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Molecular gradients and Hessians have been derived for MCSCF, CI, coupled cluster, and Méller—Plesset
wave functions. In deriving the gradients and Hessians, atomic orbital basis set effects have been incorporated
into the finite basis Hamiltonian, and unitary exponential operators have been used to determine the wave
function’s configuration and orbital responses. The gradients and Hessians are expressed in terms of products
of configuration and orbital responses and matrices of the same form as the gradient and Hessian matrices
appearing in energy and wave function optimizations. The molecular gradients and Hessians have also been

cast into forms that are computationally very tractable.

I. INTRODUCTION

In recent years quantum chemists have devoted much
effort toward obtaining computationally tractable ana-
lytical formulas for the gradients (forces) and Hessians
(force constants) appropriate to single Born-Oppen-
heimer electronic energy surfaces. Such forces and
curvatures are of primary use in locating minima and
saddle points and characterizing, by vibrational fre-
quencies, these stationary-point geometries. Much of
the history (until 1977) of the development of this re-
search topic is reviewed by Pulay in his cha.pter1 in
Modern Theoretical Chemistry. The very substantial
early contributions of Gerratt and Mills, ? Bratogz, °
Meyer and Pulay, ! Thomsen and Swanstrgm, ® and
Pulay® himself are spelled out clearly in that chapter.
Somewhat more recent developments have been made
by Pople, ? Dupuis and King, ® Schaefer, ® Poppinger, !°
Schlegel, !! and Kormonicki. '?

The most recent developments have stressed the
treatment of open-shell cases* ® and multiconfigura-
tional wave functions as treated by configuration inter-
action™® (CI), multiconfigurational self-consistent
tield»!? (MCSCF), and Mgller —~Plesset perturbation
theory7 (MPPT) techniques. At present, there seems
to exist analytical results for the gradient within the
SCF, CI, MCSCF, and MPPT theories and for the
Hessian within the SCF framework.

In the present paper we obtain analytical gradient and
Hessian expressions for SCF, MCSCF, CI, MPPT, and
coupled-cluster (CC) wave functions. By using sym-
metrically orthogonalized orbitals, we localize all ex-
plicit basis-set overlap dependence in the one- and two-
electron integrals appearing in the Hamiltonian. All
one- and two-particle density matrices then contain no
explicit geometry dependence. The symmetrically
orthogonalized atomic orbitals also allow us to make
use of exponential unitary operators to describe the
changes in orbitals arising from an infinitesimal dis-
placement of the nuclei. By employing the exponential
unitary operators which have recently proven so useful
in formulating quadratically convergent MCSCF wave
function optimization theory, !4'1% we eliminate the need
to introduce constraints among the configuration and
molecular orbital expansion coefficients. By using the
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exponential unitary operators, the responses'® of the
wave function’s configuration and molecular orbital ex-
pansion amplitudes can be expressed in terms of param-
eters all of which are linearly independent; in contrast
to previous developments, ! no additional constraints
need be applied. The use of such constraints and their
accompanying Lagrange multipliers has, in our opinion,
given rise to unnecessary difficulties in developing all
previous expressions for the molecular gradients and
Hessians of correlated wave functions.

In addition to eliminating the need for Lagrange multi~
pliers and constraint equations, the exponential opera-
tor techniques used here have allowed us to bring all of
the wave function cases (SCF, MCSCF, CI, MPPT, CC)
very much under one umbrella. That is, we have been
able to express the gradients and Hessians for all of the
above wave functions in terms of a few fundamental re-
sponse matrices. In this way, we have achieved at least
a pedagogical goal; we allow the reader to more easily
identify similarities and differences among the gradient
and Hessian expressions of the various wave function
cases.

In addition to using the above mentioned exponential
unitary operator methods, we have chosen to make use
of the second quantization notation.'* In this language
the dependence of the electronic energy on the locations
of the atomic orbital basis functions is isolated in the
Hamiltonian. The wave function contains only the con-
figuration expansion amplitude and molecular orbital
expansion coefficient dependence.

In obtaining final working expressions for each gra-
dient and Hessian case, we have made reasonable ef-
forts to direct the reader to literature where explicit
expressions for all contributions, in terms of one- and
two-electron integrals and density matrix elements, can
be found. We have also shown how'” most of the ma-
trices which arise in our gradient and Hessian expres-
sions can be recast in a manner which makes their com-
putational evaluation equivalent to computing Hamilto-
nian average values and conventional Brillouin-type and
wave function Hessian-type matrices which arise in,
e.g., MCSCF optimization calculations. For these rea-
sons, we feel that the expressions given in this paper
represent computationally tractable working equations
which efficiently describe how to evaluate gradients and
Hessians,

It should be stressed that most of the computational
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effort needed to evaluate the molecular gradients and
Hessians as described here is involved in setting up the
first and second derivatives of the atomic-~orbital basis
integrals described in Sec. IIA. These integral deriva-
tives, which are used to evaluate the first H; and second
H, order Hamiltonian responses, are not individually
difficult to compute, but there are so many of them that
efficient evaluation and file management procedures
must be employed., Because the majority of the cost
involved in any gradient or Hessian calculation arises
in evaluating H; and H,, there should be very little dif-
ferences among the noncorrelated and correlated wave
function methods treated here (HF, CI, MCSCF, MPPT,
CC) as far as fotal computational effort is concerned.

In Sec. II of this paper, we describe how to expand
the electronic Hamiltonian to powers of the displace-
ment of the nuclei (u). We also show how to derive the
response of HF or MCSCF orbitals and of MCSCF or CI
configuration expansion coefficients in powers of pu.
These Hamiltonian, orbital, and configuration ampli-
tude responses are then used in Secs, TOI-VIII to gen-
erate expressions for the response of the electronic en-
ergy to nuclear displacement for each class of wave
function. In Sec. IX we briefly compare our derived
molecular gradients and Hessians with those already
existing in the literature. The last section contains
some concluding remarks.

In Appendix A we show how to generate derivatives of
the symmetrically orthogonalized Gaussian atomic or-
bital basis which we assume are being used in the actual
calculation. We also show how, under certain circum-
stances, these basis-set derivative contributions can be
cast in a form which other workers have used in their
molecular gradient work.

In Appendix B we show how most of the terms which
arise in our gradient and Hessian formulas can be com-
putationally evaluated in a form which requires effort
of the same magnitude as that needed to compute the
Hamiltonian average values, Generalized Brillouin, and
wave function Hessian matrices arising in MCSCF opti-
mization theory.

11. BASIS SET, WAVE FUNCTION, AND HAMILTONIAN
DEPENDENCE ON NUCLEAR DISPLACEMENT

We begin by describing the notation and outlining the
procedures used for deriving analytical expressions for
the molecular gradients and Hessians appropriate to
various approximate wave functions. We use the words
molecular gradient and moleculay Hessian to describe
the linear (slope) and quadratic (curvature) terms in the
expansion of the electronic energy of a molecule in
powers of nuclear displacements. The adjective molec-
ular is used to distinguish these terms from the gra-
dients and Hessians which may arise in electronic wave
function optimizations with respect to variations in
molecular orbital and configuration expansion coeffi-
cients.

The total electronic energy of the molecular system
has both an explicit dependence on the positions of the
nuclei (via the Hamiltonian) and an implici¢ dependence

(via parameters characterizing the wave function). For
most correlated wave functions, the dependence of the
wave function on nuclear locations involves both molec-
ular-orbital and configuration interaction-coefficient
dependence. When a finite atomic orbital basis set is
used to evaluate the total energy, the space spanned by
the basis set also contains a dependence on the nuclear
positions. All of these factors give rise to changes in
the electronic energy when one or more atomic centers
(nuclei) are displaced. Let us now turn to consider each
such term in some detail. We first consider how the
above mentioned basis set dependence may be expressed
as a change in the finite-basis Hamiltonian.

A. Hamiltonian dependence on nuclear position

Let us denote the normalized atomic basis functions
by Ix)={x;}. These atomic basis functions may be
nonorthogonal and they may or may not be symmetry
adapted. Their overlap matrix will be denoted

xho=s. (1)

The atomic basis functions may be symmetrically
orthogonalized!®

| o) =|x)s17 (2)
to yield a new orthonormal atomic orbital (AO) basis
{¢:}. Note that both the original atomic basis functions
and the overlap matrix S depend on the location of the
nuclei. -

The electronic Hamiltonian H is conveniently ex-
pressed, in second quantization language, 1% in terms of
the symmetrically orthogonalized basis functions

1
H:Zhrs a:as+§z<¢r¢si¢!¢u>a:al auat ’ (3)
rs 78
tu
where
1
(G, ]| 010, = f o7 (195 @) -0, ()9, @)drydry ,  (4)
hys =0, 1 1e] 65) (5)
and iy contains all of the usual one-electron operators
Z 1 Z,Z
Wy = — lvz - —ZA 4 —ZAZB s 6
! T Zir-R,yl 245 IR, Ryl (6)

Z , denotes the charge and R, the position of nucleus A,
We shall, for convenience, omit the vector arrows from
now on when writing the vectors describing the locations
of the nuclei and of the electrons. In Eq. (6), we have
included the nuclear—nuclear interaction energies.
However, we will, from now on, omit these terms as
well as their contributions to the molecular gradient and
Hessian which are straightforward to evaluate.

We have written the Hamiltonian out in terms of the
symmetrically orthogonalized basis because this basis
allows the annihilation (a,) and creation (a!) operators
to satisfy the usual anticommutation relations (with no
overlap). If we had chosen to express the Hamiltonian
in terms of the original (nonorthogonal) atomic basis the
anticommutation relations would contain an overlap ma-
trix, which would introduce an additional and unneces-
sary complication into the derivations to follow. In
Appendix A, we discuss in more detail consequences of
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using creation and annihilation operators that refer to
a nonorthogonal basis and the simplifications that occur
when an orthonormal basis is used.

The above Hamiltonian depends on the nuclear posi-
tions (R=R, - - R,) through the second term in Eq. (6)
and through the fact that the basis functions appearing
in the integrals in Egs. (4) and (5) sit on the nuclear
centers. To explore how H changes as the nuclei are
moved, let us consider the nuclear displacement

R -R'+p , M
where p is a row vector

p=(uipipiuzug ) (8)
containing the (small) magnitudes of the displacements
in the X, Y, and Z components of all nuclei A, B, ... .
The Hamiltonian at the displaced coordinates may be
expressed in terms of the Hamiltonian at the undisplaced

coordinate system plus terms that are linear, quadratic,
cubic, ..., etc. in the nuclear displacements

HR +p)=Hy+pH; + 3pHyp + -+ . (9)

To derive explicit expressions for the linear (H,) and
quadratic (H,) perturbation operators, we need to ex-
amine how each component in Eq. (3) can be expanded
in powers of p.

The electron-nuclear interaction in Eq. (6) depends
explicitly on the nuclear coordinates. Carrying out a
Taylor series expansion of this potential

|7 =Ry =|r=RE - s
=7 =R|™ +u,a(va |7 =R
+ 3 (Ve [y =Ry Jpg o0

we display the order-by-order dependence of this po-
tential on the nuclear displacements p. In Eq. (10)
terms are explicitly written out through second order
since these are the only terms which are required in the
following analysis.

(10

The symmetrically orthogonalized functions, which in
general are combinations of basis functions centered on
all nuclei, also depend on the nuclear coordinates.

This dependence may be clearly described through
carrying out a Taylor series expansion of ¢; (r-R’- w)
around ¢,(r -R’). We obtain
¢y (r =R =) = ¢ (r -R") + [V, (r - R")]
+zu[VVe(r =R+, (1)

where again terms are written out explicitly only through
second order in the nuclear displacement. The vector
V contains derivatives with respect to all coordinates of

J

all nuclei: V={v,,V;,...}

The linear and quadratic terms in Eq. (11) may
straightforwardly be evaluated. Using Eq. (2) we re-
write the linear term in Eq. (11) as

Vé,(r—R) =V 2_x(r -R%), SRY; Y2
1

=;[(vx(r-n°)),s(n°);§’2

+x(r-R%, vS@®Y;1?} . (12)

ij

In finite-basis-set calculations using Gaussian basis
functions centered on the individual atoms, Vy;(» —R,)
can be expressed as a sum of two new basis functions,
one having an orbital angular momentum quantum num-
ber one higher than x;(» —R,) and the other having an
orbital angular momentum one lower (see Appendix A).
The second term in Eq, (12) multiplies the original
basis function by the gradient of the $7V? matrix, In
Appendix A we derive the explicit expression for V¢,(r
-R") and for the second term VV¢,(» —R") in the case
where the x,{r - RY) refers to a set of Gaussian basis
functions. We also give there the explicit formula for
vs12 and vvs2,

Using Egs. (10) and (11), we may now identify all of
the changes in the electronic Hamiltonian through second
order in the nuclear displacement p. The linear term
in Eq. (9) becomes

Hl =ZV(<¢7| hl | ¢s>)a: as

+ _;_Zv«(brd)s ' d)td)u))atr a.: au at ’ (13)
fu
where
Valo, 1| 90 = =Z u(o, | (Va7 =RA[ ™) | 00
+ <(VA (br) |h1 | d)s) + <¢r| h1 I (VA ¢3)> (14)

and
Va5 | 3e0) = (T4 0,) 05| 0:0) + (D, (V4 &) | s,
+ (6,05 [(Vad) 0, + (0,05 | 0:(V40,) .
(15)

The quadratic term may similarly be identified as

H, :Z vv(<¢‘r|h1 I ¢s>a: s

LALCHIATW) =;-ZA<¢,I (V9|7 =R3 || 00 +(0, |11 | (FI ) +{(IV,) |1y | )

—22.Z, (Vo) |(V]r =BRS¢ +2((V,) |2y | (Vop,) —2 AZZA<¢,[ @]y =R3 || (Vo.)
A

and

V(0,05 | b)) = (VI ) s | 3:0) + (0, (T | ded) +(Drs | (FT0) 0,0 + (b, 85| (VT 0,)) +2((V, NV B,) | 40,

+ 20V, by | (T ) + 20V 0,) g | 64T o) +2(0,(V8,) (V) )+ 20,V ) | 6,(T D) +2(0, 04 [ (Vo) (T D)

+ %Zvv«d)rd)s | ¢t¢u>)a1 asT a,ae » (16)
tu
where
17
(18)
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The first term in Eq. (14) is the Hellmann-Feynman
force. The residual terms in H; originate from the
basis set dependence. The first term of H, in Eq. (17)
describes the electric field gradient induced by the
movement of the nuclei. The residual part of H, con-
tains basis-set-dependence terms. In Appendix A we
show that the contributions to the molecular gradient and
Hessian due to basis-set dependence vanish as the AO
basis approaches completeness.

Having now seen how H can be decomposed into terms
linear and quadratic in the nuclear displacements, we
move on to examine how the components of the elec-
tronic wave function vary when the nuclei move. When
carrying out a molecular gradient or Hessian calcula-
tion, it is most convenient to work in the basis defined
by the set of orthonormal molecular orbitals (MO’s)
appropriate to that calculation (e.g., a set of MCSCF
or HF orbitals). The transformation of H;, Hy, and H, to
this basis may be carried out straightforwardly since
this MO basis is obtained just by carrying out a unitary
transformation of the symmetrically orthogonalized AO
basis functions defined above, However, it still remains
to determine how these unitary transformation coeffi-
cients and the wave function’s configuration expansion
coefficients vary with u.

B. Orbital and state responses

In this section we describe the dependence of the
electronic wave function on p for specific commonly
employed choices of correlated wave functions. Be-
cause the wave functions are assumed to be expressed
in terms of configurations constructed from a set of
multiconfiguration self-consistent field (MCSCF) or
Hartree—Fock (HF) orbitals, the linear and quadratic
responses of these orbitals must be determined. We
also need expressions for the linear and quadratic re-
sponsges of the configuration amplitudes of the wave
function., By first examining the response of an MCSCF
state to a nuclear displacement, we achieve information
which also covers one other case. In the limit of a
single-configuration wave function, the resultant ex-
pressions can be used to describe the Hartree~Fock or-
bital response. Later in this paper, we also consider
how molecular gradients and Hessians may be evaluated
in the CI method in Mgller-Plesset perturbation theory
and in the coupled cluster method. In Mgller —Plesset
perturbation theory (MPPT), analytical expressions for
the molecular gradients and Hessians may be derived
from knowledge only of how the HF orbitals respond to
nuclear displacement. This is so because the MPPT
correlation coefficients are analytically expressed, in
each order, in terms of the HF orbitals and orbital en-
ergies. Coupled cluster (CC) evaluation of molecular
gradients and Hessians requires knowledge of how the
orbitals (e.g., HF) respond to a nuclear displacement.
However, the coupled cluster amplitudes are, in con-
trast to the MPPT amplitudes (i.e., correlation coef-
ficients), not analytically expressed in terms of orbitals
and orbital energies but are determined through a set of
coupled -cluster equations. The coupled-cluster ampli-
tudes therefore implicitly depend on nuclear position and

this dependency has to be addressed. We postpone the
actual derivation of the linear and quadratic response of
the CC amplitudes until later. Here we consider only
the evaluation of the linear and quadratic responses of
an MCSCF state to nuclear displacement.

1. Unitary transformation of the MCSCF state

Variations in the molecular orbitals and in the con-
figuration amplitudes of a MCSCF state |0) may be de-
fined'¥'1® in terms of a set of rotational parameters that
describe how the MCSCF state is rotated simultaneously
in the orbital and configuration or state spaces. The
MCSCF state |0) may be regarded as a member of the
set of states {I)}={10), 1)},

| 0> :Z l d)!>c30 s (19)

|k> = Z |¢I>Clk ’ (20)

&
where the coefficient matrix C is unitary. The configu-
ration state functions [&6,) may be expressed as simple
linear combinations of determinants {|®D)},

]@}’):Haﬂvac) ,

ref

@1

where II,.,a! refers to an ordered product of creation
operators which relate to the set of orthonormal molec-
ular orbitals occupied in | ¢7). For the sake of sim-
plicity, we assume in the following development that all
of the above orbitals and states are real.

A detailed discussion of how a simultaneous unitary
transformation (rotation) of the orbitals and state ex-
pansion coefficients of the MCSCF function may be car-
ried out is given in Refs, 14 and 15, Below we briefly
summarize the essential results of these references
stressing the aspects which pertain to the present de-
velopment,

An arbitrary unitary transformation among the states
{15} may be described in terms of the exponential op-
erator

exp(iS) |7 = ,,Z | Bexp(-9)],, , (22)
where
§ =i§sko(| X0 = [0k |) (23)

and exp(~S) is a unitary matrix because S is a real
antisymmetric matrix with nonvanishing elements S,,
and Sy, (=~8S,) and zero elements elsewhere,

A unitary transformation of the creation operators
corresponding to the MCSCF orbitals may similarly be
parametrized as

a! = exp(ik)al exp(- ik) (24)
with
R=i) K lda,—dla,) . (25)
ros
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From Eqs. (24) and (25) we can show (see Ref. 14) that

a: =Za§[exP(" K)]sr ’

where exp(- «) is a unitary matrix because « is an anti-
symmetric matrix with elements «,; and «, (= —

(26)

A unitary transformation of the MCSCF state | 0)
which simultaneously gives a unitary transformation in
the orbital and in the configurational spaces may be
therefore described as

[6) = exp(ik) exp(iS) toy . (2m

The other states spanned by the multiconfiguration space
| 2 = expl(ik) exp(4S) | ) (28)

can be shown, together with lﬁ}, to form an orthonor-
mal set given that the unrotated states |0) and |%) do so.
Through specifying the set of parameters « and S we
may generate an arbitrary state_| 0) and assure that this
state together with the states {|k)} form an orthonormal
set of states {|/)}. The set of rotational parameters
(x,8)=(0, 0) represents, of course, the untransformed
states {/0), |)}.

The set of functions (a! a, - a’ a,) 10}, (1k>(0|
— | 0%{k1)10), which arises when powers of k or S act on
|0), may be linearly dependent. Furthermore, some
variables k,, may be redundant when used to carry out
an orbital optimization. Such linear dependencies and
redundant operators have to be eliminated from the K
and § operator spaces before we can describe simulta-
neous variations in the orbitals and configuration space
amplitudes. The elimination of such linear dependencies
and redundant operators is discussed in detail in Refs.
14 and 15 and is important because redundant operators
may result in zero Hessian eigenvalues. We will, from
now on, assume that such problems have been eliminated
in determining |0) and, therefore, need not be dealt
with further here.

|

Mm&uhﬂﬂHmHW—KNB+kHMH@ 0[S,

+ L1k, [&, [k, BN 0) + 50| B, 8, [k, Hw))]

All terms through third order in & and § are written out explicitly in Eq. (32).

S, H@)]]|0) -

|0>+ - (0][3,

2. Variation of the total MCSCF energy

To lead up to examining how the MCSCF wave function
changes when the nuclei are displaced by g, we look at
the total energy of the MCSCF wave function in the pres-
ence of the potential field due to the nuclear displace-
ment described in Eq. (9). The wave function |0} de-~
pendence on the nuclear displacement is then determined
by requiring that the energy at the displaced geometry
has to be stationary. The total electronic energy as a
function of nuclear displacement can be written as

E(p)=(0|HR"+p)|0)

Once the dependence of 10) on ¢ has been determined,
the total energy may be written as a power series ex-
pansion in g,

E(p)=E(0) +uE,; +spEyp +o+- , (30)

where E, is identified as the molecular gradient and E,
as the molecular Hessian. The task therefore is to
first determine the dependence of |0) on p and subse-
quently to use the power series expansion of E(u) in p
to then identify the gradient and Hessian matrices.

Let us therefore begin by determining the response of
the MCSCF state to nuclear displacement. Using Eqgs.
(24) and (27) we write the MCSCF energy as

E(x,S,p)=(0|Hy+pH; + s uH,p | 0)
= (O!exp(—ié) exp(— iK)(Hy +puH, + 3uH, )

x expl(ii) exp(iS) | 0) , (31)
where the parameters S and « depend implicitly on p in
a manner which is determined below. The total energy
may be expanded around (k,S)=(0, 0) (the parameter set
characterizing the MCSCF state belonging to undisplaced
nuclei) as

2(01 [k, H(p)]]|0) - <0| [k, H(»)1]]| 0)

]”0>+.“ 3

(32)
In order to obtain matrix elements

8,8, HWN0) + 5 L (0)18, [%, [*, H(w)

which have permutational symmetries with respect to their subseripts, we can define, as in Ref. 17, the n-tuple

symmetric commutator for the operators Dy, Dy, ..

1
[D1’D29- .,D,,,H]=;TP(1,2,...

where P(1,2, .
this definition allows us to rewrite Eq. (32) as

E(k,S, p)=(0|H(u)|0) —i(0|[S + &, H(p)]| 0) - 30| [S

AAA

+ = <0| 5,8,8,H(p)] ]o>+ <o| K, K, K H(p)]}o>+ <o[

.,D, as

;n)[Db [DZ, L .[D", H]- .o

..,n) is a permutation operator which contains the n! permutations of the indices 1,2,...,7n.

11, (33)

Using

S, H(w)]}0) - %<OI[E, K, H(n)]] 0) = (0[S, [k, H(W)]1| 0

KH(u.) |0>+ (0|S [k, &, H(n)]) [0y +---,
(34)

where we have used the fact that each of the operators % and S commute among one another.
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Introducing a notation in which the variational param-
eters {k, } and {5,,} and the excitation operators

Q'={da}, r>s; R'={|nX0][} (35)
both are arranged as column vectors
K
a={g]) (36)
Q"-@
T= RY'—R ’ (3 7)

allows us to write the total energy in Eq. (34) as (Ein-

stein summation convention is used with respect to the
subscripts i, j, k)

E(\, p)=E(0) + u(O|H | 0) + 3 (0| Hy | O)p + pu(FiL'2,)

+ s (FEN) B+ 36{0 A, + 2p (G A

AN (38)

where the generalizations of the MCSCF Generalized

Brillouin matrix elements are defined as
F(i)=<0|[T1Hi]IO>9 i=0,1,2, (39)

the generalizations of the MCSCF Hessian matrix ele-
ments are

¢ =(o|[T, T,H;]]|0y, i=0,1,2 (40)
and the cubic derivative matrix elements are
KW =(|[T, T, T,H]|0), i=0,1,2. (41)

The H; are the Hamiltonian contributions H,, H;, and
H, employed in Eqs. (13)-(18).

The matrices defined in Eqs. (39)-(41) form the
fundamental units in terms of which most of the molec-
ular gradients and Hessians described here are ex-
pressed. The explicit evaluation of F%’ and G is
given in terms of one- and two-electron integrals (for
the i =0 cases) or their derivatives (for i=1, 2) over
the MCSCF orbitals and density matrices of |0)
in Eqs. (2.38)-(2.44) of Ref. 14. These expressions
are also valid for computing matrices analogous to those
of Eqs. (39) and (40) but in which |0) is not an MCSCF
function and the orbitals are not MCSCF orbitals. For
example, when |0) is a CI wave function, these equations
may still be used if the density matrices are simply re-
placed by the CI density matrices. As will be shown
later in this paper, construction of the three-indexed
K% matrix is impractical and unnecessary. Devices
can be used!? (see Appendix B) to reduce the terms in
which K appears to terms which require no more ef-
fort than the evaluation of the G'® matrices.

The term due to F'* does not oceur in Eq. (38) due to
the generalized Brillouin theorem {GBT). The A param-
eters have no zeroth order y dependence [see Eqs. (44)
and (45)] since it is assumed that (x,S) = (0, 0) properly
describes the p =0 case. All terms in the n-tuple com-
mutators in Egs. (40) and (41) which couple the configu-
ration and orbital space are defined such that the Hamil-
tonian first operates on the orbital space excitation
operators and then on the configuration space operators.

The matrices G, K{}) are symmetric in indices k, I,

and m because of the use of the symmetrized commuta-
tors introduced via Eq. (33). In Eq. (38) all terms that
depend on p through second order have been written out
as will be more clear from the discussion that follows
in the next subsection.

3. Linear and quadratic response of the MCSCF state

The explicit dependence of the rotational parameters
on the nuclear displacement is determined from the re-
quirement that the above total energy has to be stationary
in the field described by the nuclear displacement. Tak-
ing the derivative of Eq. (38) with respect to A equal to
zero, we obtain

BFD PP+ G+ RGN T B AN e =0 .

(42)
Equation (42) can be solved order-by-order in the nu-
clear displacement. To do so, we write the rotational
parameters as power series in j.,

A=A ® L APy (43)
and rearrange Eq. (42) as
\ = - GFD) - bGP
— B (GEIGEN) - B A (a)
From Eq. (44) it should be clear that
A 0=0, (45)

The terms in Eq. (44) which are linear in g may be
easily identified as

MY = -Gt (46)

Equation (46) describes the linear response of the
MCSCF wave function to the nuclear displacement. In-
serting Eq. (46) into the right-hand side of Eq. (44) and
collecting terms through second order in p gives

Ai(Z) - - Gi(g)-l F;Z)
(47)

the quadratic response of the MCSCF wave function to
nuclear displacement. These expressions for A‘'!’ and
A'®) play important roles in all subsequent developments.
Their components k', 8V, k?’, 8 are the fundamen-
tal units in terms of which orbitals and configuration
responses are given.

(D=1~ )y (D) (0)-17-(0) § (1) y (1)
_2Gij ij Ak “Gij KjklA'k )‘z ’

Only the matrix elements of F*¥', i=1,2; G, i=0,1;
and K, i=0 enter into the above linear and quadratic
response equations. The labor involved in computing
the F'” and G'*’ is no more than that arising in MCSCF
GBT and MCSCF Hessian computations described in
Refs. 14 and 15. The evaluation of the three-indexed
matrix K'” is rather cumbersome, especially when
large dimensijons are considered. However, the two-
indexed product K{?,A{" may be reexpressed!’ rela-
tively easy in a form which has the structure of a modi-
fied Hessian matrix in which modified one- and two-
electron integrals and density matrices are used. In
Appendix B, we demonstrate how to evaluate K%, A"’ as
such a modified Hessian matrix, and we show how the
one-indexed product K{ A{MA{"’ may alternatively be re-
cast as a modified GBT matrix element.
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4. Cf response

We now derive expressions for the responses of the
configuration amplitudes of a CI state assuming that
MCSCF orbitals are used to construct the configuration
list used in the CI calculation. At a displaced geometry
R’ +p, the CI state |CI) may be expressed in terms of
a unitary transformation of the CI state |CI) at the un-
displaced geometry because all basis-set effects are
contained in the Hamiltonian in Eq. (9):

] Ch = exp(i M°&) exp(i €18) |cn , (48a)

MC% contains the orbital excitation operators of the
MCSCF calculat}on used to determine the set of MCSCF
orbitals, and ©!S contains the state transfer operators

involving the state | CI) and its orthogonal complement
i

space. Equation (48a) shows how a simultaneous unitary
transformation can be carried out in the MCSCF orbital
and configuration spaces of the CI calculation.

Exp(iM€®) describes how the MCSCF orbitals at the un-
displaced geometry relate to those of the displaced
geometry. This dependence is determined entirely by
the MCSCF calculation carried out prior to the CI cal-
culation. Through second order in p the responses of
the parameters ““« are given as the orbital parts of
Eqs. (44)-(47).

The responses of the IS parameters to a nuclear dis-
placement p may be determined in a way very similar
to that used to determine the responses of the parame-
ters A of the MCSCF calculation. At the displaced
geometry, the total CI energy may be written as

E(°'S, u) = {(CI|exp(~ i °1S) exp(~ i ¥ %)H(p) exp(i *°) exp(i °'8) | CI)

= (CI|exp(- i °'S)H(p) exp(i 1) | C1)

= (CI|H|CD - i(CL|[°'S, H(n)]| CI) - $(CT|[®1§, €18, H(w)]| C1) + %(CI][C@, €15, 18, H(p)]|CD ++ - -,

where we have introduced the shorthand notation
H{p)=exp(—iMR)H(p) exp(; ¥°7) .

The total energy at a displaced geometry thus contains
an explicit dependence on u in H(p) and an implicit de-
pendence on p in the parameters !S. The implicit de-
pendence of ©IS on p may be determined by requiring
that the total CI energy be stationary in the presence of
the nuclear displacement. Setting the derivative of Eq.
(48b) with respect to €IS equal to zero we obtain

(C1|[R' - R, H(p)]|C) - i(CI|[R" - R, ©'§, H(u)]| CI)

- HCI|[R' =R, ©§, %S, H(u)]|CD +-+- =0 .  (48d)

Equation (48d) may be solved through each power in u.
To do so, we first write out the p dependence of H{pn) in
Eq. {48c) through each power in p. Expanding the expo-
nential operators in Eq. (48c¢) and introducing Eq. (9)
then given

Hu)=Hy+pH +spHp+--- (49a)
where
H,=H,, (49Db)
H=H, -, H], (49¢)
Hy=H, - i2[*RY, H,] - i2["°R?, H,]
- [MCR(“, [MCR(“,HOH , (49(1)

where M°&'? denotes the orbital excitation operator of
Eq. (25) containing the MCSCF orbital response param-
eters of Eq. (46). We note that H; and H, may be deter-
mined simply by carrying out one-index Hamiltonian
transformations on H; and H, as described in Appen-

dix B.

Carrying out a power series expansion of the 'S

parameters
cxs — cxs(o) +p Cls(1) + %!J- CISQ)M. Foeen (496)

and collecting terms in Eq. (42d) through individual
powers in pu gives the response equations

(48b)
[ 1
cIg _q (502)
(48(:) Clsil) — - CIE;?)-I CIF;!) , (50b)
Cls‘(Z) - - CIE:?)‘i CIF;?) - 2C16‘(2)'1 CI—G—;L) CIS;l)
_cx@{(g)-i cig () cigit) cigih (50¢)

where the F, G, and K matrices are defined by Egs.
(39)-(41). The index CI on F, G, and K denotes that the
orbital parts of these matrices are neglected and the —
denotes that the Hamiltonians entering these matrices
are those of Eqs. (49). The responses of the configura-
tion amplitudes of a CI state thus are given explicitly
through second order in Eq. (50).

Explicit expressions for the linear and quadratic re-
sponses of the MCSCF, Hartree-Fock and CI wave func-
tions have thus been derived. In the following sections,
we use these results to derive analytical expressions for
molecular gradients and Hessians as evaluated in finite-
basis-set calculations within several more commonly
used wave function approximations. All of these wave
function cases (HF, CI, MCSCF, MPPT, and CC) are
outlined in pedagogical style in Chaps. II-1V of Ref. 14.

Itl. GRADIENT AND HESSIAN FOR A HARTREE-
FOCK WAVE FUNCTION

A. The electronic energy

We have chosen to describe the Hartree-Fock case
first since it is very simple yet it illustrates most of
the points used in the subsequent derivations and it de-
fines much of the notation and format for the other de-
velopments., Let us assume that a Hartree—~Fock cal-
culation has been carried out (and converged) at a ge-
ometry R’ and let us denote the Hartree—~Fock (HF)
state at this geometry by |HF). The HF state at a dis-
placed geometry R’ +p (denoted by |HF)) may be ex-
pressed in terms of a unitary transformation of the HF
orbitals at the undisplaced geometry R° because all basis
set effects are contained in the Hamiltonian expansion
in Eq. {(9)
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|HF) = exp(i "¥k) |HF) . (51)
The orbital rotation operator k is defined in Eq. (25)
and contains the nonredundant set of orbital excitation
operators (a'a, —ala,). In this HF case, these nonre-
dundant operators consist of the particle~hole excita-
tions in which s labels an occupied orbital (hole) and »
labels an unoccupied orbital (particle). The dependence
of 5k on nuclear displacement u was determined ex-
plicitly through second order in p in Sec. IIB.3 and is
given in Eqs. (46) and (47). The total HF energy at the
displaced geometry may be written as

ER’+p)=(HF|HR' +p)|HF)
= (HF | exp(- i *Tx)(H, + uH,

+ 3 pH,p) exp(i FFk) [ HF) , (52)

where the Hamiltonian’s dependence on nucledr displace-
ment p given in Eq. (9) has been introduced. In Egs.
(51) and (52) we have explicitly labeled the k operator
as ¥Fg to make clear the point that the orbitals utilized
in the present response calculation are assumed to be
HF molecular orbitals. In subsequent sections we will
similarly use #Fx, €&, €IS, and S to stress the na-
ture of the orbitals (HF or MCSCF) and configuration
amplitudes (CI or MCSCF) whose responses we are
treating. This notation will be used in writing all wave
function and energy expressions analogous to Egqs. (51)
and {52}, but the superscripts will then be dropped for
the duration of the respective section. This action is
taken for notational simplicity once we have made clear
the nature of the orbital and configuration responses.

The HF total energy in Eq. (52) contains a dependence
on u both in the orbital rotation parameters « and in the
Hamiltonian H. According to Eq. (30) the HF molecular
gradient and Hessian may be determined as the first and
second derivatives with respect to p of the Hartree-
Fock energy in Eq. (52).

B. The HF molecular gradient

The first derivative of the HF energy with respect to
nuclear displacement evaluated at zero displacement
becomes (in all such derivatives in this paper the p =0
limit will be implied)

dER’+p) 8ER’+p) ok
dp - aK ap

+(HF |H, |HF) , (53)

where we have used the chain rule to obtain the total

derivative. The partial derivatives of the energy with
respect to the x parameters are given by

3ER" +

—Tu):(HF}[a:as—as'a,,Ho}lHF)—_—O , (54)

which vanishes because of the Brillouin theorem, there-
by reducing the right-hand side of Eq. (53) to its last
term only,

dER" + )

™ =(HF|H,|HF) .

(55)
Therefore, the HF gradient contains the Hellmann—
Feynman force term and terms that describe the finite-
ness of the atomic orbital basis set, both of which are
contained in H;.

C. The HF molecular Hessian

The Hartree-Fock molecular Hessian is the second
derivative of the HF energy with respect to nuclear dis-~
placement evaluated at zero displacement. Using the
chain rule for obtaining the total derivative we obtain
(all derivatives are evaluated at u =0)

dzE(RoJru)— a2k 9EW E_K_32E(0)_3_K
dp dp T opou ok apu Bk op
aE™ ax
+2TH+<HFIH2IHF>- (56)

We have introduced in Eq. (56) the shorthand notation

EY" = (HF|exp(- i"FR)H, exp(i "Tk) |HF) , i=0,1,2,

(587
which, at p =0, reduces to E‘“’=(HF H,|HF) since
k=0 at B = 0.

The first term in Eq. (56) vanishes because 38E‘" /ak
is zero due to the Brillouin theorem [Eq. (54)]. Fur-
thermore, Eqs. (38) and (43) allow us to recognize that

32E O
9K
which is nothing but the orbital-space Hessian matrix
for the HF state and that

=HFG(0)

(58)

8r/pp =g (59)
which is the first-order x response for the HF orbitals
as given in Eq. (46). Equation (56) can therefore be re-
written as

d’ER"+p) _HE (D HFGD HF WD

ap d.
+2HFK(1)HFF(1)+<HFIH2'HF> (60)
which reduces, after introducing Eq. (46) for #¥x‘!’, to
AER + 1) _ wroymr 0yt mEg ()
wdn - F (AFG' Y1 RFR) 4 (HF|H, |HF) .

(61)
The first term in Eq. (61) describes the response of
the HF state to a nuclear displacement in a finite basis.
The second term contains the field gradient factor and
basis set dependence effects. Notice that both the mo-
lecular gradient and Hessian have been expressed in
terms of expectation values of H; and H, as well as re-
sponse matrices involving the Hessians G'© and
Brillouin-type matrix elements F'”. In conventional
wave function optimizations, the same matrices appear
with H, and H, replaced by H,. However, H; and H, are
also, as is Hy, sums of one- and two-electron operators.

IV. GRADIENT AND HESSIAN FOR A
MULTICONFIGURATION SELF-CONSISTENT FIELD
WAVE FUNCTION

A. The MCSCF energy

Paralleling the development of the last section, let
us assume that a MCSCF calculation has been carried
out at a geometry R” and that we have a set of MCSCF
orbitals, the MCSCF state |MC), and its orthogonal
complement set of states. The MCSCF state (| MC)) at
a displaced geometry R’ +p may be expressed in terms
of the result of the undisplaced MCSCF function as fol-
lows:
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| MC) = exp(i ¥°R) exp(i ¥¢5) | MC) . (62)
The operators k and S are defined in Egs. (25) and (23),
respectively. The dependence of the parameters «,, and
S, on g is given explicitly through second order in Eqgs.
(45)~(47). Using these response values, the MCSCF
total energy at the displaced geometry may be written as

ER’+p = (MC|HR" +p) | MC)

= (MC | exp(~ i ¥€S) exp(~ i MCR)(H, + uH,
+ 3uH,p) expli MOk) exp(i°S) | MC) . (63)

The total MCSCF energy at the displaced geometry has

an implicit dependence on p in the parameters k and S
and an explicit dependence on p in the Hamiltonian.

B. The MCSCF molecular gradient

The molecular gradient is defined as the first deriva-
tive of the MCSCF energy given in Eq. (63),

dER"+p) 9ER"+p) 8k N BER"+p) 8S
dp - K ap as dpu

+(MC|H;| MC) = (MC|H,; | MC) . (64)

To obtain the last equality in Eq. (64) we have used that
the MCSCF state | MC) satisfies the generalized
Brillouin theorem inboth the orbital and state spaces; i, e.,

0
ER 1) _ (mel(Q" - @, Hyl M =0 (65)
and
0
aE(l;S+u) =(MC|[R" =R, Hy|[MC) =0 . (66)

These last equations simply state that {MC) has been
variationally optimized at p =0 both with respect to the
k and S variables. The MCSCF molecular gradient in
Eq. (64) contains only the Hellman—-Feynmann force
term and terms that describe the finiteness of the atomic
orbital basis set, both of which are in H;. There is no
need to evaluate either k¥’ =3x/8u or 8V =8S /6y when
computing the MCSCF molecular gradient. This fact
makes the MCSCF wave function the most straightfor-
ward to use in correlated-wave function molecular gra-
dient studies.

C. The MCSCF molecular Hessian

The MCSCF molecular Hessian is the second deriva-
tive of the MCSCF energy in Eq. (63):

BE(O)
as
d’ER"+p) _ (Meg) MC ()
di. dp aE®
9K
aZE(O) aZE(O) MCS(l)
87 3KkadS
+(MCS(1)MCK(1))
a2E(0) aZE(O) MCK(I)
aSak 8K’
8E<1)
8S
+2(MegyMe, (1)) +(MC|H,|MC) . (67)
aE(i)
9K

Here we have used 8x/op =Mx‘V as/ap =¥cg),
ak/apop = M°k?, and 8% /apap =M°s'? [see Eq. (43)]
and introduced the shorthand notation

E® = (MC|exp(- i"°S) exp(- i *CR)H, exp(iMCk)
% exp(i*°S) [MC) , i=0,1,2

analogous to that [Eq. (57)] used in the HF case. The
generalized Brillouin theorem [Egs. (65) and (66)] im-
mediately says that the first term in Eq. (67) is equal to
zero. Equation (38) further allows us to recognize the
MCSCF wave function Hessian matrix ¥G‘?;

82E(0) a2E(0)
95? 9KdS
) :MCG(O) (68)
aZE(O) 32E(0)
39Sk Y.

as well as MCSCF Generalized Brillouin-type (with H,
in place of H,) elements

sE
as
_Mcp) (69)
sEW

K

Introducing the explicit forms of k" and M°S'"’ given
in Eq. (46) into Eq. (67) and using Eqs. (68) and (69)
allows the MCSCF molecular Hessian to be written as
dzf:l‘(LR;: ) - McF(i)(McG(O))-I MCp(l) 4 (MC | H, | MC) .
(70)

The first term above describes the response of the
MCSCF state to a nuclear displacement. The second
term contains the field gradient term and terms caused
by the finiteness of the basis set. In the special case of
a single configuration state function, the MCSCF molec-
ular gradients and Hessians of Eqs. (64) and (70) reduce
to the Hartree~Fock expressions given in Eqs. (55) and
(61), respectively. Again, we remind the reader that
explicit expressions for the F® and G'*’ matrices are
given in Ref. 14.

V. GRADIENT AND HESSIAN FOR A
CONFIGURATION INTERACTION WAVE FUNCTION
CONSTRUCTED FROM HARTREE-FOCK ORBITALS

A. The Cl energy function

We assume that we have carried out a Hartree—Fock
calculation at an internuclear geometry R? and used the
set of Hartree~Fock orbitals to perform a CI calcula-~
tion to determine the CI state |CI).

The CI state at the displaced geometry |CI) may be
expressed in terms of the Hartree—Fock orbitals and
CI states (| CI) and its orthogonal complement [#)) of
the undisplaced geometry as

| CI) = exp(i "Tk) exp(i €1S) | CI) . (71)

The dependence of the parameters ¥« and °'S on nu-
clear displacement has been given explicitly through
second order in Egs. (46), (47), and (50). The total en-
ergy of the CI state at the displaced geometry becomes
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ER®+p)=(CI|HR® + p)|CD)
=(CI| exp(—i ©'8) exp(—i "FR)(Hy + pH, + 3 Hyp)
x exp(i *¥k) exp(i ¢'3) | CD) . (72)
The total CI energy at displaced geometry thus contains

an implicit dependence on p in ®Fx and ®'S and an ex-
plicit dependence on g in the Hamiltonian.

B. The CI molecular gradient

The molecular gradient is determined as the first
derivative of the CI total energy in Eq. (72) with respect
to u,

dE(R’+y) _8E 8S _ 3E 3k
an ~ s op Tox o T CIHCD . (73)
The derivatives
33
35— =(Ctl[|nxcI| - [CD@|, Ho]|CD =0 (74)
nl

vanish because the state |{CI) is determined in a varia-
tional manner in the state space as a result of which the
energy is stationary with respect to S. Using Egs. (74)
and (46) as well as

aE(O)

=HFp O —(CI|{al a, - ala,, Hy}|CD) , (75)
aK?‘S
we may rewrite Eq. (73) as
-‘35 =HFpOHF D 4 (C1|H, | CD) . (76)

The factor ®FF‘?’ does not vanish since it is a Brillouin
theorem matrix for the HF orbital space but computed
as an expectation value, with respect to the CI state.
The first term in the above molecular gradient describes
how the Hartree—Fock orbitals polarize in the field of a
nuclear displacement., The second term contains the
Hellmann-Feynmann force and the finite-basis set fac-
tors.

The first term in Eq. (76) may alternatively be written
in a form which suggests a more computationally practi-
cal means of evaluation

HFF(O)HFK(l):E<CII (a'a,-ala H()HCDHFK:;)

s ry
r>s
=-(CI|[*F&‘D, H]|CD) (1)
where
HFT(‘“:iZHFKg)(aIaS—aiar) . (78)

r>s

In Appendix B we demonstrate how the right-hand side
of Eq. (77) can be viewed as a Hamiltonian expectation
value in which modified integrals appear. These modi-
fied integrals are obtained by carrying out a one-index
transformation on the one- and two-electron integrals
appearing in H, using the parameters "Fx‘"’ of the linear
response calculation as the transformation matrix. In
the remainder of this paper we report whenever possible
molecular gradient and Hessian results in a form analo-
gous to Eq. (77) since this form allows the most compu-
tationally efficient evaluation of such terms.

C. The Cl molecular Hessian

The molecular Hessian is determined as the second
derivative of the total energy in Eq. (72):

, 85
d’ER’+p) = (Clg® HF, (@)
dpdp o
8F
oK
82E(0) aZE(O) Cletl)
as? 9KaAS S
+(CIS(1) HFK(l))
20000 o25(0)
9*E" 8°E HF (1)

asak 8Kk’

IE (69}
as

+2(CIS(1)HFK(1)) +<CI|H2|CI> , (79)
aE(i)

9K

where we have again introduced the shorthand notation
E% =(CI | exp(- i °1S) exp(- i *FR)H,
x exp(i "Fk) exp(: “1S) |CI) , i=0,1,2.

The first component (8E‘"’/8S) of the first term in Eq.
(79) vanishes because the state |CI) is determined in a
variational manner in which the energy is stationary
with respect to S. The molecular Hessian thus does not
contain terms describing the second-order response of
the CI amplitudes (°'§®’), However the second-order
HF orbital responses are required for the molecular
Hessian since 3E'" /5« is not equal to zero [see Eq.
(75)] because average values are taken with respect to
the CI reference state |CI) and not with respect to the
Hartree—Fock state {HF). The second and third terms
in Eq. (79) contain 'SV and "Fx® . The explicit forms
for these vectors are given in Egs. (50) and (46), re-
spectively. The second derivative matrix in Eq. (79)
(the second term) has the same structure as the MCSCF
molecular Hessian matrix G'” in Eq. (40). The orbital
excitation operators ala; — a! a,, however, refer in this
case, to the set of Hartree—Fock orbitals and the state
transfer operators |#){0| — |0){(n| are constructed from
the CI state |CI) and its orthogonal complement set of
states. The first derivative term in the third term of
Eq. (79) has the same structure as M°F’ of Eq. (39)
but again refers to HF orbital excitation operators and
CI state transfer operators. The fact that the struc-
tures of the G'”” and F¥ matrices are as stated allows
the results given in Eqs. (2.41) and (2. 42) of Ref. 14 to
once again be used.

The second and third terms of Eq. (79) can not be
combined as was done in the HF and MCSCF cases [see
Eqgs. (61) and (70)] because a simultaneous optimization
in the orbital and configuration spaces has not been car-
ried out. As a result, there exists no relationship such
as Eq. (46) which allows both '’ and S’ to be ex-
pressed in terms of a single matrix.

When large configuration expansions are considered,
the most time consuming elements to evaluate in the
molecular Hessian of Eq. (79) are probably °'s'!’,
HFe@ and BF«") may relatively easily be calculated us-
ing the procedures described in Sec. IIB.3. When
cigh) HFx@)  and BFxD) are available, it is relatively
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straightforward to evaluate the molecular Hessian if the
approach in Appendix B is used. To do so Eq. (79) may
be rewritten as

d*E(R" +p)

— _ [HFp() _[HFg) [HFaW)
dl‘- dl—l —(CII Z[ K 9H0] [ K ’[ K ;HO]]

-2, (PR, 1] - 8, (8, 1y ]
- Zi[HF"E(l)’ Hi] - Zi[ﬂréu), Hl] l CI> . (80)

All terms in Eq. (79) then reduce to Hamiltonian aver-
age values involving modified integrals and modified
density matrices.

VI. GRADIENTS AND HESSIANS FOR
CONFIGURATION INTERACTION WAVE FUNCTIONS
CONSTRUCTED FROM MCSCF ORBITALS

A. The Cl energy

In the calculation we shall now consider, we assume
that a MCSCF calculation has been carried in a configu-
ration space consisting of the presumed dominant con-
figurations, and subsequently a larger CI calculation
has been carried out using the resulting MCSCF orbitals
and a configuration list that is larger than that used in
the MCSCF calculation. This format is designed to
represent the state-of-the-art large CI calculations
which have recently received much attention. At ge-
ometry R’ we denote the CI reference state as | CI); at
displaced geometry R’ + p, the CI reference state is
denoted |CI). The nuclear displaced state |CI) may be
expressed in terms of the results of the undisplaced
calculation as

| CT) = exp(i k) exp(i °1S) lcn, (81)

where MCk contains only the nonredundant orbital excita-
tion operators of the MCSCF calculation and S contains
the state transfer operators of the CI calculation. More
is said about the treatment of redundant orbital excita-
tion operators in Sec. IX. The total energy at the dis-
placed coordinates may therefore be written as

E®®+p)=(C1|HR + )| 1) =(CI | exp(~ i °'S) exp(- i k)
X (Hy+ Hyp + spHyp) exp(iMCR) exp(i1S)|CT) . (82)

The total energy of Eq. (82) contains an implicit depen-

dence on p in ©'S and ¥k and an explicit dependence on

¢ in the Hamiltonian.

B. The Cl| molecular gradient

The molecular gradient is determined as the first
derivative of the total energy with respect to u,
dER’+p) _RER’+p)3S BER +p) 8k

2% 1|y, |cI
m as _ op ok op (crjm jen
(83)

The derivative 8E(R’+ p)/8S is zero because the con-
figuration expansion amplitudes of the state |CI) have
peen variationally optimized. The derivative

aE(O)

9K (84)

=MCF£2)= <CI ' [azas = a; a,,

H,l|CcD
rs

is nonvanishing since it is a generalized Brillouin theo-
rem matrix element evaluated with respect to the state
ICI). Using Eq. (84), Eq. (83) reduces to

]
dE(l;u+ B) _wcpouc, +(c1|m,|cn
=(CI|-i[™kV, Hy] +H,|CD (85)
which then becomes the molecular gradient. Using

Appendix B we may evaluate the first term in Eq. (85)
as a Hamiltonian average value using modified integrals,
C. The CI molecular Hessian

The molecular Hessian is the second derivative of the
total energy with respect to a nuclear displacement

B
as
dE(RO +ll) =(CIS(2)MCK(2))
dp dp ()
3E
oK
92p®  p2p o) e
352 8KdS
+ (CIgIMCy (D))
B2E(® g "t
3S0kK AKIK
RN
as
+ 2(CIS(1) MCK(i)) + (CI IHZ I CI> . (86)
aE‘D
9K

The first component 3E‘% /a8 of the first term vanishes
again because the state |CI) is determined variationally.
The evaluation of the termg CIg? MCy®  4pq MCxD) jg de-
scribed in some detail in Eqs. (46), (47), and (50). ¥V jg
determined from a coupled set of linear equations that
also have as variables M°S""’. However ¢S’ is not re-
quired directly when evaluating either the molecular
gradient or Hessian in Eqs. (85) and (86), respectively.
It is however, worth pointing out that ¥k’ depends on
the configurations of ¥°§ both through the orbital-con-
figuration coupling matrix elementsin Eq. (46) andalso be-
cause all matrix elements in Eqs. (46) and (47) are evaluated
with respect to the MCSCF reference state |[MC). The
derivative matrices in the second and third terms in

Eq. (86) have the structure of the MCSCF Hessian ma-
trix. The state transfer operators, however, refer to
the CI state | CI) and its orthogonal complement set of
states. In both these derivative terms, average values
are taken with respect to the CI state | CI).

The approach of Appendix B may also be used to effi-
ciently evaluate Eq. (86). To do so we rewrite Eq. (86)
as
d’ER"+p) . MCa - =)

e [ =<CI| - i[McR®), Hyl - [McgD, [Mcx(l L Hyll

- 2[CI§(1) [Mc;((n Ho]] - [cré(i) , [c1§(1)’ HO]J

- 2i[™Ck M H,] -2i[¢'§Y H,]|CD) .  (87)

All of the terms in Eq. (87) can be reduced to Hamilto-
nian average values involving modified integrals and
modified density matrices. We note that if the compu-
tational effort in evaluating €*8'"’ is prohibitively large,
€131 may in most of the expressions of Eq. (87), be
approximated reasonably well by °S'*) of Eq. (46).
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We point out that, in the limit where the orbitals are

determined in the MCSCF calculation which only contains

one configuration, the expressions for the molecular
gradient and Hessian in Eqs. (85) and (87) reduce to
those in Eqs. (76) and (80), respectively.

Vil. GRADIENT AND HESSIAN FOR A COUPLED-
CLUSTER WAVE FUNCTION

A. The coupled-cluster energy

At an internuclear distance, R’ we assume that we
have carried out a Hartree-Fock calculation and used
the orbitals to determine a coupled cluster?® (CC) wave
function which we denote |CC),

[CC)=exp(T) [HF) . (88)
The so-called cluster operator T is
T=Ty{+Ty+-- +Ty, (89)

where, for example, the low-order cluster contributions
are

Ty= tZaha, , (90)
mo

ngz:to”‘“ga;,a;aaaﬁ. (91)
mn
a>8

The indices aBy6 (mnpq) denote (un)occupied orbitals in
the HF reference determinant {HF) and indices ijk and [
refer to unspecified orbital occupation.

The CC total energy is determined by projecting the
CC Schriodinger equation

exp(— T)H exp(T) |HF) = E| HF) (92)
from the left against (HF |,
E =(HF|exp(- T)H exp(T) |HF) . (93)

The CC amplitudes ¢ can be evaluated by projecting Eq.
(92) from the left by singly, doubly, through N-fold ex-
cited determinants {(m:::)}

(Zavi: | exp(- T)H exp(T) |HF) =0 (94)
and then solving the resulting set of nonlinear equations
for t. It is common in practical calculations to limit
consideration to the case in which T is approximated by
T, +T,, although in the following we have made no such
restriction,

The CC state |CC) at a displaced geometry R" + p may
be written as

|CC) = exp(T) [HF) , (95)
T=T)+Ty+-+ +T,, (96)
where
Ty=p inaa, , (97
prey
f2=§fgga;a;aaas , (98)

ad>8

and the ~ symbol indicates that the calculation is carried
out using the HF orbitals at the displaced geometry.

The CC state |CC) has an implicit dependence on the
nuclear displacement g in the orbitals and in the CC
amplitudes . The HF orbital dependence has been de-
termined explicitly through second order in Sec. II [see
Eqs. (45) and (47)]. The CC amplitude dependence
may be established from the equations determining the

CC amplitudes ,

@5 lexp(= DHER + ) explT) [HF) =0 . (69)

To do this, the famplitudes are expanded in power
series in pu,

F=t+pt O+ pt®u +.o (100)
Because the HF orbitals and CC amplitudes are deter-
mined separately (in independent calculations) we are
interested in determining the t'’, t%'  etc. responses
under the assumption that the orbitals stay fixed during
the nuclear displacement. The t'¥’, t'¥’, etc. may then
be determined by requiring Eq. (99) to be satisfied
through each power in p. To achieve such an order-by-
order analysis, we transform Eq. (99) to the basis of
the undisplaced Hartree-Fock orbitals

ma- .| exp(—T) exp(= i "FR)(H, + pH, + $uH,p)

x exp(i ") exp(T) |HF) =0 , (101)

and introduce the transformed Hy,, H;, and H, operators
of Eqs. (49) (the = symbol over the T operators denotes
that the operator contains the CC amplitudes f at the
displaced geometry)

me: |exp(= T)(H, + pHy + 3pHou) exp(T) |[HF) =0.  (102)

Solving Eq. (102) through each order in p gives #%°, t*¥,
t?, etc. for the case in which the Hartree-Fock calcu-
lation and the CC calculation are carried out indepen-
dently (i.e., in a noncoupled manner). The zeroth-
order equations that result from Eq. (102) are easily
seen to reduce to the CC equations at the undisplaced
geometry [Eq. (94)]. The first-order equations read

maeo lexp(= T, - [T, Hollexp(T') [HF) =0 (103)

which is a set of linear equations“ that determines the
amplitudes t'!’. The second-order equation reads

75 | exp(= T) A, - [TV, H,] + 3TV, [T, ]

-[T?, Hyl}exp(T'") |HF) =0 . (104)

Equation (104) is a set of linear equations which may be
used to determine t?’ once t'!’ is determined via Eq.
{103).

After having described the response of the CC ampli-
tudes to a nuclear displacement g we turn to consider
how the CC energy varies as a function of nuclear dis-
placement p. The total CC energy at R" + § may be

written as
E(R®+p)=(AF | exp(- TVH(R® + u) exp(T) IﬁF) (105)

or, expressed in terms of the HF orbitals calculated at
the undisplaced geometry,

ER"+p)=(HF|exp(~ T) exp(~ i "Fk}{H, + uH,

+ 3uHyp) exp(i *¥k) exp(T) |HF) . (106)

The total CC energy contains an implicit dependence on
p in ¥F% and T and explicit dependence on p in the
Hamiltonian.

B. The CC molecular gradient

The molecular gradient is determined as the first
derivative of the total energy in Eq. (106) with respect
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tou,

dER'+p) _ 2E e vy, 2E )
dp oK at
+ (HF | exp(- T'V)H; exp(T'") [HF).  (107)

The partial derivatives of the total energy with respect
to an orbital variation may be evaluated as

-
x[al, ay — al, a,,, Hy) exp(T'") |HF) , (108)
where we have introduced the notation
E® = (HF|exp(- T‘) exp(- i *Fk)
X H, exp(i *Fk) exp(T'V} |[HF) , i=0,1,2 . (109)

Equation (108) does not vanish even though it is of the
Brillouin matrix element form since it involves
exp(T'") |[HF) rather than |HF). Likewise,

9 (0)
B =(HF|exp(- )
g ..

X[Hy, alal -+ ay az -] exp(T‘V) |HF) , (110)
and Eq. (107) therefore becomes

0

2ER4R) _ (1p | expl- T - TRV, 1,
+[Hy, TV] +H, }exp(T®) [HF),  (111)

where the T operator contains the parameters t’ of
Eq. (103). The first term in the CC molecular gradient
[Eq. (111)] describes how the Hartree—Fock orbitals
polarize in the field of a nuclear displacement. The
second term contains the CC amplitude response, while

|

dER’ +p)
dp dp.

+i[T(1), [HFR(!), Ho]] + [T(i), [T(“,Ho]] —Zi[HFi(l),Hi] - Z[T“),Hi] +H2}exp(T°) lHF) .

Equation (113) represents the molecular Hessian for a
coupled cluster wave function. The evaluation of the
terms in Eq. (113) involving the orbital operators
HFg ) and HFx® may be greatly simplified using the
techniques of Appendix B. If the CC calculation is car-
ried out using a set of MCSCF orbitals in place of the
HF orbitals discussed above, the CC molecular gradient
and Hessian of Eqs. (111) and (113) may be straightfor-
wardly generalized by replacing the ¥*¥k‘¥ and ¥Fg@
operator with the corresponding k!’ and ¥°&‘? opera-
tors.

VIil. MOLECULAR GRADIENTS AND HESSIANS FOR
THE MOLLER-PLESSET ENERGY

A. The Fock operator

We begin by assuming that a Hartree—Fock Roothaan
(HFR) calculation has been carried out at a geometry
R’. The Hartree-Fock orbitals and orbital energies are
then determined as eigenvectors and eigenvalues of the

the third term contains the Hellmann-Feynmann force
and finite basis terms. The first term in Eq. (111) may
efficiently be evaluated using the technique described in
Appendix B.

C. The CC molecular Hessian

The CC molecular Hessian is the second derivative
of the total energy in Eq. (106) with respect to u. Using
the chain rule for obtaining total derivatives we obtain

3E’
K
dzE(R0+u):(HFK(2)t<2)) + (HF D)
dp du POk
at
82E0 32E® _
OKIK dKdt
x + (HF )
92E©®  g2p® t
a9k afot
aE(“
K
X +(HF | exp(- T'")H, exp(TV) |[HF) . (112)
pED
at

Unlike the case for variational calculations, none of the
terms in Eq. (112) vanish and both t'® and ¥Fx® are
required for evaluating Eq. (112). When expansions of
the exponential operators are carried out, Eq. (112)
may easily be rewritten as

= (HF | exp(= TO{=i[*k™, H] = [T, H] + "k, [TFRY, Hy)

(113)
[
Fock matrix
HF |[a;, [H, a}]).|HF) =6, ¢, , (114)
the orbital energies being
€= Iy + 2 (G i) = G| i) (115)
3

where £,, is defined in Eq. (5) and the integrals (ij| kD)
refer to the HF basis. The indices aByd (mnpq) denote
(un)occupied orbitals in the Hartree—Fock determinant
|HF) and indices i, j, k, and ! refer to unspecified or-
bital occupation. In Mgdller—Plesset perturbation the-
ory"? the Fock operator

F=2€kalak
k

is used as the zeroth-order Hamiltonian and all of the
Slater determinants |») consisting of all determinants
formed from the HF orbital basis other than the HF
zeroth-order wave function |HF) constitute the other

(116)
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zeroth-order complement states.
tential

The fluctuation po-

1
U= EE (00| duopp) af a} @, ay
ijrl

— 2 CarCarlld; 0n| 0,00 - (d:0u| pr00ala,  (117)

1}“

is the perturbation operator. Here C,, is the expansion
coefficient of the ath occupied HF orbital in the sym-
metrically orthogonalized {¢,} AO basis.

The total energy of a MPPT calculation can be ex-
pressed in terms of the HF orbitals and orbital energies
of Eq. (114). In MPPT molecular gradient and Hessian
calculations we therefore need to determine the linear
and quadratic responses of the HF orbitals and orbital
energies in Eq. (114). In the next subsection we derive
these responses. The simplest nontrivial MPPT total
energy expression is obtained in second order. The
following subsections show how molecular gradients and
Hessians may be obtained for the second-order MPPT
energy. We then derive the molecular gradient and
show how the Hessian can be obtained for the third-order
MPPT energy to demonstrate that the complications in-
volved in obtaining higher MPPT expressions for molec~
ular gradients and Hessians increase no more than do
the conventional perturbation theory energy expressions
themselves.

B. Orbital and orbital energy responses

At a displaced geometry R+ p the orbitals and or-
bital energies of a Hartree—Fock—~Roothaan calculation
satisfy

<ﬁFH&i’ [H) &I]]*IﬁF>=5”E] ’ (118)

where the symbol ~ denotes orbitals and orbital energies
at the displaced geometry. The orbitals at the dis-
placed geometry may be expressed in terms of the origi-
nal orbitals

al = exp(-i “"k) af exp(i ©"k) , (119)
where the orbital rotation operator
CHA—zZCHK“(a,a -dlay) (120)

i>j

contains both the redundant and nonredundant operators
of a Hartree—Fock calculation. It is essential to main-
tain even the redundant operators (a} a, — al, a;) because
the nonredundant part of the rotation can only make the
unoccupied—-occupied and occupied-unoccupied blocks of
the Fock matrix equal to zero (i.e., to fulfill the
Brillouin theorem),

(HF|[a,, [, a%]].

Y= - (HF|a,al,
= (HF|[al, a,, H]

H|HF)
|HF) . (121)

Rotations carried out within the nonredundant space
cannot simultaneously assure that the occupied—occupied

(AF|[aq, [H,a}]).|AF) = - (HF|a} Ha, |HF) (122)
and unoccupied-unoccupied
(HF|(a,, [H,a!)],|HF) = (HF|a, Ha}|HF) (123)

CH A(1)

blocks of the Fock matrix will also be diagonalized.
The occupied—occupied and unoccupied~unoccupied
blocks of a Fock matrix are undefined in a total energy
optimization procedure but are introduced into the
Hartree~Fock Roothaan calculation defined above so as
to give the orbital energies a physical interpretation
(via Koopmann’s theorem).

If we wish to use the HF state response of Sec. I in
a Hartree-~Fock Roothaan calculation, we may do so by
parametrizing the unitary transformation of Eq. (119)
such that the unoccupied—occupied block of the Fock ma-
trix is first diagonalized by the HF response of Sec. II
and then the occupied~occupied and unoccupied-unoc-
cupied blocks of Fock matrix can be diagonalized by a
unitary transformation containing the redundant optimi-
zation operators of the HF calculation. The unitary
transformation which relates the displaced and undis-
placed orbitals then reads

1

@ =exp(-i® !

%) exp(—i#¥k)al

x exp(i 7¥k) exp(i *Px) , (124)

Fk contains the nonredundant rotational param-
eters of the HF calculation and ®*Pk contains the redun-
dant set of rotational parameters, The linear and quad-
ratic responses of "F& are then given through Egs.
(46) and (47), while the linear and quadratic responses

of ®Pk can be determined from the requirement that the
occupied—occupied and unoccupied-unoccupied blocks of
the Fock matrix be diagonal through first and second
order (in the nuclear displacement), respectively.

where

In the present communication we choose, however, to
determine the orbital and orbital energy responses us-
ing the parametrization of Eq. (119) where the redundant
and nonredundant parameters of the HF calculation are
determined simultaneously. Such a determination is
completely analogous to the one carried out in a coupled
Hartree—Fock (CH) calculation. ™22 The orbital energies
and the orbital rotational parameters may then be ex-
panded in power series in p,

=¥ (125)

(126)

where the individual responses are determined by re-
quiring Eq. (118) to be satisfied through each power in

¢ rpeP +ipePp 4.,

CHE_CH (0)+,J.CHK(1)+%IL "(2)}1+ ,

. We initially rewrite Eq. (118) as
€,=(HF|[a,, [AR" +p), a!]],|HF) , (127)
where HR® + p.) = exp(- ¢ “ ¥k H(R0 +u)exp(i €*k). Using

exponential operator expansions we readily see that the
zeroth-order equation reduces to the Fock matrix equa-
tion at undisplaced geometry [Eq. (114)]. “#x'® there-
fore is zero and €'” is the orbital energy of the undis-
placed calculation. The first-order equation reads

6 &= <HFI Ay, Hl: ”L

21€r
- i(HF |[ay, [°®k'V, H,), a}

11.|HF) . (128)

The off-diagonal elements of Eq (128) constitute a set
{1’ which determine

of coupled linear equations in “Hk;}
Inserting “®x!’ into the diagonal elements of
)

Eq. (128) then determines ¢, .

The second-order response equation reads
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b4r €42 = 2(HF | [ay, M, a}]), |HF) - 2iHF |[a,, [[°*k, H,), a!]].|HF)

- 2i(HF |[ay, [[*"k?, H,], a}]).|HF) - (HF |[a,, [®k ¥, [**&Y, H,]], a}]].|HF) . (129)
i
The off-diagonal elements of Eq (129) give a set of lin- '
ear equations that determine “*X? once "k ig deter- U1~ —z MICEREEML LR
mined via Eq. (128). The diagonal elements of Eq. u
(129) determine € once a ®"k‘? has been determined. CuiC..¥( Ya!
- - (¢, ala, (133
The actual evaluation of the (‘“ CHR)  and €He'? re- Zs; «tCa¥ (9,01 6:0) = (6,0 6u8)al a, )
o
sponses may be simplified using the techniques of Ap- tu

pendix B. and

N.ow that it has been demonstrated how the orbital and u,= %Z vv((¢,r¢s ] ¢t¢u))a: a; a,a,

orbital energy responses can be evaluated, let us turn s

to how the second~ and third-order MPPT energies de-

pend on p so that we can extract the desired molecular - Ecatcauvv( (6,0¢] D) ~ (6,0 | p,05)al a, ,(134)

gradients and Hessians, Tu
[+

tu

where we have used the definitions of Eqs. (15) and (18).
C. Second-order Mdller-Plesset energy Equations (133) and (134) express the u dependence of
U in the symmetrically orthogonalized basis, It is, of
course, possible and probably wise to transform U; and
E(RY) = (HF|H|HF) +Z<HF \H|7){r|UIHF) (130) U, to the HF molecular orbital basis before evaluating
-

The second order MPPT energy is given as

0 3
E}e-E) their average or transition values among |HF) and | 7).
where Er and E? are the zeroth order energies 05 |HF) From Eq. (131) it is clear that only doubly excited
?.nd |7), respectively. At a displaced geometry R"+p, determinants with respect to |HF) contribute in the sum
it becomes over states. These doubly excited states may be ex-
E(R®+ ) = (IF | HR® + p) | HF) pressed in terms of the orbitals at R’ as '
+Z HFHR + p) | P U(R°+u)lHF) |7y =a',a! a, a5 | AF) = exp(i °¥K)al, al a, a3 |HF) , (135)
EYp-E! where Eqs. (24) and (51) are used and m>%n, @ >#. The
(131) orbital energy denominator corresponding to the doubly
where the ~ symbol denotes orbitals and states at the excited state in Eq. (131) becomes
displaced geometry. The first term in Eq. (131) is the - =5 . e e e .
Hartree—Fock total energy expression at R®+ u; its A€, =Epp-E. =-€,-€, T, T, (136)
linear and quadratic dependence on p is determined by where the €; are Hartree—Fock orbital energies at the
the Hartree—Fock molecular gradient and Hessian given displaced geometry. Inserting the power series expan-
previously in Eqs. (55) and (61), respectively. We gion of the orbital energies in Eq. (125) into Eq. (136)
therefore concentrate on determining the linear and gives
_quadratic p dependence of the correlation (last) term in AE,:A(f“’ + uAei“ + %#AG:Q,“ , (137)

Eq. (131), The Hamiltonian dependence H(R"+pu) on u
is written out explicitly through second order in Eq. (9). where
The fluctuation potential {u) dependence may be deter- ( ) W ( ) @ ) ,

! - =0,1,2,... . 1
mined in a manner similar to that used to express the Ag, =t €a —€n m& s i=0,1,2, (138)
Hamiltonian’s dependence: The dependence on nuclear displacement has now been
described for the individual components in the second

0 = 1 o« .

UR™+p)=Up+uUs+ 20 Ups + ’ (132) term of Eq. (131). Introducing this dependence explicit-
where U, is the fluctuation potential at undisplaced ly displays more clearly the p dependence of the second-
geometry and U, and U, are defined as order MPPT energy

|

Z (HF | exp(—i BR)(H, + uH, + spHop) expli °FR) |n){r| exp(— i CFRN Uy + pU; + 3uUpp) exp(i CPk) | HF)
A(

AE,R +p)=
(139)
An expansion may now be carried out on the exponential operators

exp(—i CER)H(R® + ) exp(i CFk) = H(R® + p) - i[SBR, HR® + p)] - 3[C¥k, [CFk, HR" + p)]] + (140)
and the denominators in Eq. (139) may be expanded as

1 1 #AE(“ 1 uAe(Z)p. ’J.AE(“AQ(“[J. (141)
A—E = AW~ (AG(O)Tz -3 (A€(05)2 (™) et .

Using Eqs. (140) and (141) we may identify the terms in Eq. (139) that are linear and quadratic in g. These terms
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represent the correlation contributions to the desired MPPT molecular gradients and Hessians.

349

The linear terms

become
AE,(R" + HF |H
[ Z(R ‘J') E( Fl (OO)I T) r , (142)
— A€l
where
T, =(r|20, - i[“®kV, Hy+ U] - Xzﬁ]—,HO]Hm . (143)
To obtain Eq. (143) we have used
(r|H;|HF)={r|U;|HF) , i=0,1,2 . (144)
The quadratic term may similarly be identified as
d*AE,(R"+ 1) ((HFIHO |7 (01H, |7) HF [ ["%Y H ] 1n)Y )
- v, + X, + x (145)
du dp. z,: ael? T aely Al ’
where
— <r‘2H2 _iz[CHE(i) H1 +Ul] - [CH’}(I), [CHK(U’ HO + UO]] - zi[CHk(Z) HO + U0 |HF>
2(re1)? Aet? AeD
((A€(0))2 A“'(o) <7]H0|HF> 2<HF|H1|T> (0) +4Z<HF| CH (1) H0]|T> :) , (146)
X, = - 2i(r|[“Hx‘D H0+U0]+U1|HF)— (0, <r|H0\HF> (147)
and
Y,=-2(|[°%", U] |HF) . (148)

Equations (142) and (145) thus give the second-order correlation contribution to the Mgller -Plesset molecular gra-
dient and Hessian, respectively. We should point out that most of the terms in Egs. (142) and (145) may be effi-
ciently evaluated using the techniques described in Appendix B.

D. Third-order Mdller-Plesset energy

The third-order contribution to the correlation energy may, at a displaced nuclear geometry, be wriiten as

Ey(RO + )= 3 HELUR’ + ) AFIUR' + ) 131 VRS + ) IHE)

(L, - EVES, - EY)

7,8

(149)

_<ﬁF|U(Ro+u)mF)z<HF|U(R°+u)|r><rlu(n°+p)|HF>

(Y

E)

It is clear from Eq. (149) that only doubly excited determinants with respect to |HF) contribute in the sums over the

states (» and s).

Expressing these doubly excited states in terms of the orbitals appropriate to R’ [see Eq. (135)]

and using Eqs. (132), (137), (140), and (141) allows us to identify the terms that are linear in p in Eq. (149) as

- 2ae!
- 1
dAERO+p) (HF| 20, - 2i[“"%, U,] - X—zﬁ-;-Uoerr\ Uy|s)(s|Us|HF)
an =2 Ac (O)Ae(O)

Z(HFIUglr)(leL—i[c“fc‘“, Uyl Is){s LUy | HF)
+ NIV
r s

. R AE(I)
(HF |0y - [k, Hol + Th U | ) | U | HF)

0)
(ae)”’)?

where A(‘,“ denotes the orbital energy differences

E{2 -EY. Equation (150) gives the third-order cor-
relation contribution to the Mgller - Plesset molecular
gradient. It is worth noticing that evaluation of Eq.

(150) requires one to set up an integral list containing

H; and [*®k‘", U,] and further to evaluate A€‘”’. As soon
as these quantities have been determined, the evaluation
of Eq. (150) reduces to an evaluation of a modified third-
order correlation energy. Since the quantities Hj,

~ (HF |U; = i[C5kY, U] [HF) ) HFY

- 2(HF | U, |HF)

o | Uy | HF)
(AE(O))z ’

(150)

r

[¢"&k D, U], and A€!!? also were required for evaluating
the second-order correlation contribution to the MPPT
molecular gradient, it is easily seen that the complica-
tion involved in evaluating the correlation contributions
to the MPPT molecular gradient are in direct propor-
tion to those arising in the order-by-order energy cal-
culations. These same observations also hold when
evaluating higher-order correlation contribution to the
MPPT molecular gradient.
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The third-order correlation contribution toc the MPPT
molecular Hessian is identified as the terms in Eq.
(149) that are quadratic in g. We will not write out an
explicit expression for the Hessian but we do point out
that the basic quantities necessary for evaluating the
Hessian are the same as those required for evaluating
the second-order MPPT molecular Hessian.

IX. COMPARISON WITH RESULTS OF OTHERS AND
CONCLUDING REMARKS

Previous attemptsi'13 to derive analytical expressions
for molecular gradients and Hessians use the configura-
tion mixing coefficients {Cg}, the molecular orbital ex-
pansion coefficients {C,,} and the nonorthogonal atomic
basis orbitals {x,} as parameters which depend im-
plicitly on the nuclear positions {R}. The gradient is
then, for example, determined as

dE N OF 8C, (N BF 3Gy,
dp  FT8C, o T3C, 3p

+29£-§11 + <0\%{-IO> ,

151
o (151)

where F is the Lagrangian function which combines the
variational energy E with the relevant constraints:

F=E—Z£U(;ciasab cjb_éij) —n(ch,—l) .
17 a &

The Lagrange multipliers ¢;; are introduced to assure
that the molecular orbital expansion coefficients {C;,}
describe a set of orthonormal molecular orbitals. The
Lagrange multiplier n assures that the configuration am-
plitudes are normalized. In forming the partial deriva-
tives in Bq. (151) all parameters but the one appearing
in the derivative are held fixed. The last term in Eq.
(151) is the Hellmann-Feynman force term. In SCF or
MCSCF theories the orbital and configuration expansion
coefficients are determined such that both

(152)

oF

aCM_:O (153)
and

oF

50_, =0. (154)

The contributions to the molecular gradient from the
first two terms in Eq. (151) therefore vanish in SCF
and MCSCF theory, and the molecular gradient then be-

comes
dE 9E 3y 3S 9H
— —_—f —a2 4 (0] — N
dp 578y, dp ;i”c“‘c"’ op < au‘0>

ab
The next to the last term in Eq. (155) is referred to by
Pulay as the density force term. It has its origin
in the third term (the basis function derivative term) of
Eq. (151) and its effect is to assure that the molecular
orbital normalization condition (which contains an over-

lap matrix) is fulfilled when the basis function variations
are carried out.

(155)

If, alternatively, one had chosen to use an orthonor-
mal set of atomic orbitals {¢,} as variational parame-
ters, the energy gradient would be determined from the
equation

dE _OF 3G, | 5 OF 3G,
dll L4 ace op ia acia 3#

aF 2 < ’6H >
+2 -0 4 (0|22 o) (156)
7 09; 8 U
where the Lagrangian function now is
F=E "Z (€ijzciacja_6ij> —TI<ZC§-1) . (157)
ij a I 4

Notice that the atomic overlap matrix does not appear

in the constrained equations since the molecular orbital
expansion coefficients are now expressed in terms of
orthonormal atomic orbitals. Since Eqs. (153) and
(154) also hold for the variable choice in Eq. (157), for
either an SCF or MCSCF wave function the molecular
gradient may, for an orthonormal set of atomic orbitals,
be rewritten as

dE _ Y BE 3¢y <o oH

dp T o¢; o oy
Equation (158) contains no density force term. How-
ever, the derivatives in Eq. (157) refer to orthogonal-
ized atomic orbitals, The derivatives in Eq. (155) which
contained a density force term referred to primitive
(nonorthogonal) atomic orbitals. Using the fact that the
orthogonalized atomic orbitals are linear combinations
of primitive atomic orbitals with geometry dependent
expansion coefficients, it is shown in Appendix A4 how
Eq. (155) may be reduced to Eq. (158) in the SCF and
MCSCF case and thus how the density force term is
actually included in the basis set derivative when an
orthogonalized atomic basis is used. It is also clear
from the previous analysis that terms analogous to the
density force term, which may appear in other wave
function cases if the gradients are expressed in a non-
orthogonal atomic basis, would not show up if the re-
sults were expressed in terms of orthogonalized atomic
orbitals. In addition, the use of nonorthogonal orbitals
would require, in calculating the molecular Hessian,
knowledge of Lagrangian multiplier derivatives.

o> . (158)

In the approach advocated in the present paper, we
use the configuration (S,,) and orbital (k,, » >s) rotation
amplitudes and a set of orthonormal atomic basis func-
tions {¢,;} as our parameters in terms of which the nu-
clear-displacement response of the energy is computed.
This allows us to avoid constraint equations and La-
grange multipliers as in Eq. (152) and (157).

Analytical gradients of HF or CI wave functions have
previously always been derived in terms of a set of
canonical Hartree—Fock orbitals whose responses were
determined from coupled Hartree—Fock theory in a man-
ner paralleling Sec. VIIB. The canonical Hartree—Fock
equations constrain the form of the occupied—occupied
and unoccupied—unoccupied blocks of the Fock matrix to
be the same as the form of the unoccupied—occupied
block, which is determined from the Brillouin theorem,
This particular choice of the occupied—occupied and
unoccupied —unoccupied blocks of the Fock matrix as-
sures that the orbital energies have a physical inter-
pretation via Koopmans’ theorem although it algo intro-
duces additional geometry dependent parameters (the
redundant orbital rotational parameters x4 and k,,, of

14
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Eq. (124) that are not present in our earlier analysis).
The Hartree—Fock molecular gradient and Hessian are
however, invariant to the introduction of this additional
set of geometry dependent parameters. To clarify this
point, consider at a displaced geometry (R’ +p) the
Hartree-Fock energy described in terms of canonical
Hartree—Fock orbitals as

E(R®+ ) = (HF | exp(- i °¥%) H(R® + ) exp(i “¥R) [HF) ,
(159)
where the ¥k are defined in Eq. (120) and the response
of Bk to a nuclear displacement is determined from
Eqs. (126)-(129). Using Eq. (124) we may, alterna-
tively and without loss of generality, write Eq. (159) as

E(R'+p)=(HF | exp(-i *°k) exp(— i *TR)H(R" + p)
x exp(i B¥k) exp(i *°k) | HF)

=(HF | exp(- i "FR)H(R" + p) exp(i "FR) |HF) (160)

which is the Hartree~Fock total energy expression used
in our earlier development. The total energy expres-
sions of Eqs. (159) and (160) are identical even though
the orbital rotations are parametrized differently.
Hence, nuclear displacement derivatives of the two ex-
pressions are identical.

To derive Eq. (160) we used the fact that the redun-
dant rotations have no effect on the total Hartree—Fock
wave function

exp(i *Pk) | HF) = |HF) . (161)

When the action of these same redundant rotations on a
correlated wave function as |CI) is considered,

exp(i *Pk) | CL) is easily seen not to be identical to |CI).
As a result, the analytical expressions for the molecular
gradient and Hessian of a CI wave function will differ
depending on whether canonical Hartree—Fock orbitals
or noncanonical Hartree~Fock orbitals are used to con-
struct the |CI) wave function, If one desires to deter-
mine the CI molecular gradient and Hessian using a set
of canonical Hartree-Fock orbitals one may simply re-
place Bk M and #Fx® with “¥x" and "x® in the ex-
pressions for the CI molecular gradient and Hessian
given in Egs. (76), (79), and (80), after determining
CHyD) ang CHg® ag in Sec. VIIB.

Because the fully occupied and virtual orbitals are not
uniquely determined in an exponential unitary MCSCF
calculation, CI calculations performed using these
MCSCFT orbitals with a fixed configuration list at two
neighboring geometries will not be consistent. In par-
ticular, if the two geomeiries are only infinitesimally
displaced, the resultant CI energy change may not be
infinitesimally small. One can, however, uniquely de-
termine all MCSCF orbitals and solve this problem by
diagonalizing the redundant part of a Fock potential14
using exp(i ®P&). An analogous difficulty arises in per-
forming a CC calculation using nonuniquely defined or-
bitals; this problem can also be solved by the above out-
lined procedure.

In addition to what we consider to be a more straight-
forward treatment of atomic orbital basis effects, we
have obtained several gradient and Hessian expressions
for the first time. To clarify this point, it is appro-

priate at this time to provide a brief comparison of how
our results compare with those obtained by other
workers. To this end, let us now consider each wave
function case treated in this paper.

A. The Hartree-Fock wave function

Equations (55) and (61) give our expressions for the
HF gradient and Hessian, respectively. The gradient
result already exists in the literature, for example, in
the review by Pulay' and in Pople’s 1979 MPPT article.’
Both of these previous results contain the density force
terms [Eq. (14) of Ref. 1] which arise via the applica-
tion of the constraints on the C,;, amplitudes given in
Eq. (152). As described earlier, the density force term
does not arise in our treatment because a set of orthog-
onalized atomic orbitals was used.

The HF Hessian has been given by Pople’ in his MPPT
paper and earlier by Thomsen and Swanstrgm and by
Bratoz.’® As was the case for the HF gradient discussed
above, these earlier HF Hessian results seem to agree
with our expression except for the presence of deriva-
tives of the so-called density force terms which would
not have arisen if orthonormal atomic orbitals had been
used (i.e., the VS, term mentioned above would vanish).
Note that our HF molecular gradient and Hessian cover
all open-shell cases. In contrast, Fock operator based
molecular gradients and Hessians have conventionally
been derived for each individual open shell case.

B. The MCSCF wave function

The gradient for the MCSCF case has been given ex-
plicitly by Schaefer ef al.® and implicitly by Pulay in
Ref. 1 and for the complete active space SCF method in
Ref. 26. We do not know of any previous MCSCF
Hessian expressions in the open literature, hence our
result [Eq. (70)] is new. The gradient results of Refs.
1 and 9 seem to agree with our Eq. (64) except that they
contain the density -force terms discussed earlier.

C. The Cl| wave function

Both Schaefer? and Pople” have given explicit treat-
ments of the CI gradient, and Pulay’s treatment' can be
viewed as also giving implicitly the CI gradient. Pople’s
treatment” was limited to CI wave functions of the double
excitation form, whereas Schaefer’s® was rather gen-
eral. To our knowledge, no one else has obtained an
analytical result for the molecular Hessian in this
case. ?®

The gradient expressions of Pople and of Schaefer
have the same elements as we find in Eq. (76) but they
also contain factors which arise from the density force
terms mentioned earlier because they are expressed in
terms of nonorthogonal atomic orbital basis sets.

D. The MPPT wave function

The gradient corresponding to the second-order
MPPT energy has been given explicitly by Pople et al.’
We do not know of any previous second-order Hessian
or third-order gradient expressions with which to com-
pare our resulis [Egs. (145) and (150)]. The second-
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order gradient expression of Pople in Ref 7 Eq. (62)
seems to agree with our Eq. (142) except for terms
similar to the density force term arising in the HF case.
These density force terms occur because the coupled
Hartree-Fock equations in Ref. T had the imposed con-
straint that the resultant orbitals be orthonormal through
each power in the nuclear displacement. We do not have
such terms because we have solved the coupled Hartree-
Fock equations by carrying out an exponential unitary
transformation of the orbitals thereby guaranteeing the
orbitals to be orthonormal.

E. The coupled-cluster wave function

Gradient and Hessian expressions for the CC wave
function do not, to our knowledge, exist in the litera-
ture. The linear and quadratic responses of the CC am-
plitudes (neglecting orbital response) have previously
been derived by Monkhorst. 31 The combination of ¢ am-
plitude and orbital responses such as we described in
Sec. VII have not previously been derived. As a result,
our gradient and Hessian expressions [Eqs. (111) and
(113)] are new and there are no other CC results with
which to compare them.

X. SUMMARY

In summary, we have obtained gradient and Hessian
expressions for several classes of wave functions (SCF,
MCSCF, CI, MPPT, and CC). Most of these results do
not exist elsewhere in the literature. We made use of
exponential unitary operator methods because they allow
us to express the wave function’s configuration and or-
bital responses in terms of the minimum number of
parameters; no constraint equations are needed. We
have further incorporated all basis set effects within the
finite~-basis Hamiltonian. This turns out to be very use-
ful when deriving the orbital and wave function re-
sponses.
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APPENDIX A: FINITE-BASIS EFFECTS
1. Derivatives of atomic basis orbitals

A single primitive Gaussian type orbital (PGTO)
centered at R, =X,, Y,, Z, has a functional form

GA(T):N:;UZ(?C "XA)I(y "YA)m

x{(z - Z,) exp[—alr —R,)*], (A1)

where the integers I, m, and = define the nature of the
Cartesian PGTO, a is the orbital exponent, and N}/
is a normalization constant whose value is independent
of R,. The first and second derivatives of such a basis
orbital with respect to X,, Y,, or Z, are needed to
form Hy and H, as outlined in Sec. II:

24 oy =Y e = 2,71 =X )
A

—2a(x - X,) " Texpl- alr —R,)*], (A2)

ac, _
X}
— (41 +2)alx - X,)’ + 40 (x - X)) exp[- a{r - R,)?],
(A3)
deA _1\1-1/2(‘z -Z )n[l( X )1-1 20( X )l+1]
dXAdYA =iV aA A X =Ay - X =Xy
X[mly =Y, )" =2aly - v,)™ exp[- a(r —-R,)] .
(A4)
All other first and second derivatives can be obtained in
like fashion by simply permuting X,, Y,, Z, and I, m, n.

N:‘Uz(y _ YA)m(Z —ZA)"[l(l - 1)(x —XA)"Z

Given the derivatives of the PGTO’s it is now pos-
sible to obtain expressions for the derivatives of the
contracted GTO’s (G4) and point-group symmetry
adapted GTO’s (G3) which form the final nonorthogonal
orbital bases used in most ab initio calculations. Be-
cause the atomic orbital contraction coefficients D, ,.
combine PGTO’s which reside on the same center (R,),
their numerical values are independent of R,. Simi-
larly, the point-group symmetry expansion coefficients
Mo s (s labels the irreducible representation) are in-
dependent of the geometrical parameters (R,, Ry, etc.)
which describe where the PGTO’s and contracted GTO’s
sit. As a result, the derivatives of the symmetry
adapted orbitals

G5 :§Mi, e Go = 2 M3y 4Dy Gy

A’L,A

(A5)

are simply combinations of derivatives of the PGTO
orbitals, which were given above. For example,

d*Gs, d*c

— = M5, e fo——A

dX.dY . AZ,A aryarDasa dXdY
Notice that the PGTO’s and their contractions, sit at
R,, so that dG,/dY.=0 unless C=A. Likewise
d*GS../dXdY ,=0if C#D.

(A8)

As was described in Sec. II, we chose to utilize a
symmetrically orthogonalized18 atomic orbital basis
{¢,} for expressing the one and two electron components
of the electron Hamiltonian H. Hence, to evaluate the
first and second derivatives of H with respect to nuclear
displacement (u) along any direction X,, Y,, Z,, X,
Yp, Zg, ete. derivatives of the symmetrically orthogo-
nalized orbitals are needed. Let us assume that the
symmetry adapted orbitals G5 are combined to form
the d)h

¢ = 28711265, (A7)
J
where the overlap matrix S involves the {G§}:
S5 =(G5|6D - (8)

Because the orbitals G; are symmetry adapted, the
overlap matrix S is block diagonal

G3|61) =850, (A9)
and, as a result, each ¢; can be labeled by a symmetry
quantum number (s),

o7 = 2. (531265 .
7

In what follows, the symmetry label s will be dropped
but it should be kept in mind that this label allows us to
deal with only those orbitals belonging to the irreducible
representation labeled by s.

(A10)
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To evaluate the first and second derivatives of each
¢; with respect to nuclear displacements is now rela-
tively straightforward

_ﬁ E[-l/zdcz . d;i( S-uz] (A11)
Z[ 1/2 dGs dS 1/2 dGs
dXAdYC dy, dXA ax, ch
dZGs ds-l/Z
-1/2 F) S
W axar, YO ax,aT, (a12)

Although the derivatives of G$ appearing in Eqs. (All)
and (A12) are displayed above, we have yet to give ex-
pressions for the derivatives of the S™/2 matrix ele-
ments,

To obtain an expression for (d/dx)s™V?, we first dif-

ferentiate the identity S"1/?$ =5'? and right multiply by

§71/2 to obtain
a ~1/2) 172 | 17288 cetr2 (d 1/2) 172
= =2 ={=-s .
(dXs SV4+S dXS X S
Now using the derivatives of the identity $/28"1/2=1,
dSm) 12 12 A4 o172
(dX §7T=-5""%S
in the right-hand side of Eq. (A13), we obtain
(dixs-i/z)si/2+s1/z(d‘§(5 1/2) 5-1/2?:( s172 | (A15)

If we write Eq. (A15) out in the basis which diagonalizes
S (and $*'/?), we obtain the desired expression for the
elements of the (d/dX)S™!"? matrix {in this eigenvector
basis):

d -1/2) (d3> 722 112 4 172y
L ——(== +
(dX o \ax),,5t S (s +s597,

" (A13)

(A14)

(Al6)

where the {s,} are the eigenvalues of S and dS/dX is the
derivative of the overlap matrix appearing in Eq. (A8).
Note that dS/dX is straightforward to evaluate because
it involves derivatives of the Gi which are easily ex~
pressed in terms of the PGTO derivatives of Egs.
(A2)-(A4).

The second derivatives of SV2 can be obtained by
taking the second derivative with respect to X and Y of
the identity S71/25"12=5"! and rearranging to obtain

( d? 5-1/2>S-1/z+s-1/z< d? S-uz)
dydxX aydx

d? . ( -1/2) (dS'“z) (dS'“Z) (dS'“?)
= — 8" - . 1
dydX 5 ay dx ax ay (A17)
The derivative of $™! which appears as the first term on
the right-hand side of Eq. (A17) can be evaluated by

taking the first and second derivatives of the identity
$71S =1 to obtain, respectively,

as™t _ 4dS

x =S 5s (A18)
and
d*st . [dzs 4dS _ dS 1dS] .1
dvax ~ "7 ldvax ~ dYS x " axd 217]5 (A19)

Putting the pieces back together, we can now obtain the
desired expression for d’$™?/dy dX by evaluating

Eq. (A17) in the basis which diagonalizes S:

R )
i) 872,151

() (@) (e (=) |

(A20)
Equations (A16) and (A20) provide the derivatives
which are needed in Eqs. (All) and (A12) for evaluating
d¢;/dX and d?¢,/dY dX. However, as expressed
above, these matrix derivatives were obtained in the
basis V; ={V, ;--- V, .} which diagonalizes S,

SV,=s,V,; .

(A21)

In Egs. (All) and (A12), we need the derivative matrices
in the basis of the G;. In practice then, we first obtain
the matrix derivatives from Eqs. (A16) and (A20) and

we subsequently transform the matrices back to the
original G{ basis via

ds-1/2> (dS'Uz
(dX 5 Gs‘m“_g;v”'j ax >k.1V1" (A22)
and

dzs-uz) <d23'“2>

<deX GS basis kz dydx Vi - (A23)

This provides us with a prescription for evaluating the
first and second derivatives of our symmetrically
orthogonalized orbital basis. These derivatives then
allow us to evaluate the geometry dependence of the
Hamiltonian (i.e., H; and H,) as described in Sec. II.

2. Creation and annihilation operator dependence on u

In developing expressions [Egs. (13) and (18)] for the
linear and quadratic p dependence of H(R® + ), we
explicitly considered the p dependence of the orthonor-
mal {¢,} basis orbitals which appeared in the Hamilto-
nian of Eq. (3). However we did not allow for any p
dependence in the creation {a!} and annihilation {a,}
operators occurring in H. To understand why it is per-
missible to neglect the u dependence of the {a'} and {a,}
let us recall how the operators a! and a, enter into the
electronic energy expression whose molecular gradient
and Hessian we seek.

All of the energy expressions treated in this paper
(MCSCF, HF, CI, MPPT, CC) involve products of one-
and two-electron integrals over the {¢,} basis and one-
and two-electron density matrices, e.g.,
(Olalala,a,|k). These density matrices can be evalu-
ated once |0) and |k), which might be identical to }0),
are expressed in terms of products of creation operators
operating on the vacuum ket |vac). The evaluation of
the density matrices reduces to the evaluation of sums
of vacuum expectation values of operator strings such
as

(vac|a, (Ouy "y a'a'a,a ab, " ab,al |vac) (A24)

Using Wick’s theorem, !® such vacuum expectation val-
ues reduce to the sum over all totally contracted terms,
one typical term of which is
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(vac|a, a,,-++ a, alaja,a.dl, - d, a, |vac)
L
={(-1)%vac|a,, a,,|vac)vac|a, a’} vac)
X {vac|a, ']vac)(vac[at ]vac)(vac la,al, |vac)...
l—l 1
(A25)
The contractions g; a] are defined as'’
—a
f_
a; aj=a; a\+ala; =[a}, a;], (A25a)

Because creation and annihilation operators correspond-
ing to orthonormal orbitals such as {¢,} obey

[a;’” ai}dtzéij ’ (A26)

the gradient of the (contraction) anticommutator vanishes
V([GL ai]+): )yai]++[a§‘7 (Vai)]*:o . (A27)

Similarly the second derivative with respect to p of any
contraction g ¢} vanishes. If the orbitals {¢,} were not

orthonormal, the contraction would be

[(va}

a; a]= a; a+aja; =S;;(R) (A28)
—J

and the derivative of M} would become
va;al=V[d}, a;], =S 4(R) (A29)

which does not vanish.

When an orthonormal basis is used for evaluating
molecular gradients and Hessians, the gradient of any
density matrix element therefore is zero and considera-
tions of how the creation and annihilation operators de-
pend on pu need not be addressed. On the contrary, if
the basis has a nonunit overlap matrix the gradient of a
density matrix element is nonvanishing and explicit con-
sideration of the creation and annihilation operator de-
pendence on p is required. Since the one- and two-
electron density matrices dependence on p is an unnec-
essary complication in evaluating the molecular gra-
dients and Hessians, we have chosen to express the
Hamiltonian in the symmetry orthonormalized atomic
orbital basis.

3. The complete-basis limit

The contributions to H; and H, arising from the use of
finite basis sets involve the derivatives appearing above
in Egs. (All) and (A12). These contributions vanish as
the AO basis approaches completeness. To demon-
strate this fact, we first note that the electronic Hamil-
tonian at any molecular geometry R can be written [see
Eq. (3)] as sums of products of so-called field opera-
tors?’

d)(?’) = Z ¢s(r) Qg

which destroy [¢(#)] or ereate [¢'(#}] an electron at the
spatial point . The exact operator () and its crea-
tion-operator adjoint are geometry independent since
their defining equations contain no reference to molec-
ular geometry. It is only when one attempts to expand
#(») or $*(+) in the AO basis {¢,} that one introduces
reference to molecular geometry and potential basis
incompleteness. Hence, we must view Eq. (A30) as
holding only when the {¢, | basis is complete. For this

(A30)

reason, our finite-basis Hamiltonian {Eq. (3)], which is
expressed in terms of products of finite sums }; ¢(7) a;
is R dependent. This R dependence may be explicitly
determined by differentiating the finite-basis field op-
erator with respect to the nuclear displacement u. The
first derivative is, for example,

dy*(r) -3 <d¢2‘( r) 4 + o 28 da} )
dp s\ dp dp
The creation and annihilation operator dependence on
nuclear displacement can be disregarded when an ortho-
normal basis is used to expand the field operators (see
previous subsection) and Eq. (A31) then becomes

ay(r) d¢ws(r)
W _E " al . (A32)

As the basis set {¢,} becomes complete, the field opera-
tor becomes independent of u; i.e.,

(A31)

dy'(r) _
an =0, (A33)
In the complete basis limits we therefore have
d
2 e d"(r al=0 (A34)
S

Introducing Eq. (A34) into H; of Eq. (13) shows that,
in the limit of complete basis, only the Hellmann—
Feynman force term of H; survives, Equation (13) also
shows that if the basis set derivative terms in H; are
included in a complete-basis calculation, additional and
unnecessary complications are introduced into the cal-
culation of the molecular gradient.

In H, it may similarly be shown that the only term
that survives when a complete basis is used is the elec-
tric field gradient term induced by the movement of the
nuclei.

4. The origin of density forces

To make the connection between our SCF and MCSCF
gradients and those given by Pulay,! Pople, ” and
Schaefer® (in terms of the original nonorthogonal basis
{x,}), we first note that our gradient in each of these
two cases [Eqs. {55) and (64)] is of the form

oo ()= (sain)

where |0) is either |HF) or |[MC). In the last identity,
we simply stress that the derivative with respect to u

is to be applied only to the symmetrically orthogonalized
basis functions occurring in H [see Eq. (3)]. The mo-
lecular orbital expansion coefficients {C;,} in this basis
and the configuration amplitudes {C,} are not to be dif-
ferentiated.

{(A35)

The one- and two-electron operator components of
{(0|H|0) can be written in terms of the molecular-orbital
density matrices (0/afa,10) and {0lalala,a,l0), the
molecular-orbital expansion coefflclents {C;.} and one-
and two-electron integrals over the symmetrically
orthogonalized basis. For example, the one-electron
component E; is
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E, Eg (0)af a,]0) Cy, C e g | B0

ab

= Z <0|ai7ajlo>cia CipAuar Appr{Xar

i,
aba’d’

(A36)

hi'Xb') ’

where A,,. =S;}/* if the basis orbitals {¢,} are sym-

metrically orthogonalized. The p derivative of Eq.
(A36) in which the C,, and C, (hence (0|a; a,10)) are
fixed is a sum of two terms

dE .
)= a, o a2
(du )c;a.c; ; ©]a, ajlo)c‘,,c,b[Au Ay

aba’ b*

A ..
Ry le'>2Abb' _;L] . (A37T)

2

X Xar | By [Xor) + {Xer
The first term is exactly the primitive atomic orbital
integral derivative given by Pulay, Pople, and Schaefer
since the 3, C;, A,r =C,,. are just the expansion coeffi-
cients of the molecular orbitals in the primitive basis.

To reexpress the second term in Eq. (A37) in the
same form as other workers have used, it is useful to
notice that the combination 3, 2{01a; a,!0) C,, Ay,

X (Xge IRy [Xpe) is equal to the derivative of the one-elec-
tron part of (01H |0) with respect to C;,, keeping the
basis functions {x,.} and the configuration amplitudes C,
fixed (8E;/9C, ;s )c;, - In either MCSCF or SCF theory,
when the energy is optimized with respect to the {(_2,.,,,}
parameters subject to constraints CSC =1 [see Eq.
(152)] this derivative can, using Eq. (153), be re-
expressed as follows!:

9E =

(5_(_:_1_) :; 2¢,,C 0 Surpe (A38)
ia* b’

where the ¢;; are Lagrange multipliers introduced to

force the molecular orbitals to be orthonormal. Intro-

ducing this result into Eq. (A37) gives

dE s
aky _ , o
(du )Cimcg‘ %‘4 (0]afa,]0)T,,.Cy o (xar |11 %)

a’y’

9
+ Z ©[a] a;]0)C;4C 1, 26, Sy Apyr -a-EAaa' .
afg’,

(A39)

Finally, differentiation of the orthonormality require-
ment

<¢a I (pb) = 5ab = Z Aaa’ Abb' Sa'b' (A40)

a’h

allows the second term in Eq. (A39) to be expressed in
terms of 8S,,,,/8p thereby yielding

dE - = 9
fatend § —_ t —_—
<d11 )chl = ; [<0|ai ajl 0)Ciqr Cjpe on (Xar lhi l Xo)

a’b?

= = 9S..,.
- Eij<0’a: aj|0> Ciar Cipr "'S‘a—b—:l . (A41)

U
The second term in Eq. (A4l1) is exactly the density-
force term contained in Pulay’s and Pople’s gradient
expression. In deriving Eq. (A4l) we have for simplic-
ity only considered the one-electron part of the Hamil-
tonian. It is tedious but straightforward to show that

Eq. (Ad4l) is also satisfied when the two-electron part
of the Hamiltonian is considered. It may further easily
be seen that Schaefer’s Lagrangian terms [Eq. (18) of
Ref. 9 from 1982] can also be identified as the second
factor in Eq. (A41).

In summary, our SCF and MCSCF gradient expres-
sions do indeed agree with the earlier results of Pulay,
Pople, and Schaefer once our expressions are reformu-
lated in terms of the original nonorthogonal basis. Al-
though it may be possible to derive, within a nonortho-
normal basis, gradient expressions for the other cases
treated here as well as Hessians for all of these cases,
it is our feeling that by using orthogonalized basis or-
bitals, we have simplified the derivations.

APPENDIX B: EFFICIENT EVALUATION OF
RESPONSE MATRIX ELEMENTS

In this Appendix we introduce two devices which prove
to be very useful for evaluating certain matrix products
which enter into the molecular gradient and Hessian ex-
pression occurring throughout this paper. 17 The first
“trick” allows us to replace any commutator [Y, H|,
where Y is a one-electron operator such as &'V or &
[see Egs. (25) and (78)] and H is H, H;, or H, [see Eq.
(9)], by a new one- and two-electron Hamiltonian H in
which one-index transformed integrals occur. !’ The sec-
ond device allows the expectation value of a commutator
(0118, x]10), where S is §¥ or 2, to be replaced by a
transition value of X: (01X |60). This means that the
expectation value of [§, X] can be evaluated in terms of
transition density matrices and the integrals occurring
in X itself.!?

(2)

Let us begin by considering the commutator of a
Hamiltonian H (which can be H, or H, or H,) in Eq. (3)
and the operator k of Eq. (25). The parameters ,, of
Eq. (25) may, for example, have been determined in a
response calculation in which case they may be k' or
k2. Carrying out the commutator gives what we refer

to as a modified Hamiltonian A,

- R - 1 . TN

HE[K,H]:Zzh,Sa:aS+§Zz(rs|tu>a:a;aua, , (B1)
7S rstu

where the modified one- and two-electron integrals are

defined as

;lrs :Z (hrp Ksp + hps Krp) (B2)
3
and
N
(rs | tw :Z(K,,(ps Ltu) + Ky rp | tue)
»

+ K (rs [ pu) + Kk, (s [ 1p)) (B3)

The essential point is that the commutator generates a
new Hamiltonian H which is itself a one- and two-elec-
tron operator expressed in the original creation and
annihilation operator basis but which involves a trans-
formed set of integrals. Note that the integral trans-
formations in Eqs. (B2) and (B3) are simple one-index
transformations which would involve very little compu-
tational effort. This replacement of the commutator of
the one-electron operator (k' or k'”) and H,, Hy, or H,
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by the modified Hamiltonian, which involves integrals
having one index transformed, is used numerous times
throughout this paper.

Consider next the average value of the commutator of
an operator X with the operator § (or 8’ or §’) of
Eq. (23),

(0|[8, x]|0) . (B4)

The transfer operators $ are constructed from the
state |0) and its orthogonal complement set of states and
the parameters S,, may, for example, have been deter-
mined in a linear response calculation. Using Eq. (23)
we may write the expression (B4) as a transition matrix
element of the operator X:

(0[S, x]|0) = (50| x| 0) + (0| x| 50) , (B5)
where
|60y == S ,0|n) . (B6)

The transition value of the operator X shown in Eq. (B5)
can be evaluated just as the expectation value of X over
|0) is computed except with all one- and two-electron
densgity matrix elements replaced by the corresponding
transition density matrix elements

(0] <=+ |0)=(0] - -+ |80) + (60| --- |O) .

To clarify the important roles played by the relations
given in Eqgs. (Bl) and (B5) we demonstrate their use in
some specific examples. Consider the evaluation of the
orbital-response component of the CI molecular gra-
dient BFF O EFy () ghown in Eq. (76). Using Eq. (B1)
we can express this product as

[Z HE (gt q, —al a,), Ho] ’cr>

mo

HFF(O) HFK(l) — <CI

=—#CI|[*"&k, Ho} |CD)
=-14(CI|H,|CD , (B7)

where #Fk'? ig defined in Eq. (78). Hence the orbital
polarization term in a CI gradient calculation may be

straightforwardly evaluated as a modified Hamiltonian
average value using integrals [see Egs. (B2) and (B3)]
whose one-index transformation involves #Fk!!’ as the
transformation matrix.

As the next example, let us examine the evaluation of
the third term in the CI molecular Hessian shown in
Eq. (80). Using both of the tricks shown in Eqs. (B1)

_J

KOAMY =101/ - Q) (9] -Q,, [Q1 - @2 Holll |0k +3 0] (@7 = @1, [@1 — @ns [Q; - Q. Hol]] | Ox

+20|[Qs - @n [Q) - Q5 [@F = Qus Holll [0k + - -

and (B5) we write

ar, 0 EY oy c1&() [HFL(D
Y YTS s =~ (cr|['8"Y, [**x‘V, H,]]| cD

== (6CI|[*F&V, Hy]|CD) - (CI| [**x‘", H,] | 6CT)
= - (3CI|H,|CD) - (CI|H,|5CI) ,

where 5CI is defined as in Eq. (B6) with ®'8{}’ playing
the role of S,,. Equation (B8) demonstrates that the
third term in Eq. (80) may be evaluated as a transition
value of a modified Hamiltonian in which the one-index
integral transformation needed to form H, involves x'!’
and the transition density matrix arises via 8V,

(B8)

Pro-
vided that k@, ", and 8 have been evaluated, all mo-
lecular gradient and Hessian elements of Secs. III-VI
and some of the molecular gradient and Hessian ele-
ments of Secs. VII and VIII may be evaluated using the
modified integral lists and/or transition density matrix
elements as outlined above.

The orbital energy derivatives, €'’ and €'? of Egs.
(128) and (129) and the orbital response 3k‘¥ of Eq.
(128) may similarly be easily evaluated. For example,
by writing E:“ as

€Y = (HF|[a,, [H; - iy, of]).|[HF) (B9)
with
Hy= [ H,] (B10)

allows €' to be evaluated as an orbital energy €,” [see
Egs. (114)], but with the Hamiltonian operator H, re-
placed by H; and H,;, involving both original and modi-
fied integrals with the integral transformation arising

¢}
from k.’

Evaluation of the linear response in Eq. (46) requires
explicit construction of G'© and F**’. The quadratic
response in Eq. (47) contains the matrices G, F¥,
G, A" and the three-index matrix K‘”. However,
explicit evaluation of K* is not required because only
K{OMY or KA A appear inthe response equations.
However, before the tools of Eqs. (B1) and {B5) can be
applied to K{9 AP or K{% AV ALY the orbital part of the
excitation operators (*°k‘"’) must be moved next to the
Hamiltonian, and state transfer operators (*°8‘!’) have
to be moved to operate directly on the reference state
as in Eq. (B5). Such a move introduces new Hessian
and gradient elements. To clarify this part we write
out in detail some of the terms which arise in evaluating
KBAD,

17

)

+ +3(0|[Ry— R, [Q}-Q; [QF - @i, Hylll| O)SLY

oo+ KO [Ry =Ry, [Ry = Ry, Q5 @ Holl]| O8I + KO [R] ~ Ry [RE = Ra [Q5 - Q Holl]| 08, +---

The first term in Eq. (B11) may be straightforwardly
evaluated as a Hessian matrix element with modified
integrals since the sum k!’ (Q; - @,) occurs in the com-

(B11)

—

mutator involving the Hamiltonian. In the second term
of Eq. (B11) @} - Q, must be moved next to the Hamilto-
nian before Eq. (B1) can be applied. This may be done
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using the commutator identity
[Q:-Qw [Q;-Q; H=[Q; = Q, [Q — Qu, H]]

+[[Qi-Qw @7 -, H] . (B12)

The result of inserting the first term in Eq. (B12) gives
just the first term of Eq. (11). Inserting the second
term in Eq. (B12) gives a sum of MCSCF Hessian ma-
trix elements since the commutator

(Qi-QwQi-Q,l

is itself a sum of one-electron operators. In the third
term, the commutator identity of Eq. (B12) can be ap-
plied two times. The fourth and fifth terms of Eq. (B11)
may straightforwardly be evaluated using Eq. (B5). In
the last term we need to interchange R; - R, and R} - R,
before we can apply Eq. (B5). To do this we use an
operator identity similar to the one of Eq. (B12). In
Ref. 17 a more detailed description is given of how to

evaluate all of these terms in K{)J A",
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