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A TEST OF MULTICONFIGURATIONAL COUPLED-CLUSTER THEORY

ON Be('S) + H,(X'X}) > BeH,('A))
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A perpendicular C,, insertion of Be into H, is explored via our multiconfiguration coupled-cluster method within the
double-excitation (CCMC-T;) model. This straight-line path, which encompasses the fragment geometry (Be and H,), the
equilibrium geometry (linear BeH,) and a transition-state geometry of BeH ;. requires several configurations to achieve a
qualitatively correct zeroth-order description of the ground state. The path is identical to that used by Shepard et al. in their
single-configuration coupled-cluster study of this same system. It is demonstrated that the CCMC-T, model is theoretically and
computationally viable and that the resultant coupled-cluster energies parallel the reference-wavefunction energies. When the
reference wavefunction ceases to incorporate the dominant configurations, the coupled-cluster wavefunction correspondingly

represents the state poorly.

1. Introduction

Calculations of potential energy surfaces of uni-
form accuracy over a wide range of nuclear geom-
etries are essential when such surfaces are used in
dynamics studies. So-called size-consistent (SC)
methods [1] are therefore desirable for such appli-
cations. Rayleigh—Schrddinger perturbation theory
and coupled-cluster theories satisfy the SC require-
ments stressed by Pople et al. [1]. However the
introduction of finite (truncated) approximations
to the effective hamiltonians arising in the above
theories is not sufficient to guarantee the desired
uniform accuracy unless the zeroth-order wave-
functions of these theories are qualitatively correct
(in the sense described below) over the relevant
geometries.

An example, which forms the subject matter of
.the present paper, involves the perpendicular (C,,)
insertion of ('S) Be into (X'E)) H, which has
been investigated by Shepard et al. [2]. The BeH,
molecule is chosen to lie in the YZ plane with the
Be atom at the origin and with the Z axis the C,
Totation axis. The path of insertion defined arbi-
trarily in ref. [2], can be described by the straight
line r =254 - 0.46 R (in au), where r is the H-H

separation and R is the Be to center of H, dis-
tance. The geometries at which calculations have
been performed are given in table 1. Although this
constrained path is not any actual reaction path, it
covers a wide range of geometries over which (as is
shown later) at least six configurations, 1a32a}3a?,
Ia%2a3ib3, lai2ajlbi, Tal2a,3a 1
1a32a,3a,1b,2b, are required to achieve a qualita-
tively correct (zeroth-order) description of the
ground state. As shown in more detail in section

Table 1
The perpendicular insertion path of Be into H,. Be located at
(0,0,0)

Point Coordinates of H, (x, ¥, z)
(bohr)

(0, £2.54, 0.0)
(0, +£2.08, 1.0)
(0, £1.62,2.0)
(0, £1.39,2.5)
(0, +1.275, 2.75)
(0, +1.16, 3.0)
(0, £0.93, 3.5)
(0, £0.70, 4.0)
(0, +£0.70, 8.0)
(0, £0.70, 20.0)
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3.1, these essential configurations include the
15,253 102y . 155 2p5 10y 155,255 102y, “re-
actant” configurations as well as the ls%eoBcH,aj-
Ofen.b, configuration of BeH,. They do not repre-
sent high-level electron correlation effects; they
provide the qualitatively correct descriptions of
the bonds in reactants and products as well as the
well-known quasidegeneracy effects in Be(2s2,
2p?). This example thus presents a good testing
ground for multidimensional-reference theories
such as the multiconfigurational coupled-cluster
(CCMC) method developed earlier in our labora-
tory [3,4]. Shepard et al. [2] have been successful in
describing different parts of this BeH, ground-state
('A,) energy surface using different single-config-
uration reference functions for different ranges of
R, in their so-called coupled-cluster singles and
doubles (CCSD) calculations. However, such an
approach involves making an arbitrary choice of
which reference configuration to use for which
range of R values and for what R value to change
from one reference configuration to the other.

Recently, we developed a multiconfiguration
coupled cluster (CCMC) theory which admits a
multiconfiguration (MC) reference wavefunction
(3.4]

¢=Ecxxx‘ (])
K

in which the { X} are the configurations and the
Cy are their expansion coefficients. Our method is
applicable to both closed- and open-shell systems
and is cast in terms of the generators of the
unitary group [5]. We describe in section 2 the
particular approximation of our CCMC method
used here and in section 3 the results of our
calculations using this approximation on the BeH,
system are discussed.

2. CCMC method: summary and justification of the
T = T, approximation

In ref. [3], we assumed that one has available a
MC reference wavefunction ®(C, X) of the gen-
eral form shown in eq. (1) but where the con-
figurations X contain all possible arrangements of
N electrons in the valence orbitals. The valence

orbitals occupied in @ are denoted by Greek letters
a, B,... while the italic subscripts p, g, r, s...
designate the orbitals unoccupied in @. Within this
notation, the so-called cluster operators are ex-
pressed in terms of unitary generators

= +
erj e Eaa'pa_m’
n

€k = €; ;€4 — 8;&-":1!

T=YT, (2a)

with

T! = Z :rnern‘ (2b)

Ty=1 Y 1,,.0€,0:p CIC. (2¢)
rasf

Following the conventional coupled-cluster de-
velopment, exp(T') is the operator which, when
acting on @, gives the correlated wavefunction ¥

¥v=eTd, (3)

which obeys the Schrodinger equation (H — E)¥
= (. The unknown ¢ amplitudes and the C coeffi-
cients in @ are calculated in our CCMC method
from the equations

<¢rn:ﬁ...lﬁi¢> = (4)
and
(X, |H|®) = EC,, (5)

where H is the so-called effective hamiltonian,

H=e"THe, (6)
and the |®,,,, )=e, .z |P) are singly, doubly,
etc. excited configurations relative to the MC ref-

erence ¥. Given C and ¢ amplitudes, the total
energy can be calculated from

E=(9®|H|®). (7)

In the earlier publication [4], we demonstrated
the generality of our method through its applica-
tion to various closed- and open-shell systems:
H,('Z}), Li(*S), HeH,('A,), and CH,("B,, 'A)),
with no restrictions on the configurations included
in the reference symmetries. These applications
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were carried out within the approximation T = T,
+ T, and with the commutator expansion for A
truncated after the second commutators (see be-
low). It was found that when an MC SCF refer-
ence function is used for @, the ¢ amplitudes in T,
are small (because the MC SCF procedure has
produced nearly optimal orbitals) and that the
contributions from the three-particle density ma-
trix elements in the f-determining equations [eq.
(4)] can be offset by increasing the size of the
function space X, used in @. Hence, it was found
that 7, could essentially be neglected if an MC
SCF reference state were employed.

In this paper we explore the approximation
T = T, within the structure of our CCMC method
with an MC SCF reference function. Within such
-a coupled-cluster approximation, some simplifica-
tions occur. Because of the MC SCF reference
function, the ¢ amplitudes occurring in T, are
expected to be negligible whenever the non-linear
couplings between T, and T, are small. This fact
arises due to generalized Brillouin theorems (GBT)
(6], {(®,,|H|®) = 0. Secondly, the matrix elements

(Dl [[[H.T,].T,]. T ]| @) =0 (8)

and matrix elements of all higher commutators
vanish identically. Since one is justified in neglect-
ing T, because an MC SCF reference is employed.
the r-determining equations [eq. (4)] can be written
exactly as

(Pl + [H L] +3[[H.L].T]|0)=0.  (9)

The above two properties, also arise in the cou-
pled-pair many-electron theory CP MET of Cizek
[7].

Given this choice of the description of ¢ and
the truncation (T=T;) of the cluster operator
which logically follows, we now turn to examine
the results of applying the CCMC method to the
‘A, BeH, potential energy surface.

3. Calculations and results

3.1. Construction of the MC SCF reference function

It is essential to first examine the multiconfig-
urational wavefunction of BeH, along the reaction

path defined in ref. [2], which we simply accept as
a path on which to evaluate our CCMC method in
comparison to the single-configuration based CC
method of ref. [2]. Three qualitatively different
types of geometries arise along the path: the frag-
ment geometry R — oo, r = 1.4 au, the linear equi-
librium geometry, R=0, r=2.54 au and the
“transition-state” geometry. (We use the term
transition state loosely here. It is taken to be the
geometry at which the energy along the path
reaches its maximum.)

At the fragment geometry, the valence molecu-
lar orbitals can be labeled as follows: 1a, = Be(ls),
2a, = Be(2s), 3a, =¢,(H;), 1b,=0,(H,), 2b,=
Be(2p,), 1b, = Be(2p, ). The first dominant config-
uration 1a32a%3a? thus corresponds to Be('S)+
Hz('Zg), which is a product of the restricted
Hartree-Fock configurations for the ground states
of Be and H,. At the linear equilibrium geometry,
the other dominant configuration (in terms of C,,
symmetry) is la32a%lb? which involves the two
Be-H o-bonding orbitals 2a, and 1b,. At the
transition-state geometry these two configurations
1al2a33a% and 1a32ajlb} become quasidegenerate.
However, these two chemically intuitive configura-
tions are found to be not sufficient to produce an
accurate description of the 'A, surface particularly
at this transition-state geometry *. Other config-
urations (1a32a,3a,1b,2b,, both singlet and triplet
coupled, 1a22a’1b? and 1a32a,3a,1b}) which can
be thought of as describing correlation among the
two Be-H o bond pairs, are found to have config-
uration weights of =0.20, 0.12 and 0.10, respec-
tively, near the transition-state geometry (see fig.
1). To obtain a more accurate description of the
wavefunction it is therefore best to include all of
these configurations in defining the zeroth-order
(reference) function along the reaction path.

* In particular, the two configurations (la?2a}3al and
la32al1b3) are not adequate at the transition-state geometry
(E) as can be seen through the following facts. The 2C MC
SCF ground-state energy of —15.5385 hartree is well above
the correct energy of the first excited ('A,) state (E(FCI) =
—15.5540 hartree). Hence, unless proper precautions are
taken, the coupled-cluster procedure can converge to the first
excited state when starting from the 2C MC SCF reference
wavefunction.
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Fig. 1. Comparative weights of the six dominant configurations

in the reference MC SCF wavefunction, for the 'A, ground

state of BeH,. ® 1aj2a}3a}; , 1a%2alib}; + 1aj2alib}; O

1a2a,3a,1b}; O 1a}2a,3a,1b,2b,(s); X 1a}2a,3a,1b,2b,.

We described in earlier publications [8] sys-
tematic selection procedures for obtaining the
dominant configurations at any particular geome-
try of an MC SCF wavefunction. The procedure
involves performing, at several chosen geometries,
a “dynamic” selection (i.e., selection of configura-
tions with changing orbitals) of configurations
based on their energy contributions. After per-
forming such a selection at several geometries one
then takes the union of all such selected configura-
tions. The dominant configurations at the frag-
ment Be + H,, equilibrium BeH,, and transition-
state geometries were obtained using such a selec-
tion procedure. The resultant reference wavefunc-
tion which was used in our subsequent CCMC
calculation consisted of all 'A, configurations aris-
ing from placing the four valence electrons in the
orbital space 2a,, 3a,, 1b,, 1b,, and 2b, with 1a?
frozen. The magnitudes of the configuration am-
plitudes belonging to these important configura-
tions are shown as functions of R in fig. 1.

In all of the calculations reported here, the 1a,
orbital, which is essentially of Be(ls) character,
never participates in the bonding and can be shown

to have a negligible (= 0.1 kcal /mol) and constant
(independent of geometry) correlation energy con-
tribution *. Thus the lal orbital occupancy is
frozen for all of the calculations reported here. In
particular, the full CI (FCI) results, which define
the exact energies within our limited basis set,
involve the frozen la? orbital occupancy. The ba-
sis set consists of contracted gaussian orbitals and
is identical to that used by Shepard et al [2].

3.2. Resulting CC energies

Fig. 2 provides a comparison of our MC SCF
energy with the energies of the two SCF functions,
1a32a%3a? and 1aj2ajlbl, which are the most
dominant in @ as well as with the full configura-
tion interaction (FCI) energy. As mentioned earlier,
use of a CC method in which the reference wave-
function is qualitatively correct (i.e., contains all of
the dominant configurations) can potentially lead
to quantitatively correct results. This point is dem-
onstrated by comparing the potential energy curves
of fig. 2 to those of fig. 3 in which the correspond-
ing CC energies are depicted for the various refer-
ence functions.

Figs. 2 and 3 illustrate that the coupled-cluster
energies are qualitatively parallel to the energies of
their respective reference wavefunctions. In partic-
ular, the single reference configuration (1a32a21b3?),
which dissociates to ground-state Be(1s?2s?) and
excited H,(02), yields a CC energy curve which
also converges to a correlated ground state of
Be('S) and excited H,('Z[) as R — . Analogous
problems arise in attempting to follow the CC
energy based upon the other dominant 1a32a%3a?
configuration past the transition state to R=0.
Note that single-configuration based CC energies
lie below the full CI energies (see fig. 3). Because
CC methods are non-variational, they can indeed
yield energies lower than the correct full CI en-
ergy.

The energies of our CCMC calculations are
shown in table 2 where the errors (A E) relative to
the full CI energies can be seen. The notation

* We compared the results with those of a complete-space CI
calculation in which the 1a,(Be 1s) orbital was also corre-
lated.
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Fig. 2. Comparison of reference wavefunctions’ energies for the
'A, ground state of BeH,. @ 1a22al1b}; +1a32al3al; , 18-MC
SCF; O FCL

labeling the molecular geometries along the reac-
tion path is that used in ref. [2]. The resultant
CCMC potential energy curve is quite parallel to
the corresponding FCI curve and lies within = 1.6
kcal/mol of this “exact” (FCI) curve. Shepard et
al. have also calculated [2] CC energies for these
same geometries based on using single-configura-
tion reference functions in the CC method. For the
range of R values over which each of their two
separate reference configurations remain applica-
ble, they also find the CC energies to be very close

Table 2

-15.560

-15.582 |+

-15.804

-15.628

Energy (hartrees)

~15.848

_ls_d?o 1 1 L L L L ' 1
199 245 231 248 264 280 297 313 330
Be - H2 distance (bohrs)

Fig. 3. Comparison of CCMC-T; energies for various reference
functions (O la22a21b3; , 1a%2a%3a}; +18-MC SCF) with FCI
(®) energy for the 'A, ground state of BeH,.

( + 4 kcal /mol) to the FCI values.

When using the MC SCF reference function in
the BeH, calculations reported here, we found all
of the t,-amplitudes to be relatively small (< 0.2).
For the three limiting geometries (A, E, and J) we
also included the T,-operators to provide a check
on our T =T, approximation. The T, contribu-
tions (E7, and E, _r; see ref. [3]) were found to
be < 107 hartree or <0.1 kcal/mol at all of
these three geometries.

Comparison of CCMC-T; energies with SCF and MC SCF reference functions

Point E(SCFD)®  AE E(SCF ID)® AE E(18-MCSCF)  AE Eeoi™
(hartree) (kcal /mol) (hartree) (kcal /mol) (hartree) {kcal /mol)

A — 15.780903 -13 - 15.778544 0.8 —15.778836
B —15.737141 -0.1 = 15.736382 0.3 —15.736918
C —15.370999 190.9 —15.671348 1.9 - 15.673008 0.9 —15.674505
D —15.526684 60.3 —15.616804 36 —15.619949 1.6 - 15.622579
E —15.599198 2:2 —15.584198 11.6 - 15.600295 1.4 - 15.602629
F —15.632368 -4.7 —15.552464 455 —15.622955 1.1 —15.624785
G —15.701875 =56 —15.474740 137.3 —15.691787 0.7 — 15.692965
H —15.735454 0.6 - 15.736625 0.1 - 15.736471
I —15.762241 0.2 —15.762344 0.2 - 15.762634
J —-15.762239 0.3 —15.3652992 250.0 - 15.762372 0.2 —15.762703

: :i SCF I refers to the reference configuration 1a}2aj3a3.
SCF II refers to the reference configuration 1a32aj1b3.

 The E ey refers to a complete CI energy in which the la, orbital has been kept frozen.
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4. Conclusions

The CCMC method with T = T,, which can be
viewed as an extension of the CP MET to multi-
configuration reference functions, is computa-
tionally viable. Inclusion of the T, operators is
made essentially unnecessary through the use of an
MC SCF reference function. When included, T,
yields a miniscule improvement in energy at the
expense of the much larger computational effort
needed to evaluate matrix elements of [[H,T,).T;].
The inclusion of T, operators also causes the com-
mutator expansion of the effective hamiltonian H
to go beyond the second commutator level [cf. eq.
(9)] as a result of which quartic equations for the ¢
amplitudes should be treated. That the CCMC-T,
approximation avoids these complications is a
strong point in its favor.

Finally it has been observed that the energies
calculated via the single-configuration CC and
CCMC methods tend to parallel the energies of
the respective reference functions. When the refer-
ence function ceases to be a good representation to
the state under consideration, so does the corre-
lated CC wavefunction. In general, it is wise to use
well tested procedures for selecting important con-
figurations at crucial geometries to build a refer-
ence function which contains the essential elec-
tronic configurations at all geometries. Use of this
MC reference function will then yield a CCMC

energy surface which can be trusted for all geome-
tries.
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