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We derive expressions for the first through fourth derivatives of the configuration-interaction (CI) electronic energy with
respect to molecular deformation. By using unitary exponential parameterizations of the wavefunction's orbital and configura-
tion amplitude response together with a power-series expansion of the geometry dependence of the hamiltonian, a computa-
tionally attractive expression for the CI energy derivatives is obtained. The use of so-called direct methods in evaluating the CI
derivatives is discussed as are the relative efforts involved in using our Cl-based energy-derivative expressions and those which
we obtained earlier for derivatives of the multiconfigurational self-consistent-field energy. The power-series expansion of the
geometry dependence of the hamiltonian that we have derived may be used for evaluating molecular-deformation derivatives
for any approximate wavefunction constructed from a set of orthonormal orbitals.

1. Introduction

The analytical evaluation of derivatives of the ab initio Born-Oppenheimer electronic energy with
respect to molecular deformation has blossomed in recent years [1-9]. First (gradient) and second (hessian)
derivatives are now computationally feasible to calculate for at least Hartree-Fock (HF), configuration-in-
teraction (CI), and multiconfigurational self-consistent-field (MC SCF) wavefunctions. Knowledge of such
energy derivatives promises to be of great benefit in locating and characterizing (via force constants) local
minima and transition states on potential-energy surfaces. It is also likely to be used in classical dynamical
studies of molecular motion on such surfaces.

Higher (e.g., third and fourth) derivatives of the electronic energy with respect to molecular deformation
contain information about the local anharmonicities of the energy surface. Such knowledge is important to
spectroscopists [10] who are interested in characterizing molecular potential-energy surfaces based upon
spectral and ab initio quantum-mechanical data. Recent semiclassical dynamics [11] work indicates that
such anharmonicities also play central roles in determining both rates of intramolecular energy transfer and
under what conditions quasiperiodic vibrational motion will become chaotic.

Until quite recently, the ab initio analytical evaluation of third and higher derivatives has not been
possible. However, very recently Pulay [12] has given an expression for the third derivative of the MC SCF
energy and Simons and Jergensen [13] have shown how to compute the third and fourth MC SCF-energy

0301-0104,/84,/803.00 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



414 J. Simons et al. / Molecular - deformation derivatives of the CI energy

derivatives. In our opinion, it is the introduction of new theoretical tools, including the use of explicitly
unitary orbital- and configuration-space transformation operators [9,14,15] as well as representations of the
electronic hamiltonian in an orthonormal and differentiable basis set, which made these recent develop-
ments tractable. The most recent development of Helgaker and Almldf [16], where the hamiltonian is
expanded in an orthogonal basis which reduces to the molecular-orbital basis as derivatives are taken, has
made this development even more tractable. It is the purpose of the present paper to derive and analyze for
computational feasibility the expressions for Cl-based energy derivatives through fourth order. The first
and second derivatives have been given earlier by us [9]. In the present paper we cast the results of this
derivation in a computationally even more tractable form and we also address how to go about the actual
calculation of the third and fourth energy derivatives for CI wavefunctions which may contain as many as
106 configurations. Although the present state of the art in computer and disk hardware may not yet allow
one to perform third- and fourth-derivative calculations for larger molecules using reasonable basis sets and
configuration expansion lengths, it is only a matter of time before such will be possible.

In section 2 we derive expressions for higher-order derivatives of one- and two-electron integrals
constructed from a set of symmetrically orthonormalized molecular orbitals. The derivatives are expressed
in an especially compact form involving atomic-orbital integral derivatives transformed to the molecular-
orbital basis followed by a series of one-index transformations of the undifferentiated molecular-orbital
integrals using derivatives of the overlap matrix as transformation matrices.

In section 3 we determine the first four geometrical derivatives of the CI total energy. To do this we first
determine the response of the orthonormal MC SCF orbitals used to form the configurations of the CI
wavefunction. These orbital responses (corresponding to orbital reoptimization) together with the response
of the hamiltonian described in section 2 (corresponding to orbital reorthonormalization) are then used to
construct an effective hamiltonian operator. The effective hamiltonian is set up in terms of a sequence of
one-index transformations involving the derivatives of the overlap matrix, and a sequence of transforma-
tions involving the MC SCF orbital response parameters. Using this effective hamiltonian the CI response
is determined and the CI energy derivatives then identified. In section 4 we discuss how to solve, using
so-called “direct methods”, the large set of linear equations which govern the response of the CI
wavefunction’s configuration amplitudes and the equations which determine the MC SCF orbital re-
sponses. Finally, section 5 contains a summary of how our results can be computationally implemented as
well as a comparison of the relative efforts involved in computing CI- and MC SCF-based energy
derivatives through fourth order.

2. The effect of geometrical deformation on the electronic hamiltonian

In this section we will study the effect of a geometrical deformation on the electronic hamiltonian. The
power-series expansion of the hamiltonian which will be derived is general in the sense that it can be used
for any approximate wavefunction constructed from a set of orthonormal orbitals,

Let us assume that the electronic hamiltonian H, at the undisplaced geometry denoted by R° is
expressed in terms of a set of orthonormal molecular orbitals { ¢, } (e.g., a set of SCF or MC SCF orbitals)

H0=Zk”a;aq+% Y 8pigsdya,a,a,, (1)
Pq pais
where the two-electron integrals are defined as
gpqu =f¢;(1} ¢:(2)rl-2]¢!(1) ¢1(2) d'rl dTZ (2)

and the one-electron integrals are
kpq=<¢pihlr¢q>‘ (3)
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The operator A, is given by

V4 Z,Z
IO W W (Y e . 4
I : §Ir—RA| ZAE:BIRA—RBl ( )
where Z, denotes the charge and R, the position of nucleus A. At a displaced molecular geometry R® + g,
where p is a row vector

p={piuiuiulul. .}, (5)

containing the small displacements in the x, y and z components of all nuclei A, B,..., the hamiltonian
may be expressed in a power-series expansion in p:

H(R°+p)=Hy+pH, +jppH, + {ppp Hy + SsupppH, + ... (6)

We will, in the remainder of this section, describe how to evaluate H,, H,, H; and H,.

The nuclear displacement dependence appears in the hamiltonian in the atomic-orbital basis in which
the molecular orbitals are expanded, as well as in the electron-nuclear and nuclear-nuclear interaction
terms. The nuclear displacement dependence of the nuclear-nuclear interaction term will not be considered
further as it may be straightforwardly evaluated. The nuclear displacement dependence of the
electron-nuclear interaction may be determined by carrying out a Taylor-series expansion around p = 0:

[r— R,«I_' =l*"‘_R0A_-"'A|_l
=i""—Ri[_l +:“A( Valf‘Rif_l)+%P,anx( VAVAlr—R?\I‘I)
+%P‘AP’AP‘A( VaVaValr— Rgf_l) +%FAP~A.“AP'A( VaAVAVAVaAlr — ROAI_]) + suux (T)

The displacement dependence which occurs through the atomic basis functions presents further
challenges. To treat this dependence in a relatively simple fashion requires: (1) that the orthonormality of
the orbitals {¢,} used to express H is preserved at all geometries; (2) that the orbitals {¢,} can be
differentiated analytically and conveniently and (3) that the power-series expansion of the hamiltonian
generated by taking such orbital derivatives be expressed directly in the molecular-orbital basis. Condition
(1) is desirable because the geometry dependence of the annihilation and creation operators then need not
explicitly be considered since the usual anticommutation relations {a,,a,} =34, are satisfied at any
geometry. Condition (2) is necessary to derive analytical expressions for the power-series expansion of the
hamiltonian. Condition (3) is computationally useful even though it is not a necessary condition. If this
condition is fulfilled it immediately gives the hamiltonian expansion in the molecular-orbital basis [16] in
which the calculation is actually carried out; it allows one to avoid [9,17] carrying out unnecessary
transformations of the integrals (see later).

2.1. Dependence of the orthonormal orbital basis on deformation

In a recent publication [9], we expressed the nuclear displacement dependence of the atomic orbitals in
terms of a set of symmetrically orthogonalized atomic orbitals. These orbitals satisfy conditions (1) and (2)
but not condition (3), as a result of which integrals and integral derivatives have to be transformed from
the symmetrically orthogonalized atomic-orbital basis to the molecular-orbital basis. Such a transformation
is, of course, unappealing because it has to be carried out for each component of the nuclear displacement.
Helgaker and Almlof [16] have described how this transformation may be avoided by setting up the
hamiltonian in a basis of orthogonalized molecular orbitals in which the atomic-to-molecular orbital
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expansion coefficients are fixed at the values they have at the undisplaced geometry. At the geometry R°
the orthonormal basis orbitals {¢?} become the actual Hartree- Fock or MC SCF molecular orbitals

): jaX ar ()
and at a displaced geometry R® + p the orthonormal basis orbitals { ¢, } are defined as
¢, = ES.-} 1,2 qua, (9)
Ja
where (we assume that all atomic orbitals x, and expansion coefficients C2 are real)
S,-,.-=ZC°CB<X |X,B> (10)

If the hamiltonian at R® + p is expressed in terms of the orbitals appearing in eq. (9), conditions (1) and (2)
are straightforwardly satisfied. Furthermore, the power-series expansion of the hamiltonian is expressed
directly in terms of the HF or MC SCF molecular orbitals at R®, and condition (3) is therefore satisfied. In
the following derivation, we use the orbitals of eq. (9) to derive our results because these orbitals offer a
conceptually simpler way to derive our CI derivative expressions than the symmetrically orthogonalized
atomic orbitals.

The hamiltonian at a displaced geometry may be expressed in terms of the symmetrically orthogonalized
basis in eq. (9) as

rq Pats
where a tilde is used to denote that the integrals are evaluated in the symmetrically orthogonalized basis. In
order to determine the power-series expansion of H(R® + ) it is necessary to determine the derivatives of
the one- and two-electron integrals in eq. (11) and we therefore initially consider how to differentiate the
symmetrically orthogonalized orbitals of eq. (9). The derivative of ¢, in eq. (9) is conveniently taken by
dividing S into a diagonal part consisting of the unit matrix and a residual part denoted 4. The derivative
of
=L (1+4);"Cix., (12)
jﬂ

with respect to the ath component of the displacement p, can then be obtained by differentiating the AO
basis function x, and the term (1 + A),.:VZ. Following Helgaker and Almlof [16], we Taylor-series expand
(L+a) 12

(1+4) " =1-14+324A-£A0A + B AAAA + .. (13)
and find that the first four derivatives of

T=(1+4)""? . (14)
evaluated at p = 0 (where 4 = 0) are as follows:

(1+4);"?=-1S(a)=T. (15)

(1+4);,*=-15(ab) +35S(ab)=T?, (16)

(1+4);./* = —1S(abc) +35S(abc) — 5 SSS(abc) = T®, (17)

(1+4),,77 = ~1S5(abed) +35S(abed) — £ SSS(abed ) + 3 SSSS(abed ) = T, (18)



J. Simons et al. / Molecular - deformation derivatives of the CI energy 417

Here the labels a, b, ¢, d are used to denote differentiation with respect to the various components of p
(n.b., some or all of a, b, ¢, d may be equal). The notation (abc) is used to indicate that the derivatives with
respect to a, b, and ¢ are taken in all unique and possible ways consistent with the number of overlap
matrices preceding the notation. For example,

SS(abc) = S(a)S(be) + S(bc)S(a) + S(b)S(ac)+S(ac)S(b)+ S(c)S(ab) + S(ab)S(c) (19)
and
SS(ab)=S(a)S(b)+S(b)S(a). (20)

Note that in, for example, eq. (19) S(a) S(cb) is not included because it is identical to S(a) S(bc) and
therefore is not unique. Recall that the above overlap matrix § is given in terms of the primitive
atomic-orbital (AO) overlap (x,|x,) as

Sfj=ZCi2<Xv|XT>C.‘;‘Pf' (21)
vy

Hence the above derivatives of S are evaluated in terms of derivatives of (x,|x,) by transforming (with
C°) to the orthonormal basis. For example

S, (a) =YX CUx,Ix,)(a)C), (22)

where (x,|x,)(a) is the derivative of (x,|x,) with respect to a nuclear deformation a. In egs. (15)-(18) we
have also introduced the notation T where the superscript (i) indicates differentiation with respect to a

given set of i coordinates.
2.2. Dependence of one- and two-electron integrals on displacement

The matrices TV, T®, T™ and T are straightforward to compute and can be stored if the number
(N) of geometrical degrees of freedom is not extremely large. Once computed, these matrices can be used
to evaluate derivatives of the one- and two-electron integrals appearing in H. For example, the first
derivative of ﬁw is given by

Fy (1 1 1
R = h+ Db T+ 1, TS). (23)
where
(1)
h:)l(;= E‘Bcpoacq%(xlalhlxﬂ) s (24)

is nothing but the AO-level integral derivatives transformed to the orthonormal molecular-orbital basis. In
eq. (24) the differentiation acts on the atomic orbitals and on the electron-nuclear interactions. The second
contribution of eq. (23) involves a one-index transformation of the one-electron integrals in the orthonor-
mal molecular orbital basis [16], and has its origin in differentiating (1 +4)~'/? of eq. (12). The first
derivative of the two-electron integrals can be written in an analogous way

g:)lq,rs = gl:»lq}rs + Z (gl'qr.rT;'L” + gpin'?:ir“ + gpqi.t?:'f-“ o= gpqrinE'” )' (25)
L
where
[A)]
g;l;r.c = Z Cpoacq?ﬂcr?gcg ( Xax,ﬂlx'rxﬁ ) s (26)

afys
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and the last four terms represent a one-index transformation of the two-electron integrals in the
molecular-orbital basis. When the modified one- and two-electron integrals of egs. (23) and (25),
respectively, are multiplied by the appropriate creation and annihilation operators and summed over

orbital indices, the above integral derivatives provide an expression for the first derivative H") of H:
HY"=Y h%Wa*a +31 ) 8).a5a}a,a,. (27)

Pq pars

We will now show that expressions for the higher integral derivatives may be obtained by a generaliza-
tion of the above procedure, i.e. by writing the derivatives in terms of AO-level integral derivatives
transformed to the molecular-orbital basis [see egs. (24) and (26)] followed by a series of one-index
transformations using 7%, T®, T and T as transformation matrices. The one-index transformations
are introduced because terms originating from differentiation of the T matrix are then grouped together in
a very convenient way for carrying out the differentiation. We will for simplicity treat the one-electron case

first.
Using matrix notation the set of transformed integrals may be written

h=ThT, (28)
where
T=1+38. (29)

From eq. (14) it is clear that the matrix § vanishes for the unperturbed system and that the derivatives of §
are equal to the derivatives of T given by egs. (15)—(18). In this matrix notation a one-index transformation
is given by an anticommutator, €.g. €q. (23) may be written as

5(11=ht11+{7‘{1>,h}_ (30)

The explicit use of anticommutators is convenient as it avoids any reference to individual orbital indices,
treating the integral as a whole. To introduce the same simplifications for higher derivatives we first write
eq. (28) as a sequence of anticommutators and then differentiate this sequence to obtain the integral
derivatives 4. This may be accomplished by introducing a Baker—-Campbell-Hausdorf (BCH) expansion
of the exponential matrices when the identity

T=exp(ln T), (31)
is introduced into eq. (28):

h=ThT=exp(In T)hexp(In T)=h+{InT,h}+3{InT,InT,h} + .... (32)
In the last equation we have introduced the n-tuple symmetric anticommutator defined as

(Ao Aynnaithios B F B (LAY BT 1 2o A Yoy Lo MiaiB Foion) | (33)

where P(1, 2,...,n) is a permutation operator which contains the n! permutations of the indices 1, 2,...n.
From eq. (32) it is evident that the derivatives of h may be determined once the derivatives of the matrix
In T are known. To obtain those we expand In T in a power series in &

U=sInT=In(1+8)=86-162+18>-48%+ ..., (34)
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and find that the first four derivatives may be written as
Um= T{U,
2

Ut2>= T( ’—%T{”T“],
UIJ) e T(3) iz % T(UT(Z) e % TOTM 4 % TIIJTIHTUJ,

4) _ (4 (3 )2 3Hra
U( ; J Tl’ ’**'%T( ]T{ )—%T{ IT( }—*%T{ )T( )

4 %. T{I}TU}T(I} + %T“]T(Z)T”} + _% T(ZJT(IJTU} - %TUJT(UT(UT(IJ_ (35)

In these expressions the derivatives are symmetrized, e.g. the second term of U'® becomes for the
deformation coordinates a, b, and ¢

—ITOT@ = _1TO(g) TP (be) - 1TD(5) T (ac) = 3TV(c) TP (ab). (36)

Finally, by differentiating eq. (32) we obtain the MO integral derivatives in terms of the AO-level integral
derivatives transformed to the molecular basis and a sequence of one-index transformations involving the
matrices U, The first four derivatives become:

RO =K+ (UD, k),
h‘f2}=h[2)+ {U“j, htll} A% {U(Z)‘ h} +%{U”’, U(I:" }l},
};{3}=hl‘3>+ {U(”, h(2j} +{U(2l‘ h(l]} +%{U{U, U”), hth} + {U{JI’ h} +{u(1}‘ UEZ)‘h}
+%{U(“. U(”, U(l)’h}‘
;!(d}=h(4j+{Ul‘l} hl‘3]} B {U(Z}‘ h(l)} +%{U'{|]‘ U(”. hl’l]} +{br{3]. hfl)} A {L‘r”j. U(h, k(ll}
+%{U(|]‘ U“l, U(il. k{l]} +{U(4J‘ h} +%{U{2l‘ U{Q]‘h} + {U(li‘ U{J)‘ h}
+%{U(IJ‘ U{ll‘ Um. h} +§II{Ums U“’. U(ll. Um.h}. (37)

Certain simplifications may be introduced in the expressions for the third and higher derivatives for the
one-electron integral case in eq. (37) due to the fact that 4 is a two-index quantity. To see this we recognize
that & using eq. (29) may be written as

A=(1+8)h(1+8)=h+{8-18" h} +1{8.{8.h}}. (38)

where the last equality sign can easily be checked by explicitly writing the anticommutators as matrix
products. By comparing eq. (32) and eq. (38) we see that eq. (38) expresses in a direct fashion the fact that
in the BCH expansion in eq. (32) all terms containing products of more than two 7'’ matrices cancel
exactly to any order. This cancellation simplifies the expressions for 2> and A¥, e.g. the third derivative
becomes:

RO = hD 4 (TO, g ) 4 (TO = §TOTO M} 4 J(TH, TO, pO)
+{TO-ITOTO_LTOT® p} 4 (TO T p}, (39)

Later in this section we show that the two-electron integral derivatives may be expressed in a form identical
to eq. (37) with h replaced by g. In practical applications it may therefore be more convenient also to use
€q. (37) to determine the one-electron integral derivatives since the simplifications obtained by using for
example eq. (39) are not computationally significant.

We will now derive expressions for the two-electron integral derivatives. This derivation turns out to be
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very similar to the one treated above for the one-electron case. The two-electron integrals contain four
indices and a one-index transformation of the two-electron integrals may therefore be written as

{ gs T } pPgrs = Z ( g:'qrs?;p =+ gpir.s}:q + gpquTi'r + gpqn?:'s)‘ (40)

i

Our aim therefore becomes to express a four-index transformation

gpqr: T Eguk.‘:'p quTkrT}s (41)
ikl
as a series of anticommutators. Introducing the identity in eq. (31) into eq. (41) allows us to write eq. (41)
as

Bag™ gg,-,“[exp(ln T)).plexp(in T)] 4 [exp(in T)], [exp(in T)],. (42)
ikt

Eq. (42) is a generalized matrix product involving four exponential matrices and it therefore becomes
convenient to derive a generalization of the BCH expansion which is valid for this case. To do so we
introduce the function

f(x)=X g lexp(x1n T)],,[exp(x In T)] o [exp(x In T)],, [exp(x In T)] . (43)
ikl

and determine the Taylor-expansion coefficients of f(x) around x = 0:

f(O) = E ga’;k.‘si'p%'qskrafs 2 g!’ﬂ"-"
ikl

f’(o) - Zg!;k! { [}n TeXp(U)] fPS_,rqskr T +5:p81q8kr[zn T exp(o)] f.\'}

ijkt

=Z[gi¢r$(ln T)"P’+ R +gpqn(1n T)i'_\] = {g’ ln T}!’q”s‘

/'0)={{gmT},InT},,, (44)

and likewise for higher-order terms. The general BCH-formula is now obtained by setting x =1 in the
expansion of f(x):

g=g+{InT,g}+3{(InT,InT,g}+.... (45)

Eq. (45) is formally identical to the conventional BCH expansion of eq. (32). The two-electron integral
derivatives may now be determined by differentiating eq. (45) and using eq. (35). The resulting formulas
obviously become identical to eq. (37) except that g now replaces h.

In the one-electron case we saw that all terms containing more than two matrices 7' as factors cancel
exactly. The corresponding simplification in the two-electron case occurs for all terms containing more than
four matrices T'"), as is easily seen by substituting 7= 1 + § in eq. (41). This implies that no simplification
occurs in the derivative expressions up to fourth order given in eq. (37).

Due to the use of one-index transformations (anticommutators) the derivatives as given by eq. (37)
involve relatively few distinct contributions to each order. In contrast, a straightforward differentiation of
eqs. (28) and (41) would lead to more complicated expressions for higher-order derivatives involving a
greater number of distinct contributions. The use of one-index transformations also simplifies the
construction of higher-order derivatives as most of the terms contributing to the higher-order derivatives
may be constructed from contributions to lower-order derivatives. For example, all four individual
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contributions to the second-order derivatives enter as entities in the calculation of third-order derivatives.
The third-order contributions are obtained by simply performing further one-index transformations on the
individual contributions to the second-order derivatives.

The analysis presented above provides us with practical expressions for the integral derivative arrays
which enter into H", H® H® and H® and are used to form H,, H,, H,, and H,, respectively, of eq. (6).
These hamiltonian derivatives have components along each of the 3N directions which describe the
molecular displacements p. As a result, H, has 3N components, H, has (3N)?, H; has (3N)’ and H, has
(3N)* components.

3. Analysis of the CI energy

In the present section we evaluate geometrical derivatives of the total energy for the approximate
electronic wavefunction case where a configuration-interaction (CI) calculation is carried out with a set of
multiconfiguration self-consistent-field (MC SCF) orbitals. The calculation we describe can thus be
considered to consist of two separate steps. In the first step, a MC SCF calculation is performed using a
small to moderate size configuration list containing the dominant configurations of the calculation. In the
second step, a CI calculation is carried out using the MC SCF orbitals of step one but with a configuration
list which is larger than that used in the MC SCF calculation [18].

The CI wavefunction at the displaced geometry may be parameterized in terms of simultaneous unitary
transformations in the orbital and configuration spaces of the CI wavefunction |CI) at the undisplaced
geometry. The orbital response parameters are determined exclusively through the MC SCF calculation and
the configuration amplitude response parameters are subsequently determined by the CI calculation of step
two. The CI wavefunction at the displaced geometry |C/) may therefore be written as [9,14,15]

|ET> = exp(ix) exp(iS)|CI), (46)
where the operator
k=i) ,(a’a,~aja,) (47)

contains the non-redundant set of orbital excitation operators of the MC SCF calculation and the operator

§=i)S,(In)(Cl| = [CI){nl) (48)

contains the set of state transfer operators {|n)(CI|} where {|n)} denotes the orthogonal complement set
of states of the CI wavefunction. The total CI energy at the displaced geometry R” + p becomes

E(R°+ p) = (Cllexp(—iS) exp(—ix) H(R® + ) exp(ix) exp(iS)[CI). (49)

The CI total energy of eq. (49) contains a p dependence in the electronic hamiltonian H(R" + p), in the
orbital rotation parameters {«,, }, and in the configuration amplitude rotation parameters {S,}. The p
dependence of the hamiltonian has already been determined and explicitly written out as a power series in
p in eq. (6). The pu dependence of the orbital and configuration amplitude rotation parameters may also be

power-series expanded

K=o+ tppk @+ tpppx + Sppppcld + (50)

S, =pSV+ 1uuSP + fuppSS + LppppS+ ... (51)

The parameters { k! } are determined as the orbital response parameters in the first (MC SCF) step of the
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calculation, while the parameters {5} can be determined in the second (CI) step once the orbital
response parameters are known.

To evaluate the parameters { S{"} efficiently it is convenient to combine the u dependence of the orbital
rotation parameters {x,, } and of the electronic hamiltonian H(R°® + ) in an “effective hamiltonian”

H(R°+p)=exp(—ix) H(R® + p) exp(ix), (52)

which explicitly takes into account both the reorthonormalization effect due to the nuclear distortion of the
molecular orbitals and the reoptimization effect which results from optimizing the orbitals in the MC SCF
calculation of step one. In this way all defects arising from the use of a finite basis set and an incomplete
CI expansion are isolated in an effective hamiltonian.

In terms of this effective hamiltonian the expression for the CI total energy in eq. (49) becomes

E(R°+p)=(Cllexp(—iS)H(R®+ p) exp(iS)[CI). (53)
Once the power-series expansion of the effective hamiltonian
H(R+p)=Hy+pH + ppHy + Lppp Hy + LppppH, + ... (54)

has been obtained by combining the expansions in egs. (6) and (50), it is straightforward to determine the
CT response parameters {S;"} of eq. (51) using the fact that the total energy has to be stationary through
each power in g (8E(R® + p) = 0). The CI derivatives can then be determined by identifying in the CI total
energy terms through the individual powers in pu:

E(R*+p)=Ey+pE, +ppE, + dpppEs + SppppEg + ... (55)

In this expression £, and E, represent the CI molecular gradient and hessian, respectively, while E, and E,
yield successively higher CI anharmonicity terms.

In section 3.1 we present the formulas needed to determine the MC SCF orbital response parameters
{x}} of eq. (50), and in section 3.2 these parameters are combined with the power-series expansion of
H(R® + p) of section 2 to give the expansion in eq. (54) of the effective hamiltonian. The configuration
amplitude response parameters { 5"’} are determined in section 3.4 and the CI molecular gradient, hessian

and anharmonicity expressions { £, } are finally identified.
3.1. Trearment of the MC SCF orbital response

Eq. (50) above expresses the p dependence of the orbital response parameters {«,, } as a power series in
p. The orbital response parameters which enter into this expansion have either explicitly been derived in
refs. [9,13] or may straightforwardly be derived based on equations in ref. [19]. To express these results in a
compact notation the orbital () and configuration state function amplitudes (MCS) and the corresponding
excitation operators {a;a,—afa,} and {Mn)(MC|—|MC)(Mn|} are collected together as column
vectors

A= (:lcs)s (56)
MeT o ala,~ala, (57)
[MCn)(MC| - [MC)(Mn] )’

where {[Mn)} denotes the orthogonal complement space to the multiconfiguration self-consistent-field
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state [MC) which is determined in step one. It is also convenient to introduce the following definitions of
matrices which enter into the equations which determine the x_, parameters:

MCE® = (MC|[MCT, H,]|MC), (58)
MCG() = (MC‘[MCT, MCT. H‘.]EMC), (33)
MK = (MC|[MCT, M°T, T, H,]|MC), i
MELY = (MC|[MCT, MCT, MCT, M°T,, H,]|MC), e
MCp1() = (MC|[MET, MCT, MCT, MCT, MCT, H [ |MC). %

In egs. (59)-(62) we have used the n-tuple symmetric commutators defined in ref. [20]. The orbital response
parameters { k(! } are then obtained, as shown in refs. [9,13,19], as the orbital parts of the vector A’ given

below

—MCGOND _MC ) (63)
i %MCG(U})\Q):%MCFQ)_J,_MCG(UNU +-}MCK{0'N1}N”, (64)
MC~(0)3(3) — 1MC (3 1IMC~(1)y(2 1MC ~(2)y01 MC g (0)y(2
_% G(}NJ_% F“+§ G“N‘W—i G! }‘\J_!_% K“X’N“
+ %MCK“’X“N” +%MCL[O’A”’N“N”, (65)

_%MCGfO)N-:;: 2'—4MCF‘4’+%MCG“’A”’+%‘“CG‘S’)\“’+%MCG{Z),\”’-F %MCK{O)N.\JA(H
= %M.CK‘O}N:)NZ"I' %NiL'K[l)‘\r:JArtl+%MCK{Z’.)‘\{I)NI)_,'_ %MCL{“N”N“N”
+ %MCLIOJNNNHNH-F }I—‘,‘MC;"!"OJN“N“N“N”‘ (66}

In section 4 we will elaborate about how these equations might best be solved.

The kind of MC SCF calculation outlined here does not determine a unique set of orbitals in the sense
that the orbitals, for example, are only determined to within an arbitrary rotation among the completely
occupied orbitals and an arbitrary rotation among the unoccupied oribtals [14]. As a result, CI calculations
in which a chosen set of electronic configurations are employed may not be consistent when performed
with this type of MC SCF orbitals at two neighboring geometries. In particular, if the two geometries are
only infinitesimally displaced, the resultant CI energy change may not be infinitesimally small. One
solution to this problem is to uniquely determine all of the MC SCF orbitals by diagonalizing the
redundant part of the Fock potential with an exponential operator containing the redundant orbital
excitation operators and to then determine the resulting orbital responses [9]. Another solution may be to
only consider CI calculations of the type where the CI energy is invariant with respect to rotations among
orbitals that are not uniquely determined by the MC SCF procedure. Such a CI calculation could, for
example, be one consisting of all single and double excitations out of the MC SCF configuration space used
in determining the orbitals which are employed in the subsequent CI calculation.

3.2. The effective hamiltonian and its geometry dependence

We will now use the orbital responses (!} obtained in the previous section to construct the effective
hamiltonian expansion in eq. (54). To do this we simplify the hamiltonian in eq. (52) using the conventional
Baker-Campbell-Hausdorf expansion expressed in terms of symmetric commutators

H(R®+p)=exp(—ix) H( R+ p) exp(ix)
= H(R®+p) —i[x, H(R®+ )] =4[k, k, H(R® + p)] +Li[x, k, k, H(R® + p)]
+ & [k, ke, HRO+ )] + ... (67)
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The power-series expansion of H(R®+ p) is given in eq. (6) and earlier in egs. (63)-(66) expressions are
given for the p-expansion of the x parameters. Substituting these expansions into eq. (67) and collecting
together factors multiplying each power of i, we may identify each term in the order-by-order expansion of
H in eq. (54). Expressions for the H, operators are as follows

i, (68)
H, = H, —i[x", H,]. (69)
VA, =1H, - i[x®, H] =3[« D, kD, H,) - 1i[x®, H,], (70)
i1H,=1H, “lllnt ) HG] - I[K("]. H,] —fl[KI”. H2] —E[rc”’. kM, H,] —%[x‘”, P Ho]
+31[x”’, e H0]~ (71)

LH,=%H,— %i[«9, Ho| - [« H,] = 3i[x®, H,y] = 3i[x D, Hy] =3[, kD, H]
—%[x“’, x® Hﬂ] __;[Km. K, H1] _%[Klly_ kD, Hz] e -E;i[x‘”, POUNFILS H1]
+ %i[xﬂ}, K(”, K(E)‘ H()] +2%[Klli. KD K(l}. h"”. Ho]- (72)

Since a commutator as [k'", H,] can be viewed as a modified hamiltonian with integrals equal to
one-index transformed H, integrals, H, of egs. (69)-(72) may be determined by carrying out a sequence of
one-index transformations on the integrals of H,. In the next section we will demonstrate this point in more
detail.

3.3. Remarks on the computational implementation of !7,‘

The computational evaluation of expectation or transition values involving the above F!-k operators is not
nearly as difficult as one might think based upon a cursory analysis of eqs. (69)-(72). Given that one can
evaluate and store the integral derivatives {4’} and { &'’} which we discussed earlier, it is possible to
evaluate each of the commutators appearing in egs. (69)-(72) by carrying out further one-index transfor-
mations [20] on these integrals. Let us consider one concrete example to illustrate this essential point. The
contribution — [k, k"), H,] appearing in H, is initially recognized to be equal to — [« [, H,]]
and can be computationally evaluated as follows. First, the commutator [«‘", H,] is carried out for a
nuclear deformation a in x'" and b in H,

[xm H]"‘l kD ( )(Z[a:as—a:a,, ]h[”(b)
rq

r=s

+1 Y g},‘q’m(b}[a a,—aja,, a amanaq])

pamn
_lzzlhm(b)xm(a)_'_xm h”’(b)]
Pq T
+3i Y T2 (6)kD(a) + 0. (b)x(a)
pgrs 1
+20.(b)kP(a) +2%,,(b)xP(a)]a}a} a,a,. (73)

The result in eq. (73) is nothing but a one- and two-electron operator having corresponding one- and
two-electron integrals which have been subjected to one-index transformation using the x"’(a) matrix as
transformation coefficients. Eq. (73) may thus be written as a modified hamiltonian
1 . : ;
[x‘ ) H,] =i) k,,(ab)aya,+ }i ijq,,.(ab)a araidy, (74)
rq

pars
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where &, (ab) and j,,, (ab) are the modified one-index transformed one- and two-electron integrals,
respectively. We stress that it is not simply notationally convenient to write the commutator in the above
form. It is, in fact, computationally relevant since one would actually carry out such a one-index
transformation on the integrals in order to make the commutator computationally feasible.

Returning to the task of evaluating — [x",[k", H,]] we see that once the first commutator [«‘”, H,] is
evaluated as above, the same integral transformation device can be used to effect the next commutator with
eq. (74) as the hamiltonian. The double commutator — 3[x", k"), H,] therefore corresponds to a modified
hamiltonian in which the integrals of H, have been subjected to two successive one-index transformations.
Every one of the commutators in H,, H,, H,, and H, can be expressed in like fashion in terms of integrals
or integral derivatives which have been one-index transformed.

3.4. Response of the CI energy and wavefunction

Now that we have obtained compact and computationally tractable expressions for the H, (k = 1, 2, 3, 4)
operators, we are prepared to return to consider the dependence of the CI energy on geometrical
deformation. We begin by Baker—Campbell-Hausdorf (BCH) expanding the exp(+iS) factors appearing
in eq. (53) which give the CI energy:

E = (CI|H|CI) - i(CII[ S, H]ICI) - }(ClI[S,[S, H]]ICI) + ...
=E+FS+1GSS+1KSSS+ %LSSSS+ .... (75)
The matrices F, G, K, and L are introduced to represent symmetrized versions [9] of the corresponding

commutators appearing in the BCH expansion. When the energy function is made stable with respect to
variations in the S, parameters, we obtain an equation to be used to solve for the optimal S, parameters:

0=F+GS+1iKSS+ ... (76)

As we saw earlier in eqgs. (58)-(62), the matrices F, G, K, and L can be expanded in powers of p. In eq. (51)
the S parameters are power-series expanded in p. Substituting these expansions into eq. (76) and collecting
terms which multiply powers of p, we obtain equations for $¢). The lowest-order such equations read

~GOSMH = FO (77)
and
—1GOSD=L1F® 4+ GVSD 4 LK@ghgm (78)

When these equations are solved for S and $® and the results substituted back into eq. (75), we may
identify the terms in the order-by-order expansion of the CI energy in eq. (55). The five lowest-order terms
in this expansion are

E, = (CI|Hy[CI), (79)
E, = (CI|H,[CI), (80)
LE, = {(CI|H,(CI) + FSM + {1 GOSUSV = L (CI| H,[CI) + § F S, (81)
{E, = {(CI|H,(CI) + }FPSV+ }GISDSD + K OsDsDsD, (82)
LE, = %i(CI[H_4|CI> + LFOgM 4 1GAghgM 4 1 gMgghg

+‘217£70’S(1}S(1}S(”S(1]— %5(018{215(21_ (83)

The matrices F, G, K/, and L'’ are defined in analogy with those appearing earlier in egs. (58)-(62)



426 J. Simons et al. / Molecular - deformation derivatives of the CI energy

except that now only the configuration-space operators {|j){CI|—|CI)(j|} appear in the commutators,

Explicit expressions for the matrices needed to evaluate E,, E,...., E, are as follows:
EP= —2(Cl|H|n) (note F”=0), (84)
Gyl =2(m|H,n) = 28,,(CLIH/CI), (85)
KD =4 [6,,,,,(CI|H k) + M(Cl[}?jpz) + 6,,,‘.(CI|}_JJ.[m)] note K%, = 0), (86)
L0, =418, (8,/Eo = (m|Ho|1)) + 8, (8, Eq = (n|Holl)) +8,,, (8, Eo — (kI Ho|l))
“”8":(5»-150_ (mIHolkY) + 8,/ (8,0 Eo = (nlHolky) + 8, (8, Eo = (mI Holn))] . (87)

Having now derived working equations for the p-derivatives of the CI energy up through fourth order,
let us briefly review the steps which must be taken to perform such a calculation. First, one must compute
and store the U'” arrays in terms of overlap integral derivatives as shown in eq. (35). Second, one must
form the one- and two-electron integral derivatives and their one-index transformations shown in eq. (37)
in order to evaluate the modified integral derivative lists #? and g' which enter into the H, operators.
Third, it is necessary to compute the MC SCF orbital response matrices «!;’ from egs. (63)-(66) and to
subsequently use these arrays in egs. (69)-(72) to perform further one-index transformations on the
modified integral derivatives of H, in order to form the final integral derivative lists which define the H,
operators. Finally, the integral derivatives of H, can be used to form the F*/), G, K@ arrays as needed in
egs. (77) and (78). Once eqs. (77) and (78) are solved for S and S'?, they can be used, together with the
F GY, K and L' arrays in egs. (80)—(83) to evaluate the desired CI energy derivatives.

In the following section, we attempt to further clarify and detail the solutions of the response equations
for the k! and S and S'® parameters. In particular, we focus on situations in which the number of
configurations appearing in the CI wavefunction expansion may be quite large (e.g., 5000-10°).

4. Computationally practical solutions to working equations
4.1. Direct methods for solving the CI response equations

In the preceding section, we derived explicit expressions for the geometrical derivatives of the CI energy.
The evaluation of these expressions requires that several sets of linear equations be solved [e.g. egs.
(63)-(66) and (77) and (78)). As they are written, these linear equations are not cast in a form which allows
so-called “direct methods” to be applied [21,22] and, consequently, only small configuration spaces can
straightforwardly be treated.

In this section we re-express the sets of linear equations in forms that allow direct methods to be used
and which therefore allow treatment of very large (5000-109) configuration state function spaces. Let us
begin by considering how the set of linear equations in eq. (77) determining the S amplitudes

GOgM = — FM (88)

can be solved in a direct fashion. Eq. (88) is written in terms of the set of basis vectors spanning the
orthogonal complement space {|j)} of the |CI) wavefunction. To express eq. (88) in a form where direct
methods can be used we transform eq. (88) to the configuration state function basis using a method similar
to the one described by Lengsfield and Liu [23]. To do this we follow the treatment of Helgaker and Almlof
[16] and introduce the augmented hessian **28G‘? which has exactly the same structure as G'® but which is
of one larger dimension since it is defined in terms of the orthogonal complement states and the reference
state {|CI), |j)}. Since the generalized Brillouin theorem is valid,

auggrg)m = 2<C]|’l_{ofk) =0, (89)
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and since, from eq. (85),

*#G\&) oy = 2 CI H,[CI) — 2(CI | H,[CT) =0, (0)
we obtain
aug ~(0) __ 0 G
T _(0 6@), (91)
Eq. (88) can therefore be written in the equivalent form
F4 6 aug ~(0 0 23 0
[(o o)+ v }](s‘”)_“(ﬁ”)‘ 92

where the variable z # 0 has been (temporarily) introduced to ensure that the matrix multiplying (%) is
non-singular. Arranging the expansion coefficients {C“", C'’} of the states {|CI), |j)} as column
vectors, we define a unitary matrix

U= (C{C”,C‘”), (93)

which then allows us to write eq. (92) as

0(2|C{CIJ><C(C1)| +CSF5¢0:)U( gm) e ( %“’)' (94)

where “5FG'? is defined as in eq. (75) but in the configuration state function basis {I9)}
Gy = 20 Holdy) = ESV8,, ), (95)
where
tCI: (CI]HICD (96)

Multiplying eq. (94) from the left by U and introducing the projection operator onto the one-dimensional
space defined by C(“"

B [CEECEN], (97)
and its orthogonal complement projector

P=1-0, (98)
where 7 is the unit matrix, allows us to write eq. (94) as

(20 +CSFG©@) pCSFg(h = _ CSFEM), (99)

where “SFF is defined as in eq. (75) but in terms of the configuration state function basis
CSFI—;{I)= __2<¢S|’t_{]|CI> o 2C;C“E;C“. (100)

and STS(M denotes the set of configuration state function amplitudes in which the C‘“” component is
annihilated. P ©SFS™ contains the first-order response amplitudes in the configuration state function basis.
That P “SFS s identical to the U(%n) column vector may be seen by straightforward multiplication

[U(gm)] [(C(cn C(K})(Sm)] ZC[K:S{I: Zc(xlctKJCSFStl] EPX,CSFS;_]). (101)
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When the integral list appearing in H, is available, “S"F" in eq. (100) is constructed by carrying out the
same kind of linear transformation as is required in a direct CI calculation. A direct method can then be
used to solve eq. (99) if the successive linear transformations

1+ 1y = CSFGOXD, (102)

can be carried out. Here / denotes the /th iteration on a trial vector whose |C'“") component has been
removed (since the desired solution has the form P 57§ Since “SFG'® is nothing but the hamiltonian
matrix in the CSF basis with the CI total energy removed from its diagonal elements, the linear
transformation in eq. (102) requires the very same linear transformation as is used in a direct CI
calculation. The actual solution to eq. (99) may therefore be obtained using the reduced linear equations
method [2,24), the conjugate gradient method [25] or other techniques which are applicable to large linear
equations. When the solution °CC = P “SF§M) g eq. (99) is found, the second contribution to the CI hessian
matrix of eq. (81) may straightforwardly be obtained by multiplying the row vector “SFF into 9€C.

The hypercurvature E, may be evaluated when the SV parameters are known. In order to do so it is
convenient to obtain an explicit expression for the S''’ parameters. Since the solution to eq. (99) (°“C) is

spanned only by the orthogonal complement to C'“P, we may parameterize the orthogonal complement
space such that only one Sf“ parameter is non-vanishing. To do so, we re-express

28,7 (In)(CI| = [C1)(n)) (103)
as

E( ):S:”C;”)( 19 >{CI| = ICI){&,]) = 2 °°C, (I {C1| = [CI)(,]), (104)

8§ ' n 2

which can be thought of as (°“C°°C)'/? (|1)(CI| - [CI)(1]), where the normalized state [1) lying in the
orthogonal complement space is

B)={25€%°6) " “ L 5Clle, (105)
£

and (°C°€C)~17? is its normalization constant. In this representation, the only non-vanishing element of
SN js

S (OCGOCY (106)

Using this parameterization of the orthogonal complement space, the actual evaluation of E; reduces to
carrying out a few linear transformations of the same type as are performed in a direct CI calculation [21],
followed by simple vector multiplications with already-available vectors.

The evaluation of E, requires the solution of the linear equations for S in eq. (78) (recall that K©=0)

—1GOSD = GI§M 4 1L FD) (107)
Since

LGOSV =2Y (m|H, ~ E{V|n)S{¥ = 2(m|H, - E{]1)s{, (108)
GM SM is a row vector of the same dimension and structure as 1?2’ of eq. (88). S® may thus be
determined directly from an equation similar to eq. (99) except that SFF" of eq. (99) is replaced by

CSF(@(I)S[IJ) a %CSFftZJ‘ (109)
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where SFF@ is defined as in eq. (100) but with H, replaced by H, and

CHGUST) ;= 2( ¢, | H, — E{V1)S{" = 2CIT(CL H,1)S{V. (110)
When S is available it is a straightforward task to evaluate E,.
4.2. Direct methods for solving the MC SCF response equations

In this section we describe how the set of equations which determine the MC SCF orbital responses k!/’
may be solved using the direct methods discussed above. This knowledge allows one to determine the
orbital responses for MC SCF wavefunctions containing a large number of configurations.

Let us begin by considering the determination of the !}’ parameters which obey [eq. (63)]

MCGOAD = _MCpM), (111)

where A contains the orbital response parameters defined in eq. (56) as well as the MC SCF configuration
response parameters MCS"). To apply direct methods to eq. (111) we have to transform this equation to the
configuration state function basis. This can be done by using the very same technique used to transform eq.
(88). The result of this transformation is the following matrix equations [23]

(zMCY(MC]| + MEG®) QMEAD = _ CMCE M) (112)
where

MEGSY = 24y | Holdy) — 2E5M8,, (113)

NGO, = ~2(4|[aa, ~ a7 a,, H][MC), (114)

MCGOu=(MC|[a}a,~a}a,, afa,—aja,. H,]|MC), (115)

MEFMD = —2(¢, | H,MC) + 2 E{MICMO), (116)

CMCEMD = (MC|[a} a, — a}a,, H,]|MC), (117)
and where

EMO = (MC|HMC) (118)

and Q™CAM is a vector containing both configuration- and orbital-response amplitudes. Q is the projector
that annihilates the [MC) component of the configuration state function amplitude. Solving eq. (112) by a
direct approach requires successive linear transformations of the form

U+ Dy — CMCGOXD x| (119)

to be carried out, where ("X = (") is a vector in which the [MC) component has been annihilated. Such a
linear transformation procedure has recently been described in refs. [20,26], and can be more explicitly

written as
(DO m 2| Ho[ PMCD) = 2EMEXDCI = 2( | Ho (V) MC), (120)
U0 = —2(MC|[a} a, - a} a,. Hy]|"MC®) + <Mc|[a:'a, ~a}a, Hy("xM)||MCy,  (121)

where

(MCDY =ENJCK(H¢”)’ (122)
B
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and Hy(‘"x1") is the one-index transformed hamiltonian defined with k' as the transformation matrix
as in eq. (74). Using the above techniques, the coupled multiconfiguration set of linear equations may be
solved for very large configuration spaces. Once k" and C'V (or equivalently $'”) [see eqgs. (103)-(106)]
are available, it is straightforward to actually evaluate the MC SCF molecular hessian MCE, and the first
MC SCF anharmonicity term M€E,. Direct evaluation of x‘*’ may be performed in a manner very similar to
that described for k', The first task would be to express the right-hand side of eq. (64)

(MCG“]N”%— %MCK(U]’)\“}N”+ %M(‘Frl})‘ (]23)

as a vector of the same structure as MSF" analogous to using the transformation that was applied to
GV'S™M in eq. (108) to bring it to the same form as F in eq. (88). This transformation is described in some
detail in ref. [20]. With this transformation available, it is straightforward to directly evaluate k', and then
MCE, may consequently be evaluated. k*? is also required in order to evaluate the hessian ( E,) of the CI
energy. A direct evaluation of the k' and x¥ parameters, which are required for E; and E,, becomes
increasingly more difficult because of the larger p-index dimensionality of the equations which determine
these parameters. In our opinion it is, at the present time, necessary to accept that ‘¥ and x'® be evaluated
without using direct-method algorithms. This, of course, restricts the evaluation of CI third and fourth
derivatives to configuration spaces of the MC SCF calculation of up to a few hundred configuration state
functions (i.e. those for which k¥ and k¥ can be computed using in-core methods).

5. Summary and overview

In this paper we have given analytical expressions for derivatives of the CI energy with respect to
molecular deformation up through the fourth derivative. To implement the results which we have derived,
several steps are required:

(1) The overlap-based matrices U'’ must be computed and stored.

(2) The integral derivatives (e.g., g') and the one-index transformed integrals and integral derivatives
(e.g., {g", U®}) must be computed and used to assemble the modified integral derivative arrays (e.g.,
£'®) which define the various hamiltonian derivatives H,...H,.

(3) The response of the MC SCF orbitals to molecular deformation, as described through the parameters
k', j=1, 2, 3, 4, must be evaluated. For large configuration expansion lengths in the MC SCF
wavefunction, this step may require the use of “direct methods” as described in section 4.2,

(4) The modified integral derivative lists which appear in the H,...H, operators must be subjected to
further one-index transformations, using the «!/) as transformation matrices, in order to generate the
integral derivative lists which define the final working hamiltonian operators H, ... H, in terms of which all
final CI-based energy derivatives are expressed.

(5) The response of the CI wavefunction’s configuration expansion parameters S and $‘® must be
evaluated by solving the sets of linear equations which define them. Because we have in mind CI
wavefunctions whose configuration expansion lengths are large (e.g., 5000-10°), the solution of these sets
of linear equations requires the use of the direct methods treated in section 4.1.

(6) The CI gradient (E,), hessian ( E,) and higher energy derivatives ( E;, E,) can then be evaluated by
performing linear transformations similar to the ones occurring in direct CI calculations, followed by
simple vector multiplications.

Before closing, we examine in some detail the computational effort which is required to compute the
various Cl-energy derivatives and we compare this effort with what is needed to perform MC SCF-based
energy-derivative calculations.

The analytical expressions for the CI and MC SCF energy derivatives are very much alike. The MC SCF
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energy derivatives through fourth order are given in refs. [9,13]. The CI energy derivatives in egs. (80)-(83)
can be obtained by simply replacing in refs. [9,13] the MC SCF matrices MCF(), MCG(1) MCg (1) gpnd MC (D
of egs. (58)-(61) by the corresponding CI matrices F'"), G'?, K> and L. The MC SCF matrices
MCpE( .. contain the hamiltonians H,, i=1-4 of eq. (6) and have both orbital excitation and state
transfer excitation parts. The CI matrices contain the modified hamiltonians H,, i = 1-4 of eq. (54) and
have only state transfer excitation parts. In carrying out a comparison of MC SCF and CI energy
derivatives we concentrate on describing the differences which occur due to the fact that orbital responses
are required to a lower level in MC SCF calculations than in corresponding CI calculations. As a result,
MC SCF calculations can be carried out by constructing matrices (MCF(?...) of lower order than is
required in a corresponding CI calculation. We shall now address each of the four energy derivatives
separately.

E,: The CI gradient (CI|H,|CI) requires the evaluation of the «{!’ orbital response parameters and the
one-index transformation of the integrals in H, with k" to generate H,. The MC SCF gradient
(MC|H,MC) does not require knowledge of any orbital response parameters.

E,: The CI hessian requires evaluation of k!’ and ‘2 as well as the one-index transformations required
to obtain H, and H,. Furthermore, to evaluate the CI hessian, the configuration amplitude response
parameters S“’ of eq. (51) need to be evaluated. The MC SCF hessian requires that the simultaneous set of
orbital and state response parameters AV of eq. (63) be evaluated; no second-order responses are needed.

E;: The evaluation of E; in the CI method requires knowledge of ', x> and &}’ in order to perform
the one-index transformations necessary to evaluate H,, H, and H,. As was the case for the CI hessian, the
E, also requires that the linear equations of eq. (77) be solved for $'". The MC SCF hessian requires only
that the linear set of equations for A"’ in eq. (63) be sol\ed The evaluation of E; in CI simplifies a little
because K is zero.

E,: Evaluation of E, in CI requires that the orbital response parameters !, k2, k3’ and «(? be
evaluated and that the resulting one-index transformations be carried out to obtain H,, H,, H, and H,. The
configuration amplitude responses S’ and S® also have to be evaluated. To obtain E, in the MC SCF
method requires evaluation of the A" and A'* parameters of eqs. (63) and (64) respectively.

As discussed above, the major differences between evaluating energy derivatives in CI and in MC SCF is
that orbital responses '/’ are required to a higher level in CI than in MC SCF. The lowest orbital
responses k!’ and k¥ can relatively straightforwardly be evaluated using direct methods. However, it
becomes increasingly difficult to evaluate the higher-order orbital responses as x> and k¥ using direct
methods. These higher responses are required in the evaluation of the CI E; and E,. Therefore, it is likely
that presently £, and E, can only be evaluated if the orbital responses x> are obtained from MC SCF
calculations involving only moderate size configuration spaces ( = 300) so that in-core solution methods can
be used. In the MC SCF approach, the simultaneous orbital and state response parameter set A"’ is capable
of determining M€E;; no higher-order response parameters are needed. Evaluation of M°E, in MC SCF
requires also that A be computed. Both X' and A'® can relatively straightforwardly be evaluated for very
large configuration spaces (10°-10°). With the technology which has recently become available [23,26], MC
SCF wavefunctions reliably can be obtained for large configuration spaces (10°~10). Therefore, it appears
that accurate energy derivatives preferentially might be achieved using large MC SCF wavefunctions rather
than with the CI wavefunction approach.
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