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Abstract

Molecular dipole moments and polari:zabilities, as wen as their geometrical derivatives"are given
analytical expressions for multiconfiguration self-consistertt-field and configuration interaction
wavefunctions. By considering the response of the eIectronic wavefunction induced by eIectric field
and geometrical displacement terms in the Hamiltonian, the response of the total electronic energy
to these terms is analyzed. The dipole moment and polarizability are then identified through the
factors in the energy which are linear and quadratic in the eIectric field, respectively. Derivatives
with respect to molecular deformation are obtained by identifying factors in these moments which
are linear, quadratic, etc., in the distortion parameter. The analytical derivative expressions obtained.
here are compared to those which arise through finite-difference calculations, and it is shown how
previous configuration-interaction-based finite difference dipole moment and polarizability derivatives
are wrong. The proper means of treating such derivativesare detailed. .

1. Introduction

In a recent publication [1] we demonstrated how to obtain analytieal
expressions for potential energy forces (gradients) and curvatures (Hessians)
appropriate to a wide rang e of ab iniiio quantum mechanical wavefunctions. By
using symmetricaUy orthogonalized atomie basis functions, aU of the explicit
geometry dependence (J.L),inc1uding the basisset dependence, canbe isolated
inthe electronie Hamiltonian H(J.L),and unifary exponenttal operaiors exp (iK)
exp (iS) can be used to treai the implicitvariations in the electronicwavefunction.
Expressions for the dependence of the energy on the 3N nuc1ear displacements
J.L = {Xi, Y;,Zi; i ==1,. . . , N} (N is the number of atoms in the mole~ule):

aE 1 a2E 2
E(J.L)=E(O)+'-J.L+--J.L +...

~ aJ.L2aJ.L2 ,

could then be derived. In that one paper we were able to cover most of the
previouslyexisting* gradient and Hessian expressions as weU as to obtain several
new results.

In the present paper, we tum OUTattention to the geometry depel:ldence of
those molecular properties whieh arise as responses of the energy to an extemally
applied field. In partieular,t we consider the effect of an external electric field

(1)

* Reference 1 ~ontains a review of gradient and Hessian resuIts which have been obtained by others.
t The derivation and results obtained here remain valid for aDYexternal perturbation which

appears in the Hamiltonian in a linear fashion.
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of' strength e on the electronic energy E. By utilizing the machinery of Ref. 1,
but with a Hamiltonian whieh includes the electric dipole' interaction H + E . r,
we are able to determine the e and JLdependence* of B(e, JL). According to

B(e)=B(O)+E.M-!E'a'E+ ..., (2)

the dipole moment O") and polarizability (a) functions can easily be identified
ance thee dependence of B is analyzed. Fughermore, by studying the JL
dependence of B (e, JL), we ar~ able to extract the JLdependence of M and a:

dM 1dzM z
M(JL)=M(O)+-JL+-~JL +...

dJL 2 dJLz ,

da 1 dzaz
a(JL)=a(O)+-JL+ ZJL +"'.

. dJL 2 dJL

(3)

(4)

The JLderivatives of M and a are of great importance in molecular spectroscopy
[2, 3]. The sizes of dM/ dJL and dzM/ dJLz govern the strengths of infrared
fundamental and (first) overtone transitions, respectively, whereas dal dJLdeter-
mines Raman fundamental intensities. <

In Sec. 2 we describe how the electronie Hamiltonian depends on the electrie
field and on nuclear displacement and how the use of orthogonalized atomie
basis orbitais is especially useful. In Sec. 3 we discuss how the electronic wave

< function lO) and energy B depend on the G.ombined presence of an external
electrie field and an infinitesimal nuclear displacemenL The orbital and configur-
ation amplitud es of 10)are varied to make B(e, JL) stationary in Sec. 4 thereby
obtaining ~- and JL~dependent expressions for the optimal orbital and corifigur-
ation amplitudes. The explicit e and JL dependencies of H + E . r is combined
with the implicit dependence of' the MCSCFor configuration interaction (CI)
functions lo) in Sec. 5 to genera te tp.e fulI e and JLdependencies ofB (e, JL).This
then allows us to obtain new analytieal results for the dipole moment and
polarizability derivatives. In Sec. 6 the rehitionships between aur analytieal
expressions and results obtained by finite difference approaches are clarified.
Section 7 contains aur concluding remarks.

2. Dependence ol Electronic Hamiltonian on E and p,

When an electrie field is applied to a molecule, the total electronic energy B
contains an explicit dependence on both the electrie field (e) and the nuclear
positions (JL)whieh appear in the Hamiltonian and an implicit dependence arising
through the variational parameters characterizing the wave function. Let us first
describe how to express the Hamiltonian dependence on the electrie field and
the nuclear p°J'ition.

* E is the (static) electric field strength, and /.L is a 3N-dimensional vector containing the
displacements of each of the coordinates of the molecule's nuclei.
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The Hamiltonian of the moleeule in the presenee of the field may be written
as

H=H+E'r (5)

where r is the position operator and H is the nonrelativistic eleetronie Hamiltonian
of the moleeule in the abseJlee of the eleetrie field. In a finite-basis ealculation
the above Hamiltonian can be eonveniently expressed in terms of a basis of
orthogonalized atomie orbitais {cf>J.When sueh an orthonormalized set of atomie
orbitais is used, all basis set effeets are isolated [4] in the one- and two-eleetron
integrais whieh oceur in the Hamiltonian. All annihilation and ereation operator
dependencies on nuclear positionean be negleeted in this ease without lossof
generality, as was explicitly demonstrated in Ref. 1. Within this basis of
orthogonalized atomie orbitais, whose precise nature we diseuss 'later, the
Hamiltonian H beeomes [5]

H="[. hpqa;aq+! "[. (cf>pcf>qIcf>tcf>u)a;a;auat,
pq pqtu

(6)

where the integrals are

(cf>pcf>qlcf>tcf>J =J cf>;(1)cf>:(2)-l-cf>t(1)cf>u(2) dTI dTZ'
TI2

hpq = (cf>plitI Icf>q),

(7)

(8)

and hl contains all of the usual one-electron operators

h= _!VZ-"[. ZA +! "[. ZAZB
, I 2 r A Ir- RAI 2MB IR,A- RBI'

and ZA denotes the charge and RA is the position of nucleus 'A.
The eleetrie dipole operator mayaiso beexpressed in the basis of these atomie

orbitais

(9) .

E' M=E' "[. Mpqa;aq,
p,q

(10)

where

Mpq = (cf>plrlcf>q)- "[. ZARABpq.
A

(11)

The Hamiltonian depends on nuclear position through the seeond and third terms
in Eq. (9) and through the faet that the basis functions appearing in the integrals
are eombinations óf primitive atomie orbitais whieh sit on the nuclearcenters.
In what follows, we will suppress the veetor notations r, M, RA, E, etc., for
notational ease and simply keep inmind that theeleetrie field is a veetor quantity.

To explorehow the Hamiltonian changes as the nuclei are moved, let us
consider. the infinitesimal nuclear displaeement .

Ro~Jt°+ J.L, (12)
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where JL is a row vector

JL = (JL"-AJL>;'JL~JL1JL1' . '), (13)

containing the (small) magnitudes of displacements in the X, Y, and Z components
of all nuclei A, B, etc.

The Hamiltonian il! Eq. (6)<at the displaced coordinates can be written as
the Hamiltonian at the undisplaced coordinates Ho plus ,terms that are{linear,
quadratic, cubic, etc., in the nuclear displacement JL.In Ref. 1 the depeIldence
of H on JLis written

H(Ro+JL)-d!Ho+JLHI+!JLH2JL+'" , (14)

and explicit expressions are given for HI and H2. The electric dipole operator's
dependence on JLmay be written in,a similar mann er

M(Ro+JL)=Mo+JLMI+!JLM2JL+'" , (15)

where

'MI = ~ V[ (4>plr- (~ZARA )14>q)]a;aq,

M2 = ~ VV[ <4>plr-(~ ZARA )14>q)]a;aq. -

(16)

(17)

The vector V contains derivatives with respect to all coordinates of the nuclei

V={VA,VB,...}. (18)

The fulI Hamiltonian, including the electricdipole term, at the displaced coordin-
at es may thus be written as a rower series expansion in e and JL

I 00

H(e, JL)= I I H1,kelJLk
1=0 k=O

where, for example, HO,2= !H2 and H1,2= !M2.

(19)

3. Dependence of the Wavefunction and Energy on JA-and l:;

Let us consider a multiconfiguration wavefunction [6]

lo) = I CiOl<I>i),
i

(20)

where l<I>i)denotes a configuration state function that consists of a simple linear
combination ~f determinant s {14>f)}

l4>f) = n a;lvac).
rEf

(21)

The product nrEf a; is an ordered product of creation operators which relates
to the set of orthonormaI mole~ular ort,itals occupied in l4>f). For the sake of
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simplicity we assume in the fonowing development that an orbitais and states
are real. Note that naw we have made a specification of thenature of the
orthonormai orbit ais used to express H

The multiconfiguration state function lO) at the displaced geometry Ro + f-t
may be expressed as a unit ary transformation of the wavefunction lO) at the
undisplaced geometry.Ro:

lo) =exp (iK) exp (;S)IO), (22)

where the operators

K= i I Krs(a:as ~ a; ar),
r>s

(23)

s = i I Sko(lk)(ol-IO)(kl),
k

(24)

are discussed in detail in Refs. 1 and 6. K contains an nonredundant orbital
exci~ation operators of the orbital optimization problem [6J. In S, the states {Ik)}
den~te the set of orthogonal complement states to lO),each of which is also some
combination of the same configuration state functions

Ik)=I C;kl<l».
i

(25)

The coefficient matrix C of Eqs. (20) and (25) obviously forms a unitary matrix.
At the displaced geometry, the total electronic energy of the molecular system

in the presence of an electric field may be written [IJ

BeK, s, e, f-t) =(OIH(e, f-t)10) (26)

Expandingthis total energy in powers of S and K around the point (K, S) = (O,O)
gives,

B(K, S, f-t)= (OIH(e, f-t)10)- i(OI[s+ K,H(e, f-t)]10)

-l(OI[S, S, H(e, f-t)]IO)-l(ojrK, K,H(e, f-t)JIO)

-(OI[S, [K,H(e, f-tmIO)+M(OI[S,S, S, H(e, f-t)JIO)

+ii(OI[K, K,K,H(e, f-t)Jlo)+li(oIIS, 5, [K,H(e, f-tmlo)

+li<ol[s, [K, K,H(e, f-t)]]10)+ . . . , (27)

where we have introduced the n-tupIe symmetric commutators discussed in Ref.
1. The role of these commutators is to make the matrices shown below in Eqs.
(32)-(34) symmetric under permutatiori of their indices. By naw introducing a
notation in whichthe variational parameters Krs and SkOas wen as the operators

o:. = {a:aJ, r> $; Rto = {lk)(OI},
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multiplying these parameters in K and oS[see Eqso (23) and (24)] are collected
together as column vectors

(Krs ){AJ =A = SkO '

(O-:'-Ors )- {TJ= T= R;o-RkO '

(28)

(29)

we caD,write the total energy as (Einstein summation convention is used with
respect to the subscripts i, j, k)

E(A,}.t)=E+FiAi+!GijAiAj+~KijkAiAjAk+ o...
Here the Hamiltonian average value

(30)

E =(OIH(e, }.t)10), (31)

the generalized Brillouin matrix [6]

F = (OI[T, H(e, }.t)]10), (32)

the Hessian matrix

G = (OI[T,T, H(e, }.t)]!0), (33)

and the cubic derivative matrix

K=(OI[T, T, T;H(e,}.t)]IO), (34)

are all e and }.t dependent. In defining the matrices G and K, the Hamiltonian
always operatesfirst on the orbital-space excitation operators and then on the
orbital-space excitation operators and then on the stale transfer operators [1].
Because the matrices G and Kare symmetric under permutation of their indices,
their explicit indicesneed not be written out as in Eqo (30); this shorthand device
will be used from naw on.

4. Wave Function Optimization

A. MCSCFCase

To obtain a useful expression for how the total energy of an MCSCFwavefunc-
tion depends uponelectricfield strength (e) and nuc1ear displacement (}.t), we
need to first determine how the MCSCFwavefunction response parameterS (A)
depend on e and }.t.Equations for determining theAi as functions e and }.t caD
be obtained by gifferentiatjng Eqo (30) for E(A) with respect to A and setting
the resultant expression equal to zero

F+GA +!KAA+ . 'o. =0. (35)

Recall that because the Hamiltonian of Eq. (5)depends ón e and }.t, the
matrices F, G, and K, each of which contains this Hamiltonian ance, dependon
e and }.tin a parallel mann er. In particular, we caDexpress F, G, and K as power
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series in e and }L

I 00

F= L L F/,klO/}Lk,
/=0 k=O

(36)

1 00

G= L L G/,klO/}L\
/=0 k=O

(37)

1 00

K = L L K/,klOl}L\
1=0 k=O

(38)

in which each of the terms arises from the e and }Ldependence of H. For example,

G/,k = (OI[T, T, H/,k]IO), (39)

and H/,k is given in Eg. (19). .
By introducing Eqs. (36)-(38) into Eq. (35) and assuming that the A response

parameters cali also be expanded in powers of e and }L
00 00

A = L L lO/}LkA1,\
/=0 k=O

(40)

we cali obtain an order-by-order solution of Eq. (35). The lowest order equation
obtained in this way reads as follows:

Fo,o+Go.oAo,o+lKo,oAo,oAo,o+... =0. (41)

This is nothing but the parameter optimization equation appropriate to the
situation with }L=Oand e = O.Because the MCSCFwavefunction bas been optim-
ized at }L= O,e = Owe have Fo,o= Oand, hence A0,0= O.The next few low-order
equations ale as follows: <

Fl,o+Go,oAl,o=O,

FO,l+GO,oAo,l=O,

(42)

(43)

(44)Fl,l + Gl,o A0,1 + GO,l A1,°+ Go,o Al,l+Ko,o Al,oA 0,1 =O.

Theseequations allow the low-order A1,kto be evaluatedinterms of the F, G,
and K matrices.

The matrices Go,o and Ko.o ale nothing but the Hessian and third derivative
matrices which appeal in MCSCFenergy optimization [7]. The vectors FO,l and
A0,1relate to the response of the system to the }Lvariation; explicit expressions
for these quantities ale given in Eqs. (39) and (46) of Ref. 1 and in Ref. 6. The
vectors Fl:Oand A1,0describe the respons'e of the system tothe e1ectric field a:i1d
ale treated in Ref. 8. Gl,o and GO,lale Hessian matrices but with the Hamiltonian
operator replaced by Mo and H;, respectively. Finally, Fu is a gerieralized
Brillouin vector with the Hamiltonian replaced by MI, ODce the integral deriva-
tives appearing in Hl and MI ale av1:lilable,the evaluation of all of thesequantities
requiresno mor e effort than needed to evaluate the generalized Brillouin and
Hessian matrices which arise in c;onventional MCSCFenergy.calculations. Eyen
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the seemingly formidable third term of Eq. (44) can be handled straightforwardly
as described in Ref. 9.

B. The CI Case

Equations (35) cannot be directly used to express the optimal K and S
parameters appropriate to the CIwavefunction. This is so because a CI calculation
is carried out in twa steps. In the first step, the orbit als are determined bya' SCF
or MCSCForbital optimization and in the second step the configuration amplitudes
are optimized through the CI calculation. The response of !CI) to a nuclear
displacement may therefore be parametrized as

IcI) = exp (i MC,<) exp (icIS)ICI), (45)

where the MCKcoefficients are first obtained in an MCSCF or SCF calculation via

Eq. (35) and subsequently theCIS coefficients are obtained as we naw describe.
The response of the orbitals (MCKI,k) is fixed at values entirely determined from
the MCSCF orbital optimization prior to the CI calculation. The configuration
amplitude responses CI S are determined by making the energy expression

E(S) =(Cli exp (-i CiS) exp (-i Mc,<)H(e, Jaexp (i MC,<)exp (i CIS)ICI)
(46)

stationary with respect to varijltions in the CIS parameters only. Introducing the
shorthand notation

H(e, /-L)= exp (-i Mc,<)H(e, /-L)exp (i MC,<) (4})

in Eq. (46) and expanding the exp (iCIS) operator in powers of CI S, allows us to
write the total energy in Eq. (46) as '

E (S, /-L)= E + cP CI S + lc O CI S CI S + icK CI S CI S CI S + . . . , (48)

where the E, cP,co, and cj( are defined through Eqs. (31)-(34), but with the
modified Hamiltonian H(e, /-L)of Eq. (47) replacing H(e, /-L)of Eq. (19). The
upper left subscript C ón cP, cO, and cj( is introduced to remind us that these
matrices only have configuration-space components. Setting the first derivative
with respect to CIS of Eq. (48) equal to zero then gives:

o~Cp+Co CIs+lcj( CiS CIS+ "'. (49)

A rower series expansion of the parameters CI Ssimilar to that used for tl1e A
parameters of Eq. (40) may n()w be introduced

00 00

CIS= L, L e//-LkCIS1,\
/70 k=O

(50)

and Eq. (49) solved order-by-order in e and /-L.To do so we most also decompose
H(e, /-L) joto various orpers in e and /-L.Knowing the MCK/,k from the orbital
optimization step and using the e and /-Lexpansions of H(e, jL) given in Eq. (19)
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glves
00

- l k-
H(e, f-L)= L e f-L Hl,b

l,k~O

where, for example,

fioo = Hoo;

filO = HlO- j[MC,(I,O, Hoo],

fiol = HOI - i[MC,(~1, Hoo],

fiu = Hu - i[MC,(I,l, Ho,o]- i[MC,(I,O,HO,I]- i[MC,(O,1, Hl ,o],

.1143

(51)

(52)

(53)

(54)

(54a)

etc. The quantities il, cft,cG,and cK contain fi(e, f-L) in a linear fashion and
they caDbe expressed in rower ,seriesin e and f-L

1 00

il = L L ill,kelf-L \
1=0 k=O

1 00

Cft= L L Cp,kelf-L \
1=0 k=O .

1 00

CG = L L CGI,kelf-Lk,
1=0k=O

1 00

CK = L L CK I,ke If-L\
1=0 k~O

in which each term arises fromthe e and f-Ldependence of fi. For example,

Cp,k =(CII[CIR + - CI R, fil,kJICI).

Usihg Eqs. (55)-(58), Eq. (49) caD be written in an order-by-order fashion:

Cftl,O + CGo,o CISI,O =O,

Cft°,1 + CGo,o CI SO,I = O,

Cftl,l + CGl,O CI SO,I + CGO,I CI SI,O + CGo,o CI S 1,1 + cKo,O CI SO,I CI SO,I = O,

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

etc., which are the working response equatioris for this q case. Note thatthe CI
response equations in Eqs: (60):'(62) are identical in form to the)\1CSCFresponse
equations of Eqs. (42)-(44) when f, G, and Kare replaced by cft, cQ, and cK
and A by CIS. .

5. Electric-Field and Nuclear-Displacement Dependenc~ ol E

Given the above procedure for computing the Ai parameters, we naw return
to our expressionfor the energyE (e, f-L)in order to identifythe desiredmolecular
propertles (dipole moment and polarizability) arld. their nuclear-displacement
derivatives, We accept as the definition of the dipole moment M and polarizability
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a the electric-field expansion of E(c, I-'Xgiven in Eq. (2). The dipole moment
as a function of nuc1ear displacement M(I-') is therefore obtained by finding aU
terms in E(c,l-') which are linear in c. The polarizability function a(l-') is
calculated as -2 times the sum of aU terms in E (c, 1-')which are quadratic in c.
The dipole momet1t and its I-' derivatives* at I-' = O are then obtained by finding
terms in E (c, 1-')which are first order in c and zeroth, first, etc., orders in 1-'.In
a similar fashion -la(O) and its I-' derivatives are obtainecl by writing aU terms
in E (c, 1-')which are quadratic in c and zeroth, first, etc., orders in 1-'.

A. The Dipole Moment for the MCSCFWavefunction

Usingthe expressionsfor the AI,kin Eq. (40) and FI,\ 01,\ and KI,k of Eqs.
(36)-(38) in the total MCSCFenergy expressionin Eq. (30), the foUowing results
are obtained for the dipole moment and its derivatives:

M(O) = El,o = (olriO), (63)

dM

I

- =El,1+Fl,oAo,I+Fo,IA1,0+00,oAl,oAo,1
dl-' I-'=0

= El,1 + Fl'OA 0,1, (64)

1 d2M

I

-~

---z = El,2+ Fl,o A0,2+ Fl,1 A0,1 + FO,1 A1,1
2 dl-' 1-'=0

+ FO,2A 1,°+ Oo,OA 1,0A 0,2+ Oo,OA 1,IA 0,1

+lol,o A 0,1 A 00}+ 0°,1 A 0,1A 1,0

+!KO,O A 1,0 A 0,1 A 0,12 . ,.

= El,2+ Fl:l A0,1

+ FO,2 A 1,0 +lOl,O AO,1 A 0,1 + 0°,1 A 0,1A 1,0

+lKo,oA 1,0A 0,1 A 0,1. (65)

In simplifying the above equations, use bas been mad e of Eqs. (42) and (43).
The simple form of the dipole,moment expression in Eq. (63) is because the
HeUmann-Feynman theorem tS fulfilIedin the MCSCFcase. Although more will
be sald later about the relationships of these expressions to those obtained via -

finite differ,ence calculations at slightly displaced molecular geometries, the above
expressions can be viewedas practicaLwot;king equations for evaluating M and
its I-' derivatives analytically. -

* In considering which nuclear displacements to use in an actual implenientation of theequations
we derive here, care musi be taken to remove the translation and rotations from the 3N primitive
displacements. Pulay et al. make Ibis point clearly in Ref. 3. "
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B. The Polarizability for the MCSCFWave Punction

In an analogous manner, the pólarizability and its first J.t derivative caD be
expressed as follows:

-!a(O) =p1,oA 1,0+!A 1,0A1,000,0=-!p1,oA 1,°,

1 da

l

---' =p1,oA1,1+00,oA1,lA1,0+pO,lA2,0+00,oA2,oAo,1
2 dJ.t 1'=0 . ,

+ pu A 1,0 +!00,1 A 1,0A 1,0 + 01,0 A 1,0A 0,1

+!KO,O A 1,0A 1,0A 0,1

=pUA 1,0+-!00,lA 1,oA1,0+01,oA 1,oA0,1

+!KO,OA1,oA1,oAo,1.

(66)

(67)

Again Eqs. (42) and (43) have been used to simplify the aboveequations.

C. The Dipole Moment for theC! Wave Punction

The ca1culation we naw consider assumes that ah MCSCFca1culation has been
carried out in a configuration space consisting of the presumed dominant configur-
ations and, subsequently, a larger CI ca1culation has been carried out using the
'resultant MCSCForbitaIs and a configuration list that is larger than that used in
the MCSCFcakulation. Because the orbital and configuration amplitud es of the
finaliCI) wavefunction have not been ~ptimized simultaneoU'sly, each component
of the response vector must be viewed as having been determined from separate
ca1culations. Tlie orbital responsesMcK1,0, MCKo,l.MCK1,l... . , should be deter-
mined from Eqs. (42)-(44) using the MCSCFstare and itsorthogonal-complement
set of states to describe the configuration space part of these equations. The
configuration responses C1S1.0,CISO,l,C1S1,1should be determined 'from Eqs.
(60)-( 62). Given these MC K and CI S responses,one caDobralo an order-by-order
decomposition of the total energy in Eq. (30). The dipole moment corresponding
to a CI ca1culation may be identified by coIlecting those terms in Eq. (30) which
are first order in E and zeroth order in J.t;

M(O) =E1:o =(CllrlcI) + L (ClI[a~as - a; ar>Ho,o]lcI)MCK~;o.
r>s

(68)

To derive Eq. (61) we have used the fact thatCpO,o vanishes

(cII[R+ - R, Ho,o]lcI)= O,

because {heCIstare bas bad its configuration amplitudes variationally determined.
The last term in Eq. (68) denotes the,non-Hellmann-Feynman contribution to
the dipole moment caused by the fact that the orbitaIs and configuration ampli-
tudes are optimized in separate ca1culations. Equation (68) has previously been
derived by Tuan [10] and discussed by Nerbrant [11]. Diercksen et al. [12] have
show!} the importance of the last term of Eq. (68) when correlatión effects are

'---
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important for describing the dipole moment. Diercksen et al. evaluated the last
term in Eq. (68) by initially determining the total dipole moment using energy
finite differences and then subtracting the first term of Eq. (68) from the finite
difference total dipole moment: The second term may be evaluated mate simply
by carrying out a simple one index transfórmation of the integrals [1, 8J.

The dipole moment derivative with respect to nuc1ear displacement may
similarly be written as [see Eq. (48)J

dM

I

=131.1+ Cpl.0 CISO.I + CpO.I CISI,O+COO,o CIS1,0 CISO,1
dJL JL=O

= 131,1 + Cpl,O CISO,I. (69)

To derive Eq. (69) use bas been marle of Eq. (60) and cpoo = O.Note that the
CIdipole moment first derivative is identical in structure to the MCSCEexpression
for the dipole moment first derivative with E, F, G, and K replaced by B, cP,
co, and cK and with Areplaced by CIS. In fact, such replacements will, in general,
bring the MCSCEexpressions into the corresponding CI results. For!his reagan
we need not give explicit expressions for the CIsecond dipole moment (Jerivative,
the CI polarizabilities,"and the CI fitst polarizability derivative, but refer to
appropriate substitutions of theMcscE equations in Eqs. (65)-( 67). The additional
wark involved in carrying out 11CI calculation coIJlpared tg an MCSCFcalcuhition
thus consists of carrying out the Hamiltonian transformaHons in Eqs. (51)-(54)
and determining the requireAdCI response parameters from Eqs. (60)-(62).

6. Relationships between Finite-Difference and Analytical M and a Derivatives.

It is of interest to examine whether finite difference [13J* estimates ofithep
derivatives of M(JL) and a (JL)adequately replicate the results of the analytical
M and a derivative calculations described above. Such calculations are dane [14,
15J by evaluating M(JL) or a(JL) at c1osely spaced geometriesand, forexample,
utilizing finite-difference fit techniques such as those outlined c1early by Bartlett
and Purvis [13J.

A. The MCSCFCase

Let us consider how the results of such finite-difference MCSCFcalculations
would relate to those obtained using aur analytical expressions. The orbital and
configuration dependence of the wavefunction lO) at a slightly displaced geometry
JLfor the MCSCFfunction caD be represented"as

lo) = exp [i(JL ,(°,1 +!JL 2 ,(°,2 + . . .)J exp[i(JLSO,1 +!JL 2SO,2+ . . '.' )JIO).

(70)

* BartIett and Purvis [13] do not necessarily advocate use of finite-difference methods; their article is,

in OUTopinion, one of the clearest descriptions of the intracacies of the finite-difference approach.
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The finite difference first derivatives~of M and a caD be thought of as arising
tram using lO) and lO)in aur expressions for M and a given in Eqs. (63) and (66):

d

dM;: lim ~ -1[(Olr(Ro+ ~)IO)-(Olr(RO)IO)],
~ 1-'->0

-
dda;: lim!~ -1{(OI[T,r(Ro+ ~)]lo)(ol[T, T, H(Ro+ ~)]lo)-I(ol[T, r(Ro+ ~)]Io)

~ 1-'->0"

-(OI[T,r(RO)]lo)(ol[T, T, H(RO)]Ia>-l(OI[T, r(RO)]IO)},

(71)

(72)

- -+ - -+--
T refers to the orbital excitation (Q - Q) and state transfer (R-- R) operators
at the displaced geometry Ro+~, which may be expanded in terms of the orbitaIs
and states at the undisplaced geometry as

6+=exp[i(~KO.I+!~:fKO,2+.. ')]!Yexp[-i(~Ko,I+!~2Ko,2+" ')],

R+=exp[i(~Ko,1+!~2Ko,2.. ,)] exp[i(~§0,1+!~2§0,2+ ".)]

R+exp[-i(~Ko,1+!~2Ko,2+., ')]exp[-i(~§0,1+!~2§0;2+., ,)],

(73)

(74)

The ~ dependence of r(Ro+~) and H(Ro+~) is given in Eqs. (14) and (15),
Higher derivatives such as d2MId~ 2 caDbe obtained by identifyingcoefficients
ot higher powers of ~.

Let us consider first the finite difference evaluation of dM I dJ.i.By expanding
the exponential operators in Eq. (70) and collecting terms which are first order
in ~, we obtain -

(Olr(RO+ ~ )10)=~(Olr11a> + (OlriO) - i~A 0,1(01[T, r ]10) + ' , ,

= ~(0Ir1Io)+ ~A0,1F1,0+(OlrIO),

so

dM;: EI,l + F1'OA 0,1,
d~

(75)

(76)

which is in agreement with aur analytical result [Eq. (64)].
The analogous treatment of dal d~ is alittle maTe tedious. We begin by

analyzing the ~ depeQdence of each of the factors app~aring in.Eq. (72):

(OI[T, r(Ro+~)]10)=F1,0+~F1,1+~G1,oAo,1+., "

(OI[T, f,H(Eo+~)]IO)-l

= [Go,o+ ~GO,l + ~Ko,a-A 0,1 + ;, 'rl

=(GO,O)-l_(GO,O)-l[~GO,l+~Ko,oAo,I+.. '](GO,O)-l+" '.

(77)

(78)
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Using these two expressions in our finite-difference form ula [Eq. (72)] for dal dJA-,
we obtain

da
- =A1'°01,0 AO,1 + A1,0Fl,l +lKo,o A1,0A0,1A1,0+1 A 1,000,IA 1,0
d 2 2 ,,JA-

(79)

which again is identical. to OUTanalytical expression.
The above analysis mak es it elear that finite-difference methods caD be used

to determine the geometry dependence of M and a. Of course, in carrying out
such finite-difference calculations, car e must be taken to ensure that the
geometrical displacement step size JA-is indeed smalI enough to permit the
derivatives to be accurately described as a finite difference and ret large enough
to ensure that energy differences ale computed accunitely enough to determine
the derivative.

B. The CI Case

To demonstrate both that an ~nalysis similar to that employed above caD be
used for the CI response and that mOle cale must be taken in the CI case, let us
examine the finite difference simulation of dM I dJA-.The CI expression [Eq. (68)]
for M at a smalI displacement JA-gives

M(JA-)= (cIlr(Ro+ JA-)- i[MC;I,O,H(Ro+ JA-)]lcI), (80) ,

where the tilde denotes the operators and states at the displaced geometry. The
nuclear dependence of each individual factor in Eq. (80) will now be analyzed.
The CI staLe at the displaced geometry may be written through firsf order in JA-as

lei) = exp (iJA-MCKO,I)exp (iJA-CI§O,I)lcI). (8 l)

The nuclear dependence of the operator

MC:l,O = i L MC,<~;O(O~- Ors),
r>s

(82)

is determinedthrough the dependence of the orbital excitation operators in Eq.
(73) and the MC,<I,Oparameters'of Eq. (42). To determine the JA-dependence of
MC,<I,Orequires both components of Eq. (42) to be JA-expanded:

MC;I,O= -«(;O,O)-lpl,O. (83)

Using the expansions for pl,O and «(;°,°)-1 found in Eqs. (77) and (78) alIows
us to obtain

MC ;1,0 = -( O~,O)-I[Fl,o + JA-Fl,l + JA-A0,101,0 + JA-OO,1A1,0+ JA-Ko,oAo,IA 1,°]. (84)

By now recognizingJhat the last tour terms in Eq. (84) appear: in Eq.,(44) for
A1,1, we caD write

MC;1,0 = -( OO,O)-I[Fl,o - JA-Qo,oA1,1]

= A 1,0 + JA-A1,1, (85)
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and so

MCKl,O = MCKl,O+JL McKl,l. (86)

The JL dependen<ieof ~f(JL) in Eq. (80) may naw, using Eqs. (14), (15), (73),
(79), and (81), be written

M(JL) = (Cliexp'(-:-iJLCI5O,I){rl.0+Wll-iJL[MC,<O,I,rl,O]+ . . .
- zo[MCAl,O H ]- Z

o

[
MCAl,1 H ]K , 0,0 JL K , 0,0

- iJL[MC,<1,°,HO,I]+ . . .} exp (JLi CI5°,1)ICI),

and simplified using Eqs. (53), (54a), (55), and (56)

M(JL)=(Cllexp(-iCl5o,I)(H1,0+JLHl,l+' . ')exp(iCI5o,I)ICI)

=Cill,0+JLcil1,I+JL Cpl,OSO,I... o

(87)

\
(88)

Equation (88) clearly shows that the finite-difference CI expression for dM/ dJL
is identical to the analytical expression in Eq. (69).

In summary, the cI,method can also be used within the finite-differen.ce
approach to compute dM/ dJL.However, one must use the CI expression for
M(Jl:) [Eqo (68)]; one c~nnot use the MCSCFformula (cil,(Ro+ JL)lci). Only the
CI dipole moment expression of Eqo (68) is a correct expression to use when
computing CI dipole momentso The expression (cil r(R ° + JL)Ici) would only be
correct if exactly the same molecular orbitais were used at. Ro and Ro + JL.
However, finite-difference CI dipole moment derivatives have conventionally
been evaluated using different SCForbitais arRo and Ro + JL,and using only the
first term ot Eq. (68) [14]0 As a result, CI finite~difference dipole moment
derivatives have been incorrectly evaluated and cannot be trusted, in particular,
for cases where the second term of Eqo (68) is important for deseribing the dipole
moment [12]. Care must also be tak en to use the correct expression for the
polarizability in evaluating cI-based finite-difference polarizability derivatives.
Such bas not in general been the case, as a result of which CI polarizability
derivatives have' been incorrectly evaluated [14, 15].

7. CoD(~ludingRemarks

We have shown how to use modern energy and wavefunction response theory
to generate analytical expressions for molecular. dipole moments and
polarizabilities as well as for their geometrical gradients. Our developments have
been carried out explicitly for multiconfigurational self-consistent-field and con~
figuration interas:;tion wavefunctions.

The relationships between aur analytical results for dipole moment and
polarizability derivatives and derivatives obtained by finite-difference methods
were analyzed in same detail. We found that finite-difference techniques could
be used to generate derivatives which agree with aur analytical expressions, but
only if the quantity whose finite difference is taken is a consistent representation
of the dipole moment or polarizability for the particular wavefunction (MCSCF
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or CI) under consideration. Previous finite.-difference nuclear displacement dipqle
mament and polarizability derivatives for CI wavefunClions have used incorrect
representations [14,15] of the dipole moment and the polarizability, and thus
their nuclear 1;derivative~'have beenincorrectly,evaluated.
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