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Moleeular gradients and hessians for multieonfigurational self-eonsistent-field wavefunetions are denved in terms of the

generators oC the unitary group using exponential unitary operators to describe the response oC the energy to a geometneal

deformation. Final expressions are east in forms whieh eontain reCerenee only to the primitive non-orthogonal atomie basi s set
and to the final orthonormaI moleeular orbitaIs; all reference to intermediate orthogonalized orbitals is removed. Ali oC the

deCormation-dependent terms in the working equations reside in the one- and two-eleetron integral denvatives involving the
atomie basi s orbitals. The deCormation-independent terms. whose eontnbutions ean be partially summed, involve symmetnzed

density matrix elements whieh have the same eight-Cold index permutational symmetry as the one- and two-electron integral

derivatives they multiply. This separation of deformation-dependent and -independent Cactors allows for single-pass integral-
derivative-driven implementation oC the gradient and hessian expressions.

1. Introduction

In recent years quantum chemists have devoted much effort toward obtaining computationally tractable
analytical formulas for the gradients (forces). hessians (force constants), and higher energy derivatives

I appropriate to single Born-Oppenheimer e1ectronic energy surfaces. Such knowledge is of use in locating
~ minimaand saddle points on soch surfacesand charactenzing,by local normal-modevibrational frequen-
! cies,thesestationary-pointgeometries.Integrationof classicalequationsof motion also requiresknowledge
I of thelocal Cofce(energy gradient) and caD be marle even mole efficient given higher energy-derivative
i information.

, Much of the history of the development of this research topie is reviewed by Pulay [1]. The very
substantial early contributions of Gerratt and Mills [2], Bratoz [3], Meyer and Pulay [4], Thomsen and
Swanstr0m [5], and Pulay [6] himself are spe1ledout clearly in ref. [1]. Somewhat more recent developments
have been made by PopIe et al. [7], King and Oupuis [8], Goddard et al. [9], Poppinger [10], Schlegel et al.
[11], and Komornicki et al. [12]. The most recent developments have stressed the treatment of open-shell
cases [4,7,9] and multiconfigurational wavefunctions as treated by configuration interaction [7,9] (CI),
rnulticonfigurational self-consistent-field [9,13-15] (MC SCF), and Meller-Plesset perturbation theory [7]
(MPPT) techniques.

Recently Jergensen and Simons [16,17] have given analytical expressions for the energy gradient and
hessian of SCF, MC SCF, CI, MPPT, and coupled-cluster (CC) wavefunctions as wen as the third and
fourth derivatives of the MC SCF energy. Pulay bas also recent1y derived [14] the MC SCF third energy
derivative, and Camp et al. [15] and Helgaker and Almlof [18] also marle use of explicitly unitary
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transformations to deseribe how the moleeular orbital {C"i} and eonfiguration {C~} mixing eoeffieients of
the MC SCF wavefunetion 1O)= LI!C~IPgvary as the moleeule'snuelei are displaeed erom R to R + fI..By
using sueh a unitary formulation, these authors avoided the imposition, via Lagrange multipliers, of
eonstraints on variations of the {C"i} and {C~} whieh appear [1-14] in most earlier developments. In OUT
opinion, this makes the derivation of sueh energy derivatives maTe straightforward although, of eourse, the
final results should be independent of the method of derivation.

It is a purpose of the present werk to address the eomputational implementation of working MC SCF
and CI gradient and hessian formulas. We also wish to make elear eonneetion between the derivation of
J0rgensen and Simons [16,17] (JS) and. that presented here. In partieular we show how the symmetrieally
orthogonalized atomie-orbital basis used in ref. [16] caD be used as a eonvenient derivational tael but
removed erom final working formulas in favor of the maTe eonvenient primitive atomie-orbital basis.

Consideration of effieient eomputer implementation of the analytieal expressions for energy derivatives
is very import ant beeause of the extremely large number of derivatives of atomie-orbital based integrals
whieh arise in these expressions. Given 11primitive (gaussian or Slater) atomie basis funetions and a
molecule with N nuelei whieh are permitted to move, one bas of the order of 12 X n4 first derivatives of the
atomie-orbital (AO) two-eleetron integrals and 78 X n4 seeond derivatives. Eaeh two-eleetron integral over
atomie orbitaIs loealized on atomie eenters involves at most four eenters. Thus, the cnIJ derivatives whieh
give non-zero results when operat ing on sueh an integral are the x, y or z eoordinates of the four atoms.
There are twelve sueh eoordinates. Sueh integral derivative arrays are, exeept for quite smali basis sets, too
large to be eonveniently eomputed and stored even on modern high-speed high-volume disks. As a result,
strategies for implementing energy gradient, hessian, and higher energy derivatives must, where possible,
make use of these integral derivatives as they are generated. That is, in OUTopinion, sueeessful eomputa-
tional sehemes must be single-pass integral-derivative driven.

2. Derivation or working equations ror the MC SCF case

2.1. The eJJect oj nuc/ear displacement on the waveJunctioll

We begin by supposing thatthe MC SCF wavefunetion 1O)at geometry R bas bad its energy made stable
with respeet to variations in the expansion eoeffieients {C"i 1 of its moleeular orbitals (MOs) {cf>i}and in its
eonfiguration mixing amplitud es {Cg}. The wavefunetion 1O)at the displaeed geometry R + fi.is deseribed
in terms of twe unitary operators [exp(iK) and exp(iS)] operating on 1O)

16) = exp(iK) exp(iS)IO). (1)

The first operator exp(iS) brings about ehanges [16,19] in the eonfiguration mixing eoeffieients of 1O).The
exp(iK) operator, when aeting on eaeh eonfiguration IP~in 1O)= L~-1CgIP~,aehievesa unitary transforma-
tion among the MOs appearing in IPgand all other MOs in the basis being employed. These twe operators

K = i L K,,(ers - esr),
r>s

s = i L Sn(ln)<OI-IO)<nl),
n"O

(2)

eontain parameters (Krs' Sn) whose va1ues are ehosen to make the energy of the displaeed wavefunetion
1O) stable. In eqs. (2), the ersare unitary generatorsgivenin terms of the MO-basedspin-orbita1ereation a:;'
and annihi1ation aso operators as

+ +
ers = aroasa + arpasfJ' (3)
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and the set {In)} consists of M-l orthonormallinear combinations
M

In) = L Cg,,4Jg,
g-l

(4)

of the M configurations {4Jg} appeanng in /O).

2.2. Response oj the energy to changes in geometry

The second quantized expression for the electron hamiltonian H(p) at R + p caD be used together with
eq. (1) to express the energy at R + p:

E(p) = (OIH(p)~). (5)

Using the well kilOWOBaker-Campbell-Hausdorf expansion of the two exponential operators, one obtains
an expansion for E in powers of the Krsand S" parameters (which, for notational ease, we collect together as

-a single set {Krs' S,,} ==(A'i}): - .

E(A, p) = (OIH(p )10) + A,F;(p) + lA;G'j(p)Aj + ... + tA;AjAkK;jk(P) + ... . (6)

Here, the Einstein summation convention over i, l, k is assumed. The Brillouin F;, hessian G;j and
superhessian K;jk matrices '" are defined in terms of commutators of the operators {T;} =={er, - esr' In)(Ol
-10)( nI} with the hamiltonian H(p)

F;(p) = (OI[T;,H(p)] 10), G'j(p) = (Ol[T;,[1j,H(p)]] 10),

K;jk(P) = (Ol[T;,[1j,[ Tk, H(p)]]] /O). (7)

Eq. (7) displays the p and A; dependence of the MC SCF energy. Choosing the A, parameters to make E
stable (dE/dA; = O) gives rise to a set of equations which caD be used to solve for the optimal A; as
functions of p:

O=F;+G;jAj+lK;jkAjAk+ .... (8)

Since the A;are naw functions oCp, 10) and H are functions oCthe only remaining independent variable, p.
The hamiltonian H can be expanded in powers of p,

H(p)=H(O)+pHI +lpH2P+.... (9)

Notice that the displacement p is a vector whose dimension equals the number oCgeometrical degrees of
freedom which are allowed to vary. Hence HI is a vector of this same dimension, and H2 is a second-rank
tensor in thissame dimension. In what follows, we oCtendelete tbe vector and tensor notation but keep it in
mind.

This expansion of H(p) allows each of tbe F;, G;j' Kijk to also be expanded in powers of p. For example,

Fj= L Fj(")p" = L P:(OI[1j,H,,]/O).
.n-O n=On.

(10)

". As treated in eq. (33) oC ref. [16), these commutators should be appropriately symmetrized iC one wishes to generale G. K....

matrices which have proper index symmetry. Such symmetrization occurs naturally when the Baker-Campbell-HausdorC
expansion is carried out. We view this as a technical detail which we shall not dwell Curther on here.
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Since each of 1;, Gij and Kijk contain all powers of p. the 'Aj solutions to eq. (8) contain all powers of p:

'Aj='AjOI+'A(Pp+!p.}..~)p.+ 000, (11)

so 'Aj!)is a vector, }..~Ia second-rank tensor, etco Substituting this order-by-order expansion of 'AJinto eq. (8)
and colIecting powers of p allows one to solve for the 'AjnI.Low-order solutions of importance here are

\(OI= OI\l ' (l2a)

since F/ol= Oaccording to the generalized BriIlouin condi tion,

'A(I)= _ (G(OI) ~IF(I)l l' , , (12b)

and

'1.(2)= _ (G (OI) ~1 (F(2)+ 2'AIIIGIII+ K(O"A(!)'A(l) )"l li I k Ik ,ki kl' (12c)

These resuIts, when substituted back into eq. (7) gi\'e an expression for the p dependence of E:

E=E(0)+ElIlp.+!p.E(2)p.+ o.., (Ba)

where

E(OI= (OIH(O) 10), (Bb)

the gradient is

EllI = (0IH1I0) + 'A(il)1;(O), (Bc) :

the hessian is

E (2)= (O[H 10 ) + }..(2IF(OI+ 2}..II)FII) + 'A G(O)'A(l)
2 , I I I I 'l l' (Bd)

etc.
Because the MC SCF wavefunction at R was presumed to have been optimized, dE/d'A = O at p = O.

Hence the generalized Brillouin condition

1;(OI= (OI[1";,H(O)] 10) = O, (14) ;

holds and the above eqs. (13) simplify to our final working equations for the MC SCF gradient:

EIII= (0IH110), (1Sa) ,

and hessian

E (2)= (0IH21O) +1;(!)'A(/I. (lSb)

!it
il

Clearly one must be able to evaluate the 1;(1)and Gi1)matrices as well as (OIH}IO)and (0IH21O)in order i
to compute the MC SCF gradient and hessiano Gi1) is nothing but the wavefunction-optimization hessian
which caD safely be presumed to be available because it is necessary for the MC SCF calculation at R. It is t
written in terms of one- and two-electron integrals and density matrices over the MC SCF orbitaIs in eqs. l
(2.38), (2.42) and (2.44) of ref. [19]. The elements 1;III= (0[1";,HdlO) are generalized Brillouin matrix f
elements but with H} replacing H(O), respectively. Their computational evaluation is addressed in more f
detail in section 3, but first we must obtain more concrete expressions for the operators H} and H2' f

~

I

I
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2.3. Molecular orbital-level expressions for the HK

Because the operators en appearing in the 1; feler to transformations among the orthonormaI MC SCF
molecu1arorbitaIs, it would be convenient for carrying out further derivation to express HI and H2in terms
of operators ej} which a1so feler to the MC SCF orbit aIs. In ref. [16], HI and H2 were given in terms of
symmetncal1y orthogona1ized orbitaIs (SOs). The fact that H(~) and IC(and hence 1;) are given in terms of
different orthonormaI bases (symmetrically orthogona1ized and MC SCF orbita1s, respectively) would seem
to complicate the practical eva1uation of F;(1),(OIHdO) and (0IH21O).However, as we now demonstrate, it
is indeed possible to describe the HK in terms of creation and annihilation operators which feler to the MC
SCF orbital basis.

Our strategy is to show that the denvatives of the SO orbitals appearing in ref. [16] caD be conveniently
re-expressed as denvatives of the MC SCF orbitaIs themselves. ODce we have established this relation
between SO and MO derivatives it will be straightforward to express HI and H2 in termsof MC SCF
orbital derivatives, and it will become elear that the SOs caD be viewed as a eonvenient derivational tool
whieh need not appear in final working formulas.

Let us begin by considenng the ~ dependence of the symmetrically orthogonalized (SO) orbitaIs {ga}
which eonsist of combinations oc.the atomie basis orbitaIs {X.}

t _"5-1/2~a-~.a X.,. (16)

where the atomie-orbita1 (AO) overlap ma triXSa. bas e1ements (XaIX.). The seeond quantized expression
for aDYoperator (the hamiltonian, in particular) involves sums of orthonormaI spin orbitaIs muItiplied by
their assoeiated ereation or annihilation operators. It is well known and easily demonstrated that such sums
are independent of a unitary transformation among the orthonormaI orbitaIs; that is, the sum is the same
for all orthonormaI bases. In particular, the sum of SO orbitaIs and operators aa in terms oCwhich H(~) is
ana1yzedin ref. [16] caD be replaeed by an MO-Ievel sum

Lgaaa = L U:cI>iaa= LcI>,a" (17)
a ja

by making use of the expansion eoeffieients {Uai} relating the SOs {ga} to the MC SCF MOs {cl>j}.It is
this kind of relationship which we shall use to move erom an SO-Ievel expression for H(~) to the MO-Ievel
result, but first we need to further analyze the ~ dependence oC.the {g.} sinee this gives rise to ~
dependenee in H(~).

The S9s {t} caD be expanded in powers of ~ around ~ = Oby writing them in the following manner:
t_" ( )

-1/2 (s.-1/2 )~. - ~ 1+.1 .'. o a.,Xa'
a,"

(18)

where the {Xa} are the primitiveatomic orbitaIs (AOs) (gaussian- or Slater-type), 50 is the overlap matrix
over these AOs at p.= O,and

(1+.1 ) . ="(s.-1/2) 5 (s.-1/2 ) ,.. ~ o .a a{J o {J..
ap

Eq. (18) simply provides a eonvenient parameterization of the ~ dependence of ~ = O. Notice that as ~ -+ O,
.1'" -+ O,and that denvatives of (1 +.1) involve simply denvatives of the overlap S itself:

(19)

( V r (1 + .1) .'. = ( V r .1." = L ( 50- 1/2 ta ( V r SaP ( So- 1/2 ) p."
ap

Using eq, (18), we caD now express vg. in a convenient form. To do so we first evaluate the first

(20)
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derivatives * of (1 + L1)-1/2 at 14= O:

V(1 +L1);~/2= V( c5.,.-lL1...+iLL1v."L1".- ...) = -lv(L1v'v)'"

I'
(21) f

l

The desired derivative of ~vcaD now be written (at 14= O)

L - ~ (S-I/2 ) _l ~ (S-I/2 ) S (S-I/2 ) (S -I/2 )V"p -l... o V"VX" 2 l... o .,pV /3-r o '}'P' o v'"X". (22) f
",V'

py

In ref. [16]the derivativesHI and H2 oCthe hamiItonianH(I') with respect to p. were given in terms of !
sums L.V~vo. and L.V V~. o. analogous to those discussed in eq. (17). From eq. (17) one sees that the
SO-leveI ani1ihilation operators °v caD be related to their MO-IeveI counterparts al:

"

o. = L Uv;o;. (23)

This then allows the above sums involving V~v and V V~v to be rewritten as follows:

Lvtov = Lo;L Uv;v~v, L V V~pOv= LolL v."V V~I" (24)
" " " "

Eqs. (24) allow us to move erom the SO-level operators {op} to the MO-Ievel operators {Oi}' The
combinations LP.;vt and L.u,,;V V~., which caD be viewed as MO-IeveI derivatives V<P;and V V<P;in
which the expansion coefficients u,,; ale heId fixed, will erom now on be denoted V<P;and V V<P;for
notational ease.

When eq. (22) is premuItiplied by the MO-to-SO expansion coefficient v.'i andsummed over P, we
obtain a useful expression for the derivative of the MO <Pi in which its MO-to-SO expansion coefficients ale
held fixed:

V<Pi==L Up;vt = L C";VX,, - l L Cp;VSp-yS-y-,}X" ,
" a a.py

(25)

where

Ca; = Lu,,;(S-I/2).a (26).
is the expansion coefficient of MO <P;in the prirnitive AO basis {Xa} at 14= O.Using this relation between
the MOs and AOs «Pi= L"C"iXa) it is straightforward to show that

LS-y~IXa = LC-y;<Pi' (27)
a

This allows eq. (25) for V<P;to be rewritten in our fina) working form as

V<P; = L Ca;VXa - l L ( L Cp;VSp",Cak ) <Pk'a k ap
(28)

" When V1V2 operates on a product oC Cactors (such as (1 + .4);)/2X..) one obtains Cour lerms [e.g., (1 + .4)-1/2VIV2X,t'
XVIV2(1 + .4)-1/2 and both VI(l +.4 )-1/2 V2X and V2(1 +.4 )-1/2VIX), The subscripts 1 and 2 on VI and V2 remind us that :'
these differential operalors have componenls. For example, when (d/dx,,)(d/dYb) operates one obtains lour lerms including both t
"cross terms" (d/dx"Xl + .4)-I/2(d/dYb)X and (d/dYbXl + .4)-1/2(d/dx,,)X. In tbis manuscript we will simply wrile V(l + :
.4)-1/2 Vx but keep in mind thal bolh cross lerms are present. ~,

f

I
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This result is especially important and easy to interpret. It states that Vep;contains a contribution erom the
basis-set dependence and a contribution due to changes in the Ca;coefficients arising erom the orthogonal-
ity condition CTSC = 1. Even though the Vep; which eq. (28) expresses bas its MO-to-SO expansion
coefficients (u"J held fixed, the MO-to-AO coefficients C.; vary through their S..-:Y2dependence as given
in eq. (26). This variation is, however, only an effect of the maintenance of the orthonormality of the MOs.
Becauseep;= EaCa;Xa'one can alternativelyview Vep;as

Vep; = 2:(Ca;VXa + XaVC..;). (29)
a

Whencompared to eq. (28) one sees that

2:XaVC..;= -l2:(Cp;VSpyCYk)epk'
a k

py

erom which it is straightforward to show that

(30)

VC..;= -l2:(cTvSCbCak'
k

Eq. (31) provides us with a very important tool for expressing the change in the MO-to-AO expansion
coefficients which arises erom the MO orthonormality constraint cTSC = 1.

If JS bad, in ref. [16], realized OUTeq. (28) they could have avoided using the SO basis as an intermediate
device in their derivation. We chose to show the relation of the Sa{/l2 array which arises in the SO basis to
the direct MO-to-AO result given in eq. (28) so as to clarify the derivation of ref. [16J. However, it should
be elear that because eq. (28) contains no reJerence to the intermediate SO orbitais, it is a general result.
Because eq. (23) refers only to the AO-Ievel orbital derivatives and to the AO-to-MO expansion
coefficients, its validity is independent of the SO basis which was used in ref. [16]. That is, the SO basis can
be viewed as a perhaps convenient intermediate; eqs. (25) and (31) are, however, moce useful because they
allow aU orbital derivatives to involve only the primitive AOs.

To obtain an expression for V Vep,analogous to eq. (28) for Vep,we simply differentiate eq. (28) ance
moce and make use of eqs. (28) and (31) to obtain

(31)

VVep; = 2:ca;VVXa - l 2:(CTvvSCb9k - l 2: (CTVSC),kCakVXa
a k k.a

+ i 2:[( CTvSC)( CT VSC)] ;k9k'
k

We are now ready to use OUTexpressions [eqs. (23) and (32)J for LP"Vt and LP.;V vt to write down
HI and H2. Within the SO basis H(p.) is given as

(32)

H(p.) = 2:<~.I- l v2 - LaZallr - Ra - p.11~a>a:aa + l 2: (~a~.I~a~.,.)a; a; a.a.,.
',a a.aT

== 2:h.aa: aa + l 2: (aplaT )a; a; Q.a.,., (33)
..a a.aT

where the shorthand one- and Mulliken two-electron integral notations, h.a and (apiaT) have been
introduced. The fiest and second p.-derivatives of H(p.) (evaluated at p.= O) give HI and H2. These
derivatives elearly involve L.V~.a. and E.v Vta. which, by eqs. (24), can be rewritten as E;a;Vep; and
L;a;V Vep;.The results of taking the required derivatives of the H shown in eq. (33), using eqs. (24), and
substituting eqs. (28) and (32) for Vep; and V Vep;are given as follows:

HI =2:2:c",c.A drShl" - ErSSI") + l 2: 2:C",C.sC>.pCaqdrspqv(p.pIAa),
rs 1" rspq I'.>.a

(34)
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where the Ers are elements of a Foek-like operator

Ers= Lhrkdsk + L (sk/pq )drkpq
k pak

(35)

(whieh is symmetrie if the MC SCF wavefunetion obeys the generalized Brillouin eondition) and the dsk
and drkpqare symmetrized density operators

drs = Hers + esr)' drspq = ~(erspq + ersqp + e"pq + euqp), (36)

whieh have the same index permutational- symmetries as the integrals whieh they multiply in H. The
ejj =a'/;,aja + a/palb and eijk/ = eijek/- 8jke"are the well-knownunitary generators.Note that in eq. (34)
all integral derivatives involve atomie-orbital integrals (labeled with Greek indiees a, /3 y, 8) whereas all
ereation and annihilation operators (in di) involve moleeular orbitals (labeJed p, q, r, s). These faets are of
erueial importanee to the effieient eomputational implementation of eqs. (15a) and (15b).

The eorresponding expression for H2 is

H2 = L L Cp.rCvsdrsV vhp.v - L CI'rC.,, ( VEr.,VSp..' +ErsV VSp..')
p.v rs p.vrs

. + i L CwCvsErs( VSp.aL CiaC,/3VSf3v)+! L Cp.rC..,CApCoqd"pqV V(Jlvl'AG),
p.v / p.VAa
rs ~q0/3

(37)

with

VErs = L CorC/3kVha/3d'k + L L CasC/3kCp.pCvqV( a/3 IJlv )drkpq'
ko/3 kpq app.p

(38)

Eqs. (34) and (37) representour final expressions for H] and H2.

2.4. MC SCF gradient and hessian

When used in eqs. (15a) and (15b) these resuIts provide working equations for the gradient E(1) and
hessian E(2):

E(1)= (OIHj/O)=L(dp.v)Vhp.p-L(Ep.v)VSp.p+! L (dp.VAO)V(Jlvl'AG),
p.P p.P p.PAa

(39)

where the fol1owingquantities involve density matriees whieh are first eomputed in the MO basis and then
transformed to the AO basis:

(dp.p)= LCp.P..(drs), (dp.vAa)= L Cp.rc"CApCaidrspq)'
rs ~q

(40)

(Ep.p)= LCwC..(Ers), (Ers) = Lhrk(dsk) + L (sk/pq)(drkpq)'
rs k pak

(41)

The MC SCF hessian is given in like fashion by

E") ~ (OiH,JO) - (F.~').F,,"')(G"» -) ( ;1:: ),
(42)
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where its eonstituent parts are

(OIHlIO) = L (dl',)VVhl" - L (VEr,)VSI"Cl'rC,s - L (Ers)V VSI"Cl'rC,s
p.' rs

p.'
rs
p..

+~ L Cl'rC,/Ers)LVSl'aLCiaCipVSp,+l L (dl',>.,,)VV(JLvli\a),
p.vrs ap i p..>."

(43)

F~~ = 2(1 - Pmn)
(

L Cl'nVhl',LC'i(dmi) - L VSI',L( (dm;)CI'JC'nhji+ (dmi)CI'JC'ihnJ
p.. l p.' l}

- L VS,..L (dmi.Jk)Cl't[C,n(/ilJk) + C'i( n/lik) + C'j( nil/k) + C,k (nil i/)]
p.. ijk/

+ L Cl'nV(JLvli\a) L (dmi.Jk)C'iC>.JC"k
)

,
p.. ijk
>."

(44)

where Pmn represents permuting indiees m and n, and

Fn(1)= (OI[ln)(OI-IO)(nl,H1]IO) = - (nIHdO) - (OIHIIn)

= -L(Vhl',(dl',\-VSI',(EI',)J-l I: (dl',>.,,)nV(JLvli\a).
p.. 1'.>."

(45)

Here the subseript n means that aU sueh density matriees are evaluated as transition density matriees. For
example,

(dl',)n = 2I: Cl'rC,iOldrsln). (46)
rs

As mentioned earlier, Go is the usual hessian matrix of MC SCF theory [19].

2.5. CI gradient

Before cIosing this derivation seetion, we would point out how th~ results of this wark aUow on~ to also
eompute molecular gradients for eonfiguration interaetion (CI) wavefunetions ICI). Eg. (Ue) stil! holds for
this ease, but the generalized BriUouin eondition [ego(14)] only holds in the variable spaee {Sn} for whieh
the CI energyhas been variationallyoptimized.That is F,,(O)= Obut F,.~O)"*O.As a result, the CI mo1ecular

I gradienthas a non-vanishingseeond term in eg. (Ue)

E(!) = (CIIH ICI) + ,,(!)F(O)= (CIIH ICI ) - " F(O) ( G(O» ) -! E(1)l rs rs l .t... rs rS.lu lu .
r>s
t>u

(47)

The eomputation of (CIIHIICI) is treated exaetly as outlined above relative to eg. (39) exeept that all
density matrix elements (drs) and (drspq) are evaluated relative to the CI wavefunetion. Beeause the
eombination -L,>u(G(O»~.>'uF,~1)gives the response ,,~~)of the orthonormal orbitals to nuclear displaee-
rnent [see eg. (Ub)], the ealculation of this guan tity depends upon the nature of the orbita/s being used in
the CI ealculation, not the eonfigurations included in ICI). That is, F,.~O)deseribed the changes in the CI
energy due to variation of the "rs orbital parameters; ,,~~)gives the ehange in the orbitals due to
displaeement. Clearly, the orbital ehange only depends on what the orbitals are, not on the CI eonfigura-
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tions. The most commonly used choices are Hartree-Fock (HF) molecular orbitaIs and orbitaIs resultingj

erom an MC SCF calculation of considerably smalIer dimension (i.e. number of configurations) than the CI!
calculation under study. For either of these Iwo cases, the evaluation of F;~1)and (G(O»;,.I/uproceeds asi
f?lIows: F;~1)is computed as discus.sed ab?ve in eg. (47) except that the d:nsity ~atri~es are ta~en relative

l.

"
"

,

elther to the HF or MC SCF functlOn whIChwas used to compute the orbJtals. LJkewJse,G;~~uJSevaluated!
as in eg. (2.42) of ref. [19] but with HF or MC SCF density matrices. To evaluate F,.~O)one used the!~

welI-known expressions (e.g., eg. (2.41) of ref. [19]) for these generalized BrilIouin matrix elements exceptl
that one computes the density matrices with respect to the CI wavefunction whose molecular gradient isl
being sought. ti

~
f{i'.

~;
!t
<o'

In writing egs. (39) and (42) for the molecular gradient and hessian, care bas been taken to groupl
together those factors (e.g., VhJ.lp,V(/LVIAo),VV(/LvIAo), V~".) which depend upon the components aft
the displacement derivatives and those which are independent of displacement. This facilitates ourr
computational strategy: (1) to compute, sort, and store on disk alI quantities (performing as manyt
intermediate sums as possible) which are deformation independent, (2) to carry out a single shelI-by-shell
pass through the AO-based integral derivatives during which these derivatives are generated and the'
corresponding displacement-independent guantities are read into the computer's core erom disk and
muItiplied by the integral derivatives. Thls strategy alIbws us to generale and use the AO-level integral
derivatives without storing lbem.

Let us consider a rew examples of how this procedure works. In the last term of eg. (39) we see that the
AO-based two-electron integral derivatives V( /LvIAo)are muItiplied by (dJ.l""o)which is displacement-in-
dependent. The MO-level density matrix (drspq)' which bas fulI eight-fold index permutational symmetry,
is evaluated within OUTunitary-group MC SCF computer program; it is a necessary ingredient of the MC
SCF process itself. This array (drs.pq) caD then be transforrned, using the conventional n5 procedure
employed to transform two-electron integrals, to give (dJ.lp."o)as shown in eg. (40). This latter array also
bas fulI eight-fold index permutation symmetry. It caD be sorted and stored on disk in the same order in
which the integral derivatives A(/LVIAo)are evaluated. Notice that it is OUTdesire to per form onIy a single
pass through the integral derivatives and not to store these integral derivatives which reguire us to have
acce~s to the AO-level density matrices (dJ.lp",o)'It is true that the density matrices are likely to be much
sparser, and thus more easily handled, in the MO basis, however OUTcomputing strategy reguires us to
evaluate and store the (dJ.lp."o)in the same shell-by-shell blocks as we used to generale the integral
derivatives. One could alternatively compute (dijk/) in the MO basis and multiply these density matrix
elements by the integraI derivatives which have been transformed to the MO basis v(ijlkl) ==

f.J.IP"oCiJ.l0pCHC1oV(/LvIAo).However, this transformation results in an integral derivative list of dimension
3N X 04, where O is the number of MOs which are occupied in the MC SCF wavefunction and N is the
number of atom s which are alIowed to move. Notice that the sparseness of the AO-Ievel integral derivative
list (whosesize is "" 12Xn4) is lost ance the AO-to-MO transformation is effected. For moleculeswith
mate than a rew geometrical degrees of freedorn, the storage difference between 12 X n4 and 3N X 04 caD
be so large as to offset the density matrix transformation and storage difference (n4 for (dJ.lp"o> versus 04
for (dijk/»

Most of the terms in EJ and E2 can be straightforwardly evaluated following the above outIined strategy.
However, the computation of F~~ involves special difficulties which are worth focusing attention on. The
last term in eg. (44) requires an n5 three-index transformation

3. Computational implementation or working equations

"'L (dmi.jk)CPiC>-'jCok ==XmP.>-,o,
ijk

(48)
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tO form, sort and stare the Xm..>"<1array. As the integral derivatives v(,uvIAa) are generated, the
appropriate groups of Xm.'>"<1and C!tt!are brought joto the computer's core and contributions to the
quadruple (Le. n5) sum Zm!t==L.,>"<1Xm.,>"<1V(,uvIAa)are generated. It is possible to reduce the amount of
disk-to-core inputjoutput required to evaluate the Zm!t array. By allowing oneself to compute integral
derivatives moce than ODce,one caD minimize 10 of the density matrix elements Xm.'>"<1'AIternatively, by
insisting that integral derivatives N(,uvIAa) be computed only ance, one must be willing to do moce 10 of
the Xm.,>"<1array. ance Zm!tis in band it caD be muItiplied by C!tt!and summed over ,uto give F~~).The next
tO the last terms in eq. (44) caD be handled in like fashion.

The last terms in eq. (45) present the most challenges. As written, its evaluation would require the
evaluation and storage of transition density matrices over the AO basis. Since there are one fewer transition
density matrices than there are configurations (Ne) in the MC SCF wavefunction 10), there may be very
many such arrays. Therefore, for aDYbut quite smali (:$ 10) configuration expansion lengths, it is not
practical to evaluate this term as it is written. Instead, it may be preferable to transform the integral
derivatives to the MO basis and to evaluate the transition density matrices in this same MO basis,
Evaluation of the MO-Ievel transition density matrices is relatively straightforward. Transformation of the
AO-Ievel integral derivatives v(,uv!Aa) to the MO basis is tedious and storage intensive (since there are
3N X 04 such MO integral derivatives, where N is the number of atoms and O is the number of occupied
Mas). Nevertheless, the requirements for transforming this array of length 3Nn4 may, for moderate to
large configuration expansion lengths (Ne), be less than is needed to evaluate the (d!tv.>"<1)t!array whose
dimension is (Ne - 1)n4. Thus, it may be wiser to evaluate the last term in eq. (45) via transformation of the
integral derivatives to the MO basis,

We feel that the working equations given in eqs. (39) and (44) together with the above strategy for their
implementation provide an efficient and computationally feasible procedure for generating molecular
gradients and hessians via ab initio MC SCF-based wavefunctions. We presently have at Utah and at
Argonneu a workingprogram based uran this approach in which the gradient routines are fullyoperative,
We are currentIy working on bringing the second integral derivatives [e.g., V v(,uvIAa)] and the F,,;~!
routines joto production.

These remarks conclude aur treatment of MC SCF and CI molecular gradients and hessians, We feel
that our working expressions are given in computationally tractable form and that our derivation was
carried out in a manner which other workers will find enlightening, It is possible to use the connections
which we demonstrated between derivatives of the sas and the MO-Ievel derivatives V<P,and V V<p,given
in eqs. (28) and (32) to express the M",lIer-Plesset and coupled-cIuster gradients and hessians of ref. [16] in
terms of AO-Ievel integral derivatives and MO-Ievel den sity matrices. In fact, by using eqs. (28) and (32)
for V<Piand V V<Piit should be possible to efficiently derive aDYgradient, hessian, or higher energy-deriva-
tive formula in computationally tractable form,
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