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We denve expressions for the first through fourth denvatives of the configuration-interaction (CI) electronic energy with

respect to molecular deformation. By using unitary exponential parametenzations of the wavefunction's orbital and eon figura-
lian amplitude response together with a power-series expansion of the geometry dependenee of the hamiltonian, a eomputa-

tionally attraetive expression for the CI energy derivatives is obtained. The use of so-ealled direet methods in evaluating the CI
derivatives is discussed as are the relative efforts involved in using aur CI-based energy-derivative expressions and those whieh
we obtained earlier for denvatives of the multieonfigurational self-eonsistent-field energy. The power-series expansion of the

geometry dependenee of the hamiltonian that we have denved may be used for evaluating molecular-deformation denvatives
for any approximate wavefunetion eonstrueted erom a set of orthonormai orbitaIs.

1. Introduction

The analytical evaluation of derivatives of the ab initio Born-Oppenheimer electronic energy with
respect to molecular deformation bas blossomed in recent years [1-9]. First (gradient) and second (hessian)
derivatives are now computationally feasible to calculate for at least Hartree-Fock (HF), configuration-in-
teraction (CI), and multiconfigurational self-consistent-field (MC SCF) wavefunctions. Knowledge of such
energy derivatives promises to be of great benefit in locating and characterizing (via fOTceconstants) local
minima and transition states on potential-energy surfaces. It is algo likely to be used in c1assical dynamical
studies of molecular motion on such surfaces.

Higher (e.g., third and fourth) derivatives of the electronic energy with respect to molecular deformation
contain information about the local anharmonicities of the energy surface. Such knowledge is important to
spectroscopists [10] who are interested in characterizing molecular potential-energy surfaces based upon
spectral and ab initio quantum-mechanical data. Recent sernic1assical dynamics [11] work indicates that
such anharmonicities algo play central roles in determining bot h Tales of intramolecular energy transfer and
under what conditions quasiperiodic vibrational motion will become chaotic.

Until quite recently, the ab initio analytical evaluation of third and higher derivatives bas not been
Possible. However, very recently Pulay [12] bas given an expression for the third denvative of the MC SCF
energy and Simons and J0rgensen [13] have shown how to compute the third and fourth MC SCF-energy
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derivatives. In OUTopinion, it is the introduction of new theoretical tools, including the use of explicitly
unitary orbital- and configuration-space transformation operators [9,14,15] as well as representations of the
electronic hamiltonian in an orthonormal and differentiable basis set, which made these recent develop-
ments tractable. The most recent development of Helgaker and Almlof [16], where the hamiltonian is
expanded in an orthogonal basis which reduces to the molecular-orbital basi s as derivatives are taken, bas
made this development even moce tractable. It is the purpose of the present paper to derive and analyze for
computational feasibility the expressions for CI-based energy derivatives through fourth order. The fiest
and second derivatives have been given earlier by us [9]. In the present paper we cast the results of this
derivation in a computationally even moce tractable form and we also address how to go about the actual
calculation of the third and fourth energy derivatives for CI wavefunctions whichmay contain as maDYas
106 configurations. Although the present stale of the art in computer and disk hardware may not yet allow
one to perform third- and fourth-derivative calculations for larger molecules using reasonable basis sets and
configuration expansion lengths, it is only a matter of time before such will be possible.

In section 2 we derive expressions for higher-order derivatives of one- and two-electron integrals
constructed erom a set of symmetrically orthonormalized molecular orbitaIs. The derivatives are expressed
in an especially compact form involving atomic-orbital integral derivatives transformed to the molecular-
orbital basis folIowed by a series of one-index transformations of the undifferentiated molecular-orbital
integrals using derivatives of the overlap matrix as transformation matrices.

In section 3 we determine the fiest four geometrical derivatives of the CI total energy. To do this we fiest
determine the response of the orthonormal MC SCF orbitals used to form the configurations of the CI
wavefunction. These orbital responses (corresponding to orbital reoptimization) together with the response
of the harniltonian described in section 2 (corresponding to orbital reorthonormalization) are then used to
construct an effective hamiltonian operator. The effective hamiltonian is set up in terms of a sequence of
one-index transformations involving the derivatives of the overlap matrix, and a sequence of transforma-
tions involving the MC SCF orbital response parameters. Using this effective hamiltonian the CI response
is determined and the CI energy derivatives then identified. In section 4 we discuss how to solve, using
so-called "direct methods", the large set of linear equations which govern the response of the CI
wavefunction's configuration amplitudes and the equations which determine the MC SCF orbital re-
sponses. Finally, section 5 contains a summary of how OUTresults caD be computationally implemented as
well as a comparison of the relative efforts involved in computing CI- and MC SCF-based energy
derivatives through fourth order.

2. The efrect or geometrical derormation on the electronic hamiItonian

In this section we will study the effect of a geometrical deformation on the electronic hamiltonian. The
power-series expansion of the hamiltonian which will be derived is general in the sense that it caD be used
for aDYapproximate wavefunction constructed erom a set of orthonormal orbitaIs.

Let us assume that the electronic hamiltonian Ho at the undisplaced geometry denoted by Ro is
expressed in terms of a set of orthonormaI molecular orbitals {4>,}(e.g., a set of SCF or MC SCF orbitals)

Ho = Lhpqa; aq + l L gprqSa;a; asar'
pq pq~

where the two-electron integrals are defined as

gprqs =f 4>;(1) 4>;(2) ri;l4>r(l) 4>s(2)dTI dT2

and the one-electron integrals are

(1)

(2)

hpq = (4>plhll4>q)' (3)
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The operator h I is given by

I 2 "ZA I" ZAZB
hl=-2Vr-~

1
-R '+2 ~ IR -R I

'
A r A A..B A B

(4)

where ZA denotes the charge and RA the position of nucleus A. At a displaeed moleeular geometry Ro + JL,
where JLis a row veetor

_ { AAABB }JL - JLxJLyJLzJLxJLy'" , (5)

eontaining the smalI displaeements in the x, y and z eomponents of all nuclei A, B,..., the hamiltonian
may be expressed in a power-series expansion in JL:

H( Ro + JL)= Ho + JLHI + !JLJLH2+ iJLJLJLH)+ -bJLJLJLJLH4+ .... (6)

We will, in the remainder of this seetion, deseribe how to evaluate HI, H2, H) and H4'
The nuclear displaeement dependenee appears in the hamiltonian in the atomie-orbital basis in whieh

the moleeular orbitais are expanded, as well as in the eleetron-nuclear and nuclear-nuclear interaetion
terms. The nuclear displaeement dependenee of the nuclear-nuclear interaetion term will not be eonsidered
further as it may be straightforwardly evaluated. The nuclear displaeement dependenee of"fhe
eIeetron-nuclear interaetion may be determined by earrying out a Taylor-series expansion around JL= O:

Ir- RAI-I = Ir- R~ - JLAI-I

= Ir - R~I-I + JLA(VAlr - R~I-I) + !JLAJLA(VAVAlr - R~rl)

+ iJLAJLAJLA(VAVAVAlr - R~rl) + -bJLAJLAJLAJLA(VAVAVAVAlr- R~I-1) + .... (7)

The displaeement dependenee whieh oeeurs through the atomie basis funetions presents further
ehalIenges. To treat this dependenee in a relatively simple fashion requires: (1) that the orthonormality of
the orbitais {<Pr} used to express H is preserved at alI geometries; (2) that the orbitais {<Pr}caD be
differentiated analytieally and eonveniently and (3) that the power-series expansion of the hamiltonian
generated by taking sueh orbital derivatives be expressed direetly in the moleeular-orbital basis. Condition
(1) is desirable beeause the geometry dependenee of the annihilation and ereation operators then need not
explieitly be eonsidered sinee the usual antieommutation relations {a;, aq} = ~pq are satisfied at aDY
geometry. Condition (2) is neeessary to derive analytieal expressions for the power-series expansion of the
hamiltonian. Condition (3) is eomputationally useful even thoughit is not a neeessary eondition. If this
eondition is fulfilIed it immediately gives the hamiltonian expansion in the moleeular-orbital basis [16] in
whieh the ealculation is aetualIy earried out; it alIows one to avoid [9,17] earrying out unneeessary
transformations of the integrals (see later).

2.1. Dependence oj the orthonorma! orbita! basis on deJormation

In a reeent publieation [9], we expressed the nuclear displaeement dependenee ot the atomie orbitaIs in
terms of a set of symmetriealIy orthogonalized atomie orbitals. These orbitals satisfy eonditions (1) and (2)
but not eondition (3), as a result. of whieh integrals and integral derivatives have to be transformed erom
the symmetricalIy orthogonalized atomie-orbital basis to the moleeular-orbital basis. Sueh a transformation
is, of eourse, unappealing beeause it bas to be earried out for eaeh eomponent of the nuclear displaeement.
Helgaker and Almlof [16] have deseribed how this transformation may be avoided by setting up the
hamiltonian in a basis of orthogonalized molecular orbitals in whieh the atomie-to-moleeular orbital
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expansion eoeffieients are fixed at the values they have at the undisplaeed geometry. At the geometry Ro
the orthonormaIbasis orbitaIs { <t>?}beeomethe aetual Hartree-Foek or MC SCF moleeularorbitaIs

°- " CO<t>i-i..- iaXa'
a

(8)

and at a displaeed geometry Ro + p. the orthonormaI basis orbitaIs {<t>i}are deJined as

-" S-]/2 CO<t>i-i..- ij jaXa'
ja.

(9)

where (we assume that aJl atomie orbitaIs Xa and expansion eoeffieients Ci~are real)

Sil = L Ci~~~<XaIX.B>'
afl

(10)

If the hamiltonian at RO+ p.is expressed in terms of the orbitaIs appearing in eg. (9), eonditions (1) and (2)
are straightforwardly satisfied. Furthermore, the power-series expansion of the hamiltonian is expressed
direetly in terms oCthe HF or MC SCF molecular orbitaIs at Ro, and eondition (3) is therefore satisfied. In
the following derivation, we use the orbitaIs of eg. (9) to derive OUTresults beeause these orbitaIs offer a
eoneeptually simpler way to derive OUTCI derivative expressions than the symmetrieaJly orthogonalized
atomie orbitaIs.

The hamiltonian at a displaeed geometry may be expressed in terms of the symmetrieally orthogonalized
basis in eg. (9) as

H( Ro + p.) = Lhpqa; aq + 1 L gprqsa;a; asa"
pq pqu

(11)

where a tilde is used to denote that the integrals are evaluated in the symmetrieally orthogonalized basis. In
order to determine the power-series expansion of H( Ro + p.) it is necessary to determine the derivatives of
the one- and two-eleetron integrals in eg. (11) and we therefore initially consider how to differentiate the
symmetricallyorthogonalizedorbitaIs of eg. (9). The derivative of <t>iin eg. (9) is convenientlytaken by
dividing S into a diagonal part consisting of the unit matrix and a residual part denoted <1.The derivative
of

" ( )
-]/2 o

<t>i= i..- 1 + <1 ij ~aXa'
ja

(12)

with respect to the ath component of the displaeement p., ean then be obtained by differentiating the AO
basis function Xa and the term (1 + <1);)]/2. FoJlo:ving Helgaker and Almlóf [16], we Taylor-series expand
(1 + <1)-]/2

(1 + <1)-1/2 = 1 -1<1 + i<1<1- ft;<1<1<1+ ]318<1<1<1<1+ ...,
and find that the first tour derivatives of

(13)

T= (1 +<1)-]/2

evaluated at p.= O (where <1= O) are as foJlows:

(1 +<1)~]/2= -1S(a)= T(I).

(1 + <1)~b]/2= - !S(ab) + iSS(ab) = T(2),

(1 + <1)~b]:2 = - !S( abc) + iSs( abc) - ft;SSS( abc) == T(3),

(1 + <1)~b]:}= -1S(abcd) + iSS(abcd) - ft;SSS(abcd) + ]318SSSS(abcd) ==T(4).

(14)

(15)

(16)

(17)

(18)
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Here the labels a, b, c, d are used to denote differentiation with respeet to the various eomponents of J.L
(n.b., SOfieor all of a, b, c, d may be equal). The notation (abc) is used to indieate that the derivatives with
respeet to a, b, and c are taken in all unique and possible ways eonsistent with the number of overlap
matrices preeeding the notation. For example,

SS(abc) = S(a )S(bc) + S( be )S( a) + S(b )S( ae) + S( ae )S( b) + S( e)S( ab) + S( ab )S( c) (19)

and

SS(ab) = S(a )S(b) + S( b )S( a). (20)

Note that in, for example, eq. (19) S(a) S(eb) is not included beeause it is identieal to S(a) S(be) and
therefore is not unique. Reeall that the above overlap matrix S is given in terms of the primitive
atomie-orbital (AO) overlap <x.Ix) as

Sij= Lei~<x.lxy)Cj~.
'Y

(21)

Henee the above derivatives of S are evaluated in terms of derivatives of <x.lxy) by transforming (with
- ei~) to the orthonormai basis. .For example

S,/a) = Lei~<x.IXy)(a)Cj~,
'y

(22)

where <x.lxy)(a) is the derivative of <x.lxy) with respect to a nuclear deformation a. In eqs. (15)-(18) we
have also introdueed the notation T(I) where the superseript (i) indieates differentiation withrespeet to a
given set of i eoordinates.

2.2. Dependenee oj one- and two-eleetron integrals on displaeement

The matriees T(I), T (2),T{3) and T(4) are straightforward to eompute and ean be stored if the number
(N) of geometrieal degrees of freedom is not extremely large. ance eomputed, these matriees ean be used
to evaluate derivatives of the one- and two-electron integrals appearing in H. For example. the first

derivative of hpq is given by

h-(I)- h (l) "
(h T (I)+h T (I»

)pq - pq + i-- Iq ip pi Iq ,
(23)

where

h(l)-" °eo ( )
(1)

pq - i-- epa q/3 XalhlX/3 '
a.p

(24)

is nothing but the AO-Ievel integral derivatives transformed to the orthonormai molecular-orbital basis. In
eq. (24) the differentiation aets on the atomie orbitaIs and on the eleetron-nuclear interaetions. The second
eontribution of eq. (23) involves a one-index transformation of the one-eleetron integrals in the orthonor-
maI moleeular orbital basi s [16]. and has its origin in differentiating (1 +.1)- 1/2 of eq. (12). The first
derivative of the two-eleetron integrals ean be written in an analogous way

-(I) - (I) " ( T(I)+ T(I)+ T(1)+ T(1» )gpqrs - gpqr,' + i-- giqr" ip gpir,,' iq gpqi.' ir gpqri i.. ,
i

(25)

where

(1) - " eoeOcOeO ( )
(1)

gpqr" - i-- pa q/3 ry ..8 XaX/3IXyX8 '
apy8

(26)
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and the last four terms represent a one-index transformation of the two-electron integrals in the
molecular-orbitaI basis. When the modified one- and two-electron integraIs of eqs. (23) and (25),
respectively, are multiplied by the appropriate creation and annihilation operators and summed over
orbital indiees, the above integraI derivatives provide an expression for the first derivative H(I) of H:

H (I) - "' h-(l) + l '" -(I) + +
- i... pqap aq + 2 i... gpqrsap ar asaq.

pq pq~

(27)

We will naw show that expressions for the higher integraI derivatives may be obtained by a generaJiza-
lian of the .above procedure, i.e. by writing the derivatives in terms of AO-Ievel integral derivatives
transformed to the molecular-orbitaI basis [see eqso (24) and (26)] folIowed by a series of one-index
transformations using T(I), T(2), T (3),and T(4) as transformation matriceso The one-index transformations
are introduced because terms originating erom differentiation of the T matrix are then grouped together in
a very convenient way for carrying out the differentiationo We will for simplicity treat the one-electron case
first.

Using matrix notation the set of transformed integraIs may be written

ii = ThT, (28)

where

T=l+c5o (29)

From eqo(14) it is elear that the matrix 8 vanishes for the unperturbed system and that the derivatives of 8
are equaI to the derivatives of T given by egso(15)-(18)0 In this matrix notation a one-index transformation
is given by an anticommutator, e.goego(23) may be written as

ii(l)=h(l)+{T(I),h}. (30)

The explicit use of anticommutators is convenient as it avoids any reference to individuaI orbitaI indiees,
treating the integraI as a wholeoTo introduce the same simplifications for higher derivatives we first write
ego (28) as a seguence of anticommutators and then differentiate this seguence to obtain the integral
derivatives hU). This may be accomplished by introducing a Baker-CampbelI-Hausdorf (BCH) expansion
of the exponentiaI matrices when the identity

T= exp(In T), (31)

is introduced into eg. (28):

h = ThT = exp(In T) h exp(In T) = h + {In T, h} + Hln T, In T, h} + .... (32)

In the Iast equation we have introduced the n-tupIe symmetric anticommutator defined as

{Al, A2,.. o,An' h} = (ljn!)P(l, 2, o..,n){ Aj,{ A2, o.., {An, h}...} }, (33)

where P(l, 2,..0,n) is a permutation operator which contains the n! permutations of the indices 1, 2,..on.
From eg. (32) it is evident that the derivatives of h may be determined ance the derivatives of the matrix
In T are known. To obtain those we expand In Tin a rower series in c5

U=In T=In(l +c5)=8-!82+l83_lc54+ "0' (34)
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and find that the fiest four derivatives may be written as

Ul\) = T(1),

U(2)= T(2)_!T(1)T(1),

Ul)~= T() - ! T(1)T(2)- ! T(2)T(I)+l T(1)T(1)T(1),

U(4) = T(4) - !T(\)T(3) - ! T(2)T(2) - ! T(3)T(1)

+ l T(1)T(\)T(2) +l T(1)T(2)T(1) +l T(2)T(1)T(1) - l T(1)T(1)T(1)T(1). (35)

In these expressions the derivatives are symmetrized, e.g. the second term of Um becomes for the
deformation coordinates a, b, and c

-! T(1)T(2)= -! T(\)( a) T(2)(be) -! T(1)(b )T(2)( ae) - !T(I)( c)T(2)( ab). (36)

Finally, by differentiating eq. (32) we obtain the MO integral derivatives in terms of the AO-Ievel integral
derivatives transformed to the molecular basis and a sequence of one-index transformations involving the
matrices U(i). The fiest four derivatives become:

h(1) = h(1) + ( U(\), h},

h(2) = h(2) + ( U(I), h(1)} + {U(2), h} +! {U(1), U(1), h},

h(3) = h(3) + ( U(\), h(2)} + {U(2), h(1)} + l{U(1), U(1), h(1)} + {Um, h} + {U(\), U(2), h}

+ l {U(I), U(\), U(\), h},

h(4)= h(4) + {U(1),h()} + ( U(2),h(2)} +! {U(1), U(1), h(2)} + ( U(3),h(1)} + {U(l), U(2), h(1)}

+HU(1), U(1), U(l),h(1)} +{U(4),h} +l{U(2), U(2),h} + (U(l), Um, h}

+! ( U(1), U(1), U(2), h} + -h { U(\), U(1), U(\), U(\), h}. (37)

Certain simplifications may be introduced in the expressions for the third and higher derivatives for the
one-electron integral case in eq. (37) due to the fact that h is a two-index quantity. To see ibis we recognize
that husing eq. (29) may be written as

h = (I + 8)h(1 + 8) = h + {8 - !82, h} + l{ 8,{ 8, h} }, (38)

where the last equality sigo caD easily be checked by explicitly writing the anticommutators as matrix
products. By comparing eq. (32) and eq. (38) we see that eq. (38) expresses in a direct fashion the fact that
in the BCH expansion in eq. (32) all terms containing products of moce than iwo T(i) matrices cancel
exactly to aDYorder. This cancellation simplifies the expressions for h(3)and h(4), e.g. the third derivative
becomes:

h(3)=h(3)+ {T(\), h(2)} + {T(2)_!T(1)T(1), h(1)} +l{T(1), T(1), h(I)}

+ {T(3) - !T(1)T(2) - ! T(2)T(\), h} + {T(I), T(2), h }. (39)

Later in this section we show that the two-efectron integral derivatives may be expressed in a form identical
to eq. (37) with h replaced by g. In practical applications it may therefore be moce convenient also to use
eq. (37) to determine the one-electron integral derivatives since the simplifications obtained by using for
example eq. (39) are not computationally significant.

We will now derive expressions for the two-electron integral derivatives. This derivation turns out to be
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very similar to the one treated above for the one-electron case. The two-electron integrals contain laur
indices and a one-index transformation of the two-electron integrals may therefore be written as

{g, T} pqrs= I: (g;qrsT;p+ gp;rsT;q + gpq;sT;r + gpqr;T;s)'
;

(40)

aur aim therefore becomes to express a four-index transformation

gpqr~= I:g;jk,T;pT.JqTkrT,s
ijkl

(41)

as a series of anticommutators. Inlroducing the identity in eg. (31) joto eg. (41) allows us to write eg. (41)
as

gpqr.,= I:g;jk,[exp(In T)];p[exp(In T)Lq[exp(ln T)] kr[exp(In T)L.,.
ijkl

(42)

Eg. (42) is a generalized matrix produet involving laur exponential matrices and it therefore becomes
convenient to derive a generalization of the BCH expansion which is valid for this case. To do so we
introduce the function

f(x) = I:gliki [exp(x In T)];p [exp( x In T)] jq [exp( x In T)] kr [exp(x In T)] I"
ijkl

(43)

and determine the Taylor-expansion coefficients of f(x) around x = O:

f(O) = I:g'jk,13;AlJkr13,s= gpq,,'
ijkl

f'(O) = I:g;jk/{[ln Texp(O)];p13jq13kr13,s+...+13;Aq13kr[ln Texp(O)]/s}
ijkl

=I:[g;qrs(In T);p+... +gpqn(In TLs] = {g ,In T}pqr"
i

1"(0)= {{g ,In T},ln T}pqrs (44)

and likewise for higher-order terms. The general BCH-formula is new obtained by setting x = 1 in the
expansion of f(x):

g = g + {In T, g} + Hln T, In T, g} + .... (45)

Eg. (45) is formany identical lo the conventional BCH expansion of eg. (32). The two-electron integral
derivatives may new be determined by differentiating eg. (45) and using eg. (35). The resulting formulas
obviously become identical to eq. (37) except that g new replaces h.

In the one-electron case we saw that all terms containing moce Ihan twe matrices T(i) as factors cancel
exactly. The corresponding simplification in the two-electron case occurs for an terms containing moce than
laur matrices T(i), as is easily seen by substituting T= 1 + 13in eg. (41). This implies that no simplification
occurs in the derivative expressions up to fourth order given in eq. (37).

Due to the use of one-ind ex transformations (anticommutators) the derivatives as given by eg. (37)
involve relatively rew distinct contributions to each order. In contrast, a straightforward differentiation of
egs. (28) and (41) would lead to moce complicated expressions for higher-order derivatives involving a
greater number of distinct contributions. The use of one-index transformations also simplifies the
construction of higher-order derivatives as most of the terms contributing to the higher-order derivatives
may be constructed erom contributions to lower-order derivatives. For example, all laur individual
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contributions to the second-order derivatives enter as entities in the calculation of third-order derivatives.
The third-order contributions are obtained by simply performing further one-index transformations on the
individual contributions to the second-order derivatives.

The analysis presented above provides us with practical expressions for the integral derivative arrays
which enter into HO), H(2), H(J), and H(4) and are used to form Hl, H2, HJ' and H4, respective1y,of eq. (6).
These hamiltonian derivatives have components along each of the 3N directions which describe the
molecular displacements p.. As a result, Hl bas 3N components, H2 bas (3N)2, HJ bas (3N)J and H4 bas
(3N)4 components.

3. Analysis oCthe CI energy

In the present section we evaluate geometrical derivatives of the total energy for the approximate
electronic wavefunction case where a configuration-interaction (CI) calculation is carried out with a set of
multiconfiguration self-consistent-field (MC SCF) orbitais. The calculation we describe can thus be
considered to consist of twa separate steps. In the first step, a MC SCF calculation is performed using a
smali to moderate size configuratio.n list containing the dominant configurations of the calculation. In the
second step, a CI calculation is carried out using the MC SCF orbitais of step one but with a configuration
list which is larger than that used in the MC SCF calculation [18].

The CI wavefunction at the displaced geometry may be parameterized in terms of simultaneous unitary
transformations in the orbital and configuration spaces of the CI wavefunction ICI) at the undisplaced
geometry. The orbital response parameters are determined exclusively through the MC SCF calculation and
the configuration amplitude response parameters are s~sequently determined by the CI calculation of step
twa. The CI wavefunction at the displaced geometry ICI) may therefore be written as [9,14,15]

'O) = exp(iK)exp(iS)ICI), (46)

where the operator

K = i [Krs(a:as - a:ar)
r>s

(47)

contains the non-redundant set of orbital excitation operators of the MC SCF calculation and the operator

s = i[S,,(ln)(CII-ICI)(n!) (48)
n

contains the set of stale transfer operators (In) (ClI) where (In)} denotes the orthogonal complement set
of states of the CI wavefunction. The total CI energy at the displaced geometry Ro + p. becomes

E( Ro+ p.)= (CIlexp(- iS) exp( - iK) H( Ro + /l) exp(iK) exp(iS)ICI). (49)

The CI total energy of eq. (49) contains a /l dependence in the e1ectronic hamiltonian H( Ro + p.). in the
orbital rotation parameters {Krs}. and in the configuration amplitude rotation parameters {S,,}. The J.l
dependence of the hamiltonian bas already been determined and explicitly written out as a power series in
/l in eq. (6). The J.ldependence of the orbital and configuration amplitude rotation parameters mayaiso be
power-series expanded

Krs = J.lK~:) + !/lJ.l<;) + !J.lJ.lp.K~;)+ 14/lJ.l/l/lK~~)+ ...,

S" = /lS~\) + ! p.J.lS~2) + kJ.lJ.lJ.lS,~J) + 14J.l/lJ.lJ.lS~4)+ ....

(50)

(51)

The parameters {K~:.)}are determined as the orbital response parameters in the first (MC SCF) step of the
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calcuIation, wIDIe the parameters {SY)} can be determined in the second (CI) step once the orbitaI
response parameters are known.

To evaIuate the parameters {S~i)} efficiently it is convenient to combine the p.dependence of the orbitaI
rotation parameters {Krs} and of the electronic hamiltonian H( Ro + p.) in an "effective hamiltonian"

H(RO + p.) = exp( -iK)H(RO + p.) exp(iK), (52)

which expIicitIy takes into account both the reorthonormalization effect due to the nucIear distortion of the
moIecuIar orbitaIs and the reoptimization effect which results erom optimizing the orbitaIs in the MC SCF
calculation of step one. In this way all def~cts arising erom the use of a finite basis set and an incompIete
CI expansion are isolated in an effective hamiltonian.

In terms of this effective hamiltonian the expression for the CI total energy in eg. (49) becomes

E(RO + p.)==(CIlexp( - iS)ll(RO + p.) exp(iS)ICI). (53)

Qnce the power-series expansion of the effective hamiltonian

H(RO+p.)=Ho+p.~ +1p.p.H2+ip.p.p.~+-i4p.p.p.p.H4+ ... (54)

has been obtained by combining the expansions in egs. (6) and (50), it is straightforward to determine the
CI response parameters {S~;)} of eg. (51) using the fact that the totaI energy has to be stationary through
each power in p.(~E( Ro + p.)= O).The CI derivatives can then be determined by identifying in the CI totaI
energy terms through the individuaI powers in p.:

E( Ro + p.) = Eo + p.EJ + 1p.p.E2 + i P.P.P.EJ + -i4p.p.p.p.E4 + .... (55)

In this expression EJ and E2 represent the CI moIecuIar gradient and hessian, respectiveIy, whiJe EJ and E4
yieId successiveIy higher CI anharmonicity terms.

In section 3.1 we present the formuIas needed to determine the MC SCF orbitaI response parameters
{K~~)}of eg. (50), and in section 3.2 these parameters are combined with the power-series expansion of
H( Ro + p.) of section 2 to give the expansion in eg. (54) of the effective hamiltonian. The configuration
ampIitude response parameters {S~i)} are determined in section 3.4 and the CI moIecuIar gradient, hessian
and anharmonicity expressions {E;} are finally identified.

3.1. Treatment oj the MC SCF orbita/ response

Eg. (50)above expressesthe p.dependenceof the orbitaI responseparameters {Krs}as a powerseriesin
p.. The orbital response parameters which enter into this expansion have either explicitly been derived in
refs. [9,13] or may straightforwardIy be derived based on eguations in ref. [19]. To express these resuIts in a
compact notation the orbitaI (K) and configuration stale function ampIitudes (MCS)and the corresponding
excitation operators {a;as-a;ar} and {IMCn)(Mq-IMC)(MCnl} are collected together as coIumn
vectors

A=(~CS)'

(

+ +

)

MC ar as - as ar

T= IMcn)(MCI-IMC)(MCn/ '

(56)

(57)

where {,MCn)} denotes the orthogonaI compIement space to the muIticonfiguration seIf-consistent-field
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staLe IMC) which is determined in step one. It is algo convenient to introduce the following definitions of
matrices which enter into the equations which determine the Krsparameters:

MCF(i) = (MCI [MCT, HJ IMe),

MCG(i)= (MCj[McT, McT, H;]/Me),

MCK(;)= (MCj[McT, McT, McT, HJIMC),

MCLU)= (MCI[MCT, McT, McT, MCT, Hi] IMe),

MCM(i)= (MCI[MCT, MCT, MCT, MCT, MCT,HJIMe).

(58)

(59)

(60)

(61)

(62)

In eqs. (59)-(62) we have used the n-tupIe symmetric commutators defined in ref. [20]. The orbital response
parameters (K~~)}are then obtained, as shown in refs. [9,13,19], as the orbital parts of the vector AU)given
below

- MCG(O)A(1) = MCF(1),

- tMcG(O)A(2) = tMC F(2) + MCG(I)A(\) + tMCK(O)A(\)A(\),

- kMcG(O)A(3) = kMC F(3) + tMCG(\)A(2)+ lMcG(2)A(\) + f'"ICK(O)"A.(2)A(\)

+ lMC K(1)A(1)A(1) + kMCL(O)A(\)A(\)A(1J,

- 14MCG(O)A(4)= 14Mc F(4) + kMcG(\)A(3) + kMcG(3)A(\) + lMcG(2)A(2) + kMCK(O)A(J)A(\)

+ tM~ K(O)A(2)A(2)+ lMC K(\)A/2IA(\) + r"lC K(2)A(\)A(\) + kMCL(\)A(1)A(\)A(\)

+ lMC L(O)A!2)A(\)A(\) + 14 MCM(O)A(\)A(\)A(\)A(\).

(63)

(64)

(65)

(66)

In section 4 we will elaborate about how these equations might best be solved.
The kind of MC SCF calculation outlined here does not determine a unique set of orbitais in the sense

that the orbitais, for example, are only determined to within an arbitrary rotation among the completely
occupied orbitais and an arbitrary rotation among the unoccupied oribtals [14]. As a result, CI calculations
in which a chosen set of eIectronic configurations are employed may not be consistent when performed
with this type of MC SCF orbitais at two neighboring geometries. In particular, if the two geometries are
only infinitesimally displaced, the resultant CI energy change may not be infinitesimally smalI. One
solution to this problem is to uniquely determine all of the MC SCF orbitais by diagonalizing the
redundant part of the Fock potential with an exponential operator containing the redundant orbital
excitation operators and to then determine the resulting orbital responses [9]. Another solution may be to
only eonsider CI calculations of the type where the CI energy is invariant with respeet to rotations among
orbitais that are not uniquely determined by the MC SCF proeedure. Sueh a CI ealculation could, for
example, be one eonsisting of all single and double exeitations out of the MC SCF eonfiguration spaee used
in determining the orbitais whieh are employed in the subsequent CI ealculation.

3.2. The effectiue hamiltonian and its geometry depelldence

We will now use the orbital responses (K~:)} obtained in the previousseetion to eonstruet the effeetive
hamiltonian expansion in eq. (54). To do this we simplify the hamiltonian in eq. (52) using the conventional
Baker-Campbell-Hausdorf expansion expressed in terms of symmetrie eommutators

il(RO + p.) = exp( -iK)H(RO + p.) exp(iK)

=H(Ro+p.)-i[K, H(Ro+JL)] -l[K, K, H(Ro+p.)] +ki(K, K, K, H(Ro+p.)]

+ 14[K, K, K, K, H( Ro + p.)] + .... (67)
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The power-series expansion of H(Ro +}J) is given in eq. (6) and earlier in eqs. (63)-(66) expressions ale
given for the }J-expansion of the " parameters. Substituting these expansions joto eq, (67) and coIlecting
together factors muItiplying each rower of }J,we may identify each term in the order-by-order expansion oC
il in eq, (54). Expressions for the fi;, operators ale as foIlows

Ho = Ho,
- ,

[ (1) ]HI=HI-IK ,Ho,
l H- =l H - i[K(I) H ]_1[,,(1) K(I) H ] -li [K(2) H ]2222 '12"02'0'

o l H- =l H -li [K(3) H ]-li [ic(2) H ]-li [K(1) H ]_l [K(I) ,,(1) H ] _1 [,,(1) ,,(2) H ]63636 '02'12'22"12"0

+ 1 1
'

[K(I) K(1) K(1) H ]6 , , , o'
..LH- = ..L H - ..Li [K(4) H ] -li [K(3) H ]-li [K(2) H ] -li [K(I) H ]_l [K(2) K(2) H ]24424424'0 6'14 '26'38"0

_1[,,
(1) K(3) H ]_l[K(1) ,,(2) H ]_l [K(1) ,,(1) H ]+li [K(1)",(1) K(1) H ]6"0 2,'14,.26".j

+ l l
'

[K
(I) ,,(I) K(2) H ]+..L [K(1) K tI) K(1) ,,(I) H ]4 , , , o 24 , , , , 0-

(68)

(69)

(70)

(71)

(72)

Since a commutator as [K(1),HI] caD be viewed as a modified hamiItonian with integrals equal to
one-index transformed HI integrals, fi; of eqs, (69)-(72) may be determined by carrying out a sequence oC
one-index transCormations on the integrals of Hi' In the next section we will demonstrate this point in moce
detail.

3,3, Remorks on the computotionol implementotioll oj ilk

The computational evaluation of expectation or transition values involving the above Hk operators is not
nearly as difficult as one might think based upon a cursory analysis of eqs. (69)-(72), Given that one caD
evaluate and stele the integral derivatives {IiU)} and {g(i)} which we discussed earlier, it is possible to
evaluate each of the commutators appearing in eqs, (69)-(72) by carrying out further one-index transfor-
mations [20] on these integrals, Let us consider one concrete example to iIlustrate this essential point. The
contribution - H,,(I), K(I"Hd appearing in iil3 is initiaIly recognized to be equal to - ![,,(I),[K(I), HdJ
and caD be computationaIly evaluated as foIlows. First, the commutator [,,(I), Hd is carried out for a
nuclear deformation o in ,,(I) and b in HI

[ (I) H ] - ,~ (1) ( )(
~ [ + - + + ]h-(l) (b)K, I -It-Krs o t- GrOs °sO"OpOq pq

r>s pq

+ 1 ~ -(1)
(b)[

+ + + +

])2 t- gpqmn °r Os - Os ar' Op OmOnOq
pqmn

= iL L [ii~I;(b)K~~(O) + ,,~~(o )ii~~)(b)]o; °q
pq r

+!i L L[g:~~s(b)K~~)(O)+g~~~s(b)"~~)(o)
pqrs I

+ g~~ts(b )K~:)(o) + g~~rt(b )K;:)(o)] o; o: °sOq' (73)

The result in eq. (73) is nothing but a one- and two-electron operator having corresponding one- and
twó-electron integrals which have been subjected to one-index transformation using the ,,(1)(0) matrix as
transformation coefficients. Eq. (73) may thus be written as a modified hamiltonian

[K(I), HI] = iLkpq(ob)o;oq+!i L Jpqrs(ob)o;o:osOq,
pq pqn

(74)

"

i

l
~

i
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where kpiab) and jpqrs(ab) are the modified one-index transformed one- and two-eIectron integrals,
respectively. We stress that it is not simply notationaIly convenient to write the commutator in the above
form. It is, in fact, computationaIly relevant since one wouId actuaIly carry out such a one-index
transformation on the integrals in order to make the commutator computationally feasible.

Returning to the lask of evaluating - HK(1),[K(1),Hd] we see that ance the fiest commutator [K(1),Hd is
evaIuated as above, the same integral transformation device caD be used to effect the next commutator with
eq. (74)as the hamiItonian.The doubIecommutator - HK(1), K(1), Hd thereforecorrespondsto a modified
hamiltonian in which the integraIs of HI have been subjected to twa successive one-index transformations.
Every one of the commutators in Hl>H2, HJ, and H4 caD be expressed in Iike fashion in terms of integraIs
or integral derivatives which have been one-index transformed.

3.4. Response ol the CI energy and wavelunction

Now that wehaveobtained compact and computationaIlytractableexpressionsfor the Hk(k = 1, 2, 3, 4)
operators, we are prepared to return to consider the dependence of the CI energy on geometricaI
deformation.We begin by Baker-CampbeIl-Hausdorf (BCH) expanding the exp(:tiS) factors appearing
in"eq. (53)whichgive the CI energy:

E= (CIIHICI) - i(CI![S,H]ICI) - l(CI![S,[S, HHlCI) + ...
-- - 1- 1- 1-= E +FS + 2GSS + (;KSSS + 2'4LSSSS+ .... (75)

The matrices F, G, K, and r are introduced to represent symmetrizedversions [9] of the corresponding
commutators appearing in the BCH expansion. When the energy function is marle slabIe with respect to
variations in the S" parameters, we obtain an equation to be used to soIve for the optimaI S" parameters:

- - 1-O=F+GS+ IKSS+ .... (76)

As we saw earlier in eqs. (58)-(62), the matrices F, G, K, and r caD be expanded in powers of J.L.In eq. (51)
the S parameters are power-series expanded in J.L.Substituting these expansions into eq. (76) and collecting
terms which multiply powers oCJ.L,we obtain equations for S(i). The lowest-order such equations read

- G(O)S(\)= F(I) (77)

and

- l G(O)S(2) = l F(2) + G(1)S(I) + l K(O)S(1)S(1). (78)

When these equations are solved for S(I) and S(2) and the results substituted back joto eq. (75), we may
identify the terms in the order-by-order expansion oCthe CI energy in eq. (55). The Civelowest-order terms
in this expansion are

EO = (CIIHoICI),

El = (Clli!;ICI),

lE2 = l(CIIH2ICI) + F(1)S(1) + lG"(O)S(i)S(\) = l(CIIH2ICI) + lF(1)S(1),

iEJ = i (CIIHJICI) + lF(2)S(1)+ lG(1)S(1)S(1)+ iK(O)S(\)S(1)S(1),

-l4E4= -l4(CIIH4ICI) + iF(3)S(1)+ lG(2)S(\)S(1)+ lK(1)S(1)S(\)S(I)

+ -l4DO)s(1)s(1)S(1)S(\)- lG(O)S(2)S(2). (83)

The matrices FU), GU), KU), and Di) are deCined in analogy with those appearing earlier in eqs. (58)-(62)

(79)

(80)

(81)

(82)
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except that new only the configuration-space operators {li)(CIj-ICI)UI} appear in the commutators.
Explicit expressions for the matrices needed to evaluate Eo' El"'" E4 are as follows:

~(j)= -2(CIIH;ln) (note~(O)=O),
-()- - -
Gn!n- 2(mIH)n) - 20nn,(CIIH)CI),

Kl~~n= H on/l,(CII~lk) + omk(CII~ln) + onk(CII~lm)] (note Kl?~n= o),

LlO}mn= H °nk(om,Eo - (mINo!/») + Omk(on,Eo - (nINol/») + On/l'(ok,Eo - (kiNoli»)

+on'( °mkEO- (mIHolk») -+Om'( °nkEO- (nIHolk») + Ok'(°mnEO- (mIHoln»)].

(84)

(85)

(86)

(87)

Having new derived working equations for the J.l-derivativesof the CI energy up through fourth order,
let us briefly review the steps which must be taken to perform such a calculation. First, one must compute
and stare the U(i) arrays in terms of overlap integral derivatives as shown in eq. (35). Second, one musI
form the one- and two-electron integral derivatives and their one-index transformations shown in eq. (37)
in order to evaluate the modified integral derivative lists ilU) and g(i) which enter into the Hi operators.
Trurd, it is necessary to compute the MC SCF orbital response matrices K~;)erom eqs. (63)-(66) and to
subsequently- use these arrays in eqs. (69)-(72) to per form further one-index transformations on the
modified integral derivatives of Hi in order to form the final integral derivative lists which define the li;
operators. Finally, the integral derivatives of Hi caD be used to form the F(j), G(j), K(O) arrays as needed in
eqs. (77) and (78). ODce eqs. (77) and (78) are solved for S(1) and S(2), they caD be used, together with the
F(j), G(j), K(j), and DO) arrays in eqs. (80)-(83) to evaluate the desired CI energy derivatives.

In the following section, we attempt to further cIarify and detail the solutions of the response equations
for the K~~)and S(1) and S(2) parameters. In particular, we focus on situations in which the number of
configurations appearing in the CI wavefunction expansion may be quite large (e.g., 5000-106).

4. Computationally practical solutions to working equations

4.1. Direct methods for solving the CI response equations

In the preceding section, we derived explicit expressions for the geometrical derivatives of the CI energy.
The evaluation of these expressions requires that several sets of linear equations be solved [e.g. eqs.
(63)-(66) and (77) and (78)]. As they are written, these linear equations are not cast in a form which allows
so-called "direct methods" to be applied [21,22] and, consequently, only smali configuration spaces caD
straightforwardly be treated.

In trus section we re-express the sets of linear equations in forms that allow direct methods to be used
and wruch therefore allow treatment of very large (5000-106) configuration stale function spaces. Let us
begin by considering how the set of linear equations in eq. (77) determining the S(1) amplitudes

G(O)S(I) = - FO) (88)

caD be solved in a direct fasruon. Eq. (88) is written in terms of the set of basis vectors spanning the
orthogonal complement space {Ii)} of the ICI) wavefunction. To express eq. (88) in a form where direct
methods caDbe used we transform eq. (88) to the configuration stale function basis using a method similar
to the one described by Lengsfield and Liu [23]. To do Ibis we follow the treatment of Helgaker and Almlof
[16] and introduce the augmented hessian au8G(0)wruch bas exactly the same structure as G(O)but which is
of one larger dimension since it is defined in terms of the orthogonal complement states and the reference
stale {jCI), Ii)}. Since the generalized Brillouin theorem is valid,

augG~hlk>= 2(CIIHolk) = o, (89)
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and since, erom eq. (85),

augG1~h,'CI)= 2(CIIHoICI) - 2(CIIHoICI) = O, (90)

we obtain

augG(O)= (~ b(o) ). (91)

Eq. (88) can therefore be written in the equivalent form

[( ~
O

)
+ augG(O)

] (

O

)
= -

(

O

)O S(1) fil) . (92)

where the variable z * O bas been (temporarily) introduced to ensure that the matrix multiplying (~",) is
non-singular. Arranging the expansion coefficients {C(ClJ,C(j)} of the states {ICI), Ij)} as column
vectors, we define a unitary matrix

- u= (C(CI),C(J»,

which then allows us to write eq. (92) as

(93)

U(ZIC(CIJ)(C(CI)I+CSFG(O»)U(~(1J) = - (~(I»)'

whereCSFG(OJis defined as in eq. (75) but in the configurationstale function basis {14>s)}

CSFG(OJ= 2( "'" IN I"'" ) - E(CIJ8 )si "I'g o "1'1 o gl'

(94)

(95)

where

E/CIJ= (CIlil,ICI). (96)

Multiplying eq. (94) erom the leCiby U and introducing the projection operator onto the one-dimensional
space defined by C(ClJ

0= IC(CI)(C(CI)I,

and its orthogonal complement projector

(97)

p = I - O, (98)

where I is the unit matrix, allows us to write eq. (94) as

(ZO+CSFG(OJ)pCSFS(1J= -CSFF(1),

where CSFF(\)is defined as in eq. (75) but in terms of the configuration stale function basis

CSFF(1J= - 2( '"
' il ICI) + 2C(CI)E(CIJs "I'g I g I '

(99)

(100)

and CSFS(\)denotes the set of configuration stale function amplitudes in which the C(CIJcomponent is
annihilated. P CSFS(I)contains the fiest-order response amplitudes in the configuration stale function basis.
That p CSFS(l)is identical to the U(~,,» column vector may be seen by straightforward multiplication

[
U

( O(1»)]
=

[
(C(CIJ,C(K»

( °(1J )] =L:ciK)Skl)=L:CY)Ci.KJCSFSi!)=L:Pss,CSFSi}). (101)
S s S .e K Kg' g'
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When the integral list appearing in ~ is available, CSFfO)in eq. (100) is constructed by carrying out tbe
same kind of linear transformation as is required in a direct CI calculation. A direct method can tben be
used to solve eq. (99) if the successive linear transformations

(/+ I)b = csF(j(O)(1)b (102)

can be carried out. Here Idenotes the lth iteration on a trial vector whose IC(CI» component has been
removed (since the desired solution bas the form P CSFS(I».Since CSF(j(O)is nothing but the hamiltonian
matrix in the CSF basis with the CI total energy removed Erom its diagonal elements, the linear
transformation in eq. (102) requires the, very same linear transformation as is used in a direct CI
calculation. The actual solution to eq. (99) may therefore be obtained using the reduced linear equations
method [2,24], the conjugate gradient method [25] or other techniques which ale applicable to large linear
equations. When the solution OCc ==P CSFS(1)to eq. (99) is found, the second contribution to the CI hessian
matrix of eq. (81) may straightforwardly be obtained by multiplying the row vector CSFf into ocC.

The hypercurvature E3 may be evaluated when the SO) parameters ale known. In order to do so it is

convenient to obtain an explicit expression for the -?(1)parameters. Since the solution to eq. (99) (ocC) is
spanned only by the orthogonal complement to c< II, we may parameterize the orthogonal complement

space such that onlY,one ~O) parameter is non-vanishing. To do sa, we re-express

I:s~1)(ln)<CII-ICI)<nl) (103)
11

as

I: (I:S~I)C:1I»)( l,pg)<CII-ICI)<,pgl) = I: OCCg(l,pg)<CII-ICI)< ,pgl),
g 11 g

(104)

which can be thought of as (OC('OCC)I/2<lI)<CII-ICI)<II), where the normalized stale II) lying in the
orthogonal complement space is

II) = (OCCOCCr1/2I:ocCgl,pg),
g

(105)

and (oc('OCC) -1/2 is its normalization constant. In this representation, the only non-vanishing element of
S(1) is

S11)= (OC('OCC)I/2. (106)

Using ibis parameterization of the orthogonal complement space, the actual evaluation of E3 reduces to
carrying out a rew linear transformations of the same type as ale performed in a direct CI calculation [21],
folIowed by simple vector multiplications with already-available vectors.

The evaluation of E4 requires the solution of the linear equations for S(2) in eq. (78) (recalI that K(O)= O)

- l G(0)S(2) = (j"O)S(1) + l f(2). (107)

Since

I: (j~I~S~1) = 2I: <mjRl - E1Cl)ln)S~I)= 2<mlRl - EiCJIII)S11),
11 11

(108)

G(1) S(1) is a row vector of the same dimension and structure asf(1) of eq. (88). S(2) may thus be
determined directly flam an equation similar to eg. (99) except tbat CSFf(1) of eq. (99) is replaced by

CSF( G(1)S(1» +lCSFf(2), (109)
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where CSFF(2)is defined as in eq. (100) but with Hl replaced by H2 and

CSF( G(I)S(1» g = 2(<pgIHI- E:CI)11)S:I) - 2CiCI)(CIjHd1)SP).

When S(2) is available it is a straightforward task to evaluate E4'

(110)

4.2. Direct methods for solving the MC SCF response equations

In this section we describe how the set of equations which determine the MC SCF orbital responses K;!)
may be solved using the direct methods discussed above. This knowledge allows one to deterrrune the
orbital responses for MC SCF wavefunctions containing a large number of configurations.

Let us begin by considering the determination of the K;~)parameters which obey [eq. (63)]

MCG(O)A(1)= - MCF(\), (111)

where A(1)contains the orbital response parameters defined in eq. (56) as well as the MC SCF configuration
response parameters MCS~\).To apply direct methods to eq. (111) we have to transform this equation to the
configuration state function basis. .This can be dane by using the very same technique used to transformeq.
(88). The result of this transformation is the following matrix equations [23]

(zIMC)(MCj + CMCG(O»)QCMCA(1)= - CMC F(1), (112)

where

CMCG(O)= 2 ( A.. IH lA.. ) - 2E(MC)8f.g '1'f o '1'g Olg'

CMcGi?~s= - 2( <pgI[a: as - a; a" Hoj IMC),

(113)

(114)

(115)

(116)

(117)

CMCGT~~)tu= (Mej [a: as - a; a" a: au - a~at' Hoj IMC),
CMCF(1)= -2 ( A..IH IMC) + 2E(~IC)C(MC)g '1'g I I g ,

CMCF,~\)=(MCI[a:as-a;a" H1JIMC),

and where

E/MC)= (MCjH;IMC) (118)

and QCMCA(1)is a vector containing both configuration- and orbital-response amplitudes. Q is the projector
that annihilates the IMC) component of the configuration state function amplitude. Solving eq. (112) by a
direct approach requiressuccessive linear transformations of the form

(1+ \)X = CMCG(O)(I)X, (119)

to be carried out, where(I)X = <:~:~) is a vector in which the IMC)component bas been annihilated. Such a
linear transformation procedure bas recently been described in refs. [20,26], and can be more explicitly
written as

(I+\)CP) = 2«PiIHol(l)MC(1» - 2EÓMC)(I)CP)-2«PiIHoC/)K(1»)IMC),

(I+I)K(I)= -2 ( MCI[a+a -a+a H JI(I)MC(\) + (MCJ[ a+a -a+a H ((I)K(1» ]! MC)TS T S S T' o T S S T' o '

(120)

(121)

where

I(I)MC(\) = ~(I)Ci\)l<pg),
(122)
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and Ho«/)K(1» is the one-index transformed hamiltonian defined with (/)K(\)as the transformation matri"
as in eq. (74). Using the above techniques, the coupled multiconfiguration set of linear equations may be
solved for very Iarge configuration spaces. ODce K(I)and C(1) (or equivaIently S(1) [see eqs. (103)-(106)]
are available, it is straightforward to actually evaluate the MC SCF molecular hessian McE2 and the fiest
MC SCF anharmonicity term MCEJ' Direct evaIuation of K(2)maybe performed in a manner very simiIar to
that described for K(1).The fiest lask wouId be to express the right-hand side oCeq. (64)

(MCG(1);\(1) + !MCK(O);\(1);\(\) + !MC F(2»), (123)

as a vector of the same structure as MCF(1) anaIogous to using the transCormation that was appIied to
G(1)S(1)in eq. (108) to bring it to the same form as in) in eq. (88). This transCormation is described in SOfie
detaiI in ref. [20]. With ibis transformation avaiIabIe, it is straightforward to directly evaIuate K(2),and then
MCE4 may consequently be evaluated. K<2>is also required in order to evaIuate the hessian (E2) oCthe CI
energy. A direct evaluation of the K(3)and K(4)parameters, which are required for EJ and E4, becomes
increasingly moce diCCicultbecause oCthe larger IL-indexdimensionality oCthe equations which determine
these parameters. In OUTopinion it is, at the present time, necessary to accept that K(J)and K(4)be evaluated
without using direct-method algorithms. This, of course, restricts the evaluation of CI third and fourth
derivatives to configuration spaces oCthe MC SCF calculation of up to a few hundred configuration stale
functions (i.e. those for which K(3)and K(4)caD be computed using in-core methods).

50 Summary and oven'iew

In this paper we have given analytical expressions for derivatives oC the CI energy with respect to
molecular deformation up through the fourth derivative. To implement the results which we have derived,
several steps are required:

(1) The overlap-based matrices U(i) musi be computed and stored.
(2) The integraI derivatives (e.g., g(J» and the one-index transformed integrals and integral derivatives

(e.g., {g(1), U<2>})most be computed and used to assemble the modified integral derivative arrays (e.g.,
g(3» which define the various hamiltonian derivatives HI" .H4'

(3) The response of the MC SCF orbitaIs to molecular deformation, as described through the parameters
K~f), j = 1, 2, 3, 4, must be evaluatedo For large configuration expansion lengths in the MC SCF
wavefunction, this step may require the use of"direct methods" as described in section 4.2.

(4) The modified integral derivative lists which appear in the HI ...H4 operators most be subjected to
further one-index transformations, using the K~f) as transformation matrices, in order to generale the
integral derivative lists which defirie the final working hamiltonian operators HI .. .H4 in terms of which all
final CI-based energy derivatives are expressed.

(5) The response of the CI wavefunction's configuration expansion parameters S(1) and S(2) most be
evaluated by solving the sets of linear equations which define them. Because we have in mind CI
wavefunctions whose configuration expansion lengths are large (e.g., 5000-106), the solution of these sets
of linear equations requires the use of the direct methods treated in section 4.1.

(6) The CI gradient (El), hessian (E2) and higher energy derivatives (EJ' E4) caD then be evaluated by
performing linear transformations similar to the ones occurring in direct CI calculations, folIowed by
simple vector multiplications.

Before cIosing, we examine in SOfie detail the computational effort which is required to compute the
various CI-energy derivatives and we compare ibis effort with what is needed to perform MC SCF-based
energy-derivative calculations.

The analytical expressions for the CI and MC SCF energy derivatives are very much alike. The MC SCF
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energy derivatives through fourth order are given in refs. [9,13]. The CI energy derivatives in eqs. (80)-(83)
can be obtained by simply replacing in refs. [9,13] the MC SCF matrices MCFU),MCG(i),MCKU)and MCL(i)
of eqs. (58)-(61) by the corresponding CI matrices FU), GU), KU) and 1]i). The MC SCF matrices
MCF(i),... contain the hamiltonians Hi, ;=1-4of eq. (6) and have both orbital excitation and stale
transfer excitation parts. The CI matrices contain the modified hamiltonians H;, ; = 1-4 of eq. (54) and
have only staLe transfer excitation parts. In carrying out a comparison of MC SCF and CI energy
derivatives we concentrate on describing the differences which occur due to the fact that orbital responses
are required to a lower level in MC SCF calculations than in corresponding CI calculations. As a result,
MC SCF calculations caD be carried out by constructing matrices (MCFU)...) of lower order than is
required in a corresponding CI calculation. We shaIJ naw address each of the tour energy derivatives
separately.

El: The CI gradient (CIIHIICI) requires the evaluation of the ,,~;)orbital response parameters and the
one-index transformation of the integrals in Hl with K(1) to generate HI, The MC SCF gradient
(MCjHIIMC) does not require knowledge of any orbital response parameters.

E2: The CI hessian requires evaluation of ,,~;)and ,,~;)as weIJ as the one-index transformations required
to obtain Hl and H2. Furthermore, to evaluate the CI hessian, the configuration amplitude response
parameters S(I) of eq. (51) need to be evaluated. The MC SCF hessian requires that the simultaneous set of
orbital and staLe response parameters A(I)of eq. (63) be evaluated; no second-order responses are needed.

EJ: The evaluation of EJ in the CI method requires knowledge of ,,~;),,,~;)and ,,~;)in order to perform
the one-index transformations necessary to evaluate HI, H2 and HJ' As was the case for the CI hessian, the
EJ also requires that the linear equations of eq. (77) be solved for S(1). The MC SCF hessian requires only
that the linear set of equations for A(1)in eq. (63) be solved. The evaluation of EJ in CI simplifies alittle
becauseK(O) is zero. .

E4: Evaluation of E4 in CI requires that the orbital response parameters K~;),,,~;), K~;)and ,,~;) be
evaluated and that the resulting one-index transformations be carried out to obtain Hl, H2, HJ and H4' The
configuration 'amplitude responses S(1) and S(2) also have to be evaluated. To obtain E4 in the MC SCF
method requires evaluation of the A(1)and A(2)parameters of eqs. (63) and (64) respectively.

As discussed above, the major differences between evaluating energy derivatives in CI and in MC SCF is
that orbital responses "~f>are required to a higher level in CI than in MC SCF. The lowest orbital
responses K~;)and ,,~;) caD relatively straightforwardly be evaluated using direct methods. However, it
becomes increasingly difficult to evaluate the higher-order orbital responses as ,,~;) and ,,~;)using direct
methods. These higher responses are required in the evaluation of the CI EJ and E4' Therefore, it is likely
that presently EJ and E4 can only be evaluated if the orbital responses ,,~;.4)are obtained erom MC SCF
calculationsinvolvingonly moderate sizeconfigurationspaces(::::;300) so that in-coresolution methodscan
be used. In the MC SCF approach, the simultaneous orbital and staLeresponse parameter set A(1)is capable
of determining MCEJ; no higher-order response parameters are needed. Evaluation of MCE4 in MC SCF
requires also that A(2)be computed. Both A(1)and A(2)can relatively straightforwardly be evaluated for very
large configuration spaces (10J-I06). With the technology which bas recently become available [23,26], MC
SCF wavefunctions reliably caD be obtained for large configuration spaces (lOJ-I06). Therefore, it appears
that accurate energy derivatives preferentially might be achieved using large MC SCF wavefunctions rather
than with the CI wavefunction approach.
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