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Abstract

Molecular dipole moments and polarizabilities, as well as their geometrical derivatives, are given
analytical expressions for multiconfiguration self-consistent-field and configuration interaction
wavefunctions. By considering the response of the electronic wavefunction induced by electric field
and geometrical displacement terms in the Hamiltonian, the response of the total electronic energy
to these terms is analyzed. The dipole moment and polarizability are then identified through the
factors in the energy which are linear and quadratic in the electric field, respectively. Derivatives
with respect to molecular deformation are obtained by identifying factors in these moments which
are linear, quadratic, etc., in the distortion parameter. The analytical derivative expressions obtained
here are compared to those which arise through finite-difference calculations, and it is shown how
previous configuration-interaction-based finite difference dipole moment and polarizability derivatives
are wrong. The proper means of treating such derivatives are detailed.

1. Introduction

In a recent publication [1] we demonstrated how to obtain analytical
expressions for potential energy forces (gradients) and curvatures (Hessians)
appropriate to a wide range of ab initio quantum mechanical wavefunctions. By
using symmetrically orthogonalized atomic basis functions, all of the explicit
geometry dependence (u), including the basis set dependence, can be isolated
in the electronic Hamiltonian H(x ), and unitary exponential operators exp (iK)
exp (i$) can be used to treat the implicit variations in the electronic wavefunction.
Expressions for the dependence of the energy on the 3N nuclear displacements
w={X, Y, Z;i=1,...,N} (N is the number of atoms in the molecule):

J9E . 13 E :
E(”)_E{OHaﬂ”-‘-ZaﬂZ“ e s (1)
could then be derived. In that one paper we were able to cover most of the
previously existing™ gradient and Hessian expressions as well as to obtain several
new results.

In the present paper, we turn our attention to the geometry dependence of
those molecular properties which arise as responses of the energy to an externally
applied field. In particular,7 we consider the effect of an external electric field

* Reference 1 contains a review of gradient and Hessian results which have been obtained by others.

T The derivation and results obtained here remain valid for any external perturbation which
appears in the Hamiltonian in a linear fashion.
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of strength £ on the electronic energy E. By utilizing the machinery of Ref. 1,
but with a Hamiltonian which includes the electric dipole interaction H+¢ - r,
we are able to determine the & and u dependence® of E(e, n). According to

- E(e)=E(0)+e -M—3je-d-e+ -, (2)

the dipole moment (M) and polarizability (&) functions can easily be identified
once the ¢ dependence of E is analyzed. Furthermore, by studying the u
dependence of E(e, u), we are able to extract the u dependence of M and a:

dM  1d4d°M
M(p)=M(0)+——pu+-——pu’+: -
() (0) i pts B i : (3)
i dé 1d*& :]
1 1] o i SOTE o B T L
&(u)=a0) T (4)

The u derivatives of M and & are of great importance in molecular spectroscopy
[2,3]. The sizes of dM/du and d°M/du’ govern the strengths of infrared
fundamental and (first) overtone transitions, respectively, whereas d@/du deter-
mines Raman fundamental intensities.

In Sec. 2 we describe how the electronic Hamiltonian depends on the electric
field and on nuclear displacement and how the use of orthogonalized atomic
basis orbitals is especially useful. In Sec. 3 we discuss how the electronic wave

“function |0) and energy E depend on the combined presence of an external
electric field and an infinitesimal nuclear displacement. The orbital and configur-
ation amplitudes of |0) are varied to make E (e, ) stationary in Sec. 4 thereby
obtaining &- and u-dependent expressions for the optimal orbital and configur-
ation amplitudes. The explicit ¢ and p dependencies of H+e - r is combined
with the implicit dependence of the McscF or configuration interaction (cr)
functions |0) in Sec. 5 to generate the full £ and 1 dependencies of E(e, u). This
then allows us to obtain new analytical results for the dipole moment and
polarizability derivatives. In Sec. 6 the relationships between our analytical
expressions and results obtained by finite difference approaches are clarified.
Section 7 contains our concluding remarks.

2. Dependence of Electronic Hamiltonian on € and p

When an electric field is applied to a molecule, the total electronic energy E
contains an explicit dependence on both the electric field (¢) and the nuclear
positions () which appear in the Hamiltonian and an implicit dependence arising
through the variational parameters characterizing the wave function. Let us first
describe how to express the Hamiltonian dependence on the electric field and
the nuclear position.

* ¢ is the (static) electric field strength, and x is a 3N-dimensional vector containing the
displacements of each of the coordinates of the molecule’s nuclei.
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The Hamiltonian of the molecule in the presence of the field may be written
as

H=H+e-r (5)

where ris the position operator and H is the nonrelativistic electronic Hamiltonian
of the molecule in the absence of the electric field. In a finite-basis calculation
the above Hamiltonian can be conveniently expressed in terms of a basis of
orthogonalized atomic orbitals {¢;}. When such an orthonormalized set of atomic
orbitals is used, all basis set effects are isolated [4] in the one- and two-electron
integrals which occur in the Hamiltonian. All annihilation and creation operator
dependencies on nuclear position can be neglected in this case without loss of
generality, as was explicitly demonstrated in Ref. 1. Within this basis of
orthogonalized atomic orbitals, whose precise nature we discuss later, the
Hamiltonian H becomes [5]

o hpq@pag+3 z (Gpdbqldibu)azagasa, (6)
where the integrals are
blsso= | $3(1)65Q2);—0u(1)6(2) dr, drs )
hog = (bpl 1 3), (8)
and h, contains all of the usual one-electron operators
fi —lVf"Z Za 1 ZaZg 9)

—+— _,
2 ZIr—Ra| 24%8|RA—Rj|

and Z, denotes the charge and R, is the position of nucleus A.
The electric dipole operator may also be expressed in the basis of these atomic
orbitals

e-M=¢-} Mya,a, (10)
g
where
M,, =(d,lr|d,)— Y ZAR 48, (11)
A

The Hamiltonian depends on nuclear position through the second and third terms
in Eq. (9) and through the fact that the basis functions appearing in the integrals
are combinations of primitive atomic orbitals which sit on the nuclear centers.
In what follows, we will suppress the vector notations r, M, R,, €, etc., for
notational ease and simply keep in mind that the electric field is a vector quantity.

To explore how the Hamiltonian changes as the nuclei are moved, let us
consider the infinitesimal nuclear displacement

RO_)RO"'#") (12)
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where u is a row vector
p=(LApAmaArBmE "), (13)
containing the (small) magnitudes of displacements in the X, Y, and Z components
of all nuclei A, B, etc.
The Hamiltonian in Eq. (6) at the displaced coordinates can be written as
the Hamiltonian at the undisplaced coordinates H, plus terms that are linear,

quadratic, cubic, etc., in the nuclear displacement u. In Ref. 1 the dependence
of H on p is written

H(R®+p)=Ho+pH, +3uHop+ - - -, (14)

and explicit expressions are given for H; and H,. The electric dipole operator’s
dependence on p may be written in a similar manner

M(R0+p)=Mo+p,M1+%gM2p+ s (15)
where
M1=Zv[(¢plr_(z ZARA)|¢'Q>]a;an (16)
f] A
=3 vv[(¢p|r~(z ZARA)|¢q)]a;aq. (17)
g A

The vector V contains derivatives with respect to all coordinates of the nuclei
V={VaVs...1 (18)

The full Hamiltonian, including the electric dipole term, at the displaced coordin-
ates may thus be written as a power series expansion in € and u

1 o0
H(e,n)=Y X H:,kﬁff-‘vk (19)
I1=0 k=0
where, for example, H0,2=%H2 and H1,2=%M2.

3. Dependence of the Wavefunction and Energy on » and &

Let us consider a multiconfiguration wavefunction [6]
|0> =Z_ Cio|¢’i)s (20)

where |®;) denotes a configuration state function that consists of a simple linear
combination of determinants {|¢f’)}

)= H a;|vac). (21)

The product [],<; ay is an ordered product of creation opcrators which relates
to the set of orthonormal molecular orbitals occupied in |¢f). For the sake of
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simplicity we assume in the following development that all orbitals and states
are real. Note that now we have made a specification of the nature of the
orthonormal orbitals used to express H.

The multiconfiguration state function |0) at the displaced geometry R+ u
may be expressed as a unitary transformation of the wavefunction |0) at the
undisplaced geometry R:

10) = exp (ik) exp (iS)[0), (22)
where the operators

k=i Z Krs(a:as_a:ar)’ (23)

$ =% Sualllex0l=[0XKD, _ (24)

are discussed in detail in Refs. 1 and 6. K contains all nonredundant orbital
excitation operators of the orbital optimization problem [6]. In S, the states {|k)}
denote the set of orthogonal complement states to |0), each of which is also some
combination of the same configuration state functions

k) =Y. Cu|®y). (25)

The coefficient matrix C of Egs. (20) and (25) obviously forms a unitary matrix.
At the displaced geometry, the total electronic energy of the molecular system
in the presence of an electric field may be written [1]

E(k, S, & p) =(0[H(e, p)|0) (26)

Expanding this total energy in powers of S and « around the point (k, S) =(0, 0)
gives
E(x, S, u) =(0[H(e, #)|0)— (O[S + &, H(e, u)]|0)
—XOI[S, S, H(e, 1)]0)—XO[[&, &, H(e, u)]|0)
— (OIS, [%, H(e, p)N0)+4i(0[[S, S, S, H(e, 1)]|0)
+4i(0|[K, &, &, H(e, 1)]|0)+3i(O|LS, S, [K, H(e, 1)11|0)
+3i(0[[S, [X, &, H(e, w)1N|0)+ - - -, (27)

where we have introduced the n-tuple symmetric commutators discussed in Ref.
1. The role of these commutators is to make the matrices shown below in Egs.
(32)-(34) symmetric under permutation of their indices. By now introducing a
notation in which the variational parameters «,; and Sy, as well as the operators

O:.; = {a-r'—as}y r> 53 :ﬂm{lkxol}y
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multiplying these parameters in K and $ [see Egs. (23) and (24)] are collected
together as column vectors

' {A.—}=»\=(;‘;), (28)
3o = O;:_QJ'S
Lo T‘(RIO—RN)’ 23

we can write the total energy as (Einstein summation convention is used with
respect to the subscripts i, j, k)

E(A, p)=E+FA+3GA0 +5 KA+ - - (30)
Here the Hamiltonian average value
E =(0[H(e, p)|0), (31)
the generalized Brillouin matrix [6]
F=(0|LT, H(e, un)]|0), (32)
the Hessian matrix
G =(0|[T, T, H(e, n)]|0), (33)
and the cubic derivative matrix :
K =(0[T, T, T. H(e, u)][0), (34)

are all £ and u dependent. In defining the matrices G and K, the Hamiltonian
always operates first on the orbital-space excitation operators and then on the
orbital-space excitation operators and then on the state transfer operators [1].
Because the matrices G and K are symmetric under permutation of their indices,
their explicit indices need not be written out as in Eq. (30); this shorthand device
will be used from now on.

4. Wave Function Optimization
A. mcscr Case

To obtain a useful expression for how the total energy of an Mcscr wavefunc-
tion depends upon electric field strength (¢) and nuclear displacement (u), we
need to first determine how the Mcscr wavefunction response parameters (A)
depend on & and u. Equations for determining the A; as functions £ and u can
be obtained by differentiating Eq. (30) for E(A) with respect to A and setting
the resultant expression equal to zero

F+GA+iKAA+ - =0. (35)

. Recall that because the Hamiltonian of Eq. (5) depends on & and u, the
matrices F, G, and K, each of which contains this Hamiltonian once, depend on
€ and p in a parallel manner. In particular, we can express F, G, and K as power
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series in € and w

1 oo
g7 J):.O kZO Fte'uk, (36)
1 oo
G= IZO k}:ﬂ G e'ut, (37)
1 a0
K=Y ¥ K"%e'u¥ (38)
1=0 k=0

in which each of the terms arises from the £ and u dependence of H. For example,
G"“=(0|[T, T, H,]|0), (39)

and H;, is given in Eq. (19).
By introducing Eqs. (36)—(38) into Eq. (35) and assuming that the A response
parameters can also be expanded in powers of £ and u

A=3 Tty (40)
=0 k=0
we can obtain an order-by-order solution of Eq. (35). The lowest order equation
obtained in this way reads as follows:

Fo%+ GO0A%0+1KO0) %0\ %0+ ... =0, (41)

This is nothing but the parameter optimization equation appropriate to the
situation with u =0 and & = 0. Because the Mcscr wavefunction has been optim-
ized at u =0, € =0 we have F*°=0 and, hence A%’ =0. The next few low-order
equations are as follows:

F104+ G0\ 0=, (42)
El+ 0% =0, _ (43)
Fl'l+Gl'ot\o'l'f60’11\1’04‘60’01\"'+K0'0)l1’0h0’1=0‘ (44)

These equations allow the low-order A"* to be evaluated in terms of the F, G,
and K matrices.

The matrices G*° and K°° are nothing but the Hessian and third derivative
matrices which appear in McscF energy optimization [7]. The vectors F' and
A%! relate to the response of the system to the u variation; explicit expressions
for these quantities are given in Eqs. (39) and (46) of Ref. 1 and in Ref. 6. The
vectors F'° and A" describe the response of the system to the electric field and
are treated in Ref. 8. G'* and G are Hessian matrices but with the Hamiltonian
operator replaced by M, and H,, respectively. Finally, F'"' is a generalized
Brillouin vector with the Hamiltonian replaced by M,. Once the integral deriva-
tives appearing in H, and M, are available, the evaluation of all of these quantities
requires no more effort than needed to evaluate the generalized Brillouin and
Hessian matrices which arise in conventional MCSCF energy calculations. Even
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the seemingly formidable third term of Eq. (44) can be handled straightforwardly
as described in Ref. 9.

B. ThecrCase

Equations (35) cannot be directly used to express the optimal x and S
parameters appropriate to the c1 wavefunction. This is so because a cI calculation
is carried out in two steps. In the first step, the orbitals are determined by a scr
or McscF orbital optimization and in the second step the configuration amplitudes
are optimized through the cI calculation. The response of |c1) to a nuclear
displacement may therefore be parametrized as

|en) = exp (i MCR) exp (i°'S)|c), (45)

where the Mk coefficients are first obtained in an MCsCF or scF calculation via
Eq. (35) and subsequently the “'S coefficients are obtained as we now describe.
The response of the orbitals (M“«"¥) is fixed at values entirely determined from
the Mcscr orbital optimization prior to the ci1 calculation. The configuration
amplitude responses 'S are determined by making the energy expression

E(S) =(c1| exp (=i €'S) exp (—i MCR)H(e, u) exp (i MK) exp (i <'8)|c1)
(46)

stationary with respect to variations in the 'S parameters only. Introducing the
shorthand notation

H(e, u)=exp (=i M&)H(e, ) exp (i k) (47)

in Eq. (46) and expanding the exp (i°'S) operator in powers of 'S, allows us to
write the total energy in Eq. (46) as

E(s,p)=,§+c1:-c:s+%r:é CISCIS_'_%CK ClgCigClgy ..., (48)

where the E, °F, G, and “K are defined through Egs. (31)—(34), but with the
modified Hamiltonian H (e, u) of Eq. (47) replacing H(g, u) of Eq. (19). The
upper left subscript C on “F, G, and “K is introduced to remind us that these
matrices only have configuration-space components. Setting the first derivative
with respect to 'S of Eq. (48) equal to zero then gives:

0=SF+5G SIS +1R IS Clg+ - - - (49)

A power series expansion of the parameters €IS similar to that used for the A
parameters of Eq. (40) may now be introduced

C[S= Z Z E:}LkCISLk, (50)

1=0 k=0
and Eq. (49) solved order-by-order in £ and . To do so we must also decompose
H(e, ) into various orders in & and w. Knowing the M°x"* from the orbital
optimization step and using the & and u expansions of H(e, u) given in Eq. (19)
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gives
H(E,#)=;Z_ Et#kg:,k, (51)
where, for example,
ﬁoo= Hyo, : (52)
Hyo=Hyo— iR, H), 59
I-_Iﬂl =Hp— f[MC'?m: Hoo]: (54)
Jqu =H;;— ‘.[Mcfl’la Hypol— E[MC"‘\ o Hoy,1— f[MCQO’I, H,,l, (54a)

etc. The quantities E, “F, G, and “K contain H(e, 1) in a linear fashion and
they can be expressed in power series in € and u

E=,=io ,EO E*eluk, (55)
‘F= éo Eo CF Mgl k, (56)
G = 3_':0 kijo CGtreluk, (57)
CK:,ZI:O :Z:OCK-'”‘sluk, (58)

in which each term arises from the ¢ and u dependence of H. For example,
CF** =(cI[*"R*=“'R, H,, ]|c1). (59)

Using Egs. (55)-(58), Eq. (49) can be written in an order-by-order fashion:
CF1,0+CG_0,0 C]sl.U___O’ (60)
CEO.1 4 CGOOCIgol — (61)
CP_-I,I i C‘G_I,O Clle.l + CG_O,I Clsl.0+ CG_O,O CISl,l +CK0'O CIS{).I Clsﬂ,l =O, (62)
etc., which are the working response equations for this c1 case. Note that the c1
response equations in Egs. (60)-(62) are identical in form to the MCSCF response
equations of Eqs. (42)-(44) when F, G, and K are replaced by “F, G, and °K

and A by “'S.
5. Electric-Field and Nuclear-Displacement Dependence of E

Given the above procedure for computing the A; parameters, we now return
to our expression for the energy E (¢, ) in order to identify the desired molecular
properties (dipole moment and polarizability) and their nuclear-displacement
derivatives. We accept as the definition of the dipole moment M and polarizability
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a the electric-field expansion of E(e, ) given in Eq. (2). The dipole moment
as a function of nuclear displacement M (w) is therefore obtained by finding all
terms in E(e, u) which are linear in e The polarizability function a(u) is
calculated as —2 times the sum of all terms in E (e, ) which are quadratic in &.
The dipole moment and its u derivatives® at u =0 are then obtained by finding
terms in E(e, u) which are first order in € and zeroth, first, etc., orders in u. In
a similar fashion —3a(0) and its u derivatives are obtained by writing all terms
in E(e, u) which are quadratic in £ and zeroth, first, etc., orders in w.

A. The Dipole Moment for the mcscF Wavefunction

Using the expressions for the A" in Eq. (40) and F bk G** and K of Eqgs.
(36)—(38) in the total McscF energy expression in Eq. (30), the following results
are obtained for the dipole moment and its derivatives:

M(0) = EM*=(0]r|0), (63)
dM 1.1 1,0, 0,1 1,1,0 0,0, 1,04 0,1
P SRRE AR A GO MY
p=0
=EI’I+F1'0A0'1, (64)
%%f =E1,2+F1’01‘.0’2+F1’11‘.0'I+F0’lkl']
Mo =0

+F0’2A 1‘0_'_ G0.0)( 1,0’\0,2_’_ GO‘D/\ 1‘1’\0,1
+%GI,OA0,I"O,I _'_Gﬂ,l)‘{),l)‘ 1,0
+%K0‘0A 1'01\0'1(\0‘1

= El24 F1i1)01
+F‘0‘2ALU+%GI'U)(0'1)(0’1+Go’l1\0'1AI'D
+%KU.0A1‘0A0,1A0,1’ (65)

In simplifying the above equations, use has been made of Egs. (42) and (43).
The simple form of the dipole moment expression in Eq. (63) is because the
Hellmann-Feynman theorem is fulfilled in the McscF case. Although more will
be said later about the relationships of these expressions to those obtained via
finite difference calculations at slightly displaced molecular geometries, the above
expressions can be viewed as practical working equations for evaluating M and
its u derivatives analytically.

* In considering which nuclear displacements to use in an actual implementation of the equations
we derive here, care must be taken to remove the translation and rotations from the 3N primitive
displacements. Pulay et al. make this point clearly in Ref. 3.
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B. The Polarizability for the mcscrF Wave Function

In an analogous manner, the polarizability and its first u derivative can be
expressed as follows:

_éa(o) 4 FI’OJ\]'O+%A I'OA I'UGO’O—_"%FI'OI\ 1,0’ (66)

_1% =F1.0A1‘1+GO.0A l,lal,ﬂ_'_FO,lAZ,O_'_GO.{)I\Z‘O/\O‘I
2dlu" u=0

+Fl,IAI,{)_'_%GO.IA1.0A1,0+Gl,0’\l,01\0‘1

+%K°‘0A1’0)¢"°)l°'1
=F1‘1A1'0+%G°"a\1‘0A1’0+GI‘GAI'OA0"

+%K0‘0)11’0:\]’0:\0‘1. § (67)

Again Egs. (42) and (43) have been used to simplify the above equations.

C. The Dipole Moment for the ct Wave Function

The calculation we now consider assumes that an MCscF calculation has been
carried out in a configuration space consisting of the presumed dominant configur-
ations and, subsequently, a larger cI calculation has been carried out using the
resultant MCSCF orbitals and a configuration list that is larger than that used in
the mcscr calculation. Because the orbital and configuration amplitudes of the
final |c1) wavefunction have not been optimized simultaneously, each component
of the response vector must be viewed as having been determined from separate
calculations. The orbital responses M« "?, M k®', MCc!! |, should be deter-
mined from Eqgs. (42)-(44) using the McsCF state and its orthogonal complement
set of states to describe the configuration space part of these equations. The
configuration responses <'§'°, €'§%!, €' should be determined from Egs.
(60)—(62). Given these M «k and “'S responses, one can obtain an order-by-order
decomposition of the total energy in Eq. (30). The dipole moment corresponding
to a c1 calculation may be identified by collecting those terms in Eq. (30) which
are first order in £ and zeroth order in wu:

M(0)=E" =(cirlcy+ ¥ (cil[a}a,—a}a, Hoollc) MCx kL. (68)

r=s

To derive Eq. (61) we have used the fact that “F*° vanishes

(c1[R* =R, Hy]lc1) =0,

because the c1 state has had its configuration amplitudes variationally determined.
The last term in Eq. (68) denotes the non-Hellmann-Feynman contribution to
the dipole moment caused by the fact that the orbitals and configuration ampli-
tudes are optimized in separate calculations. Equation (68) has previously been
derived by Tuan [10] and discussed by Nerbrant [11]. Diercksen et al. [12] have
shown the importance of the last term of Eq. (68) when correlation effects are
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important for describing the dipole moment. Diercksen et al. evaluated the last
term in Eq. (68) by initially determining the total dipole moment using energy
finite differences and then subtracting the first term of Eq. (68) from the finite
difference total dipole moment. The second term may be evaluated more simply
by carrying out a simple one index transformation of the integrals [1, 8].

The dipole moment derivative with respect to nuclear displacement may
similarly be written as [see Eq. (48)]

am
d"" u=0
=El.l_‘_CF"l.D CISD,I. (69)

=EI,I+CF_1,O Clsﬂ,1+CF-0,l CISI’O"'CG—O‘O Clsl.o Clsl),l

To derive Eq. (69) use has been made of Eq. (60) and “F% = 0. Note that the
c1 dipole moment first derivative is identical in structure to the MCSCF expression
for the dipole moment first derivative with E, F, G, and K replaced by E, °F,
©G, and “K and with A replaced by 'S, In fact, such replacements will, in general,
bring the McscF expressions into the corresponding ci results. For this reason
we need not give explicit expressions for the c1 second dipole moment derivative,
the c1 polarizabilities, and the c1 first polarizability derivative, but refer to
appropriate substitutions of the Mcscr equations in Egs. (65)—(67). The additional
work involved in carrying out a c1 calculation compared to an McscF calculation
thus consists of carrying out the Hamiltonian transformations in Eqs. (51)—(54)
and determining the required cI response parameters from Egs. (60)—(62).

6. Relationships between Finite-Difference and Analytical M and « Derivatives

It is of interest to examine whether finite difference [13]* estimates of the u
derivatives of M () and a(u) adequately replicate the results of the analytical
M and a derivative calculations described above. Such calculations are done [14,
15] by evaluating M () or a(u) at closely spaced geometries and, for example,
utilizing finite-difference fit techniques such as those outlined clearly by Bartlett
and Purvis [13].

A. The mcscr Case

Let us consider how the results of such finite-difference McscF calculations
would relate to those obtained using our analytical expressions. The orbital and
configuration dependence of the wavefunction |0) at a slightly displaced geometry
u for the mcscr function can be represented as

|0) = exp [i(m RO +5u2 %%+ + - )] exp [i(uS*' +1u28%2+ - - - -)]|0).
(70)

* Bartlettand Purvis[13] do not necessarily advocate use of finite-difference methods; their article is,
in our opinion, one of the clearest descriptions of the intracacies of the finite-difference approach.
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The finite difference first derivatives of M and a can be thought of as arising
from using |0) and |0) in our expressions for M and « given in Egs. (63) and (66):

2 = lim w7 [@r(R"+w)|0) = (0]r(R)]0)], (71)
M p-0

-j—#— lim 30~ HOILT, r(R®+ w)I0) O[T, T, H(R+ )]|0)*(O| T, r(R°+ 11)]|0)

=0

= (O[T, r(RHNO)OILT, T, H(R)J|0) (O[T, r(R)]|0)}.  (72)

T refers to the orbital excitation (O — Q) and state transfer (R* — R) operators
at the displaced geometry R°+ u, which may be expanded in terms of the orbitals
and states at the undisplaced geometry as

Q" =exp [i(uk®™ +3pu?k? + - - )]Q* exp [—i(uk* +3u’k%%+ -+ )], (73)
R* =exp[i(ui® +1u?%? - - )] exp [i(uS™' +1u28%2+
RYexp [—i(uk®' +1u2R%%+ - - )] exp [—i(uS"" +%p,2§0'2+ <9 (74)

The 1 dependence of r(R°+u) and H(R®+ ) is given in Egs. (14) and (15).
Higher derivatives such as d°M/du? can be obtained by identifying coefficients
of higher powers of pu.

Let us consider first the finite difference evaluation of dM/du. By expanding
the exponential operators in Eq. (70) and collecting terms which are first order
in w, we obtain

(Olr(R°+ p)|0) = £ (0|r1|0) +(0[r|0) — iweA **(O|L T, rJO) + - - -

= p(0[r|0)+ pA ™' F'+40[r|0), (75)
50
@EEI,I_FFI,OAOJ, (76)
dp

which is in agreement with our analytical result [Eq. (64)].
The analogous treatment of da/du is a little more tedious. We begin by
analyzing the u dependence of each of the factors appearing in Eq. (72):

O[T, r(R°+ w)]|0) = F*+ uF" ' + uG" A" + - - -, (77)
O T, T, H(E®+ )]0’
=[GO’O+;.LG°‘1+;J,KO’01\0"+ e _]—1
=(GU,O)—I_(GO,O)—I[I’-LGOJ+pK0.0’\0,1+ = .](GO.{))—-I+ o (78)



1148 SIMONS AND J@RGENSEN

Using these two expressions in our finite-difference formula [Eq. (72)] for da/ du,
we obtain
%___ A I,OGI.O)‘O,I +A I.OFI.I +%KOOA i'UAU'lA 1,0 +§lﬁ. I’OGO'II\ 1,0’ (?9)
L
which again is identical to our analytical expression.

The above analysis makes it clear that finite-difference methods can be used
to determine the geometry dependence of M and a. Of course, in carrying out
such finite-difference calculations, care must be taken to ensure that the
geometrical displacement step size p is indeed small enough to permit the
derivatives to be accurately described as a finite difference and yet large enough
to ensure that energy differences are computed accurately enough to determine
the derivative. '

B. The cr Case

To demonstrate both that an analysis similar to that employed above can be
used for the c1 response and that more care must be taken in the c1 case, let us
examine the finite difference simulation of dM/du. The c1 expression [Eq. (68)]
for M at a small displacement w gives

M () =(1|r(R%+ ) —i[MR"°, H(R®+ p)]en), (80) -

where the tilde denotes the operators and states at the displaced geometry. The
nuclear dependence of each individual factor in Eq. (80) will now be analyzed.
The ci state at the displaced geometry may be written through first order in u as

|ct) = exp (in™ML*") exp (ip €'$*M)|c). (81)
The nuclear dependence of the operator
MR =i § MR- On), (82)

F=5

is determined through the dependence of the orbital excitation operators in Eq.
(73) and the M“<"° parameters of Eq. (42). To determine the . dependence of
MCg19 requires both components of Eq. (42) to be u expanded:

MCI1.0= _(G"'_D,O)--lﬁl,ﬂ‘ (83)

Using the expansions for F° and (G®°)™" found in Eqs. (77) and (78) allows
us to obtain
MC;I.O = _( GU,U)*I[FI,O_*‘ #Fl.l S #I\O‘IGI'U+}LGU'1AL{)+ }LKO’OJ‘.OJA 1,0]. (84)

By now recognizing that the last four terms in Eq. (84) appear in Eq. (44) for
A"!, we can write :

MC’{'I,O o= _(GO'O)_I[FI’U_,U.GO’OA_I'I]
= AMO N, (85)
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and so

MCZ10 _MC 104, MC 11 (86)

The u dependence of M(u) in Eq. (80) may now, using Eqgs. (14), (15), (73),
(79), and (81), be written

M(u) ={(c1| exp (—iu Clﬁo’l){ﬁ,o*#fu Sl e
—i[M°R™, Hoo]— in[M°R", Hy )
= iu[MR", Ho,]+ - - -} exp (ui ©'§°)cn), (87)
and simplified using Eqgs. (53), (54a), (55), and (56)
M () =(c1| exp (=i 8N (Hy o+ pHy 1+ - ) exp (i $™Y|cry
=CEY4+ uCEM 4+ CF108%1. .., (88)

Equation (88) clearly shows that the finite-difference c1 expression for dM/du
is identical to the analytical expression in Eq. (69).

In summary, the c1 method can also be used within the finite-difference
approach to compute dM/du. However, one must use the c1 expression for
M(p) [Eq. (68)]; one cannot use the Mcscr formula (ci|f(R°+ w)|cl). Only the
c1 dipole moment expression of Eq. (68) is a correct expression to use when
computing c1 dipole moments. The expression (ci|r(R°+ u)|ci) would only be
correct if exactly the same molecular orbitals were used at R® and R°+ u.
However, finite-difference c1 dipole moment derivatives have conventionally
been evaluated using different scF orbitals at R® and R°+ u, and using only the
first term of Eq. (68) [14]. As a result, c1 finite-difference dipole moment
derivatives have been incorrectly evaluated and cannot be trusted, in particular,
for cases where the second term of Eq. (68) is important for describing the dipole
moment [12]. Care must also be taken to use the correct expression for the
polarizability in evaluating ci-based finite-difference polarizability derivatives.
Such has not in general been the case, as a result of which c1 polarizability
derivatives have been incorrectly evaluated [14, 15].

7. Concluding Remarks

We have shown how to use modern energy and wavefunction response theory
to generate analytical expressions for molecular - dipole moments and
polarizabilities as well as for their geometrical gradients. Our developments have
been carried out explicitly for multiconfigurational self-consistent-field and con-
figuration interaction wavefunctions.

The relationships between our analytical results for dipole moment and
polarizability derivatives and derivatives obtained by finite-difference methods
were analyzed in some detail. We found that finite-difference techniques could
be used to generate derivatives which agree with our analytical expressions, but
only if the quantity whose finite difference is taken is a consistent representation
of the dipole moment or polarizability for the particular wavefunction (Mcscr
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or c1) under consideration. Previous finite-difference nuclear displacement dipole
moment and polarizability derivatives for c1 wavefunctions have used incorrect
representations [14, 15] of the dipole moment and the polarizability, and thus
their nuclear derivatives have been incorrectly evaluated.
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