant contributor in the case of adding an electron to spin-orbital ¢,.
Then, through second order, from Eq. (6.79) we have

2
Paiesit b+ B DL
a>f.m Eo BB P‘ﬂ

Ly kel o elleP
g#ta &g — & p):¢:5p+£q”£r'£n

Clearly this term will vanish (G will have a pole) near E = —g¢,, which is the
Koopmans’ theorem estimate. The correction to Koopmans' theorem ex-
pressed in the three sums occurring above can be given physical meaning in
the following manner. The second sum gives the orbital relaxation contribu-
tion to the ion—neutral energy difference. By expanding the HF orbitals of the
ion in terms of those of the neutral and then computing the ion’s energy with
these orbitals correct through second order one could derive this term within
a wavefunction picture (Pickup and Goscinski, 1973). The fact that this sum
has an orbital energy denominator involving only a single orbital excitation
energy (g, — ¢,) has to do with the fact that, in a configuration interaction
language, this term arises from single spin-orbital excitations (¢, - ¢,). The
numerator |{ta||tg)|? can be identified as the square of the perturbation
matrix element coupling orbitals ¢, and ¢,. The perturbation is the coulomb
and exchange potential caused by the electron that has been added into ¢,.
The third sum in Eq. (6.80) gives the approximate correlation energy of an
electron in ¢, with the remaining N electrons (in ¢,) and hence has to do with
double excitations (¢,$, = ¢,¢,), which would arise in a CI description of
such pair correlations. Finally, the first sum describes the changes in the
correlation energies between pairs of orbitals ¢,, ¢, due to the fact that spin-
orbital ¢, is occupied in the ion (and hence unavailable for correlating ¢, and
¢,), but was not occupied in the neutral parent molecule.

c. Third-Order Analysis of Pole Structure

To obtain the expression for P(E) that contains all terms through third
order (Simons and Smith, 1973; Jergensen and Simons, 1975; Cederbaum,
1973), we introduce the matrices given explicitly in Egs. (6.63)-(6.76) into
Eq.(6.61) and neglect the fourth-order terms. This allows us to write Eq. (6.61)

P(E) = Ag + Ay — C{(My + M;)"'C, — C{(M, + M,)"'C,
—CiM, + M) 'C, (6.81)

The inverse matrix (M, + M;) ™! can further be decomposed into orders by
performing the expansion

Mo+ M) " =Mg' —Mg'"MMg' + Mg'M Mg ' MM + -+ (6.82)
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which can be used in Eq. (6.81) to identify the *>-ms to keep through third
order: j

PyE)= Ay, + A; — CiM; 'C, + CIMg 't Mg 'C,
MG IC2 = C;Ma ’Cl (6.83)

At this third-order level of approximation, the EP has been successfully
applied to a large number of inorganic and organic molecules. The ionization
potentials (Von Niessen, et al.,, 1979) and electron affinities (Simons, 1977)
thus obtained are usually reliable to within +0.3 eV.

d. Diagrammatic Analysis

The derivation of the EP consistent through a certain order may alterna-
tively be performed in a way very similar to that used in MBPT to express
the state energy and wavefunction. As in MBPT, the result is expressed in
terms of a set of diagrams. In this section we give the results of performing
such a diagrammic perturbation analysis of the EP. The contribution to P(E)
beyond the (E + ¢;)d;; is, in the diagrammatic analysis, referred to as the self-
energy or optical potential matrix Z(E). The self-energy matrix Z(E) in a
given order n is expressed in terms of a set of Hugenholtz diagrams. The
diagrams, which enter in order n, are determined by applying the rules in
Table I of Chapter 3, with rule 3 modified such that when one is connecting
lines each diagram has to have one incoming and one outgoing line. The
translation of a Hugenholtz diagram into an algebraic expression is, as in
MBPT, performed by translating the Hugenholtz diagram into one of its
equivalent Brandow diagrams (Fig. 6.1; see Section 3.G). The algebraic ex-
pression for the Brandow GF diagram is obtained by applying the rules of
Table Il of Chapter 3 with rule 3 modified such that an energy parameter
equal to (— 1)"E is added to each factor in the denominator ) , &, — ) , &, if

Hugenholtz Brandow
J
o o —
() p qu
ek
A A FIG. 6.1. All Hugenholtz and Brandow second-

order self-energy diagrams.
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the sum of the number of internal hole and particle lines is an odd integer.
Here h is the number of internal hole lines in the diagram. Lines are counted
as internal only if they lie between the vertices from which the GF’s two
free lines originate. If the GF’s two free lines start at the same point, only
those hole lines that exist horizontal to this point are counted. For example,
diagrams A and C of Fig. 6.2 contain one and zero internal line, respectively.
Diagram G of Fig. 6.2 has one internal hole line and thus each denominator
would get a — E factor added in.

If H? is taken to be the HF Hamiltonian, then, as in MBPT, all diagrams
containing the loop structure 0 cancel with the corresponding diagrams
having the potential symbol ~—< in the same location. No first-order dia-
grams then enter in the diagrammatic perturbation analysis. In second order
only the two diagrams displayed in Fig. 6.1 enter. To obtain some experience
in applying the rules in Table IT of Chapter 3, we list the analytical expressions
for these two diagrams:

o1 <ol lpad<pq| ket
< 1)1 e 1+1 55 1o
A_:L;:{z}( . ~E+teg —¢€,—¢, (89

;‘IH EXE,-Feg~¢,

The second-order contribution to the EP given above is, of course, identical
to the one derived in Eq. (6.79).

In Fig. 6.2, we list the nonvanishing third-order self-energy diagrams.
These may, of course, also be identified with corresponding terms of the

PIANAY

EERRR
RERER

FIG. 6.2. All third-order Hugenholtz self-energy diagrams.
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third-order expression of P;(E) in Eq. (6.83). The sum of diagrams A and B
represents the first two terms of A, in Eq. (6.65), while diagrams C-F may
be identified as orginating from the last term of Eq. (6.65). The term
CIM; 'M,M, 'C, gives rise to G, L, M, and R, while H-K and N-Q may be
shown to originate from CIM; 'C, and C[M; 'C,. The analytical third-order
expression thus gives a compact representation of the diagrams in Fig. 6.2.

E. THE POLARIZATION PROPAGATOR

1. Introduction

If we choose the operators A and B* both to be the electric dipole moment
operator r, then the spectral representation of the resulting GF reads
_ £Or|m) (m|r|0). & <O|r|m) (m|r]0). 6.86)
E—-E,+Ey+in E+E,—Ey,—in

The residue at the pole E = 4(E,, — E,) contains the transition dipole
matrix element between the states [0) and |m),

r;ryg =lim )’

=0 m

<Orjm) = jz(r)j,<0| jtsjm) (6.87)
where
(1);s = {Pj|r|ds> (6.88)

Since r is a number-conserving operator, the reference state |0) and the
state |m) must contain the same number N of electrons. The poles of this
so-called polarization propagator (PP) thus occur at the excitation energies
E = +(E,, — Ey) of the system described by |0), while the corresponding
residues give the squares of the electric dipole transition moments |[{0fr|m)|>.

The real part of the above GF may be expressed by combining terms over
a common denominator as

: o 2AE,, — Eo)|[<O0|r|m)|?
Re{ride= -2 ~m—F _Ep (6.89)
which is identical to the conventional expression for the frequency-dependent
polarizability tensor (the frequency being represented by E).

To get some experience in using the PP to express second-order frequency-
dependent and -independent properties and to indicate some problems that
may appear when using the PP in finite basis set calculations, we now derive
alternative but formally equivalent expressions for the frequency-dependent
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polarizability. We may employ Eq. (6.10) to reexpress the propagator
£rir)gas

E¢r;ryg = QO|[r,r]|0) + ([r,H];r)e = idp;r)e (6.90)

where we have used (in a.u.)
[r,H]=ip (6.91)

For E # 0,iE~" {p:r); may alternatively be used to calculate the frequency-
dependent polarizability. Near E = 0, however, we expect iE™'¢p:r)p
(which should, in principle, equal {r;r)) to have difficulty in finite-basis-
sel calculations because of the explicit appearance of the E~' factor. That
is, unless ¢p;r)g, as a calculated function of E, is proportional to E near
E = 0, one might obtain incorrect behavior of iE ™ '¢p;r)g here.

Applying Eq. (6.10) once more to Eq. (6.90) gives

E¢p;rye = <O|[p.r][0> + p:[H,r]Ye = <O|[p,r]|0> — i<p:pYe (6.92)
Using the second-quantized forms for p and r, we can explicitly calculate
the commutator in Eq. (6.92) as

[p.r] = Z (P)ij{f)kr(ajki+f — 0uk™ j)

ijkl

i Zl[(llr)jc _ (rp)jf]j il
F
= —iy lpj*l (6.93)
jt

where | is the unit tensor operator whose elements are I;, = d,1, and
m==0"=0*=1, HT=M==MmM*=0 (6.94)

Clearly Eq. (6.93) is valid only if the basis set is complete so that we can
write (pr); — (rp); = (pr — rp); = —idyl. We may now rewrite Eq. (6.92) to
obtain one further expression for the frequency-dependent polarizability

1
Leirdg = Iz (NT+ €p;pYe) (6.95)

where the number N of electrons in |0 arises by evaluating 1) ;<0[j*/|0>.
As with i{pry E~", finite-basis-set calculations of this form for the polar-
izability through the propagator {p; p)r would be expected to have difficulty
near E = 0 because the small-E portion of ¢p,pYg, which should exactly
cancel the NI factor may, in a finite basis, not lead to exact cancellation.
We have now discussed how frequency-dependent polarizabilities can be
obtained directly from the PP once a closed algebraic equation for ¢r;r}g
is found. Other second-order properties can equally well be determined by
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replacing 4 and B* with other one-electron operators (e.g., the dominant
term in the indirect nuclear spin—spin coupling constant results when 4
and B* are taken to be the Fermi contact Hamiltonian).

In the following, we concentrate on how approximate closed expressions
may be obtained for the {r;r)g form of the polarization propagator. From
our treatment of the PP it should become clear how to determine other
second-order properties corresponding to other choices for 4 and B*.

2. The Single-Configuration TDHF Approximation

In a simple and very commonly used approximation to the PP, the refer-
ence state |0) is chosen to be a single-configuration (but not necessarily
single determinant) HF wavefunction. The operator manifold {T*} then is
taken as the set of particle—hole excitation and deexcitation operators used
for optimizing the reference state:

T'={T;}={Q*.Q}={m"a,a’*m;m «a} (6.96)
With these choices, the propagator takes the form (as expressed in Eq. (6.32) ]
(Q'|ET+A]|Q") (Q*|ET+ HlQ))“((Q* |r))

(QIET+ A|Q*) (Q|E1+A|Q) Q|
(6.97)

Since the one-particle density matrix is diagonal for the chosen HF reference
state, we have

(Q|Q*) =(Q*|Q) = {<O[s*B,r*a]|0)} = {0} (6.98)

Kr;rde =({rlQ+)(r|Q}}(

and
Sm‘sﬂ = (Q+ |Q+,ru.sﬂ i <Ol[a+r‘s+ﬁ]|0> o 5rs§¢ﬂ(va £ vr) {699]
and similarly
(r|Q%)sp = (vg — vy)(r)gs (6.100)

where v, is the occupancy of spin-orbital ¢,. Equation (6.97) may be written
in more compact notation as

; By, -1 +
<<r;r)>£=((r|Q+)(r|Q)}(SE+AI ! ) ((Q |r)

O (er)) i

where the matrices A, and B,, are identical to those defined in connection
with the MCSCF orbital optimization in Egs. (2.29) and (2.30) except that
|0) is taken here to be the single-configuration HF function. These matrix
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elements are evaluated explicitly in Problem 5.2 and used in Problem 6.2
to carry out a PP calculation.

Equation (6.101) is said to express the time-dependent Hartree Fock
(TDHF) or the random phase approximation (RPA) to the PP (Jorgensen,
1975). The TDHF (or RPA) approximation has been derived in a variety
of ways, each of which tends to stress a certain aspect or point of view. In
the following, we examine the physical content of the TDHF approximation
and try to point out various consequences of using it for calculating the
frequency-dependent polarizability, oscillator strengths, and excitation
energies.

a Pole and Residue Analysis

We now demonstrate how the TDHF propagator may be transformed to
a spectral form similar to the one appearing in Eq. (6.6). The poles of Eq.
(6.101) can be determined through solving the nonhermitian eigenvalue

problem
All B“ Z i S 0 Z
(Bn A“)(Y)_ E(U —S)(Y) (6.102)

whose dimension is the sum of both the number of nonredundant particle-
hole and hole-particle operators. The solution of Eq. (6.102) may alterna-
tively be obtained through performing a series of transformations involving
matrices of only the dimension of the particle—hole operators (Linderberg
and Ohrn, 1977; Jergensen, Olsen, and Yeager, 1981). To achieve this reduc-
tion in the matrix dimension, we first write Eq. (6.102) in component form as

AZ +B,,Y =ESZ (6.103)
B, Z +A,,Y=—ESY (6.104)
Successively adding and subtracting the above two equations gives
(A, + By )Z+Y)=ES(Z-Y) (6.105)
(A, — B, NZ —-Y)=ES(Z+Y) (6.106)
Equation (6.105) may then be rearranged,
Z+Y=EA; +8B;) 'S(Z-Y) (6.107)

and inserted into Eq. (6.106) to give
S YA, +B,)S A —-By N Z-Y)=E¥Z -Y) (6.108)

The eigenvalues of Eq. (6.102) are thus determined by the nonhermitian
eigenvalue problem given in Eq. (6.108) for E2 If A,, — B, is positive def-
inite, we can form the (A,, — B,,)"’? matrix and premultiply Eq. (6.108)
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with (A}, — B,,)"/2, thereby achieving the hermitian eigenvalue problem
(A —By)'*8 (A + B )STHA — By ) A, — B )VHZ - Y)
=E*A,, — B )"(Z -Y) (6.109)

which has eigenvalues E? and eigenvectors equal to (A,, — B,,)"*(Z — Y).
The eigenvalues of the nonhermitian eigenvalue problem in Eq. (6.102) can
thus be determined from a hermitian eigenvalue problem of only the dimen-
sion of the particle-hole operators. When S is singular or nearly singular,
it may be useful to solve Eq. (6.108) or (6.109) using the inverse eigenvalue
equations with eigenvalues 1/E?. Equation (6.108) then becomes

(At —By) 'S(A;; + B, ) 'S(Z—-Y)=(1/E})(Z - Y) (6.110)

To interpret how transition moments are determined within the TDHF
approximation, we continue transforming the propagator to its spectral
form. We use the eigenvalues and eigenvectors of Eq. (6.108) together with
Eq. (6.107) to determine the Z and Y matrices. Equation (6.102) implies that
if the set (7) are eigenvectors corresponding to the eigenvalues w, then (})
are eigenvectors with — o eigenvalues. This allows us to write Eq. (6.102)
in a form that displays its positive and negative eigenvalue spectrum

GG DR O I D e

or alternatively as

ES+A,, B, Z XN [B. 9YZI Y\{El+e 0
By, —ES+A,,J\Y 2/ \0o -s/\y z 0 El—wo
(6.112)

Because of the appearance of the metric matrix (§ _2) in Eq. (6.102) the
(§) eigenvectors may be normalized according to

(Z,Y}AG “g)(i) =4, (6.113)

To obtain a spectral representation of the propagator that contains a unit
metric, one must transform the set of particle~hole and hole—particle oper-
ators to the representation where they give a diagonal metric with unit

elements. This transformation is carried out using the excitation operators
defined below:

0" =Q*Z + QY (6.114)
0=Q*'Y* +Qz* (6.115)



E.  The Polarization Propagator 147

For example, it is straightforward to show using Eqgs. (6.98), (6.99), and

(6.113) that
oty —(7+ v+ S 0\(Z 7
0*j0o*)y=@2*Y )(0 —S)(Y)_1 (6.116)

This condition then implies that the full metric matrix involving these new
excitation operators becomes

W0 e 0y 2 YTNB V2 ¥ 6.117)
©*0) ©o/) \o -1/ \y* z*)\o -s/\y z o
The spectral form of the propagator is then obtained by taking the inverse

of Eq. (6.112), premultiplying with (¢ }), and using Eq. (6.117):

(ES+A.1 B,, =
2 W\l n N2y
TN 0 El-o T L (i)

Introducing Eq. (6.118) into Eq. (6.101) finally allows us to write the prop-
agator in spectral form

1 1
! % 2] _
£rirde = ;|{r|03 )| [ o s ET w;] (6.119)

A comparison of Eq. (6.119) and the spectral representation of the propagator
given in Eq. (6.86) shows that the pole at E = w, corresponds to a total
energy difference E;, — E,. The pole at E = —w, corresponds to the same
total energy difference E, — E,, and the propagator therefore is an even
function in the excitation energy E, — E,. The pole at E = w, has a residue
of —|(r|0)]%, which using Eq. (6.6) may be identified as —|(0|r|1>|*. The
pole at E = —w, has the residue |(r|0;)|?, which is equal to |<O|r|2)|%. The
transition moments (0|r|u> may thus be determined from the residue at
either of the poles E = +w,. It should be noted that the above development
allows E, — E, to be either positive or negative corresponding to excitation
energies from ground or excited states. However, in applications where |0)
refers to an excited state, Eq. (6.108) must be used to determine the excitation
energies, because A — B is not then positive definite.

b. The Stability Condition

If imaginary or negative roots are encountered when solving the non-
hermitian eigenvalue problem in Eq. (6.108), the RPA approximation is said
to have an instability. If A,; — B,, is positive definite, instabilities are not
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encountered if the matrix (A,, — B;,)"?S"'A,, + B,,)S"'(A,; — B,))'?
in Eq. (6.109) is positive definite; that is, if

X(A;, — B )'"?S (A, + B )S A, — By)'?XT >0 (6.120)
for any vector satisfying |X| > 0. Defining the vector
Y = X(A,, — B,,)V?s"? (6.121)
we may write Eq. (6.120) as
Y(A,, + B, )Y">0 (6.122)

which says that A,, + B, has to be positive definite to ensure that Eq. (6.120)
is fulfilled. Thus if A;, — B,, is positive definite and A, + B, is not,
then an RPA instability will be encountered. Although it is not obvious
from the previous derivation of the solution to the RPA problem, it may be
shown by transforming the RPA eigenvalue problem to an equation similar
to Eq. (6.108) (but with Z + Y occurring as the eigenvector) that if A, + B,
is positive definite, then an RPA instability is encountered if A;, — B, is
not positive definite. Hence if both A, + B;, are positive definite, insta-
bilities are not encountered in the RPA approximation. If both A;; + B,
are nonpositive definite, an explicit solution of Eq. (6.108) has to be deter-
mined before it be clear whether an instability is encountered. If A;; + B,
are both non—positive-definite, negative excitation energies (E; — E;) are
obtained in TDHF approximations. Such negative excitation energies may
correspond to excitations from higher to lower “excited” states.

As was demonstrated in Chapter 2, the curvature of the energy hyper-
surface at a stationary point corresponding to the reference state |0) is
governed by the same A,, — B, matrix [Eq. (2.80)] as occurs here in the
TDHF. Hence, if the HF wavefunction corresponds to a local energy mini-
mum, A,, — B,, would be positive definite. In our derivation of the energy
optimization conditions as given in Chapter 2, we restricted our orbital
variations to involve only real variational parameters (i.e., we assumed real
spin-orbitals). If we had instead examined the variations in the energy re-
sulting from purely imaginary orbital variational parameters, the second
derivative of the total energy would involve the matrix A, + B;,. Hence,
the conditions that A,, + B,, be positive definite must be met if the HF
reference state is to represent a local energy minimum both with respect to
real and imaginary orbital variations. Therefore, imaginary excitation ener-
gies arise in RPA if one of the matrices A,, + B,, is non—positive-definite
and the other is positive definite. If negative excitation energies are obtained
in the RPA approximation both A,, + B,, are non—positive-definite and
the reference state |0) then represents a saddle point on the energy hyper-
surface.
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c. Connection with Coupled Hartee—Fock Theory

Having defined the TDHF problem and having shown how excitation
energies and oscillator strengths are determined, we now demonstrate that
the above TDHF propagator reduces, for E = 0, to the equation obtained
in Chapter 5 for the second-order response property as expressed in the
coupled Hartree-Fock (CHF) approach. For E = 0, the TDHF polarization
propagator given in Eq. (6.101) becomes

11 Bl] i 4
o= el@elen(z” 30) (Y1) e

Inserting unit matrices in the form

uut =1 (6.124)
where

i

U LC _1) (6.125)
Pk '

before and after the above inverse matrix, allows us to express the inverse

matrix as
Ay Bu)_l (A|1+Bn 0 )_I
=u Ut (6.126)
(Bll All 0 lAll R Bll

Because the dipole operator r is real, the elementary definition of the super-
operator scalar product given in Eq. (6.16) can be used to write

(rj]Q) = —r|Q") (6.127)
which, together with Eq. (6.126), allows us to rewrite Eq. (6.123) as

ritde_o=2(r|Q)A;; — By '(Q|n) (6.128)

Comparing this expression to that of the CHF approach [Eq. (5.16)] shows

that these two ways of writing the frequency-independent polarizability are
indeed identical.

d. Equivalence of Length and Velocity
Oscillator Strengths

Another important and attractive feature of the TDHF approximation
(and its MC extension described below) is that the oscillator strengths com-
puted within the dipole length and dipole velocity approximations become
formally equivalent, provided that a complete basis is used in the calculation.
From Eq. (6.119) it is clear that the transition moments in the dipoie velocity
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approximation would given by

(p[0;) = <O|[p, 05 ]]0> (6.129)
which from Eq. (6.91) is equivalent to
—iCO|[[r, H],0;]|0> (6.130)

Using the matrix identity of Eq. (6.42) together with the BT theorem in the
form

<O|[[r,0, ], H]|0> =0 (6.131)
we can express the above as
(pl07) = —iCO|[r,[H,0;1]|0> = —irO|[Q* + Q,[H,0;1]|0> (6.132)

where r denotes a row vector that contains the particle—hole matrix elements
(F)me- Equation (6.132) may be rewritten, using the definitions of 0}
[Eq. (6.114)] and the A,, and B,, matrices, as

e fag Bag YLy o S 0\(Z
(pIOAJ—-r(r,r}(B“ A“)(Y)f wu(m)(o —s)(Y),‘ (6.133)

The last equality sign follows from the eigenvalue relation Eq. (6.102). Since

S 0
(rlQ")rlQ) = ”(o i S) (6.134)

we may finally rewrite Eq. (6.133) as

Z
pl0}) = —iw,t((rIQ*}(rlQ))(Y)l = —ioyr]0f)  (6.135)

where the last step follows from the definition of the excitation operator in
q. (6.114). Equation (6.135) states that oscillator strengths calculated in
he dipole length and in the dipole velocity approximation become identical
rovided that the commutator relation in Eq. (6.91) is valid. Violation of the
commutation relation [Eq. (6.91)] occurs when a finite basis is used in the
calculation. :
The TDHF approximation thus has three very characteristic features that
make it especially useful as a means for calculating excitation energies and
pscillator strengths. In ground-state calculations it indicates via imaginary
excitation frequencies if the ground state is not stable under the type of one-
electron perturbation given by the choice of 4 and B*. A singlet instability
s thus encountered if 4 and B* are chosen to be the dipole operator, whereas
riplet instabilities are obtained if A and B* are chosen to be, for example,
the Fermi contact Hamiltonian. Second, when the energy parameter E is
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set equal to zero, one obtains the same expression for the second-order
properties in the TDHF method as in the CHF approach. Finally, the
oscillator strengths calculated within the dipole length and the dipole velocity
approximations are formally equivalent. These attractive features are unique
to such an approximate theory.

3. The Multiconfigurational Extension of TDHF

In many calculations on highly correlated or open-shell molecules, it
turns out that a single-configuration reference state description of |0) is
inadequate even if optimized orbitals are used to describe |0). If the excitation
operators of interest belong to the totally symmetric irreducible representa-
tion of the Hamiltonian’s point group, the results obtained are normally
better than if one attempts to calculate properties whose operators are not
totally symmetric (e.g., triplet operators). It is well recognized, for example,
that the singlet excitation energies for a closed-shell molecule, are described
relatively well (to about 10%, accuracy) within the TDHF approximation,
while the description of the triplet excitation energies is very poor. In fact,
triplet instabilities are often encountered when using the above TDHF
method.

Approximations that go beyond the simple TDHF approximation are
therefore needed. We consider two such approaches here. The second method
outlined below is based on a RSPT analysis in which reference state |(}> is
expanded in powers of the residual electronic interaction [given by U in
Eg. (3.35)] and the projection manifold {T*} is chosen to be large enough to
guarantee that all terms in the PP are determined consistent through second
order. In light of this order analysis, it will be seen that the TDHF approxi-
mation corresponds to the approximation that is consistent through first
order in the electronic repulsion. Before presenting this RSPT treatment, we
address another approximation that goes beyond the single-configuration
TDHF approximation. This extension, which is based upon an MCSCF
description of the reference state |0, has the same three useful characteristics
mentioned above in describing the single-configuration-based TDHF
description. The multiconfigurational time-dependent Hartree—Fock
(MCTDHF) approximation thus provides a formalism in which oscillator
strengths in the dipole length and velocity approximation remain equivalent
as one ranges continuously through (MCTDHF) from a single-configuration
description (TDHF) all the way to the full-CI limit.

a. Choice of Reference Function and Operator Manifold

Having now motivated the consideration of more sophisticated reference
states, let us develop the above-mentioned approximation in some detail.
In the MCTDHF approach (Yeager and Jorgensen, 1979; Dalgaard, 1980)
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an MCSCF wavefunction is used as the reference state. The projection mani-
fold {T*} is then chosen to be the same nonredundant (see Section 2.B.7)
set of orbital and configuration space excitation [ Eq. (2.26)] and deexcitation
operators that were used for optimizing the MCSCF reference state

{T*} = {Q*,R*,Q,R} (6.136)

b. Hermiticity Problem

This choice of |0 and {T*} then permits €r; r)g to be written in a form
analogous to that given in Eq. (6.97). In computing the requisite matrix
elements, one notices that the elements giving the coupling between orbital
and configuration space operators do not obey hermiticity:

(Q*|AIR)) = (RY|A|Q*)* = <O[HQ|n) — E0|Q|n> #0  (6.137)
In the limit where one has in |0) an exact eigenstate
H|0) = Eo|0) (6.138)

the last two terms in Eq. (6.137) cancel, and the matrix representative of A
within the {T*} basis consequently becomes hermitian. Therefore, we are
certain that this nonhermitian aspect of the problem is an artifact (i.e., it
arises because we do not have an exact |0)). To force the matrix to be her-
mitian even for approximate choices of |0), we equate (Q*|H|R") with
(R*|H|Q*)*. That is, we simply require the superoperator Hamiltonian to
operate on the orbital space (Q*, Q) when the coupling elements are eval-
uated. This choice yields a propagator that for E = 0 gives the same result
for second-order properties as obtained in the coupled multiconfiguration
HF approach. An added advantage of this order of operations is that the
oscillator strengths in the dipole length and in the dipole velocity approxi-
mations become formally equivalent. If we had chosen an alternative means
of imposing hermiticity on the matrix, such would not be the case.

c. Spectral Representation of the Propagator

Inserting the projection manifold defined in Eq. (6.136) into Eq. (6.32)
gives

ey = [(r|Q*)(r|R*)(r|Q)(r|R)]
Q*|n
S A\ (A B\\'[R'|p
x(E(_A FS)+(B A)) QIn (6.139)

R[r)
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where
_(<ol[e,e*][0> <0\[Q,R+]|0>) 4
Z (<0|[R,Q+]|0> CO|[R, R*7[0) ot
=(<0|[Q,Q]IO> <01[Q.R]|0>) o
<O|[R,Q]10> <O|[R,R]|0> '

and §* = 8* and A* = —A*. The elements of, for example, (0|[Q, R *]|0>
are given by

<O|[s*r, |n><0[]j0> = <O|s* r|n) (6.142)
CO|[R., R, ]|0> = <O|[|n><0},|0> (m|]|0)> = —<m|n) = —6,, (6.143)
The A and B matrices are identical to those defined in Eqgs. (2.29) and (2.30)
and more explicitly written out in (2.42) and (2.44). Of course, now the
reference function |0) is the MCSCEF state; in the TDHF approximation it
was the single-configuration SCF state. In Problem 5.3, the A and B matrices
are evaluated for a single molecular ion, and in Problem 6.3 the data are
used to perform an MCTDHF calculation on that system.

Because the metric in the MCTDHF approximation [Egs. (6.140) and
(6.141)] has a more general form than the one in the TDHF approximation
[Egs. (6.98) and (6.99)] some minor modifications are required in the proce-
dure described in Section E.2.a. to get the propagator into spectral form.

By carrying out transformations of the MTDHF eigenvalue problem,

similar to that done in Egs. (6.102)—(6.108), we obtain the result analogous
to Eq. (6.107) (Jergensen et al., 1981)

Z+Y=EA+B) (S—A(Z-Y) (6.144)
to Eq. (6.108)
S—A) " A+BS+A) A -BIZ—-Y)=EYZ-Y) (6.145)
and to Eq. (6.109)
(A —B)}S — A)"'(A + B)S + A) (A — B)*A — B)VXZ - Y) (6.146)
=E¥A-B)"*(Z-Y)
Using these equations, a spectral ‘representation may easily be derived as
was done in the single-configuration case in Egs. (6.109)-{6.119).

d. Special Characteristics of the MCTDHF Propagator

The MCSCF reference state represents a stationary point on the energy
hypersurface. If imaginary excitation energies are encountered, for example,
in an MCTDHF ground-state calculation, the minimum point is not stable
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(does not correspond to a local minimum) under the type of (spatial or spin
symmetry) one-electron perturbations described by the operators 4 and B*.
Also, as in the single-configuration TDHF, the frequency-independent polar-
izability obtained in the MCTDHF approximation becomes identical to that
resulting from the multiconfiguration coupled HF approach. The proof of
this equivalence [ollows exactly the same lines as for the single-configuration
case; we refer to that proof for further details [see Egs. (6.123)-(6.128)]. The
essential points of the proof are as follows. For E = 0, Eq. (6.139) reduces to

Q*|m
-1 +

<<r;r>>e=o=[(rlQ")(r]R*)(riQ)(rlR)](g ﬁ) (::Jllr? (6.147)
(R|r)

By next inserting the unit matrix of Eq. (6.124) before and after the above
inverse matrix and then using Eq. (6.127), we can write the frequency-
independent polarizability in the form

Critveco = 2elQlRIA -8 (R0)  614n
which is identical to the expression obtained in the multiconfiguration
coupled HF calculation of Eq. (5.15). It has further been proven by Dalgaard
(1980) that the oscillator strength calculated within the dipole length and
dipole velocity approximations become identical if a complete basis is used
in the MCTDHF calculation. A proof that follows lines very similar to the
ones given in Section E.d for a single-configuration case has been given
(Albertsen et al., 1980).

The MCTDHF approximation thus has the same characteristics as the
single-configuration-based TDHF approximation. We therefore have the
possibility of determining approximate state vectors that, at any level of
approximation, show these characteristics as the number of configurations
included in the MCSCEF reference state is increased from the single-configu-
ration case through the full-CI limit. Initial calculations using the MCTDHF
approximation have yielded very promising results. We now move to describ-
ing an extension of the TDHF approximation that is based on perturbation
theory.

4. Rayleigh—Schridinger Analysis

The perturbation extension of the TDHF method is obtained by develop-
ing systematic approximations to the PP that are consistent through a
certain order in the perturbation (Oddershede, 1978). These approximations
are based upon expanding the reference state |0) in powers of the residual
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electron-electron interaction as defined in RSPT [see Eq. (3.14)] and by
choosing the projection manifolds {T; } to be sufficiently “large” to ensure
that the resulting matrix elements of the PP propagator are consistent
through the desired order.

In the EP case, our goal was to determine the primary poles (the ionization
potentials and electron affinities involving low-energy ionization of the
parent molecule) through second or third order. In the analogous PP calcu-
lations, the primary poles correspond to those possessing dominant particle—
hole nature; we attempt to determine these poles through a chosen order.
Because the residues at a given pole contain information about the transion
amplitudes for the given type of excitation, perturbation methods may also
be employed to evaluate these residues through a specified order. Further,
since the PP expresses the reference states’ frequency-dependent polarizabil-
ities, this response quantity may also be calculated consistent through the
desired order by using a PP consistent through that order.

a. Choice of Operator Space

As the unperturbed Hamiltonian, we choose the same HF Hamiltonian
as was employed in the above EP development, and we use a basis set of
real orthonormal spin-orbitals. We develop an approximation to the PP
that yields the primary excitation energies and the corresponding transition
moments (and the frequency-dependent polarizability) consistent through
second order in the residual electronic repulsion (Nielsen et al., 1980). To
determine the poles belonging to the principal excitation energies, the corre-
sponding transition moments, and the frequency-dependent polarizability
through second order, it proves sufficient to consider the truncated projection
manifold '

{T"} = {T1; T4} (6.149)
This conclusion is by no means obvious. One must, in principle, examine
the effects of Tg, Ty, etc. on the matrix elements (T*|A|T*), (B*|T™),
(T*]A), and (T*|T"*) to conclude that these higher operators can have no
effect, through second order, on the computed poles and residues of the PP
(Oddershede and Jergensen, 1977).

b. Pole and Residue Structure of the Propagator

With the above choice of the operator projection manifold, the PP propa-
gator [ Eq. (6.32)] becomes

T EI + A|TY) (TFHEI+ A|TH\ /(T
((r:r))p:=[(r|T§'}{r|'l“I)]([ HENEID Sl lT“)) ({T"")

(T4 |ET+ A|T3) (TF|ET+ ATH)) \(Ti|n
(6.150)
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Introducing the shorthand notation
M,; = (T |ET + A|T}) (6.151)

we may partition the inverse matrix of Eq. (6.150), as was done in the EP,
to yield

(Mzz Mu)—l
Mgy My,
(Mz; = Ma MMy, ™ — (Mg, — MpgMgM,,) " IM, M

=\1(- M4T41M42[M 22 M;‘tl + M;41 M42(M;; \/
—M3z{MiiM,;) " — M3 M Myo) " MM

(6.152)

By substituting the inverse matrix into Eq. (6.150) and multiplying out the
factors we obtain

Kesrye=[r|T3)— (| THMM, TP~ HE)(TS |1) — MMy (T4 |1)]
+(r|TMgJ (T4 |r)
=W,(E) + W,(E) (6.153)
where
P(E) = M3, — My MMy, (6.154)

The principal poles of the propagator occur at.the eigenvalues of P(E).
Therefore, to obtain these poles consistent through second order, we require
P(E) to be determined consistent through that same order. To compute the
transition amplitudes consistent through second order requires that the
quantity F(E) defined by

F(E) = [(r]T5) — (r|] TS MM, ] (6.155)

which contains zeroth- and higher-order factors, also be evaluated consistent
through second order. Finally, if the frequency-dependent polarizability is
to be calculated through second order, both W,(E) and the W,(E) should be
computed through that order. Let us now analyze in more detail which of
the above matrices have to be evaluated explicitly through which order to
guarantee that the above quantities are calculated consistent through second
order.

c. Second-Order Analysis of Pole Structure

We consider initially the calculation of the excitation energies that are
determined as poles of P~ !(E) [ Eq. (6.154)]. After introducing the individual
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components Q, Q*, Q*Q*, and QQ, we may carry out an order analysis
of the individual matrices appearing in P(E). We consider initially the matrix
M,,, which is expected to be the dominant contributor to P.

Mu:(ﬂQ*KrrqumQﬂ Q*|A1Q) )

(QA|Q") —-EQ|Q) +(Q|A|Q)
ES +A B
E( B+ —ES+A) (6.156)
where
S=(Q*|Q" (6.157)
A=(Q*|A1Q") (6.158)
B =(Q*|A|Q) : (6.159)

and where we have used the fact that

(Q* | Q)myums = <O|[y*m, " n]|0> =0 (6.160)

is identically zero through any order. This M,, is the same matrix that
occurred in the earlier TDHF treatment of the PP except that now |0)
represents an RSPT expansion of the reference state. As an example of how
to carry out the order analysis, we consider the S and A matrices:

Sma..'l.s o7 <0| [a . n,n S ﬁ] |0>
= (°0|[a*m,n* B1]0° + ('0|[a* m,n* B]|0"> + O(3)

= (So)mang + (S2)manp + (6.161)
where
(So)ma,ns = OmnOap (6.162)
(S2manp = ié,...piq KMKp — 45, g K™PK"™ (6.163)
¥ yd

and, as in the EP analysis, the superscripts on [0°), |0'), etc. denote the
orders of these terms. No first-order terms thus appear in S because [0'>
contains only doubly excited configurations. The elements of A are given by

Amanp = <O|[a*m,[H,n* B1]|0>
= 0|[a*m,[Ho,n* B1]|0% + C°0|[a*m,[U,n*B]]|0°>
+ 0|[a*m,[U,n* B1]]0"> + C'O|[a*m,[Ho,n* ][0 + O(3)
(6.164)
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In the A matrix zeroth-, first-, and second-order terms appear. The Ay, Aq,
and A, matrices are given by

(A0)mang = (Em — €5)Omnlap (6.165)
(A ma,np = < Pm| |nocy (6.166)
(Al}mu.nﬂ T iaaﬂ Z <JI'Y| an>K:I: P iémn Z <ﬁnl qu>Kg£
nyq nqp
T (Sz)ma.np(sn T E,ﬂ) {6167)

The B matrix may similarly be shown to contain only first- and second-order
terms B = B, , ,. The B, matrix is given in Problem 5.2 and

(B2manp = — 2 {<Bq||nm)K%; + ag |nn) K53}

—%Z<pqllnm>xﬂ—5§<aﬁllné> m (6.168)

In the term M, ,M;/M,,, the M,, matrix contains no zeroth-order terms
and since M1, = M,,, we only need keep M,, through first order and M4
through zeroth order to obtain

M2aMid My, (6.169)

through second order. The nonvanishing parts of the matrices M,, and
M, 4 become

{Cl)nmﬂu.py - <00’[a+ ﬁ+mn’ [Us p+ 7]] |00>
= 5mp<?"| |aﬁ> gt 5up<)’m| 'aﬂ>
+ 8,,Kmn||Bp> — 85,{mn||op) (6.170)
{Do)mﬂ«,pqyé —_ E ® (00|[a+ﬁ+mn’ p+q+?6]l00>
+ €0°|[«* B*mn,[Ho,p*q*y5]]|0°
= (E + 8, + & — & — E)0,,0ms08,0us (6.171)
(DU apmn,dyqp o ("'E + s¢ + 5, e Sm - Eﬂénpémqéﬂréaa (61?2)

The excitation energies as computed through second order may thus be
obtained as poles of

[Esou'Tl‘Ac;Hiz B %

—-C;by; C

B By (6.173)
&) B [—ESosz +Agi1+2

—CiDg 'Cy]
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We should also note that Eq. (6.173), when used to determine the excitation
energies consistent only through first order, reduces to the inverse matrix
occurring in the TDHF approximation described in Section E.2.

d. Second-Order Analysis of Transition Moments

When the excitation energies are determined through second order we
might also wish to determine the corresponding transition moments con-
sistent through the same order. This would require us to evaluate the eigen-
vectors of P~ '(E) and to further evaluate F(E) of Eq. (6.155) consistent
through second order. Because the eigenvectors of P(E) become energy
dependent, specialized techniques are required to determine the transition
moments (Oddershede et al., 1977).

To determine F(E) consistent through second order, we introduce the
individual components of Q *, Q, etc., which then permits the first component
[see Eq. (6.155)] of F(E) to be expressed as

(r|]Q*) = °0|[r,Q*]]0°> + ¢*0|[r,Q*J|0*>
+ CO|[r,Q*]]0% + <°0|[r,Q*]|0*> + 0(3)  (6.174)

which contains zeroth- and second-order contributions. The values of
(r|Q*)o are given in Eq. (6.100). The only [0?) terms that contribute to (r|Q *),
are those which contain singly excited configurations relative to [0°). The
matrix (r|Q‘”Q+} has no zeroth-order elements; thus from the expression
for F(E), it is obvious (because M, is of at least first order) that only the
first-order elements of (r]Q* Q™) can contribute. Explicit expressions for
(r]Q*); and (r]Q*Q7), have been obtained (Nielsen et al., 1980). The
expression for F(E) consistent through second order may then be written as

F(E) = {(r|Q+)0+2 = (I'IQ+Q+)1D(;IC|=(’]Q)0+2 = lrlQQ}I{:JE‘CI}
(6.175)

which may be used to calculate the transition moments correct through
second order. If we wish to calculate the transition moments correct only
through first order, F(E) reduces to {(r|Q"),,(r|Q)o}, which is identical to
the expression for F(E) used in the TDHF approximation. Therefore, we
again see that in the TDHF approximation, both the excitation energies and
the transition moments are calculated correct through first order.

e. Frequency-Dependent Polarizability

To obtain the frequency-dependent polarizability correct through second
order requires that the W,(E) be evaluated consistent through second order
as described previously and further that W,(E) be calculated through second
order. By introducing the individual compnents Q*Q* and QQ we can
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reduce W,(E) to
W,(E) = (r|]Q*Q*);D5 '(Q*Q*|r), + (r|QQ),D5 '(QQ|r); (6.176)

Since W,(E) contains no first-order terms, the frequency-dependent polar-
izability is thus determined consistent through first order in the TDHF
approximation [which contains no analog to W,(E)].

f. Diagrammatic Analysis

We have previously shown how the results of MBPT and the perturbative
analysis of the EP may be interpreted in terms of a set of diagrams. The
perturbative analysis of the PP may be given a similar interpretation. We
sketch in the following how the diagrammatic analysis of the PP propagator
may be carried out. Initially, we limit ourselves to considering how the
TDHF approximation may be understood in terms of diagrams. We con-
sider the TDHF PP approximation in the SCF spin-orbital basis, where it
reads

-1 +
$rieds [(rlQ+)(r[Q)](E1 i g? o —E1 +BAO # Al) Gghl)r))
(6.177)

which is identical to Eq. (6.101). The poles of the inverse matrix appearing
in Eq. (6.177) may be determined from a partitioned form of the inverse
matrix with T} + T, of Section C.4 equal to Q* + Q. The analog of Eq.
(6.45) then becomes

P~YE)=[E1 +Ag+ A, —By(—E1 + Ao+ A;)"'B,]™! (6.178)

P(E) may be given a diagrammatic interpretation by expanding the inverse
matrix as
(—E14+Ag+A) '=(—E1+Ag) "= (—E1+Ag) ‘A (—E1+Ay) !
+(—E1+Ag) 'A(—E14+Ag) A (—E1+Ag) " +- -
(6.179)

We then obtain
P(E)=E1+ Ay, + A, —B,(—E1+ Ay 'B,
+By(—E1+A) 'A(—E1+Ay) " 'B;—--- (6.180)
In Fig. 6.3 we have displayed the diagrammatic representation of Eq. (6.180)
in terms of Hugenholtz diagrams. Using the rules in Table II of Chapter 3

for interpreting diagrams with the modifications to rule 3 similar to those
discussed in Section 6.D.2.d, we may interpret the A; matrix as giving rise
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FIG. 6.3. The RPA diagram series, which can be summed to infinite order.

to diagram A in Fig. 6.3. The fourth, fifth, etc. terms in Eq. (6.180) may
similarly be interpreted as giving rise to diagrams B, C, etc. in Fig. 6.3.
The TDHF approximation to the PP propagator thus corresponds to sum-
ming the infinite series of diagrams represented in Fig. 6.3. We emphasize
that an explicit summation of this whole series of diagrams is obtained when
poles of the PP are determined as described in Section E.2.

A propagator that determines the poles consistently through second order
is determined from a partitioned form of Eq. (6.173) to be

Pz(E] = E1 +' A0+l+2 Frx CIDE‘CI =Te Bl{_E1 + AD}_|BI (6.]81}

All terms of order higher than two have been neglected in Eq. (6.181). In
Fig. 6.4 we have displayed all the second-order PP diagrams. The A, matrix
gives rise to diagrams A and B in Fig. 6.4, whereas the term —C'D, 'C,
gives diagrams C through H. The last term in Eq. (6.181) corresponds to
diagram I in Fig. 6.4. This diagram is the second diagram in the above
described TDHF series. We again stress that a determination of the poles
of the PP that contain all diagrams through second order [Eq. (6.181)]
differs from the approximation we derived in Section E.4.c, which contained
all matrices of the PP through second order. A diagrammatric interpretation
of this group of matrices would further contain many series of diagrams
that would be summed to infinite order. One of these series would be the
TDHEF series given in Fig. 6.3. We do not go further into the diagrammatic

E E G H |
Fig. 6.4. All Hugenholtz second-order PP diagrams.
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interpretation of the PP here; rather we refer the reader to the more com-
prehensive discussion given in the literature (Oddershede and Jorgensen,
1977).

PROBLEMS

6.1

1. Use the formulas for the second-order matrix P,(E) appearing in
Eq. (6.79) to express the 2 x 2 matrix relevant to evaluating the ionization
potential and electron affinities of the minimal-basis HeH* problem.

2. Using the SCF orbital energies and two-electron integrals given in
Problem 2.1, insert numerical values for the requisite integrals and orbital
energies to express each of the elements of the 2 x 2 matrix P,(E) as functions
of E.

3. Use the approximation (P,);, = 0 to compute the value of E at which
the primary ionization potential of HeH* would be expected. This is done
by using the Koopmans’ theorem estimate in the denominators occurring
in the self-energy terms and then solving for the “corrected” value of E.

4. Use the approximation (P,),, = 0 to compute the value of E at which
the primary electron affinity of HeH* would be expected.

5. Are the values of E found in questions 3 and 4 the only values of E
that make (P,),, or (P,),, vanish?

6.2 Carry out a TDHF calculation for HeH*, using the minimal basis
data of Problem 2.1. The SCF calculation was carried out in Problem 2.1,
and the matrix elements necessary for carrying out the TDHF calculation
are given in Problem 5.2.

1. Determine the excitation energies and transition moments in the
TDHF approximation.

2. Determine the frequency dependent polarizability tensor for E =0
and for E = 0.1 a.u.

6.3 Carry out an MCTDHF calculation for HeH* that has an MCSCF
reference state containing the configurations 16? and 202 and that uses the
data of Problem 2.1. The MCSCF calculation was carried out in Problem
2.6, and most of the matrix elements necessary for carrying out the MCTDHF
calculation are given in Problem 5.3.

1. Determine the excitation energies and transition moments in the
MCTDHF approximation.

2. Compare the excitation energies and transition moments obtained
here with the results of the full-CI calculation of Problem 5.1. Why are the
two sets of results identical?

3. Determine the frequency-dependent polarizability tensor for E =0
and for E =0.1 a.u. in the the MCTDHF approximation. Compare the
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MCTDHF polarizability with the coupled multiconfiguration HF result of

Problem 5.3 and the full-CI result in Problem 5.1. Why do these three results
agree? ;

SOLUTIONS

6.1

1. Because we have a closed-shell reference state, one can compute
(P,);; for i and j having m, = +1/2. The terms having spins i = o, j = f3,
vanish since |0> is an eigenfunction of S,. Let us take i and j to be a spin:

i o iyl |pan) <mnf]jy) Ciml [yo) Cyo| | jm)>
{PZJ”_éij(E—l_si) ,,?;,, e e L e A Ll L O
¥ m

Because HeH* has only one occupied orbital, the second sum above must
have y = loa, § = laf, and (because i is o spin) m = 2af. Likewise, the
first sum must have m = 200, n = 2gf3, and hence y = 1o f. Therefore,

_<itf22yqlity  <i2|11ycin] 2

(Py)ij = 6;4(E + &)

2e, — gy + E 26, — e, + E
(Pdiz = (P22 =+ 1.1(;2(4)0+6 £ 3%2?5164‘?
0.0159 0.0382

3. P ;U, = |. ——— I e B S st S
(P2 E=16562 + {984 + 16562 * 1.6562 — 3.0835

= 1.6350

This iteration process could then be continued by using this value of E
to form a new (P,),, from which a new E could be obtained.
0.00002 0.0159

4. (Py);,=0, E=02289 2
il =9, oo 1.1984 + 0.2289 * 0.2289 — 3.0835

= 02233

5. No. Shake-up ionizations occur near E = ¢, — 2¢, and E = ¢, — 2¢,.

These arise due to the E dependence of the denominators in the above self-
energy terms.
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6.2
1. The singlet excitation operator 21, + 25 1, gives rise to the overlap
Sa121 =23 1.+ 2515|251, + 25 15) = 2.00

because of the closed-shell reference state. For these excitation operators,
the A and B matrix elements given in Problem 5.2 become

(Ay1)21,21 = 21464,  (Byy)zy,21 = —0.2522
The nonvanishing matrix element of r in Problem 5.2 is
0l2(2¢ 1, + 22 1)]0) = 2¢2)2|1) = 1.0884
The TDHF excitation energy obtained from Eq. (6.109) is
E, = 1.0657
and the corresponding eigenvector is
Z = 0.7083, Y =00418,  (z]|0f,) = 1.0884(0.7083 — 0.0418) = 0.7255
2. The nonvanishing components of the polarizability tensor are
2|(z[07)]?
1

|(z]012)|’E,
EZ —(0.1)2

Kz;2)g-0 = 09878 =

€z;2Pp_0., = 09965 = 2
6.3
1. From Solution 5.3 we can form the elements of the 2 x 2 S matrix
Syt =@ la+ 2515|120 1, + 25 1) = 0|1} 1, + 151, — 22, — 2724/0)
Using the density matrices of Solution 5.3, we find
S31.21 = 2(0.9968) — 2(0.0033) = 1.9870

Sanny = (24 Lo + 25 15| [n><0)) = <0J(1.°2, + 152)[1)<0[0) = 0
Sisary = (|1 <0 |]]1> €0}) = 1.0000

A_p (24251 04248
04248 2.2643

1.5510 0.1393 0.6501 —0.0604
A—B)2 = A—B) 12 =
( ) ((}.1393 1.4983)’ ( ) (-0.0604 0.6?31)

ol 19870 00
= 00  1.0000
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From Eq. (6.109) we know that we need (A — B)'/2S™ (A + B)S™'(A — B)'/?
to find the E? eigenvalues:

0.7806 0.1393 0.7806 0.0701
_@lize-1 _ 1A _ B2 =
i (0.0701 1.4933)’ il ) (0. 1393 1 ‘4983)

Then

1.2998 1.0247
_ myli2g-1 KA —B)Y2 =
(A-B)"?S" /(A + B)S"'(A — B) (1_0247 5.1?24)

The two eigenvalues are E? = 1.0454 and E? = 54266, and the corres-
ponding eigenvectors are (0.9705, —0.2410) and (0.2410,0.9705). The excita-
tion energies are E = 1.0225 and 2.3295; (Z — Y) is obtained for each state,
according to Eq. (6.109) as

(Z-Y),=(A-8B)" uz( 0-9705) ( 0.6455)

—0.2410) ~ \ —0.2208
0.2410 0.0981
— e —_— 12 ==
ot e Y (0.9?05) (0.6386)

The (Z + Y) for each state can then be obtained from

(Z+Y)=EA+B)'S(Z-Y)

or from

E"'STYA-B)Z-Y)
to yield

0.7242 0.1100
£ (-0.2209)’ it (0.6388)

Solving for Z and Y for each state and then renormalizing (Z, Y) for each

state such that
S 0N\/Z
7Y =1=12587Z - YSY

0.6926 0.0397
Z = =
- (—0.2233)‘ i (— 0.0001)

0.1596 0.0092
b (0.9747)‘ Yaw (0.0002)

we obtain
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The desired transition moments are given by (r|0*), with

0% = Z(Q3,,[1><0]) + Y(Q24,[05<1))
The data of Solution 5.3 tell us that

(r|Q3)) = 1.1076 = —(r|Q;,)
(r]|n><0]) = —0.1551 = —(r||0><n|)

and so

1.1076

+ —3 -—
(r]0}) = (0.6926, 0.2233;(_0_1551

1.1076
) — (0.0397, —0.0001) (h0.1551)

=0.7578

Likewise,
(r|0§) = 0.0146

2. The full-ClI calculation gave excitation energies of 1.0225 and 2.3295.
which is exactly what we get here. The CI transition moments are 0.7578
and 0.0144, which are almost identical to ours. The MCSCF reference state
is identical to the full-CI wavefunction even though it contains only the
16% and 2062 configuration. This is true because the orbitals used in the
MCSCF wave function are optimized orbitals. The projection manifold
operating on |0) then yields two more linearly independent functions, which,
taken together with |0), form a three-dimensional space capable of describing
the results of the full 3 x 3 CI problem. We thus have both the exact re-
ference state and a complete projection manifold {T*}, and the MCTDHF
calculation therefore is able to reproduce the full-CI result of Problem 5.1.

2
3 w,=2 Y |elo)E - B,
i=1

0.75782 i 0.01462
1.0225 23295

E=00, oa,= 2[ ] =1.1234

S _[0.7578%(1.0225) | 0.0146%(2.3295)
T =T AR 001 54266 — 001

All three calculations have the potential of giving the full-CI result as dis-
cussed in question 2.

:l= 1.1344
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