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A multieonfigurational eoupled-cluster method previously developed in our laboratory is used to study excited states of the

same spatial and spin symp1etry as the ground state. Applieations are made, with rather smali atomie orbital basis sets, to
molecular systems whieh are highly eorrelated. These small-basis calculations are viewed on model ealculations whose value lies

in the faet that one ean also obtain the exact (fuli configuration interaetion) energy in sueh eases. The results show that even
though the eoupled-cluster equations may have many spurious solutions, one can locate solutions corresponding to the desired

excited states by using proeedures similar to those utilized for ground states. To aehieve this success, one should include in the

reference funetion all of the dominant eonfigurations of the state under eonsideration. Next, oneshould use the unique solution

of the linearizedeoupled-cluster equations as the initial estimate to begin the solution of the non-linear eoupled-cluster

equaCons. If the solution of these non-linear equations gives rise to one or more large t amplitudes one should repeat this

proeedure but with the configuration eorresponding to the large / amplitude included in the referenee funetion.

l. Introduction

The coupled-cluster (CC) method [1-9] is rec-
ognized to be a powerful tool for the computa-
tional investigation of electronic properties of
molecules. Within CC methods, the coupled-pair
many-electron theory [2] (CP MET) is a wel1char-
acterized and seemingly quite reliable approxima-
tion for the calculation of ground-state wavefunc-
tions for. systems where the Hartree-Fock single
determinant is the dominant configuration. More
recent1y, open-sheIl CC methods [4-9] have been
developed which al1ow one to study systems with
wavefunctions requiring multiconfigurational de-
scription. We recent1y applied our own coupled-
cluster method [5- 7], which treats multiconfigura-
tion reference states (which we refer to as the
CCMC method) to the ground states of several
closed- and open-shel1 systems [H2e~;), LieS).
HeH2eAt), CH2eBt, lAt), and BeH2eA1)]. Of
course, any method for the calculation of elec-
tronic properties would be of limited value if
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excited electronic states of the same spatial and
spin symmetry as the ground state could not be
obtained with reasonably similar accuracy and
ease.

In this paper, we study such excited states using
our CCMC method. In section 2 we briefly review
our CCMC development and discuss the possibili-
ties in which various coupled cluster methods might
be expected to produce erroneous results. In sec-
tion 3 the results of our CCMC calculations on the
excited states of smaIl atomic-orbital basis treat-

ments of CH2eA1) and BeH2eAI) are presented
and analyzed. We stress that in both cases, the lAI
states examined are not the lowest states of these
symmetries. We are looking at excited states which
have lower states of the same symmetry. The em-
phasis of this pap~r lies in demonstrating that our
CCMC method can be used on excited electronic
states in exactly the same manner as on ground
states. Our test systems are chosen to ilIustrate and
test this emphasis. rather than to generate new
chemical knowledge about these molecules.
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2. CCMC o\'erview
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In performing CCMC calculations on excited
eIectronic states, one must address several ques-
tions about the particular CC theory to be used.
How many solutions do the coupled-cluster equa-
tions have? Do they contain the solution deserib-
ing the particular excited state of interest? For a
particular choice of the reference wavefunction
(whieh must be specified in any CC theory). to
whi~h states can the coupled-cluster. equations be
made to converge?

To facilitate further discussion of these points,
we now give a short sketeh of the development of
our CCMC method [5-7]. Ali CC methods intro-
duce a referenee wavefunetion 4>iwhieh is viewed
as a zeroth-order approximation to an ith eigen-
funetion ",i of the Schródinger equation

H""=Ei",i. (1)

Ali CC methods use an exponential operator
exp( T) to connect "" to 4>':

",i = eT4>i. (2)

The operator T contains, in prineiple, all possible
levels of orbital excitations

T = T] + T2+ TJ+ ... + T"., (3)

where N is the num ber of eIectrons in the system.
These individual operators 1J are expressed in
terms of amplitudes t"", tra41...and orbital excita-
tion operators era' erasp...'

T) = L traera' T2 = l L t""spe""sp, etc.
r,a rasp

(4)

The Schródinger equation can then be rewritten as

H4>i= E4>iI '

where

(5a)

H=e-THeT=H+[H, T]+![[H, T], T] +....

(5b)

This expansion of H truncates exactly at the fourth
commutator in the closed-shellCC theory and in
certain open-shell CC methods [5]. The unknown t
amplitudes and the total energy Ei are calculated
in the CCMC method by projecting their Schró-
dinger equation against the functions

14>;"'13..'> = e r",p...I 4>')

and 14>') itself:

(6)

(4);,,,p..liil4>i) = O, (7)

(4)'IHI4>i) = E" (8) !
For those cireumstanees in which 4>iis a muIticon- 1

figurational funetion written as a linear combi na- ,
tion of orthonormaI configurations {XK}

4>i= LCKXK'
K

the coefficients CK can also be determined from

(9) ,

(xLliil4>/) = EiC/.. (10)

Using eq. (5b) for H and colleeting powers oC
the t amplitudes,allowsthe fundamentalCC equa-
tions (7) to be rewrittenin compact matrix form as

A + Bt + Ctt + Dttt + Etttt = O, (11)

where the elements of the A, B,... matrices, for
example, are

Ara,P = (4)r,,,pIHI4>), (12a)

Br".,p.pq = (4)r,, ,131[H, epq]14», (12b)

Crcup.pq.nw= (4)raspl[[H, epq]' emn]14», (12e)

D"".,p.pq.mn.uh= (4),,,,spl[[[ H, epq], emn], eUh]14»,

(12d)

E"".,p.pq,mll.uh,"d

= (4)raspl[[[[H, epq], emil]' eUb]' e'd] 14».

(I2e)

These matrices are given explicitly in terms ot
integrals and density matrices in ref. [5]. We stress
that eq. (11) is not an infinite series since the
commutator expansion for H truncates after the
fourth term. The unknown t amplitudes can thus
be determined through the solution of the system
of non-linear equations given in eq. (11).

In the context of a closed-shell single-determi.
nant reference wavefunction, Zivkovic [10] has
shown that eq. (11) has at least m solutions, where
m is the total number of t amplitudes. For cases.
referred to as "well-behaved systems" in ref. [10]"

!
l'
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these m solutions have been shown to have real
energies and to be identical to the corresponding
m solutions of the configuration interaction prob-
lem spanned by the m + 1 functions {II>,TII>}.
Although it is very important to know such things
about the existence of solutions to the CC equa-
tions, one also needs to have a practical means of
reaching the desired 50lution starting from some
reasonable reference function 11>.Since eq. (11) is a

system of m quartic equations in t, there may be,
according to Bezout's theorem [11], as many as 4m
solutions to these equations in cases not covered
by Zivkovic's proof. Thus the coupled-cluster
equations may have a l~t more solutions than the
corresponding CI problem, most of which are
spurious. In actual (approximate) calculations,
.some of these spurious solutions may be real (i.e.
not complex) and therefore lead to confusion when
one is seeking a particular solution of the CC
equations.

Although the CC equations may indeed contain
many spurious solutions, we have been quite suc-
cessful in obtaining ground-state wavefunctions
and energies using our CCMC method [6,7]. Our
success has been based largely upon using a rea-
sonably accurate reference function 11>'together
with stable procedures for finding solutions to the
CCMC equations. Because the CC equations are
non-linear and because they may contain numer-
ous spurious solutions. it is critical that we have
available a reliable procedure for converging the
iterative solution of eq. (11) to the desired state.

We were successful in using a Newton-Raph-
son (NR) procedure with an initial approximation
to t obtained from the linearized CC equations
A + Bt = O for solving the t determining eq. (11).
In nearly aU cases, this NR procedure was found
to converge to the solution nearest to the starting
function 11>.(In the appendix we discuss the con-
cept of closeness of the initial solution to the
desired eigenvalue.)

We feel from experience with ground-state
CCMC calculations, that one can optimize changes
to converge such iterative NR procedures for ex-
cited states by foUowing a few guidelines based on
the observation that it is desirable for the expan-
sionsof the wavefunctionI/;ishown in eq. (2) and
of the effective hamiltonian Hshown in eq. (Sb) to
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be dominated by their terms which are low order
in the t amplitudes. Then truncation of these ex-
pansions would be expected to yield reasonable
approximations to the fulI CCMC solution, and
the approximation could be improved by including
higher-order terms.

Our prescription for achieving the dominance
of the low-order t-amplitude contributions in-
volves first choosing the reference function II>i as
close as is reasonablypossible to the desiredI/;i, by
placing alI dominant configurations of I/;i in the
reference lI>i.Given this choice of cpi,we have good
reason to expect that the t amplitudes describing
further electronic interactions in the state I/;i are
smalI. As a result, solution of the non-linear CCMC
equations can reasonably be started with the solu-
tion of the linearized version A + Bt = O. This

linear set of equations has a unique solution which
is likely to capture by itself a major part of the
correlation energy difference between II>i and 1/;'.
Indeed it has been shown that the solution of these

linear equations corresponds to the summation of
certain terms of the Rayleigh-Schrodinger per-
turbation expansions [12]. For these reasons, using
the solution of the linear equations to begin the
iterative NR solution or the higher-order
coupled-cluster equations is most likely to lead to
convergence to a final set of t amplitudes which
are close to the (smalI and unique) tamplitudes
obtained from the linear equations.

3. Illustrative model calculations

The reference wavefunctions used for aU model
calculations presented here are of the multiconfig-
uration selr-.consistent-field (MC SCF) type. As is
welI known, these functions are very convenient
for achieving qualitatively correct descriptions of
either ground or excited states. Moreover, use of
such MC SCF wavefunctions makes certain matrix

elements involving the T\ operators in eq. (11)
vanish because the generalized BrilIouin theorem
(GBT) (lI>il[H. T\]!lI>i>=0 is obeyed.

In alI calculations presented here, only the single
and double orbital excitation operators T\ and T2
have been included, and the quartic expansion of
H has been trunca,ted at the second commutator.
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If we had used T = T2 alone, the expansion of fi
would exactly truncate at the second commutator
level. However, with T = Tl + T2, this truncation is
an approximation. Because the GBT is obeyed for
our class of reference wavefunction, it is likely that
the amplitudes of the T] operators tum out to be
smalI as a result of which this truncation of the fi
expansion is reasonably justified.

3.1. CH~('AJ) excited state model calculatiof/s

Our calculations for the excited CA]) state of
CH2 were performed at the geometry of the ground
eB]) state as determined by Bauschlicher and
Shavitt [13]«(}HCH= 103.4°,RCH= 2.04bohr) who
used a double-zeta (DZ) plus polarization basis in
this geometry optimization. We employed the same
double-zeta (DZ) plus polarization basis in this
geometry optimization. We employed the same
double-zeta basis set in our lA]-state calculations
as we used earJier in our more extensive work on
the 3B] state. This smalI basis set was used to have
available the fulI valence configuration interaction
energy in the same basis. Our CCMC method was
employed earJier [6] with an extended basis set for
CH2 to study the lowest ]A] state. However, here
we are simply performing a model calculation to

Table 1
CCMC calculationson lowestand excitedJAJCH2

illustrate and test our method for the first time on
excited states which have lower lying states of the
same symmetry, and we prefer to restrict our
attention to a system for which the exact answer
can be obtained.

Based upon previous calculations by ourselves
[6] and others on the lowest (I]A]) singlet state of
CH 2' two configurations la~ 2a~1b~ 3a~, and l
la~ 2a~1b~lb~ are known to be dominant. In the ~

CCMC calculations presented here, the lal' 2a] ~

and l b2 orbitaIs (which describe the lsc and two !
C-H bonds) are kept doubly occupied in all con- !:

figurations. Hence in this first model calculation

I

!
only one electronpair is correlatedin the MC SCF
and CCMC calculations. r

To begin the calculations on the excited (2]Ad I

state we first obtained, via the MC SCF proce- f
dure, a two-configuration reference function: r

C13a~ + C21b~ with c] = 0.35 and C2= 0.93. The
frozen orbital occupancies la~ 2a~1b~ are sup-
pressed in this notation for the reference function.
We then utilized an automated configuration
selection procedure [14] to determine whether any
important configurations remained outside the ref-
erence space. The excitations 3a] -+ 4a] and 3a~ ->
4a~ were judged by this selection procedure to be
capable of giving rise to somewhat important con.

Reference
wavefunction

Energy contribulions a) (hartree)Level of T

operators
used

T2lowest state (1)A»

"'o = 0.94384 (3a~)
- 0.3304 (1 b~)

excited state (2)A»

"'o = 0.351004 (3a~)

+ 0.93637 (1 b~)

excited state (2)A»

"'o = 0.367 (3a~)

+0.024 (3a)4a»

-0.0512 (4a~)

+ 0.9378 (1 b~)

(FVCI) b) energy (ground state)

(FVCI) b) energy (excited state)

a) These energy contributions are defined in eqs. (15c-e) of ref. [51.

b) FVCI stand s for fuli valence configuration interaction.

T)

T2

T2

- 38.86355
- 38.775061

Eo ET, ET,T, ET, E'ot

- 38.85773 - 0.009199 - 38.866936

- 38.761159 -0.5xlO-4 0.1X10-4 - 38.761202

- 38.761159 - 0.013937 - 38.77509
- 38.76356 - 0.011325 - 38.774893
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figurations in the wavefunction. However, indu-
sion of these configurations in the MC SCF calcu-
lation, as seen from tab le l, changes the MC SCF
energy slightly (==0.002 hartree) and the CCMC
energy even less, thereby indicating that the origi-
nal two-configuration reference function alone
gives a sufficiently good zeroth-order descnption
of the excited state.

The data of table l show that the CCMC en-

ergy in which oniy the TI operators are employed
is hardly improved over the MC SCF energy itself.
This is, of course, because the reference MC SCF
wavefunction obeys the GBT. However, the CCMC
energy arising from using the T2 operators is sub-
stantialIy lower than the reference MC SCF en-
ergy. Notice that boththe IIAI and 21AI state

. CCMC energies (with T2) lie .slightly below the
respective full valence CI energies; the CC method
is not vanational. However, the singlet-singlet ex-
citation energies obtained in the fulI CI (2.41 eV)
and CCMC (2.50 eV) calculations are very nearly
identical whereas the MC SCF-based excitation
energy (2.63 eV) has twice the error that the CCMC
value has. Thus although the T2 corrections to the
MC SCF reference wavefunction may appear smalI
they do improve the excitation energy consider-
ably. As mentioned above, contributions made by
TI are small because we use an MC SCF reference

Table2
BeHz eA1) first excited state
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state which obeys the GBT. In fact, even when we
indude both T) and 12 together the T) contribu-
tions are small.

The above analysis and the data of table l
illustrate that our CCMC method may reliably be
applied to excited states. The results obtained here
are not to be viewed as relating to the actual sates
of CH2 oceurnng in nature. Our smalI atomie
orbital basis severely limits the accuracy of our
results. Moreover, in these CH2 caIculations the
fact that we froze the lal' 2al and Ib2 orbital
occupancies mean that we only had a single test
eIectron pair to correIate. Therefore, the full com-
plexity of the coupled-pair CCMC approach was
not even tested in the above CH2 caIculations. To
examine the performance of the CCMC method in
another mode system having two "active" eIectron
pairs, we now turo to examine the Be + H2 -+ BeH2
reaction under C2vsymmetry.

3.2. BeH} ('Aj) excited state

Our caIculations on the excited 21AI state of
BeH2 were performed at geometnes Iying along a
perpendicular (C2v) insertion path [15] for BeeS)
+ H2e~:) BeH2 using exactly the same atomie
orbital basis as was used in our earlier work [7J
and as Purvis et al. [15J used in their ground-state

CCMC calculation EFCICoordinates x, y, z .)
(bohr)

Toperators
used

Eo b)

(hartree)

E b)T,
(hartree)

Eto. b)

(hartree)

E<)

(kcal/mole)

0.94

1.13

0.63
1.25

1.58

1.57

0.94
0.75

0.81

A(O,:1:2.54,0.0) Tz -15.40332 -0.00262 -15.40594
B(O,:1:2.08,1.0) Tz -15.40886 -0.00335 -15.41223
C(O.:I:1.62,2.0) Tz -15.43515 -0.00659 -15.44174
0(0, :I:1.39,2.5) Tz -15.51571 -0.00680 -15.52250
E(O,:I:1.275,2.75) Tz -15.54447 -0.00698 -15.55145
F(O, :I:1.16, 3.0) 12 -15.52857 - 0.00424 -15.53271
G(O, :1:0.93,3.5) Tz -15.45307 - 0.00717 -15.46024
H(O, :1:0.70.4.0) Tz -15.44513 -0.00689 -15.45202
1(0,:1:0.70.8.0) d) Tz -15.470191 -0.00387 -15.47406

I) x. :I: y, z are coordinates for the two H nuclei; coordinates for the Be nucleus are set (O, O, O).

b) For T = Tz. the CCMC total energy is E,o, '"' Eo + ET,- where Er, is the energy contribution from the do ub le excitations (see ref.
[6]) and Eo is the energy oC the 18-configuration reCerence MC SCF wavefunction.

<) E
d CCMC- EFCI'
) Does not lie on r/2 = 2.54-0.46R; this geometry corresponds to Hz at equilibrium with a Be atom far away.

-15.40744
-15.41403
-15.44274
- 15.52450
-15.55395
-15.53521
-15.46174
-15.45322
- 15.47536 r
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BeH2 ca1culations. We presented the results of a
ground-state calculation along this same path in
an earlier publication [7]. The geometries at which
lhese ca1culations were performed are shown in
table 2; lhey lie on a straight line defined by
r/2 = 2.54 - 0.46R( in au), where r is the H-H
separation and R is the distance of the Be atom lo
lhe cenler of the H2. This model reaction palh
gives rise to chaJ)enges in both lhe ground- and
excited-state ca1culalions since lhe eJectronic
wavefunctions require at least eight configurations
lo achieve qualitativeJy correct descriptions of lhe
stales. The geometries along lhis path incJude lhe
fragment geometry (I) at which excited configura-
tions for both Be(IS) and H2(1~;) are important.
At the linear (A) and transition-state (E) geome-
lries, lhe excited-state reference function <p(1) must
also incJude configurations describing the round
state since <p(1) is required lo be orthogonal to lhe
ground slale. The final lisl of configuralions used
in our CCMC reference function was formed by
examining aJ) configurations of ]A] symmetry con-
strucled from lhe orbital space {2a], 3a], 4a], fbI,
lb2 and 2b2}. Atotal of 18 configurations were
incJuded in our MC SCF reference funclion. The

la] molecular orbilal is of ls Be character
lhroughout lhe reaction path; it provides a con-

-15,40
BeHZ('A,) Exciled SIole

-15,45 \rV..

~ -15.50o
%:
>-
~ -15.55
CI
c:

...

-15.60

4.0-15.650.0 3.50.5 1.0

Fig. 1. BeH2 energies alol1g the path defined in Ihe text. O: fuli

CI groimd-state energy; *: fuli CI exciled state energy; +:
CCMC excited state energy; 8: 18-configuration MC SCF

excited-state energy.

stant correlation energy contribution. Thus the la~
orbital occupancy is frozen in a)) of the ca1cula-
tions reported here; however, the remaining four
eJectrons are aJ) correlated in the MC SCF and
CCMC treatments.

The data of table 2 show that as the model
excited-state reaction occurs on the excited 2 ]A]
surface, the energy contribulion arising from lhe
T2 operator varies from 0.003 to 0.007 au (0.08 to
0.19 eV). Along this same path, the total CCMC
energy (as shown in fig. l) deviates from the fuli
CI (with lhe la~ occupancy frozen) energy by only
0.8-1.6 kcal/mole. Thus, although the CCMC en-
ergy reasonably paraJ)els lhe reference MC SCF
energy, the additional correJation effects brought '

about by the coupled-cJuster step are significant
and result in exceJ)ent agreement wilh the fuJ) CI
excited-state energy.

3.3. Concluding remarks

4.5

Examination of our numerical results demon- ,

strates that CC calculations on excited states can I

be performed using a procedure similar to thal !
used in ground-stale calculations. Even though lhe i
cc equalionshave many spurioussolutions,we I

have succeeded in converging to the desired ex- !
cited slate. Our success is related to lhe fact that !
lhe unique linear-CC solulion incorporates lhe

!dominant terms when <P'conlains lhe most im-

porlanl configuralions. I

A separale aspectof the CC equations whichwe !

have not addressed in this paper is how to explore
lhe possibility of obtaining a solulion which ma)'
nol be cJose to the reference solution <pi.Thal is, <P

may contain only some important configurations
of the desired state. In certain formalisms for
which the expansions of il and thus of energy Ei
(given in eqs.(5b) and (8), respectively) are finite,
it can be argued that the desired state is weJ)

represented by these expansions. However, the !
main difficulties of these approaches are that
hjgher-order commutators of il can no longer be
neglected which results in a system of quartic
equations from which the t-amplitudes must be i
determined. In addition, the effective hamiltonian
il may be non-hermitean as a result of which
distinguishing the desired solution from spurious
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ones may not be triviaL For these reasons, we

prefer the CCMC strategy described here since we
know that /fJ' contains the dominant components
of the wavefunction and the t amplitudes are
smali.
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Appendix

A measure of nearness can be introduced by
using the analysis of Weinstein [16]. Let HC, = E;C,
define an eigenvalue problem corresponding to the
Schrodinger equation and let (t:, V) represent the
energy and the solution vector for a corresponding
solution of the coupled-cluster equations. Let us
define a distance

Q = (H - t:) V,

whose norm tends to zero as (t:, V) tend to the
correct eigensolutions (E;, C;). Then, using the
orthonormality of C; and the expansion V = L,C,",

Q+Q= L (Ej- t:)(Ej - t:)C;+~v;vJ
ij

= L(E; - t:)2V/2,

or

Q+Q~ (Ep-t:)2,

or

IQI~I(Ep-t:)I,

where Ep is the closest eigenvalue to t: (assuming
the vector Vis normalized, i.e. LjV; = 1).

The above result means that for a given initial
solution (t:, V) there is at Jeast one eigenvalue Ep
within IQI of t:. It would be desirable to choose
( t:, V) such that the circle of radius IQIencloses
only the desired eigenvalue.
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