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Molecular gradients and hessians for multiconfigurational self-consistent-field wavefunctions are derived in terms of the
generators of the unitary group using exponential unitary operators to describe the response of the energy to a geometrical
deformation. Final expressions are cast in forms which contain reference only to the primitive non-orthogonal atomic basis set
and to the final orthonormal molecular orbitals; all reference to intermediate orthogonalized orbitals is removed. All of the
deformation-dependent terms in the working equations reside in the one- and two-electron integral derivatives involving the
atomic basis orbitals. The deformation-independent terms, whose contributions can be partially summed, involve symmetrized
density matrix elements which have the same eight-fold index permutational symmetry as the one- and two-electron integral
derivatives they multiply. This separation of deformation-dependent and -independent factors allows for single-pass integral-
derivative-driven implementation of the gradient and hessian expressions.

1. Introduction

In recent years quantum chemists have devoted much effort toward obtaining computationally tractable
analytical formulas for the gradients (forces). hessians (force constants), and higher energy derivatives
appropriate to single Born-Oppenheimer electronic energy surfaces. Such knowledge is of use in locating
minima and saddle points on such surfaces and characterizing, by local normal-mode vibrational frequen-
cies, these stationary-point geometries. Integration of classical equations of motion also requires knowledge
of the local force (energy gradient) and can be made even more efficient given higher energy-derivative
information.

Much of the history of the development of this research topic is reviewed by Pulay [1]. The very
substantial early contributions of Gerratt and Mills [2], Bratoz [3], Meyer and Pulay [4], Thomsen and
Swanstrom [5], and Pulay [6] himself are spelled out clearly in ref. [1]. Somewhat more recent developments
have been made by Pople et al. [7], King and Dupuis [8], Goddard et al. [9). Poppinger [10], Schlegel et al.
[11], and Komornicki et al. [12]. The most recent developments have stressed the treatment of open-shell
cases [4,7,9] and multiconfigurational wavefunctions as treated by configuration interaction [7,9] (CI),
multiconfigurational self-consistent-field [9,13-15] (MC SCF), and Moller-Plesset perturbation theory [7]
(MPPT) techniques. )

Recently Jorgensen and Simons [16,17] have given analytical expressions for the energy gradient and
hessian of SCF, MC SCF, CI, MPPT, and coupled-cluster (CC) wavefunctions as well as the third and
fourth derivatives of the MC SCF energy. Pulay has also recently derived [14] the MC SCF third energy
derivative, and Camp et al. [15] and Helgaker and Almlsf [18] also made use of explicitly unitary
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transformations to describe how the molecular orbital { C,, } and configuration { C, } mixing coefficients of
the MC SCF wavefunction [0) = £ C,®, vary as the molecule’s nuclei are displaced from R to R + p. By
using such a unitary formulation, these authors avoided the imposition, via Lagrange multipliers, of
constraints on variations of the {C,, } and {C,} which appear [1-14] in most earlier developments. In our
opinion, this makes the derivation of such energy derivatives more straightforward although, of course, the
final results should be independent of the method of derivation.

It is a purpose of the present work to address the computational implementation of working MC SCF
and CI gradient and hessian formulas. We also wish to make clear connection between the derivation of
Jorgensen and Simons [16,17] (JS) and that presented here. In particular we show how the symmetrically
orthogonalized atomic-orbital basis used in ref. [16] can be used as a convenient derivational tool but
removed from final working formulas in favor of the more convenient primitive atomic-orbital basis.

Consideration of efficient computer implementation of the analytical expressions for energy derivatives
is very important because of the extremely large number of derivatives of atomic-orbital based integrals
which arise in these expressions. Given n primitive (gaussian or Slater) atomic basis functions and a
molecule with N nuclei which are permitted to move. one has of the order of 12 X n* first derivatives of the
atomic-orbital (AO) two-electron integrals and 78 X n“ second derivatives. Each two-electron integral over
atomic orbitals localized on atomic centers involves at most four centers. Thus, the only derivatives which
give non-zero results when operating on such an integral are the x, y or z coordinates of the four atoms.
There are twelve such coordinates. Such integral derivative arrays are, except for quite small basis sets, too
large to be conveniently computed and stored even on modern high-speed high-volume disks. As a result,
strategies for implementing energy gradient, hessian, and higher energy derivatives must, where possible,
make use of these integral derivatives as they are generated. That is, in our opinion, successful computa-
tional schemes must be single-pass integral-derivative driven.

2. Derivation of working equations for the MC SCF case
2.1. The effect of nuclear displacement on the wavefunction

We begin by supposing that the MC SCF wavefunction |0) at geometry R has had its energy made stable
with respect to variations in the expansion coefficients { C,, } of its molecular orbitals (MOs) { ¢, } and in its
configuration mixing amplitudes {C, }. The wavefunction [0) at the displaced geometry R + p is described
in terms of two unitary operators [exp(ix) and exp(iS)] operating on [0}

10) = exp(ix) exp(iS)/0). (1)

The first operator exp(iS) brings about changes [16,19] in the configuration mixing coefficients of [0). The
exp(ix) operator, when acting on each configuration @, in |0) = E;‘_,Cg(bg. achieves a unitary transforma-
tion among the MOs appearing in @, and all other MOs in the basis being employed. These two operators

k=i) «,(e,—e,), S=i} S,(ln)0—10)<n|), (2)

r>s n=0

contain parameters (k,,, S,) whose values are chosen to make the energy of the displaced wavefunction
|0 stable. In egs. (2), the e,, are unitary generators given in terms of the MO-based spin-orbital creation a;,
and annihilation a,, operators as

+
€, =a,a,,+ayag, (3)
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and the set {|n)} consists of M — 1 orthonormal linear combinations
M
Iny= X C,.9,, (4)
g=1

of the M configurations { @, } appearing in [0).
2.2. Response of the energy to changes in geometry

The second quantized expression for the electron hamiltonian H(p) at R + p can be used together with
eq. (1) to express the energy at R + p:

E(p)=0|H(r)0). (5)
Using the well known Baker-Campbell-Hausdorf expansion of the two exponential operators, one obtains
an expansion for E in powers of the «,, and S, parameters (which, for notational ease, we collect together as
a single set {x,., S, } = (A, }):

E(A, 1) = COLH(R)0) + A, F (1) +10,G, (A, + oo+ NN (1) + ... (6)

Here, the Einstein summation convention over i, j, k is assumed. The Brillouin F,, hessian G,, and
superhessian K, , matrices * are defined in terms of commutators of the operators {7,} = {e,, — e,,.|n)(0|
—[0)¢n|} with the hamiltonian H(p)

F(p)= O[T, H(p)] ), G, (1) =OI[T.[T.H(p)]] 0,
K (p)=OI[ T[T [T H(p)]]]10). (7)

Eq. (7) displays the p and A, dependence of the MC SCF energy. Choosing the A, parameters to make E
stable (dE/dA, = 0) gives rise to a set of equations which can be used to solve for the optimal A, as
functions of u:

0=F+G A\ +3K ;AA + ... (8)

Since the A, are now functions of p, [0) and H are functions of the only remaining independent variable, p.
The hamiltonian H can be expanded in powers of p,

H(p)=HO)+pH +ipHp+ ... (9)

Notice that the displacement u is a vector whose dimension equals the number of geometrical degrees of
freedom which are allowed to vary. Hence H, is a vector of this same dimension, and H, is a second-rank
tensor in this same dimension. In what follows, we often delete the vector and tensor notation but keep it in
mind.

This expansion of H(p) allows each of the F,, G,,. K, to also be expanded in powers of u. For example,

n=0 n=0

* As treated in eq. (33) of ref. [16], these commutators should be appropriately symmetrized if one wishes to generate G, X,...
matrices which have proper index symmetry. Such symmetrization occurs naturally when the Baker-Campbell-Hausdorf
€xpansion is carried out. We view this as a technical detail which we shall not dwell further on here.
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Since each of F,, G,; and K, ; contain all powers of . the A, solutions to eq. (8) contain all powers of p:
AJ.=J\3‘.”+N}.”;;+—§;:?\?';¢+ (11)

so A" is a vector, ?\‘_,-2’ a second-rank tensor, etc. Substituting this order-by-order expansion of }\J into eq. (8)
and collecting powers of g allows one to solve for the N;". Low-order solutions of importance here are

X0 =0, (12a)
since :‘j‘m = 0 according to the generalized Brillouin condition,

A= —(G);' F, (12b)
and

D= —(6D), (FR+2APCP+ KINIAN). (12)
These results, when substituted back into eq. (7) give an expression for the p dependence of E:

E=EQ+EVu+1pE%u+ ..., (13a)
where

E®=(0|H(0)0). (13b)

the gradient is
Elll= (0|H1|0> +N,“F,‘°}, (130)
the hessian is

E® = (0]H,[0) + NPF© + 2NVF D + }\in?’Nj’. (134d)

etc.
Because the MC SCF wavefunction at R was presumed to have been optimized, dE/dA =0 at p=0.

Hence the generalized Brillouin condition

F©=(0[T,,H(0)]0) =0, (14)
holds and the above egs. (13) simplify to our final working equations for the MC SCF gradient:

E" = (0|H,[0), (15a)
and hessian

E® = (0H;0) + X", {1h)

Clearly one must be able to evaluate the F,"’ and G/’ matrices as well as (0|H,|0) and (O[H,|0) in order

to compute the MC SCF gradient and hessian. G’ is nothing but the wavefunction-optimization hessian
which can safely be presumed to be available because it is necessary for the MC SCF calculation at R. It is

written in terms of one- and two-electron integrals and density matrices over the MC SCF orbitals in egs.

(2.38), (2.42) and (2.44) of ref. [19]. The elements F'" = (0[7,, H,]|0) are generalized Brillouin matrix
elements but with H, replacing H(0), respectively. Their computational evaluation is addressed in more
detail in section 3, but first we must obtain more concrete expressions for the operators H, and H,.
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2.3. Molecular orbital-level expressions for the Hy

Because the operators e,, appearing in the 7, refer to transformations among the orthonormal MC SCF
molecular orbitals, it would be convenient for carrying out further derivation to express H, and H, in terms
of operators e,; which also refer to the MC SCF orbitals. In ref. [16], H, and H, were given in terms of
symmetrically orthogonalized orbitals (SOs). The fact that H(p) and « (and hence T;) are given in terms of
different orthonormal bases (symmetrically orthogonalized and MC SCF orbitals, respectively) would seem
to complicate the practical evaluation of £V, (0|H,|0) and (0|H,|0). However, as we now demonstrate, it
is indeed possible to describe the H, in terms of creation and annihilation operators which refer to the MC
SCF orbital basis.

Our strategy is to show that the derivatives of the SO orbitals appearing in ref. [16] can be conveniently
re-expressed as derivatives of the MC SCF orbitals themselves. Once we have established this relation
between SO and MO derivatives it will be straightforward to express H, and H, in terms of MC SCF
orbital derivatives, and it will become clear that the SOs can be viewed as a convenient derivational tool
which need not appear in final working formulas.

Let us begin by considering the p dependence of the symmetrically orthogonalized (SO) orbitals {£,}
which consist of combinations of the atomic basis orbitals {x, }

£u=zsv_al/2XJ‘ (16)

where the atomic-orbital (AO) overlap matrix S,, has elements (x,|x,). The second quantized expression
for any operator (the hamiltonian, in particular) involves sums of orthonormal spin orbitals multiplied by
their associated creation or annihilation operators. It is well known and easily demonstrated that such sums
are independent of a unitary transformation among the orthonormal orbitals; that is, the sum is the same
for all orthonormal bases. In particular, the sum of SO orbitals and operators a, in terms of which H(p) is
analyzed in ref. [16] can be replaced by an MO-level sum

Z£GQG=ZU{:¢!““=Z¢IG¢' (1?)

by making use of the expansion coefficients {U,, } relating the SOs {£,)} to the MC SCF MOs {¢,}. It is
this kind of relationship which we shall use to move from an SO-level expression for H(p) to the MO-level
result, but first we need to further analyze the p dependence of.the {£,} since this gives rise to p

dependence in H(p).
The SOs {£,} can be expanded in powers of u around p = 0 by writing them in the following manner:

$y= Z(1+A):':/Z(SG_1/2)Q”‘X¢(‘ (18)
where the {x,} are the primitive atomic orbitals (AOs) (gaussian- or Slater-type), S, is the overlap matrix
over these AOs at p =0, and

(1 +A)P_y5Z(SO_1/2)”“5"8(80_1/2)3”__ (19)

aB

Eq. (18) simply provides a convenient parameterization of the u dependence of p = 0. Notice that as u — 0,
4,., -0, and that derivatives of (1 + 4) involve simply derivatives of the overlap § itself:

(v)"(1+4),,=(v)"4,, =Z(SoaI/z)m(V)nsaﬂ(so_l/z)ﬁ.-‘- (20)
aff

Using eq. (18), we can now express V¢, in a convenient form. To do so we first evaluate the first
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derivatives * of (1 +A) 2 atp=0:

v(1+8);7 = 9(8,-14,,+3T4,.4. - ... ) = —1v(4,.). (21)
The desired derivative of §, can now be written (at p = 0)
Vf» = z (SO_I/Z)W_.VX:: e % Z (SU_]/2)rﬂvsﬂ‘f(s‘;1/-2)77’(30-1/2)..",er' (22)
: By

In ref. [16] the derivatives H; and H, of the hamiltonian H(p) with respect to p were given in terms of
sums L, V¢, a, and £,V V¢, a, analogous to those discussed in eq. (17). From eq. (17) one sees that the
SO-level annihilation operators a, can be related to their MO-level counterparts a,:

aP=ZUI'laf' (23)

This then allows the above sums involving V¢, and ¥ V£, to be rewritten as follows:

Lvéa,=2a)lUyvE, 2LVvéa=32a) U9V, (24)

Egs. (24) allow us to move from the SO-level operators {a,} to the MO-level operators {a,}. The
combinations L,U,, V¢, and L U, v V¢,, which can be viewed as MO-level derivatives V¢, and V V¢, in
which the expansion coefficients U,; are held fixed, will from now on be denoted V¢, and Vv V¢, for

notational ease.
When eq. (22) is premultiplied by the MO-10-SO expansion coefficient U,; and summed over », we
obtain a useful expression for the derivative of the MO ¢, in which its MO-t0-SO expansion coefficients are

held fixed:

VQS,- = z U;fvfy = Z Cat'erx - % E CBJVSBYS';IXu* (25)
v a ﬂ‘.ﬂ'}'

where

CmZZUw(S—VZ)»u (26)

is the expansion coefficient of MO ¢, in the primitive AO basis { x,} at p = 0. Using this relation between
the MOs and AOs (¢, = X,C,,x,) it is straightforward to show that

LS Xa=LCti: (27)
This allows eq. (25) for V¢, to be rewritten in our final working form as

V¢r‘ . z Cm'vx:x - % E ( Z Cﬁivsﬁacnk ) ¢k 2 (28)
a k ‘ap

* When V,¥, operates on a product of factors (such as (1+4);,'/%x,) one obtains four terms [e.g, (1+4)~ 29, v,x,
x9,V2(1+4)~ "% and both ¥,(1+4)" /2 v,x and ¥,(1+ 4)" /2%, x]. The subscripts 1 and 2 on V¥, and ¥, remind us that

these differential operators have components. For example, when (d/dx,)(d/d y,) operates one obtains four terms including both
“cross terms” (d/dx, X1+ A)~V23(d/dy,)x and (d/dy, X1+ A)~'/%(d/dx,)x. In this manuscript we will simply write v(1+
A)~1/2 gx but keep in mind that both cross terms are present.

e —
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This result is especially important and easy to interpret. It states that ¥¢, contains a contribution from the
basis-set dependence and a contribution due to changes in the C,, coefficients arising from the orthogonal-
ity condition CTSC=1. Even though the v¢, which eq. (28) expresses has its MO-to-SO expansion
coefficients (U,;) held fixed, the MO-to-AO coefficients C,, vary through their S,'/? dependence as given
in eq. (26). This variation is, however, only an effect of the maintenance of the orthonormality of the MOs.
Because ¢, = L.C,.X,, one can alternatively view v, as

V6, = L (Coi¥Xu + XaVC0)- (29)
When compared to eq. (28) one sees that
LxaVCui= =1 L(G53Cou) 0 (30)
By
from which it is straightforward to show that
vC,.i= -1 2(CTvSC)uCos (31)
k

Eq. (31) provides us with a very important tool for expressing the change in the MO-to-AO expansion
coefficients which arises from the MO orthonormality constraint C'SC = 1.

If JS had, in ref. [16], realized our eq. (28) they could have avoided using the SO basis as an intermediate
device in their derivation. We chose to show the relation of the S,,'/? array which arises in the SO basis to
the direct MO-to-AO result given in eq. (28) so as to clarify the derivation of ref. [16]. However, it should
be clear that because eq. (28) contains no reference to the intermediate SO orbitals, it is a general result.
Because eq. (23) refers only to the AO-level orbital derivatives and to the AO-to-MO expansion
coefficients, its validity is independent of the SO basis which was used in ref. [16]. That is, the SO basis can
be viewed as a perhaps convenient intermediate; eqs. (25) and (31) are, however, more useful because they
allow all orbital derivatives to involve only the primitive AOs.

To obtain an expression for ¥ V¢, analogous to eq. (28) for V¢, we simply differentiate eq. (28) once
more and make use of egs. (28) and (31) to obtain

vv¢r =2Cai'vvx.x '—%Z(CTVv‘S‘C}:A¢k _% Z (CTVSC)akCa&'VXa
a k k. a
+3Z[(cTusc)(CTUSO)] it (32)
k

We are now ready to use our expressions [egs. (23) and (32)] for LU, w¢, and L U,, v V¢, to write down
H, and H,. Within the SO basis H(p) is given as

Hp) =X (&I1-1V -L.Z/Ir- R, —pll§,yara, + 1 ¥ (§.£6,16,6,)asa7aa,
=Y h,a’a,+% ) (avlor)ala}a,a,, (33)
?vhere the shorthand one- and Mulliken two-electron integral notations, h,, and (av|ot) have been
introduced. The first and second p-derivatives of H(p) (evaluated at p=0) give H, and H,. These
derivatives clearly involve £,v¢,a, and £,v V£,a, which, by egs. (24), can be rewritten as ¥,a,v¢, and
L,a,V v¢,. The results of taking the required derivatives of the H shown in eq. (33), using egs. (24), and
substituting eqs. (28) and (32) for V¢, and ¥ Vo, are given as follows:

Hl = Z Z Cprcrs(duvhpv = Ersvspr) + % Z Z CprCnC.\pCoqdnpqv(:u'leg)‘ (34)

rs o pv rspq prAo
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where the E,, are elements of a Fock-like operator

E . Zhridsk + Z (5k|P‘§" rkpg (35)
Pak

(which is symmetric if the MC SCF wavefunction obeys the generalized Brillouin condition) and the 4,

and d,, ,, are symmetrized density operators

dﬂ e %(eu + e.(r)’ dra'pq e %(enpq + er.\'qp + e.irpq + e.\!q," )‘ (36J

which have the same index permutational symmetries as the integrals which they multiply in H. The
e,=aya,+apa,ande =e e, —8,e,are the well-known unitary generators. Note that in eq. (34)
all integral derivatives involve atomic-orbital integrals (labeled with Greek indices a, 8 y, §) whereas all
creation and annihilation operators (in d, ) involve molecular orbitals (labeled p. g, r, s). These facts are of
crucial importance to the efficient computational implementation of egs. (15a) and (15b).

The corresponding expression for H, is

=3 L C.C A wVh,~ ) GG (VENS, ¥ EIVS;)

ur s et
HZGCE( 9. ECCsT50 ) +1 T GCoCaydlyy® 9 (1riho). (37)
"B '??35'
with
vs,,=k%ca,c,‘_vhaﬁd[,‘ +3: BZ CasCai G GV (aBluv)d,, . (38)
o g aBuv

Eqs. (34) and (37) represent our final expressions for H, and H,.
2.4. MC SCF gradient and hessian

When used in eqgs. (152) and (15b) these results provide working equations for the gradient EV and
hessian E?;

ED = O|H,[0) = 3.(d,,)Vh,, = L(E, )9S, +} T (d,n, )V (pr[Ao), (39)
ur pr

priao

where the following quantities involve density matrices which are first computed in the MO basis and then
transformed to the AO basis:

<dpr> = Z C;trcn‘(dﬂ‘)’ (dpr.lo> = Z CperschpCoq(drqu>9 (40)
rs rspq
Ejll’) “’ZCW_C”<5”>, 3) Zhrk<da’k> o+ Z (Sklp(i")<drkpq> (41)
rs pgk

The MC SCF hessian is given in like fashion by

. F{!}
B = M) ~ (£, E2)(6®) | 5 ). -
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where its constituent parts are

<0IH2 p} Z <dpo>v vh;.w Z < v Sprcgrcvs = Z (Ers )V VSvaprCys

rs
p" ne

i) £.6x >Ev CilCipVSp, +3 X (dura)V V(pr|Aa), (43)

pers prda

FO=2(1-P, N LGV, Y Cldn) = X 98,3 ((dni)C.;Cnhji + (d,ni)C. jCoihtr ;)
py i 113 ij

B E VS;WZ <dm.r',jk>cp![cvn(ﬁljk) + Cvr("“.’k) i C,j(ﬂ””f) + Cvk(”‘l.)'!)]

ijki

Z #vl?\O)Z(d,,,, ﬂ;) C,\; ak (44)

itk
Aa

where P, represents permuting indices m and n, and
E" = (0|[|n){0| = [0)(n]. H,]{0) = —{n|H,0) — {O|H\|n)
== Y V() — V8K Eude) =1 L (dunad N (2]00). (45)
ne

prio

Here the subscript n means that all such density matrices are evaluated as transition density matrices. For
example,

=21 G C(0ld In). (46)
As mentioned earlier, G, is the usual hessian matrix of MC SCF theory [19].

2.5. CI gradient

. Before closing this derivation section, we would point out how the results of this work allow one to also
- compute molecular gradients for configuration interaction (CI) wavefunctions |CI}). Eq. (13c¢) still holds for
this case, but the generalized Brillouin condition [eq. (14)] only holds in the variable space { S, } for which
the CI energy has been variationally optimized. That is £/ =0 but F” # 0. As a result, the CI molecular

gradient has a non-vanishing second term in eq. (13c)
EO = (CIH|(CL) + xVF® = (CL|H,[CI) - ¥ FO(G©), . E. (47)

- The computation of (CIJH,|CI) is treated exactly as outlined above relative to eq. (39) except that all
~ density matrix elements (d,,) and {d,,,,) are evaluated relative to the CI wavefunction. Because the
- combination — L, (G®);1, F gives the response k(! of the orthonormal orbitals to nuclear displace-
. Ment [see eq. (12b)], the calculation of this quantity depends upon the nature of the orbitals being used in
- the CI calculation, not the configurations included in |CI). That is, F” described the changes in the CI
- energy due to variation of the k,, orbital parameters; x!! gives the change in the orbitals due to
displacement. Clearly, the orbital change only depends on what the orbitals are, not on the CI configura-
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tions. The most commonly used choices are Hartree-Fock (HF) molecular orbitals and orbitals resulungt
from an MC SCF calculation of considerably smaller dimension (i.e. number of configurations) than the C]
calculation under study. For either of these two cases, the evaluation of F{" and (G'?);,}, proceeds a5’
follows: F"’ is computed as discussed above in eq. (47) except that the density matrices are taken relauve’c
either to the HF or MC SCF function which was used to compute the orbitals. Likewise, G,'?’m is evaluated:
as in eq. (2.42) of ref. [19] but with HF or MC SCF density matrices. To evaluate F,” one used the’
well-known expressions (e.g., eq. (2.41) of ref. [19]) for these generalized Brillouin matrix elements except
that one computes the density matrices with respect to the CI wavefunction whose molecular gradient is
being sought.

3. Computational implementation of working equations

In writing egs. (39) and (42) for the molecular gradient and hessian, care has been taken to group
together those factors (e.g.. Vh,,, V(pr|Ao), VV(ur|Ao). ¥S,,) which depend upon the components of
the displacement derivatives and those which are independent of displacement. This facilitates our
computational strategy: (1) to compute, sort. and store on disk all quantities (performing as many
intermediate sums as possible) which are deformation independent. (2) to carry out a single shell-by-shell
pass through the AO-based integral derivatives during which these derivatives are generated and the
corresponding displacement-independent quantities are read into the computer’s core from disk and
multiplied by the integral derivatives. This strategy allows us to generate and use the AO-level integral
derivatives without storing them.

Let us consider a few examples of how this procedure works. In the last term of eq. (39) we see that the
AO-based two-electron integral derivatives V(uv|Ao) are multiplied by (d,,,,) which is displacement-in-
dependent. The MO-level density matrix (d,,,,). which has full eight-fold index permutational symmetry,
is evaluated within our unitary-group MC SCF computer program; it is a necessary ingredient of the MC
SCF process itself. This array (d,, ,,) can then be transformed, using the conventional n® procedure
employed to transform two-electron integrals, to give (d,, ,,) as shown in eq. (40). This latter array also
has full eight-fold index permutation symmetry. It can be sorted and stored on disk in the same order in
which the integral derivatives A(pu»|Ao) are evaluated. Notice that it is our desire to perform only a single
pass through the integral derivatives and not to store these integral derivatives which require us to have
access to the AO-level density matrices (d,, ,,). It is true that the density matrices are likely to be much
sparser, and thus more easily handled, in the MO basis, however our computing strategy requires us t0
evaluate and store the (d,,,,) in the same shell-by-shell blocks as we used to generate the integral
derivatives. One could alternatively compute (d, ;,,) in the MO basis and multiply these density matrix
elements by the integral derivatives which have been transformed to the MO basis V(ij|k/)=
2 neCi J,C,(;\C,.‘,v'( pr|Aa). However, this transformation results in an integral derivative list of dimension
3N X 0% where O is the number of MOs which are occupied in the MC SCF wavefunction and N is the
number of atoms which are allowed to move. Notice that the sparseness of the AO-level integral derivative
list (whose size is = 12 X n*) is lost once the AO-to-MO transformation is effected. For molecules with
more than a few geometrical degrees of freedom, the storage difference between 12 X n* and 3N X O* can
be so large as to offset the density matrix transformation and storage difference (n* for (d,,,,) versus o*
for (d,;,))

Most of the terms in E; and E, can be straightforwardly evaluated following the above outlined strategy.
However, the computation of E)) involves special difficulties which are worth focusing attention on. The

last term in eq. (44) requires an n three-index transformation

Z <drm ;ic) C.\_,: ok = va‘ka* (48)

ifk



A. Banerjee et al. / MC SCF molecular gradients and hessians 213

to form, sort and store the X,,,, array. As the integral derivatives V(pr|Ao) are generated, the
appropriate groups of X,,,, and C,, are brought into the computer’s core and contributions to the
quadruple (i.e. n°) sum Z,. =L, o X 2oV(pr|Ao) are generated. It is possible to reduce the amount of
disk-to-core input/output required to evaluate the Z,, array. By allowing oneself to compute integral
derivatives more than once, one can minimize IO of the density matrix elements X, ,,. Alternatively, by
insisting that integral derivatives N(pv|Ao) be computed only once, one must be willing to do more IO of
the X,,,, », array. Once Z,  is in hand it can be multiplied by C,, and summed over p to give F!'V. The next
to the last terms in eq. (44) can be handled in like fashion.

The last terms in eq. (45) present the most challenges. As written, its evaluation would require the
evaluation and storage of transition density matrices over the AO basis. Since there are one fewer transition
density matrices than there are configurations (N, ) in the MC SCF wavefunction [0), there may be very
many such arrays. Therefore, for any but quite small (< 10) configuration expansion lengths, it is not
practical to evaluate this term as it is written. Instead, it may be preferable to transform the integral
derivatives to the MO basis and to evaluate the transition density matrices in this same MO basis.
Evaluation of the MO-level transition density matrices is relatively straightforward. Transformation of the
AO-level integral derivatives v (ur|Ao) to the MO basis is tedious and storage intensive (since there are
3N x 0% such MO integral derivatives, where N is the number of atoms and O is the number of occupied
MOs). Nevertheless, the requirements for transforming this array of length 3Nn* may, for moderate to
large configuration expansion lengths (N,), be less than is needed to evaluate the (d,, ,,), array whose
dimension is (N, — 1)n*. Thus, it may be wiser to evaluate the last term in eq. (45) via transformation of the
integral derivatives to the MO basis.

We feel that the working equations given in eqs. (39) and (44) together with the above strategy for their
implementation provide an efficient and computationally feasible procedure for generating molecular
gradients and hessians via ab initio MC SCF-based wavefunctions. We presently have at Utah and at
Argonne ~ a working program based upon this approach in which the gradient routines are fully operative.
We are currently working on bringing the second integral derivatives [e.g.. V V(ur|Ao)] and the F)
routines into production.

These remarks conclude our treatment of MC SCF and CI molecular gradients and hessians. We feel

* that our working expressions are given in computationally tractable form and that our derivation was

carried out in a manner which other workers will find enlightening. It is possible to use the connections
which we demonstrated between derivatives of the SOs and the MO-level derivatives V¢, and ¥ V¢, given
in egs. (28) and (32) to express the Moller—Plesset and coupled-cluster gradients and hessians of ref. [16] in
terms of AO-level integral derivatives and MO-level density matrices. In fact, by using egs. (28) and (32)
for v¢, and ¥ v¢, it should be possible to efficiently derive any gradient, hessian, or higher energy-deriva-
tive formula in computationally tractable form.
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