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Abstract

We have performed coordinate rotated configuration interaction calculations on well-studied
Feshbach resonances of H™ and He™ and on 2P shape resonances of Be~ and Mg~. The focus of
our efforts was the dependence of computed resonance energies on both the quality of the atomic-
orbital basis and the level of treatment of electron correlation. Our results indicate that great care
must be taken to guarantee that a basis is adequate; commonly used quantum-chemistry bases are
probably far from satisfactory. Our findings also indicate that a proper treatment of inner-shell
orbitals within coordinate rotation calculations is a formidable task. We are therefore encouraged
to look carefully for modified coordinate rotation techniques that focus on the active valence-level
orbitals and may avoid spurious complex energies arising from improper treatment of inner shells.

1. Introduction

In recent years, the complex-scaled Hamiltonian (sometimes called “‘coordin-
ate rotation” or CrR) method has become accepted as a useful tool for the study
of metastable states of atomic and molecular systems [1]. Many studies have
involved electron-atom scattering systems, with one- or two-electron target
atoms. Many-electron targets present no formal difficulties; computationally,
. however, they are formidable problems for which several modified Cr procedures
have been proposed [2,3]. Most of these new procedures involve assumptions
above and beyond those contained in the originally proposed complex scaling
procedure.

The purpose of this paper is to re-explore the CR method in two variations:
as originally proposed and using an intuitively reasonable modification introduced
here. We desire to see if application of these methods to small test systems
[using standard quantum-chemistry basis sets within small configuration interac-
tion (cr) calculations] gives reasonably accurate results. Our test systems are the
28 resonances of H™ (near 9.56 eV) and He™ (near 19.4 eV). These resonances
have been studied by other researchers using a variety of methods (including
CR and experiment), so the correct resonance energies are well known [3].

- Section 2 gives a brief overview of the CrR method, and defines the “original
CR” (OCR) method as well as a new variation whose use we explored on H,
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He™, and on many-electron cases Be™ and Mg . Section 3 gives the details of
our calculations, including basis sets, orbitals, and configuration lists. Section 4
gives the results we obtained for our test problems and in Sec. 5 we discuss the
outlook for the methods of this paper.

2. Survey of the crR Method
A. Overview of Basic Coordinate Rotation Theory

The original papers on the method of complex scaling of the Hamiltonian
are due to Aguilar, Balslev, Combes, and Simon [4]. More pedestrian summaries
of the technique have been given by several authors [5]. The following is a
survey of the results of the original theorems. Since molecular systems introduce
new formal and practical complications, the development below is restricted to
atomic targets. The method outlined below, which we refer to as the ocr method,
has been used previously by other workers [6]. Whether or not it is the most
appropriate CR technique is part of what this research attempts to answer.
Certainly it is one of the most straightforward ways to implement CR. -

In the OCR method, one begins by taking an atomic Hamiltonian,

__ly2 v2,1 1
i Z)I:‘V‘f >}:rj+2,-§k|r,-—rk|

=T+V=T(1)+V(l), _ 1)

and scaling the lengths of the coordinates of all the electrons by an arbitrary
complex parameter, 1 =a exp(i#). Since the kinetic energy T and Coulombic
potential energy V scale analytically with 7, the effect of the scaling is to form
T(n)=T(1)/n* and V(n)=V(1)/n. (n=1 corresponds to the unscaled situ-
ation.) The spectrum of this scaled Hamiltonian, H(n), is related to the spectrum
of H(1) as follows.

Any bound-state energies of the spectrum of the anion system are invariant
to the choice of n provided @ is less than /2. From each target atom (the
system with one fewer electron) bound-state threshold (i.e., E = —0.500, —0.125,
—0.05556 a.u., etc., for an H atom), there is a continuous set of scatfering-state
energies lying on the ray emanating from that threshold and making an angle
of —28 with respect to the real axis (see Fig. 1). Finally, any metastable state of
the anion system [corresponding to a complex energy, with the imaginary part
of the energy being related to the width (T') of the resonance] behaves like a
scattering state, until 26 is large enough so that the ray from the proper threshold
of the target “‘uncovers’ the resonance (see Fig. 1). For 6 larger than this “critical
8, resonances behave like bound states in that their energies remain unchanged
as @ further varies (unless 6 gets foo large; then the resonance is “‘covered up”
again by the ray of scattering states emanating from the next higher threshold).
The eigenfunction corresponding to this resonance is square integrable for
6 > 6., and, as such, can be described by a square integrable (L?) basis set.
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Figure 1. Variation of bound (a), continuum (rays), and resonance (c) state energies
with rotation angle 6. Points (b) label target thresholds.

B. Nonideal Behavior—The Core-Electron Problem

In any finite basis the behavior described in the above paragraph is only
approximated. In particular, bound-state energies are not totally invariant with
respect to 7, scattering states do not lie exactly on rays emanating from the
target thresholds, and resonances do not show perfect ‘““critical §°” behavior.

The source of part of this nonideal behavior can be seen by noting that,
according to the CR theorems, the energies of bound states are invariant with
respect to the state parameter, but the wave functions themselves are not. This
has been explicitly‘demonstrated by Junker and Huang for hydrogenic atoms,
for which the CR results can be obtained in closed form [7]. The energy levels
are still —Z?/(2n?), but the wave functions are the hydrogenic wave functions
but with r replaced by rn. For any atom, the small-; dependence of the Hamil-
‘tonian is dominated by the terms —3V3—Z/r. Hence if we write the small-,
behavior of the N-electron wave function as an antisymmetrized (An) product
involving an r;-dependent term ¢ and the remaining part x

"f)(f'l""i"‘fN)EAN{GHTi)X(f‘x)] (x=1’29°'°3£_1)£+1)"'$N)’ (2)
then for small r,
& (r) = R.(r) exp (=Zr/nao) Yin(6, ¢), (3)

where R, is the usual hydrogenic radial function. When we scale the Hamiltonian,
clearly we obtain

én(r) =R, (rn) exp (—Zrm/nao) Yim (6, @) 4)

as the corresponding small-r part of the eigenfunction of H,(r) = H (nr). This
function can be rewritten

¢, =R.i(rn) exp [—aar cos (8)] exp [—iaa sin (6)r] Yinm(6, @), (5)

where the real (a) and imaginary [exp (i8)] parts of n have been introduced and
the factor “a” incorporates several constants. We see that scaling not only
changes the radial size of ¢, but also introduces an oscillatory behavior. Such
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oscillations are difficult to represent in a small set of Gaussian or Slater basis
functions [8] such as are commonly used in ab initio quantum calculations. Since
the “a” in Eq. (§) is proportional to Z (and hence the electron number), this
problem is worse for many-electron systems. That is, proper treatment of rotated
“core”’ orbitals becomes more and more difficult as the nuclear charge increases.
Clearly such oscillatory behavior which occurs in ¢, is qualitatively different
from the r dependence appearing in the unscaled wave function. Hence using
the usual (unscaled) Hartree-Fock orbitals {¢;(r)} as a basis to describe the
low-lying core electrons

SN = Cm) (1), e

in a cr calculation could introduce spurious variation of the energy expectation
value of ¢, as n is varied. The rather smooth unscaled Hartree—Fock orbitals
simply cannot describe the highly oscillating rotated core part of ¢, As we
indicate below, this “core-electron problem” is very difficult to treat in conven-
tional quantum-chemistry methodology.

C. Attempts to Circumvent the Core-Electron Problem

From the above, it is clear that low-energy molecular orbitals pick up the
most oscillatory behavior under cr. The core electrons, on the other hand, are
those expected to be the least important as far as the scattering physics giving
rise to the temporary anion is concerned (except for core-excited Auger reson-
ances). One would therefore often like to treat the core as passively as possible.
However, to keep the energy expectation value from varying wildly (spuriously)
with 7, it appears that the core needs to be treated the best. There have been
some attempts made to circumvent this oore-electron problem, a few of which
we now mention.

Rescigno, McCurdy, and Orel [8] have suggested that one employ antisym-
metrized (An+1) (N + 1)-electron basis functions {x;} in Wh]Ch the radial coordin-
ate of only one ‘‘active” orbital ¢; is rotated

Xi =AN+1[‘.‘('0(1'1 Fihs e !’N) e-iean!;(?’ e_ie)]. (7)

In effect, the core electrons (orbitals) are simply not coordinate rotated. To then
form the complex matrix representative of the unscaled electronic Hamiltonian
(x:|H|x;) would require calculation of one- and two-electron integrals mvolvmg
the real basis functions appearing in ¥, and the complex orbitals ¢;(re %) for
‘each value of the rotation angle 6. To avoid this computational problem, they
further approximated H by its finite projection onto a set of real (N + 1)-electron
configurations {x} so as to replace the above matrix elements by

CulH oY=, Gl e [ X e @

As a result, they only need to compute overlap integrals arising in {x:|x %) as 8
varies. This final approximation to (x;|Hl|y;) is then used as the rotated Hamil-
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tonian matrix from which bound, scattering, and resonance eigenvalues are
obtained.

Junker and Huang (7H) [7] have introduced a similar idea for focusing on
one active orbital. They use a coordinate rotated Hamiltonian operator H,, but
they append to their real atomic-orbital basis [from which (N +1)-electron
configurations are eventually constructed] a rotated basis function whose radial
form involves exp (—yr e'?). The molecular orbitals formed from this augmented
atomic basis therefore contain some component (determined by the stationary
principle used by yH) of this “continuum” orbital. To form the Hamiltonian
matrix elements needed to perform the JH calculations, one needs to compute
the one- and two-electron integrals over the augmented basis as the rotation
angle @ is varied. '

Donnelly and Simons [9], Winkler and Yaris [9], and Mishra, Froelich, and
Ohrn [9] have made use of the coordinate rotation method within the framework
of the one-electron Green’s function (Gr). This GF provides, through the order
in electron—electron interaction for which it is computed, the effective interaction
potential which the (N +1)st electron feels due to the N other electrons and
the atom’s nucleus. By coordinate rotating this nonlocal one-electron effective
potential, the above workers are also able to concentrate on the active electron
and to sidestep the core-electron problem.

Each of the methods mentioned above has its own strengths and weaknesses.
It is not our purpose here to critically evaluate each such method. Rather, we
are attempting to address only the straightforward implementation of the Cr
method at the (N +1)-electron level in which the rotated Hamiltonian H,, is
diagonalized within a basis of real (N +1)-electron configuration functions. As
we shall see later, the rather pessimistic outlook for straightforward cr calcula-
tions lends support to the types of alternative approaches outlined above.

D. Thg Subtracted Core Technique

What is desired is a procedure which: (i) allows one to treat the “core”
electrons passively without completely excluding them from the calculations; (ii)
does not require recalculating integrals and overlap matrices for every value of
7n; (iii) requires only minor modifications to existing quantum-chemistry com-
puter programs, and (iv) gives good results for reasonable basis sets and within
commonly used treatment of electron correlation. It has been suggested [8] that
full-c1 calculations with large basis sets would be necessary to adequately describe
the rotated cores of many-electron atoms. Hence we pose the question: is it
possible to subtract off the (perhaps poorly described) effect of rotation on the
core and thereby focus on the active orbital space only?

With this in mind, we now consider what we refer to as the ‘“subtracted cr”
(scr) method (the “intuitively reasonable” modification referred to in Sec. 1).
Instead of looking for a critical value of # with a subsequently stationary
eigenvalue of the (N +1)-electron Hamiltonian, we look for critical behavior in
the energy difference E, (N +1)-E,(N). Here, E,,(N +1) and E, (N) are the
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eigenvalues of the scaled (N +1)- and scaled N-electron Hamiltonians, respec-
tively. In a complete basis, E,, (N) would be a real constant (independent of 7)
equal to the N-electron ground-state energy of the bound target atom. Within
a finite basis, it seems probable that the cores of the (N +1)- and (N)-electron
systems would both pick up about the same amount of “spurious” energy
variation as n is varied. This assumption forms the basis of the scrR method. In
this paper we view the SCR as a numerical experiment, without trymg to give it
further theoretical justification.

In evaluating the OCR, SCR, or any other proposed technique, two important
questions still remain. The first deals with the choice of an atomic-orbital basis.
In this study, for each test metastable anion, we used several basis sets of
increasing quality (i.e., including more closely spaced orbital exponents and/or
a wider range of exponents). These bases may be of “increasing quality” as far
as conventional bound-state quantum-chemistry calculations are concerned;
however, there is no a priori assurance that they are of “increasing quality’’ for
describing metastable- states. Also, sequences of electronic configurations lists
(e.g., including higher single and double excitations) of “increasing quality” were
explored. We wanted to determine: does one get better answers with ‘“‘better”
basis sets and larger configuration lists? And if not, are the answers at least
reasonably stable as the basis sets and configuration lists change? Thus our goal
was to explore, as basis set quality and configuration lists quality vary, the
performance of the OCr and sCR methods.

3. Details of the Calculations
A. Basis Sets

Our atomic-orbital basis sets were of ‘‘graduated quality,” as indicated above,
with Gaussian functions used exclusively. For He, all the basis sets (I-IV) were
formed using the procedures of Schmidt and Ruedenberg [10] (sr). The four
basis sets, (8s,4p), (10s,6p), (12s,4p), and (145,5p), were constructed from SRs
55,65,8s, and 10s formulas, respectively (sr did not give a 5s basis for He, so
basis I was chosen by extrapolation from the parameters they did give). In the
method of SR, successive exponents {; are generated from the even-tempering
geometric formula ¢, = a8, where a and B are constants and are listed in Tables
I and II for He and H. Two additional points about our basis sets should be
noted. First, in order to generate more diffuse basis functions, k was not restricted
to be positive (as it is in SR). Second, the He basis sets were all supplemented
with a contracted (6s/1s) He orbital taken from Huzinaga [11]. The more diffuse
basis functions are included because it is expected that the He™ system should
have a more diffuse electron distribution than the He system (for which srR
optimized @ and B with k >0). The (6s/1s) contracted function is included so
that all the basis sets treat the ground state of He equally well (which the different
SR bases alone do not achieve).

sr did not give p basis functions for He (or H) since no p functions are
involved in the scF calculations. In the >S resonances under study, the p orbitals
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TABLE 1. He basis set parameters.

Basis ;;::tmn a® g? k:in k:ax
I s .066548 3.9750 -2 +4
P .055122 3.1748 +1 +h
94 s .064848 3.5851 _ -3 +5
P .031250 ©  2.0000 +1 +6
111 s .061317 3.0693 -4 +6
P .055122  3.1748 +1 +4
v s .057797 2.7551 -5 +7
P .055108 ©  3.1750 0 +

# All basis sets were supplemented with a (6s/1s) contracted basis function (see
text).

b Exponents (£) generated from formula, £ =aB* where k is an integer.

® kemin 15 the smallest integer k used in the formula in footnote b; kpyay is the
largest value.

are only involved in correlation effects, hence the radial sizes of the p orbitals
should be comparable to those of the s orbitals used. Thus, we constructed our
p bases by choosing orbital exponents by the method of sr. These exponents
cover the same range for all the He basis sets, and give p orbitals of about the
same radial extent as the low-lying s orbitals.

All four He basis sets described in Table I give reasonably good ground-state
and first-excitation energies for neutral He within a full-CI treatment, as shown
in Table III. The basis sets can be ranked as IV best, II and III not quite as
good, and I poorest. Note, however, that this ranking is based only on perform-
ance on neutral He; it says nothing about how well the bases will do for He™
which is, of course, part of what we want to explore.

A different approach was used to construct the hydrogen atom basis sets.
Basis A (7s,2p) is Dunning’s [12] (4s/3s) basis for hydrogen with four diffuse
Gaussians added (following the method of sr). Basis B (10s,3p) is a Huzinaga
[11] (6s/1s) hydrogen orbital supplemented with Huzinaga’s 2s and 4s hydrogen
basis functions (partially uncontracted, with the exponents scaled by a factor of
0.75), plus several diffuse s functions (SR method). In basis C (12s5,4p), the
. (6s/1s) function is supplemented with srs 8s hydrogen basis (using k =—4 to

. +6). In basis D (14s,4p), srs 10s basis (k = —3 to +10) is used without a (6s/1s)
supplement. The p-orbital exponents used for bases A-D approximately span
the space covered by Huzinaga’s Gaussian contractions for the hydrogen atom
2p Slater orbital.
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S - TaBLE II. Hydrogen basis set parameters.

: 2 a a b b
Basis Function type «a B kmin km“
A s¢ 13.3615 .130844

2.0133 .921539
4538 1.00
.1233 1.00
. 0400 1.00
.0130 % 00
L0034 1.00
.0010 1.00
p° .600 1.00
.150 1.00
) gc»d 4.69350 .00843
58274 .05708
.48000 1.00
.23500 1.00
.11000 1.00
04273 1.00
.01650 1.00
.00700 1.00
.00300 1.00
.00100 1.00
Pt .25624 .06550
.08282 .27049
.03120 .52969
1.07919 1.00
.01250 1.00
c gd T .030432 2.8437 -4 +6
Pt .020185 AYANA
.055713 .53150
174211 .18295
.733825 .02639
1.50000 1.00
.01000 1.00
.00333 1.00
D s .028905 2.58878 -3 +10
p®

* See footnote b in Table L.

b See footnote ¢ in Table L.

€ Exponents (£) are not of the form ¢ =aB* and are listed explicitly. Column 3 lists
the exponents and column 4 lists the contraction coefficients, e.g., the first s function in
basis A is 0.130844 exp (—13.3615 r%)+0.921539 exp (—2.0133 r?), unnormalized.

9 A (65s/1s) basis function is also included, see Sec. 3A.

© Same p basis as in basis C.

The variation in the hydrogen basis sets is less systematic than in the He
basis sets. Basis A is a “‘standard quantum-chemistry” basis with some allowance
made for the more diffuse nature of H™. It is included mainly to see whether a
poor basis gives poor results. Bases C and D are of similar quality, but of course
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TaBLE III. Calculated energies for He atom in basis sets I-I'V.

1731

Basis SCF energy

Full CI energy Full CI lst

excitation energya

subtraction CI lst

excitation energy

1 -2.764291 au  =2,899518 au

II ~-2.861150 -2.899754

111 -2.861151 -2.899793

1v -2.861208 -2.899873

"exact" =-2.904 16
(Pekeris®”)

165,580 cm *

165,780

165,700
165,530

166,530
(experiment

162,030 cm”

162,730
162,740

. 160,310
160,852

161,320

160,237

1?')

1

cI list ()¢
CI list (ii)
CI list(iii)

CI list (i)
CI 1list (ii)

*This column is the energy difference of the first two eigenvalues of the full-CI secular .

problem.

® Energy difference of the first two roots of the two-electron secular problem used in the
SCR method, i.e., E,.; (N =2). (See the second paragraph of Sec. 2D.)
© As noted in the text, several CI lists were used for some of the basis sets.

have no actual exponents in common; should they give very different results,
that would indicate that these CR methods are susceptible to “basis set artifact”
behavior. Basis set B’s relative quality is uncertain; this basis was constructed
during early investigations into what constitutes a “good’” basis. Table II summar-
izes these basis sets, and Table IV gives the neutral H atom SCF and full CI
energies for these four basis sets.

B. Orthonormal Orbitals and Configuration Lists in the CI Calculations

For the hydrogen ion resonance, all calculations were done at the full-cr
level, hence the choice of the orthonormal molecular orbitals is arbitrary. For

TaBLEIV. Calculated energies for H atom basis sets A—D Full c1 Excitation Energies®

Basis

Eger 2nd root 3rd root 4th root
A -.499339 au -.124814 au -.054566 au -.028381 au
B -.499943 -.124981 -.055543 -.031124
c =.499943 -.124974 -.055360 -.030550
D -.499996 -.12&59& -.055483 -.030916
exact ~-. 500000 -.125000 -.055556 -.031250

® Energies for the first (SCF), second, third, and fourth eigenvalues of the full-c1
secular problem in the various basis sets. A
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He™, to obtain a reasorlable set of molecular orbitals we performed a six-
configuration MCSCF (152, 1525, 25 2p,, 2p,,, 2pz) calculation on neutral He,
optimizing the energy for the first excited state. The rationale for this step is
that the metastable Feshbach state of S He™ is approximately described as a
152s He atom plus the “incoming electron” occupying another (fairly diffuse)
s orbital. Hence, if our orbitals are appropriate to a 1s2s He first-excited state,
then the higher s orbitals can be used to describe the third electron. The other
four configurations in the MCsCF wave function were included to give the most
important correlation effects, as well as to improve the lowest p orbital of each
symmetry (which otherwise would have been a Hartree-Fock virtual orbital).

As mentioned above, full-c1 calculations were done for hydrogen (H and
H"), thereby ‘“‘decoupling” the c1 effect from the basis set effect. For He and
He™, our general philosophy was to allow single and double excitations from
the 1s? core into a smalt subset of orbitals (including some p orbitals), and only
single excitations into higher s orbitals. The low-lying single and double excita-
tions relax and correlate the target atom electrons to the incoming electron.
Linear combinations of the higher single excitations can simulate the oscillatory
behavior of a continuum electron.

C. Resonance Search Procedure

Briefly, the resonance search method used in our calculation can be described
as follows. First, we calculate the kinetic energy, the nuclear attraction, and the
electron repulsion contributions to the unscaled c1 (N +1)- and N-electron
Hamiltonian matrices. Then, for every desired value of 7, these three contribu-
tions are scaled by n 2, 7', and 17, respectively, and summed. The resulting
scaled c1 Hamiltonian matrices are diagonalized by the EISPAC [13] routines

- for complex general matrices (modified for DEC-20 double precision complex
arithmetic by Dr. N. H. F. Beebe). Another value of i is chosen, and the process
is repeated. Since 1 contains two parameters, a and # one might search exten-
sively before finding the proper a and the critical value of @ [typically, critical
@ behavior is only observed for a narrow range of «, since varying « makes the
whole basis more or less diffuse until the basis is optimal for the problem—see
Eq. (5)]. A procedure that we have found to work quite well is to set 8 to zero
and vary « (this corresponds to doing what Taylor and co-workers have called
a stabilization calculation [14]). At values of @ which give rise to avoided
crossings in graphs of the CI energies versus a [see Fig. 2(a)], we then vary 6
and look for “‘critical-8" behavior (this is sometimes referred to in the literature
as “‘computing @ trajectories’). Once a reasonable step size for @ variation has
been determined, we compute several 8 trajectories for closely spaced values
of a. An especially favorable case is shown in Figure 2(b); a less favorable
(perhaps more typical) case is shown in Figure 2(c).

4. Results

As noted in Sec. 3B, more than one configuration list was frequently used
for a given basis set; furthermore, two resonance search techniques (OCr and
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REAL ENERGY

(b)

Figure 2. (a) Stabilization graph for H™ resonance. (b) He™ 4 trajectories. Energies
are in a.u. (c) H™ @ trajectories. Energies are in a.u.
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Figure 2. (Continued from the previous page.)

sCr) were employed. As a result, so many 8 trajectories were generated that it
would be impractical to show all such graphs. Instead, the relevant C1 energies
were extracted from the graphs and are summarized in Tables V (for He) and
VI (for H). For the H™ resonance calculations, all 8 trajectories gave good critical
6 behavior (see Sec. 3C). The He™ results were much less consistent; some were
“good” [i.e., as in Fig. 2(b)], some “‘fair” [Fig. 2(c)], some “poor” (so that no
reliable estimate for the width could be obtained), and a few were ‘““very poor”
(requiring a certain amount of imagination in order to obtain even an estimate
for the position of the resonance). These subjective graph quality ratings are
included in Tables V and VI in the columns labeled ‘“‘quality.” _

Turning to the He™ calculations, we note the following from Table V: (i) the
generally low “quality” of the 6-trajectories; (ii) the lack of any obvious relation-
ship of the OCR results to the scr results; (iii) the rather major variations in the
predicted position of the resonance as the c1 list is varied in basis sets I and II;
(iv) the ScR results seem to be even worse than the OCR results, and (v) basis
sets IT and III do not give very similar results even though they are of ‘““‘comparable
quality” in the conventional quantum-chemistry sense discussed earlier.

In summary, both the ocr and scr techniques seem to give results for He™
that vary considerably with the details (basis set, cI list) of the calculation. The
currently accepted position and width of the He™ resonance are about 19.4 eV
and 10-20 meV, respectively [7]. Our failure to obtain a reasonably stable
estimate of the width may be due to its small magnitude (probably zero to the
accuracy of the numbers in Table V). Our “best” basis (set IV) does indeed give
a position estimate of 19.34 eV. However, owing to the low quality of its 6
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TABLE V. Resonance energies for He ™.

Basis/configur-
ation list Position Half Width (T'/2) Quality

Ifi 20.05 eV NE? poor
(19.65]1° [NE] [poor]

I/ii 19.75 NE poor

I/iii 19.73 NE very poor

IL/i 19.29 .013 ev good
[19.38] [ME] [poor]

11/ii 19.38 .014 fair
[19.4] [NE] [very poor]

IIL 19.46 .028 good
[19.51] [NE] [poor]

v 19.34 NE very poor
[19.22] [.003] ‘[fair]

* NE indicates that no reasonable estimate could be made because of the poor
quality of & trajectories.

® Results enclosed in square brackets refer to those obtained using the SCR
method. Others were obtained via the OCR technique.

-trajectory, we think it likely that such agreement is merely fortuitous rather than
the result of any basis set convergence.

The H™ resonance results shown in Table VI illustrate the following: (i) all
@ trajectories give good critical-6 behavior, allowing estimates of both the
position and width of the resonance; (ii) basis set A (the poorest basis) gives
the worst answers; (iii) SCR gives results very comparable to OCR; (iv) in basis
sets C and D more than one @, § combination gave rise to good critical ¢
behavior, and (v) the two “comparable quality” basis sets (C and D) do indeed
give fairly close answers. The ‘“‘correct answer”’ is about 9.56 eV for the position
and 0.05 eV for the width [3]. Considering the modest extent of these calculations,
it seems fair to say that basis set A is the only one that fails to give a reasonable
estimate for the complex energy of the resonance.

In addition to the above discussed H™ and He™ Feshbach resonance calcula-
tions, pilot calculations were performed for the P shape resonances in Be”/Be
and Mg /Mg. These species are expected to display more substantial core-
electron problems than arose in H™ and He . The atomic-orbital basis used for
Be was of (55,7p) quality and two different configuration lists were explored.
For Be, only the scr techniques give any reasonable critical-6 behavior (the
ocr method developed spurious energy variations of the order of 1 Hartree).
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TABLE VI. Resonance energies for H™.

Basis Position Half Wideh (I'/2) Quality
A 10.17 eV L0052 ev good
[10.16)2 [.0095] [good ]
B 9.578 .056 good
[9.576] [.056] [good]
c
a=.70 9.577 .018 good
[9.577] [.018] [good]
a=1.14 9.584 .033 good
[9.584]) [.033] [good]
D
e=.73 9.581 .024 good
[9.578] [.027) " [good])
o =1.22 9.588 .033 good
[9.585] [.035]) [good]

® Results enclosed in square brackets refer to those obtained using the SCR
methods. Others were obtained via the OCR technique.

The Be basis used was identical to that employed earlier in Donnelly and Simons’

- cr Green function study of the 2P resonance of Be™ [9]. We used two different
configuration lists for Be and obtained two substantially different resonance
energy estimates: E,=0.18eV, I'/2=0.11eV and E,=0.051eV, I'/2=
0.014 eV. Although there is no experimental value and no generally accepted
theoretical estimate for the energy of this resonance, the great variations in E,
and T which we observe are discouraging. Interestingly, “good” quality critical-6
behavior was obtained for both of the cI configuration lists, which leads us to
wonder whether the quality of the 6 trajectories correlates at all with the accuracy
of the calculations. _

For Mg /Mg, also a 2p shape resonance, we used the same basis which
Donnelly recently used in his successful cR Green’s function study [15]. With
this basis, we were unable to achieve a reasonable stabilization calculation to
obtain an estimate for the optimal «; no avoided crossing behavior was noted,
and when trial ocr calculations were performed, spurious imaginary contribu-
tions to the energy of the order of 20 Hartrees arose. It was clear that we could
attach no meaning to the results of such calculations.
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The above results illustrate that it is very difficult to choose an atomic-
orbital basis set for use in coordinate rotated cI calculations. Frankly, we were
rather surprised that even reasonably large standard quantum-chemistry bases
(supplemented by diffuse functions) did not yield reliably stable resonance
energies.

5. Discussion

Based upon our H™ /H results alone, our conclusions would be quite optimis-
tic. Very cost-effective calculations (which could be made even less expensive
by use of an inverse-iteration eigenvalue extraction technique) yielded fairly
consistent, good quality results via both OCr and scR, using easily constructed
basis sets.

However, the He™, Be™, and Mg results are very pessimistic indeed. While
the ocr results seem to “bracket” the correct result for He™, no systematic
basis-set convergence is observed. Furthermore, the cost of the He™ calculations
was not so minor; typically a dozen @-trajectories and two or three stabilization
calculations (with perhaps 20 points per trajectory) were involved. A complex
inverse-iteration routine could not cut down the number of points involved, and
might well lead one to miss extracting the proper root of the cI secular problem.
For Be™, the problem was even worse; about 30 @ trajectories at various a
values were needed before critical-8 behavior was even observed. We were
totally unsuccessful in finding critical-6 behavior in the Mg~ problem. In sum-
mary, it appears that ocr and scr cannot be straightforwardly applied using
conventional basis sets and electronic configuration lists. It also appears that
SCR does not have any advantages over OCR. If scr-is worse than Ocr for a
two-electron problem, it is unlikely that it has anything to offer for larger systems.
We therefore consider our study of sCrR to be an unsuccessful numerical
experiment.

The ocr method itself appears to have bleak prospects for successful use on
even moderately large systems; the spurious (core) energy variations with n are
so large that they obscure any stationary behavior in the 6 trajectories. Hence
we think it wise to look with caution at results, for many-electron targets, of
any calculations based on techniques resembling OCR or scR. The extension of
either OCR or SCR to larger systems should be done in conjunction with careful
basis set and cI list variation studies.

The results presented here provide, in our opinion, strong motivation to’
proceed toward developing well-founded and computationally tractable methods
which permit one to apply coordinate rotation to only the one active electron.
As mentioned earlier, other workers have indeed made some progress along
these lines. A great deal of formal and computational work remains to be done
before it becomes clear which implementation of cr theory is optimal. Clearly,
even within the approaches mentioned in Sec. 2C, atomic-orbital basis-set
dependence must be carefully considered. However, it is hoped that, by formally
removing the inner (core) orbitals from direct consideration in the CR process,
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one can avoid the need for large “tight basis sets whose purpose is to describe
these rotated core orbitals,
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