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Abstract

We have performed eoordinate rotated configuration interaetion eaIculations on well-studied
Feshbaeh resonanees of H- and He-and on 2p shape resonanees of Be- and Mg-. The foeus of
Dur efforts was the dependenee of eomputed resonanee energies on both the quality of the atomie-
orbital basis and the level of treatment of eleetron correlation. Dur results indieate that great care
must be taken to guarantee that a basis is adequate; commonly used quantum-ehemistry bases are
probably far trem satisfactory. Dur. findings algO indicate that a proper treatment of inner-shell
orbitaIs within eoordinate rotation calculations is a foimidable task. We are therefore encouraged
to look carefully for modified coordinate rotation techniques that focus on the active valence-level
orbitaIs and may avoid spurious complex energies arising trem improper treatment of inner shells.

1. Introduction

In recent years, the complex-scaled Hamiltonian (sometimes called "coordin-
ate rotation" or cR)methodhasbeeome aeeepted as a useful tool for the study
of metastable states ot atomie and moloculaL systems [1]. Many studieshave
involved e1ectron-atom seattering systems, with one- or two-e1ectron- target
atoms. Many-eleetron targets present no formai diffieulties; eomputationally,
however, theyare formidable problems for whiel1several modified CRprocedures
have been proposed [2,3]. Most of these new proeedures involve assumptions
above and beyond those contained in the origilially proposed complex sealing
proeedure.

The purpose of this paper is tore-explore the CR method in twa variations:
as originallyproposed and using an intuitively reasonable modifieation introdueed
here. We desire to see if applieation of these methods to sma1l test systems
[using standard quantum-ehemistry basis sets within smalI configuration interac-
tion (CI)ealculations] gives reasonably aeeurate results. aur test systems are the
2S resonances of H- (near 9.56 eV) arid He- (near 19.4 eV). These resonanees
have been studied by other researehers using a variety of methods (inc1uding
CR and experiment), so the correetresonanee energies are well known[3].

Section 2 gives a brief overview of the CR method, and defines the "original
CR" (OCR)method as well as a new variation whose use we explored on H-,
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, '

He-, and on many-electr~n cases Be- and Mg-. Section 3 gives the details'ot ,H
our calculations, inc1udingbasis sets, orbitaIs, and configuration lists. Section 4
gives the results we obtained tor our test problems and in Sec. 5 we discuss the
outlook tor the methods ot this paper:

2. Survey of the CRMethod

A. Overview o! Basic Coordinate Rotation Theory

The original, papers on the method ot complex scaling ot the Hamiltonian
are due to Aguilar, Balslev, Combes, and Simon [4]. More pedestrian summaries
ot the technique have been given by several authors [5]. The tollowing is a
survey ot the results ot the original theorems. Since molecular systems introduce
new formal and practical complications, the development below is restricted to
atomic targets. The method outlined below, which we ceter to as the OCRmethod,
bas been used previously by other workers [6]. Whether or not it is the most
appropri,ate. .~R technique is part ot whilt this research attempts, to answer.

, CertaJnly itisone ot the moststraightforwardways toimplement CR.

,,' i~ the ~C~ method; o?,ebegins by taking an atomie Hamiltonian,
"~V".">C,.. ,
,c.,. o:;'

, t' 2 Z 1'" 1H=--IV.-I-+- I-
2 j 1 j rj 2 j"'k Irj-rkl

= T::+V = T(l) + V(l,)! (1)

and scaling the lengths ot the coordinates ot aU the electrons by an arbitrary
complex parameter, T/= a exp(i8). Since the kinetic energy T and Coulombic'
potential energy V scale analytically with T/,theeffect ot the scaling is to form
T(T/)=T(1)/T/2 and V(T/)=V(l)/T/. (T/=l corresponds to the unscaled situ-

. ation.)The spectrum ot ibis scaledHamiltonian,'H(T/), is related to the spectrum
ot H(l) as tollows. ' ~
, Any bound-state energies ot the spectrum ot the anion system are invariant
to the choice ot T/ provided 8 is less than 'TT/2.From each target atom (the
system with one tewer electron) bound-state threshold (Le., E =-0.500, -0.125,
-0.05556 a.u., etc., for an H atom), there is a continuous set ot scattering-state
energies lying on the ray emanating trom that threshold and making an angle
ot -28 with respect to the realaxis (see Fjg. 1). Finally, aDYm,etastable stare ot
the anion system [corresponding to a complex energy, with the imaginary part
ot the energy being related to the width (r) ot the resonance] behaves like a
seattering state, until28 is large enough so that the ray from theproper threshold
ot the target "uncovers" the resonance (see Fig. 1). For 8larger than ibis "critical
8," resonances behave like bound states in that their energies remain unchanged
as 8 turther varies (unless 8 gets too large; then the resonance is "covered up"
a.gain by the ray ot seattering states emanating trom the next higher threshold).
The eigenfunction corresponding to this resonance is square integrable for
8 >8crit and, as such, caD be described by a square integrabIe (L 2) basis set.
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Figure 1. Variation of bound (a), continuum (rays), and resonance (c) staLeenergies

with rotation ang1e ().Points (b) label target thresholds.

B. Nonideal Behavior-The Core-Electron Problem

Inany tinitebasis the behavior described in the above paragraph is only
approximated. In particular, bound-state energies are not totally invariant with
respect to 71,scattering states do not lie exactly on rays emanating trem the
target thresholds, and resonances do not show perfect "criticale" behavior.

The source of part of this nonideal behavior can be seen by noting" that,
according to the CR theorems, the energies ot bound states are invariant with
respect to the staLe parameter, but the wave functions themselves are.not. This
bas been explicitly"demonstrated by ~unker and Huang for hydrogenic atoms,
for which the CR results can be obtained in c1osed form [7]. The energy levels
are still -Z2/(2n2), but the wave functions are the hydrogenic wave functions
but withr replaced by rT/.For any atom, the smalI-riodependence of the Hamil-.
tonian is dominatedby the terms -lv~ -Z/rio Hence if we write the small-ri
behavior of the N-electron wave function as an antisymmetrized (AN) product
involving an ri-dependent term cPand the remaining part X

.1/I(rl'" ri" '~jV)=AN[cP(ri)x(rx)]

then for smalI r,

(x=1,2,...,i-l,i+l,...,N), (2)

cP(r)=R"i(r) exp (-Zr/nao) l/m(e, cP), (3)

where R,,/ is the usual hydrogenic radial function. When we scale the Hamiltonian,
c1eady we obtain .

cPTJ(r)= R,,/(rT/) exp (-ZrT//nao) Ylm(e, cP) (4)

as thecorresponding small-r part of the eigenfunction of HTJ(r)=H(W).This
function can be rewritten

cPTJ= Rni{rT/)exp [-aexr cos (e)] exp [-iaex sin (e)r] Ylm(e, cP), (5)

where the real (ex)and imaginary [exp (ze)] parts of 71have be en introduced and
the factor Ha" incorporatesseveral constants. We see that scaling" notonly
changes the ra,dialsize of cP, but also introduces an oscillatory behavior. Such
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oscillations are difficult. to represent in a smalI set of Gaussian or Slater basis -
functions [8J such as are commonly used in ab initio quantum calculations. Since
the "a" in Eq. (5) is proportional to Z (and hence the electron number), this
problem is worse for many-electron systems. That is, proper treatment of rotated
"core" orbitals becomes maTe and maTe difficult as the nuelear charge increases.
Clearly such oscillatory -behavior which occurs in t/J..,is qualitatively different
tram the r dependence appearing in the unscaled wave function. Hence using
the usuaI (unscaled) Hartree-Fock orbitais {<pi(r)}as a basis to describe the
low-Iying core electrons

<P..,(r) = L Ci (77 ) <Pi(r),
i

(6)

in a CR calculation could introduce spurious variation of the energy expectation
value of t/J.., as 77 is varied. The rather smooth unscaled Hartree-Fock orbitals
simply cannot describe the highly oscillating rotated core part of t/J..,. As we
indicate below, this "core-electron problem" is very difficult to treat in conven-
tional quantum-chemistry methodology.

C. Attempts to Circumvent the Core-Electron Problem

From the above, it is elear that low-energy molecular orbitals pick up-the
most oscillatory behavior linder CR. The core electrons, on the other band, are
those expected to be the least important as far as the scattering physics giving
rise to the temporary anion is concerned (except for core-excited Auger re~on-
ances). One would therefore often like to treat tbe core as passively as possible.

, However, to keep the energy expectation valueJrom varying wildly (spuriously)
with 77,it appears that the core needs to be treated the best. There have rbeen
same attempts made to circumvent this core-electron problem, a rew of which
we naw mention. ) .

Rescigno, McCurdy, and OreI [8J have suggested that one employ antisym-
metrized (AN+l) (N + l)-electron basis functions {xi} in which the radial coordin-
ate of only one "active" orbital <Piis rotated .

A [010( ) -i8/2-1..(
-i8

)JXi = N+l '1'0 fI . . . rN e o/i re o (7)

In effect, the core electrons (orbitais) are simply not coordinate rotated. To then
form the complex matrix representative of the unscaled electronic Hamiltonian
(XdHIXj) would require calc;ulation of one- and two-electron integrals involving
the real basis functions appearing in t/Jo and the complex orbitals <pi(re-8i) for

. each value of the rotation angle (). To avoid this computational problem, they
further approximated H by its finite projection anto a set of real (N + 1)- electron
configurations {xk}so as to replace the above matrix elements by .

(XdHIXj) =L (xdxD(x~rIHlx;)(xllx).
k.l

(8)

As a re suit, they only need tó compute overlap integrals arising in (xdx~)as ()

varies. This final approximation to (XdHIXj) is then used as the rotated Hamil-
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tonian matrix from which bound, seattering, and resonance eigenvaIues are
obtained.

Junker and Huang (JH) [7] have introduced a similar idea for focusing on
one active orbital. They use a coordinate rotated Hamjltpnian operator HT/but
they append to their real atomic-orbitalbasis [froni\~hich (N + l)-electron .

configurations are eventualIy constructed] a rotated basis function whose radial
form invoIves exp (-yr e i9).The moIecuIar orbitals formed tram this augmented
atomie basis therefore contain some component (determined by the stationary
principie used by }H) of this "continuum" orbital. To form the Hamiltonian
matrix eIements needed to perform the JH calcuIations, one needs to compute
the one- and two-electron integrals over .the augmented basis as the rotation
angle e is varied. . .

Donnelly and Simons [9], Winkler and Yaris [9], and Mishra, Froelich, and
Ohm [9] have made use of the coordinate rotation method withinthe framework
of the one-electron Green's function (GF). This GF provides, through the order
in eIectron-eIectron interaction for which it is computed, the effective interaction
potential which the (N + l)st electron feeIs due to the N other eIectrons and
the atom's riucleus. By coordinate rotating this nonIocal one-eIectron effective
potential, the above workers are also able to concentrate on the active electron
and to sidestep the core-eIectron problem. "

Each of the methods mentioned above bas its own strengths and weaknesses.
It is not OUTpurpose here to critically evaluate each such method. Rather, we
are attempting to address onIy the straightforward impIementation of the CR
method at the (N + l)-eIectron IeveI in which the rotated Hamiltonian HT/ is
diagonalized within a basis of real (N + l)-eIectron configuration functions. As
we ghalI see later, the rather pessimistic outlook for straightforward CR calcuIa-
tions Iends support to the types of aItemative approaches outlined above. .

D. Thi Subtracted Core Technique

Whatis desired is a procedure which: (i) alIows one to treat the "core"
electrons passiveIy without compIeteIy excludingthem tram the calculations; (ii) .
does not require recalcuIating integrals and overIap matrices for every value of
1]; (iii) requires only minor modifications to existing quantum-chemistry com-
puter programs, and (iv) gives geod results for reasonabIe basis setsand within
commonly used treatment of electron correiation. It bas been suggested [8] that
full-CI calcuIations with Iarge basis sets wouId be necessary to adequateIy describe
the rotated ceres of many-eIectron atoms. Hence we P~Se the question: is it
possible to subtract o!! the (perhaps poorly described) effect of rotation on the
cere and thereby focus on the active orbital space onIy?

With this in mind, we naw consider what we refer. to as the "subtracted CR"
(SCR)method (the "intuitiveIy reasonabIe" modification referred to in Sec. 1).
Instead of Iooking for a criticaI value of e with a subsequently stationary
eigenvaIue of the (N + l)-eIectron Hamiltonian, we Iookfor criticaI behavior in
the energy difference ET/(N+1)~ET/(N). Here, ET/(N+1) and ET/(N) are the
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eigenvalues of thescaled (N + 1)- and scaled N-eiectron Hamiltonians, respec-
tively. In a complete basis, Br,(N) would be a real consiant (independent of 'l7)
equal to the N- electron ground-state energy of the bound target atom. Within
a finitebasis, it seems probabie that the cores of the (N + 1)- and (N)-electron
systemswould both pick up about the same amount ot "spurious" energy
variation as 'l7is varied. This assumption forms the basis of the SCRmethod. In
thjs paper we view the SCRas a.numerical experiment, without trying to give it
further theoretical justification. . .

In evaluating the OCR,SCR,or aDYother proposed technique, twa important
questions stm remain. The first deals with the choice of an atomic-orbital basis.
In this slody, for each test metastable anion, we used several basis setsof
increasing quality (i.e., including maTe closely spaced orbital exponents and/oT
a wideT range of exponents). These bases may be of "increasing quality" as far
as conv~ntional bound-state quantum-chemistrycalculations are concerned;
however, there is no a priori assurance that they are ot "increasing quality" for
describing metastable. states. AIso, sequenc,es of electronic configurations lists
(e.g., including higher single and double excitations) of ('increasing quality" were
explored~ We wanted to determine: does one get better answers with "better"

, basis sets and larger configurationlists?And if not, are the'answersat least
reasonably stable as the b.asis sets and configuration lists change? Thus OUTgoal
was to explore, as basis set quality and configuration lists quality vary, the
.performance of the OCRand SCRmethods.

3. Details of the Calculations

A Basis Sets

Our atomic-orbital l;lasissets were of "graduated quality," as indicated above,
with Gaussian functions used exc1usively. For He-, all the basis sets (I-IV) were
"formed using the procedures of Schmidt and Ruedenberg [10] (SR). The tour -
basis sets, (8s,4p), (10s,6p), (12s,4p), and (14s,5p), were constructed tram SRS
5s,6s,8s, and lOs formulas, respectively (SR did not give a 5s basis for He, so
basis I was chosen by extrapolation tram the parameters they did give). In the
method of SR, successive exponents Ck are generated tram the even-tempering
geometrie formula Ck=a{3k,where a and {3are constants and arelisted in Tables
I and II for He and H. Two additional points about OUTbasis sets should be
noted. First, in order to generate maTe diffuse basis functions, k was not restricted
to be positive (as it is in SR). Second, the He basis sets were all siipplemented .

with a contracted (6s/1s) He orbital taken tram Huzinaga [11]. The maTe diffuse
basis functions are iocluded because it is expected that the He-system should
have a more diffuse electron distribution than the He system (for whieh SR
optimized a and 13with k >0). The (6s/1s)"contracted function is included so
that all the basis sets treat the ground stale of He equally well (which the different
SB.bases alone do not achieve).

SR did not give p basis functions for He (or H) since no p functions are
involved in the sCFcalculations. In the 2S resonances under slody, the porbitais



a AUbasis sets were supplementedwith a (6s/1s) contracted basis function(see
text).

b Exponents (g) generated from formula, g = a{3k where k is an integer.
c kmin is the smallest integer k used in the formula in footnote b; kmaxis t.he

largest value.

are only involved in correlationeffects, hence the radial sizes of the p orbitals
should be comparable to thoseof the.s orbitais used. Thus, we constructed aur
p bases by choosing orbital exponents by the method of gR. These exponents
cover the same range for aH the Hebasis sets, and give p orbitals of about the
same radial extent as the low-Iying s orbitals.

. AH tour He basis sets described in Table I give reasonably geod ground-state
. and first-excitation energies for neutral He within a rUn-CI treatment, as shown

in Table III. The basis sets can be ranked as IV best, II and III not quite as
good, and I poorest. Note, however, that this ranking is based only on perform-
ance on neutral He; it says nothing about howwell the bases will do for He-
which is, of course, part of what we want to explore.

A different approach was used to construct the hydrogen atom basis sets.
Basis A (7s,2p) is Dunning's [12] (4s/3s) basis for hydrogen with tour diffuse
Gaussians added (foHowirig the method of gR). Basis B (10s,3p) is a Huzinaga
[11] (6s/1s) hydrogen orbital supplemented with Huzinaga's 2s and 4s hydrogen
basis functions (partially uncontracted, with theexponents scaled by a factor of
0.75),. plus se\Teral diffuse s functions (SR method). In basis C (12s,4p), the
(6sjls) function is supplem~nted with SRS8s hydrogen basis (using k = -A to

-+6). In basis D ~14s,4p),'sRs 10sbasis (k= -3 to +10)is used withouta (6s/1s)
s~pplemerit. The p-orbital expoilents used for bases A-D approximately span
the space covered by Huzinaga's Gaussian contractions for the hydrogen atom
2p Slater orbita!.
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TABLE L He basis set parameters.

Funct ion a
kb. kbBasis Type et Ba mln max

I S .066548 3.9750 -2 +4

p .055122 3.1748 +1 +4

II S .064848 3.5851 -3 +5

p .031250 2.0000 +1 +6

III S .061317 3.0693 -4 +6

p .055122 3.1748 +1 +4

IV S .057797 2.7551 -5 +7

p .055108 3.1750 O
..
+4
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TABLE II. Hydrogen basis set paiameters.

68 kb.m1n kb
max

."
Basis-.'<> -.. Function otype a8

" o, '#'0
SC oA

pC

B Sc,d

, ,o ~'Oo" 0,00-

.h'
"r

';ó' ,.

~o~>i:o ,>;:d'o~~~:E.' ;;

t o:- ~o o

1°:';,

."

, .;, .
- -
,- c Sd

'c,'t pC

D s

pe

13.3615
2.0133

.4536

.1233

.0400 .

.0130

.0034

.0010

.600

.150

4.69350
.58274
.48000
.23500
.1iooo
.04273
.01650

0.00700
.00300
.00100

.25624

.08282

.03120
1.07919

.01250

.030432

.020185

.055713

.174211

.733825
1.50000

.01000
.00333

.028905

.130844

.921539
1.00'
1.00
1.00
1.00
1.00
1.00

1.00
1.00

.00843
.05708

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

.06550

.27049

.52969
1.00
1.00

2.8437 -4 +6

.41444

.53150

.18295

.02639
1.00
1.00
1.00

2.58878 -3 +10

.See footnote b in Table I.
b See footnote c in Table I.

c Exponents (~) are not'of the form ~=a(3k and are listed explicitly.Column 03lists
the exponents and column 4 lists the contraction coefficients, e.g., the fi.rst s function in
basis Ais 0.130844 exp (-13.3615 ,2)+0.921539 exp (-2.0133 ,2), unnormalized.

d A (6s/1s) basis function is also included, see Sec. 3A.
e Same p basis as in basis C

-
The variation in the hydrogen basis sets is less systematic than in the He

basis sets. Basis A is a "standard quantum-chemistry" basis with same allowance
marle for the more o diffusenature of H-. It is included mainly to see whether a
poor basis give,spoor resu1ts. Bases C and D are of similar quality, but of course
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TABLE III. Calculated energies for He atom in basis sets I-IV.

Basis SCF energy FulI CI energy Fu11 CI 1st subt ract ion CI 1st
excltation energya excitation energyb

.This column is the energy difference of the first twa eigenvalues of the fuli-cI secular
problem. c,

b Energy difference of the first two roots of the two-electron secu!ar problem used in the
SCR method, Le., E".l (N =2). (See the second paragraph of Set. 2D.)

c As noted in the text, several Cllists were used for same of the baSis sets.

have no actual exponents in common; should theygive.;very different results,
that would indicatethat these CR methods are susceptible to "basis set artifact"
behavior. Basis set B's relative quality is uncertairi; this'basis was constructed
during early investigations into what constitutes a "good"basis. TablelI s1inunar~
izes these basis sets, and Table IV gives the neutral H atom SCF andfull-CI
energies for these four basis sets.

o'

B. Orthonormai Orbitalsand Configuration Lists in' the CI Calcu/ations

Forthe hydrogen ion resonance, all calculations were dane .at the fulI-CI
level, hence the choice of the orthonorma1 molecularprbitals is arbitrary. For

.Energies for the first (SCF), second, third,and fourth eigenvalues of the fuli-cI
secular problem in the various basis sets.

-2.764291 au -2.899518 au 165,580 cm-l
-1 CI list (OcI 162,030 cm

162,730 CI list (U)
162,740 CI list{Ui)

II -2.861150 -2.899754 165,780 ' 160,310 CI 'list (i)
160,852 CI list (U)

III -2.861151 -2.899793 165,700 161;320

IV -2.861208 -2.899873 165,530 19°,237
"",

"exact"
-2.904 6 166,530 17
(Pekeris 1 ) (experiment)

TABLE IV. CalculatedenergiesforH atom basis sets A -D Fuli CI Excitation Energies'

Basis ESCF 2nd root 3rd root 4th root

A -.499339 au -.124814 au -.054566 au '".028381 au

B -.499943 -0124981 -.055543 -.031124

C -.499943 -.124974 -.055360 -.030550

D -.499996 -.124994 -.055483 -.030916
" ,.,'

exact -.500000 -.125000 -.055556 -.031250
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He-, to obtain a reasonable set of molecular orbitals we performed a six-
configuration MCSCF(152,1525,252, 2p;, 2p;, 2p~) calculation on neutral He,
optimizing the energy for the first excited staLe. The. rationale for this step is
that the metastable Feshbach staLe of 2S He-is approximately described as a
1525 He atom plus the "ineoming electron" occupying another (fairly diffuse)
5 orbital. Hence, if aur orbitais are appropriate to a 1525 Hefirst-excited staLe,
then the higher 5 orbitals can be 1ised to describe the third electron. The other
tour configurations in the MCSCFwave function were included to give the most
important correlation effects, as well as to improve the lowest p orbital of each
symmetry (which otherwise would have been a Hartree-Fock virtual orbital).

As mentioned above, full-CI calculations were dane for hydrogen (H and
H-), thereby "decoupling" the CI effect tram the basis set effect. For He and
He-, aur general philosophy was to allowsingle and double excitations tram
the 152 core into a smaU subset of orbitals (including same p orbitals), and only
single excitations into higher 5 orbitals. The low-Iying single and douDle excita-
tions relax and correlate the target atom electrons to the incoming electron.
Linear combinations of the higher single excitations can simulate the oscillatory
behavior of a cont.inuum electron.' , .',

C Re50nance Search'Procedure

Briefly, the resonance search method used in aur caIculation caDbe described
as follows. First, we calculate the kineticenergy, the nuclear attraction, and the
electron repulsion contributions to the unscaled CI (N + 1)- and N-electron
Hamiltonian matrices:'Then, for every desired value of Tj,these three contribu-
tions are scaled by Tj-2, Tj-t, and Tj-t, respectively, and summed. The resulting
scaled CI Hamiltonian matrices are diagonalized by the EISPAC [13] routines

, for complex general matrices (modified for DEC-20 double precision complex
arithmetic by Dr. N. H. F. Beebe). Another vahie of Tjis chosen, and the process
is repeated. Since Tjcoritains twa parameters, a and () one might search exten-
sively before finding the proper a and tl1ecritical value of () [typically, critical
() behavior is only observed for a narrow range of a, since varyinga makes the
whole basis more or less diffuse until the basis is optimal for the problem-see
Eq. (5)].A procedurethat we havefoundto warkquitewenisto set () to zero
and vary a (this corresponds to doing what Taylor and co-workers have called
a stabiIization caIculation [14]). At values of a which give rise to avoided
crossings in graphs of the CI energies versus a EgeeFig. 2(a)], wetheQ. vary ()
and look for "critical-()" behavior (this is sometimes referred to in the literature
as "computing () trajectories"). ODce areasonable step size for (Jvariation bas
been determined, we compute several () trajectories for c1osely spaced values
of a. An especially favorable case is shown in Figure 2(b); a less favorable
(perhaps more typical) case is shown in Figure 2(c). '

4. Resu1ts

As noted in Sec. 3B, more than one configuration list was frequently used
for a given basis set; furthermore, twa resonance search techniques (OCRand



-0,0

-0,1

-; -0.2ci

0 -0,3
OC
w
Z
W -004

-0.5

-0.6
0.6 1,2

a
(a)

"" -2,/647"
"-2.1651 -2.1644

~ -0.0012~

(b)

lA 1.6

-2.1631 -2.1625

-2,163 -2,162

ENERGY

Figure 2. (a) Stabilization grap h for H- resonance. (b) He- e trajectories. Energies
, are iiia.u: (c),H- e trajectories. Energies are in a.u.

1733

1.8



1734

0.000

.00066

~0.001

>-
~ -0.002
LU
z
LU

Co?

~ -0.003

-0.004

-0.005
-0.155

'~
,"-

CHUUIAN _AND SIMONS

-,14811 ~,;"

9.577 eV-

Ii2 =.018eV

L.- '-"

-0.149 -0.146

REAL ENERGY

(e)

Figure 2. (Continued [rom the previous page.)

-0.152 ""'0.143 -0.140

SCR)were employed. As a result, so many8 trajectories were generatea that it
- would be inipractical to show alI such graphs. Instead, therelevant CI energies

were extracted fl:°m the graphs and are summarizedin Tables V (for He) and
VI (for H). For-t}),eH- resonance calculations, all 8 trajectories gave good critical
8 behavior (see Sec; 3e). The He - results were much less consistent; some were
"good" [Le., as in Fig. 2(b)], some :'fair" [Fig. 2(c)], some "poor" (so ,thatno
reliable estimate for the width could be obtained), and a lew were "very poor"
(reauiring a certain amount of imaginatioJl in order to obtain even an estiinate
for the position of the resonance). These subjective graph quality ratirigs are
incIuded in Tables V and VI in the columnslabeled "quality." -"

Turning to the He- calculations, we note the folIowing from T-able V:-(i) the
generally low "quality" of the 8- traj~ctories; (ii) the lack of aRYobvious relation-
ship of the OCRresults to the SCRresults; (Hi)the rather major variations in the
predicted position of th~ resonance as the CI list is varied in basis sets I and II; -

(iv) the SCRresults seem to be even worse than the OCR results, and (v) basis
sets II and III do not give very similar results even though they are of "comparable
quality" in the conventional quantum-chemistry sense discussed earlier.
. In summ ary, both the OCRand SCRteclmiques seem to give results for He-

that vary considerably with the details (basis set, CI list) of the calculation. The
currendy accepted position andwidth of the He - resonance are about 19.4 eV
and 10-20 meV, respectively [7]. OUT failure to obtain a reasonably '~table
estimate of the width may be due to its smalI magnitude (probably zero to the
accuracy of the numbers in Table V). Our "best" basis (set IV) does -indeed give
a (>osition,estimate of 19.34 eV. However, owing to the low quality ofits8

i



Basis/configur-
ation list

l/i

l/ii

l/iii

1I/i

II/ii

III

IV

a NE indicates thatno reasonable estimate could be marle because ot thepoor
qualityot iftrajectories. -

b Results enclosed in square brackets feler to those obtained using the SCR
method. Others were obtained via the OCR technique.
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-..trajectory~we think itJikely that such agreement is merely fortuitous rather than
the result of aDYbasis set convergence. -" .

. .The ll- resonance re~ults shown in Table VI illustrate the folIowing: (i) all
. O trajectories give good critica1-0 b~havior, allowing estimates of both the

. position- and width of the resonance; (ii) basis set A (the poorest basis) gives -
the 'wors! answers; (iii) SCRgives results very comparable to OCR; (iv) in basis
sets C and D maTe than one a" O combination gave rise'to good critical O
behavior, and (v) the two"comparable quality" basis sets (C and D) do indeed
give fairly close answers. The "correct answer" is about 9.56 eV for the position
and 0.05 eV for the width [3]. Considering the modest extent of these calculations,
it seems fair to say that basis set A is the only one that fails to give a reasonable
estimate for the complex energy of the resonance. -

In addition to the above discussed H- and He - Feshbach resonance ca1cula-

tions, pilot calculations were performed for the 2P shape resonances' in Be - IBe
and Mg:OIMg. These species are expected' to display mOle substantial core-
electron problems than arose in H- and He-. The atomie-orbit al basis used for
Be was ot (Ss,7p) quality and twa different configuration lists were explored.
For Be, only the SCR techniques give aDYreasonable critical-O behavior (the'
OCR method developed spurious energy variations of the order ol 1 Hartree).

COORDINATE ROTATlON STUDIES

TABLE V. Resonance energies tor He-.

Position Half Width (f/2) Quality

20.05 eV NEa poor

[19.65]b [NE] [poor]
-\. 19.75 NE poor

19.73 NE very poor

19.29 .013 eV good

[19.38] {NE] [poor]

19.38 .014 fair

[19.4] [NE] [very poor]

19.46 .028 good

[19.51J [NE] [poor]

19.34 NE very poor

[19.22J [.003] -[fairJ



a Results enclosed in square brackets.refer to those obtained using the SCR
methods. Others we re obtained via the OCR technique.

The Be basis used was identical tothat employed earlier in Donnelly and Simons'
. CR Green function studyof the 2P resonance of Be - [9]. We used iwo different
configuration lists for Be and obtained iwo substantially different resonance
energy. estimates:Er=0.18eV, f/2=0;l1eV and Er=0.051eV, f/2=
0.014 eV. Although there is no experimental value and no generally accepted
theoretical estimate for the energy of ibis resonance, the great variations in Er
and f which we observe are discouraging. Interestingly, "good" quality critical-6
behavior was obtained for both of the CI configuration lists, which leads us to
wonder whether the quality of the 6 trajectories correlates at all with the accuracy
of the ca1culations. - .

For Mg- /Mg, also a 2p shape resonance, we used the samebasis which
Donnelly recently used.in hissuccessful CR Green's function study [15]. With
ibis basis, we we re unable to achieve' a reasonable stabilization calculation to
obtain an estimate for the optimal a; no avoided c!,ossing behavior was noted,
and when triaIoCR ca1culations were performed, spurious imaginary contribu-
tions to the energy of the order of 20 Hartrees arose. It was elear that wecould
attach no meaningto the results of such calyulations;-
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T ABLE VI. Resonance energies for H-.

Basis Position Half Width (r /2) Quality.".,

A 10.17 eV .0052 eV geod

[10.16]a [.0095J [goodJ

B 9.578 .056 geod

[9.576] [.056J [good]

C

a = .70 9.577 .018 geod

[9.577] [.018] [goodJ

a = 1. 14 9.584 .033 geod

[9.584] [.033J [good]

D

a = .73 9.581 .024 geod

[9.578] [.027] [good]

a = 1. 22 9.588 .033 geod

[9.585] [.035] {geod J
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The above results illustrate that it is very difficult tochoose an atomic-
orbital basis set for use in coordinate rotated CI calculations. Frankly, we were
rather surprised that even reasonably large standard quantum-chemistry bases
(supplemented by diffuse functions) did not yield reliably slabie resonance-
energies.

S. Discussion '

Based upon aur H- /H results alone, our conc1usions walid be quite optimis-
lic. Very cost-effective calculations (which could be made even less expensive
by use of an inverse-iteration eigenvalue extraction technique) yielded fairly
consistent, geod quality results via both OCR and SCR, using easily constructed
basis sets.

However, the He-, Be-, and Mg- results are verypessimistic indeed.While
the OCR results' seem to "bracket" the correct result for He-, no systematic
basis.:set convergence is observed. Furthermore, the cost of the He - calculations
was not so minor; typically adozen li-trajectories and twa or three stabilizatiori
calcu1ations (with perhaps 20 points per trajectory) were involved. A complex
inverse..iteration routine could not cut down the number of points involved, and .

might welllead one to miss extracting the proper root of the CI secular problem.
For Be-, the problem was even warge; about 30 () trajectories at various a
values were needed before critical-() behavior was even observed. We were

, totally unsuccessfulin findingcritical-() behavior in the Mg-problem. In sum-
mary, it appears that OCR and SCR cannot be straightforwardly app~ed using
conventional basis sets and electronic configuration lists. Il also appears that
SCR does not haveany advantagesaver ,OCR.If SCR-is Worse than .OCRfor a
two-electron problem, it is unlikely that it bas anythingto offer for larger systems.
We therefore consider aur grudy of SCR to be an unsuccessful' numerical
expenment. "

The OCRmethod itself appears to have bleak prospects for successful useon
even moderately large systems; the spurious (core) energy variatioris with'l7 are
so large that they obscure aDYstationary behavior in the () trajectories. Hence
we think it wise to look with caution at results, for many-electron targets, of
aDYcalculations based on techniques resembling OCR or SCR.The extension of
either OCRor SCRto larger systems should be dane in conjunction with careful
basis set and CI list variation studies. .

The results presented here provide, in aur opinion, strong motivation to
proceed toward developing well-founded and computationally tractable methods
which perinitone to apply coordinate rotation to orny the one active electron.
As mentioned earlier, other workers have indeed made some progress along
these lines. A great deal of formal and computational wark remains to be dane
before it becomes elear which implementation of CR theory is optima!. Clearly,
even within the approaches mentioned in Sec. 2C, atomic-orbital basis-set
dependence must be carefully considered. However, it is hoped that, by formally
removing the inner (core) orbitals tram direct consideration in the CR process,



~
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one can avoid the need for large "tight" basis sets whose purpose is to describe
these rotated core orbitais. .

."v

Acknowledgments

This wark was pariially supported by the Nationa1 Science Foundation
through grant No. 7906645 and through their support of the Utah DEC-2060
computer facility. The authors also wish to aClcnowledge support from the donors
of the Petroleum Research Fund administered by the American Chemical- Society
(grant No. 12720 AC-6). '

Bibliography

-[1] N. Moiseyev and C. Corcoran, Phys. Rev. A 20, 814 (1979); W. P. Reinhardt, !nt. J. Quantum
Chem.; Quantum Chem. Syrop. lO, 359 (1976);C. W. McCurdy, T. N. Rescigno, E. R.
Davidson, and J. G. Laudeida1e, J. Chem. Phys. 73, 3268 (1980); C. W. McCurdy, Phys. Rev.-
A 21, 464 (1980); R. A. Donnelly and J. Simons, J. Chem. Phys. 73, 2858 (1980); and Refs.
3, 6, and 8.. . -c

[2] C. W. McCurdy, T. N. Rescigno, E. R. Davidson, and J. G. Lauderdale, J. Chero. Phys. 73,
3268 (1980); R. A. Donnelly and J. Simons, ibid. 73; 2858 (1980); and Ref: 8.

[3] See, for example, R. A. Bain, J. N. Bardsley, B. R. Junker, and C. V. Sukumar, J. Phys. B 7,
2189 (1974) and refere~ces iJl..Ref, 7. ' ..

[4] E. BalslevandJ. M. Combes, Commun.Math. Phys:ZZ, 280 (1971); B. Simon, ibid.27,1 (1972).
[5] B. Simon, Ann. Math. 97, 247 (1973); W. P. Reinhardt, Ann. Rev. Phys. Chem. 33, 223

(1982); N. Moiseyev, P. R. Certain, and F. Weinhold, Mol. Phys. 36, 1613 (1978).
(6] For example, G. D. Doolen, J. Phys. B 8,525 (1975); Y. K. Ho, Phys. Rev. A 17,1675 (1978);

G. Doolen and S. B. Raju, ibid. 9; 1965 (1974); G; Doolen,J. Nuttall, and R. Stagat, ibid. .-
10, 1612 (1974). . .

[7] B. R. Junker and C. L. Huang, Phys. Rev. A 18, 313 (1978).
[8] T. N. Rescigno, C. W. McCurdy, and A. E. Orel, Phys. Rev. A 17,1931 (1978).
[9] R. A. Donnelly and J. Simons, J. Chero. Phys. 73, 2858 (1980); P. Winkler and R. Yaris, Z.

Phys. A 291, 99 (1979); M. Mishra, P. Froelich, and Y. Ohm, Phys. Lett. A84, 4 (1981).
[10] M. W. Schmidt and K. Ruedenberg, J. Chero. Phys. 71, 3951 (1979).
[11] S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
[12] T. H. Dunning, J. Chero. Phys. 53, 2823 (1970).
[13] EISPAC reference. "

[14] A. Hazi and H. S. Taylor, Phys. Rev. A l, 1109 (1970).
[15] R. A. Donnelly,J. Chero. Phys.76, 5414 (1982). .
[16] K. Frankowskiand C. L. Pekeris, Phys. Rev. 146, 46 (1966).
[17] Atomie Energy Levels, C. E. Moore, Ed. (Nationa1Bureau of Standards, Washington D.C.,

1971),Vol. 1. .

ReceivedMay 3, 1982
Accepted for publication S~ptember 23, 1982

.."


