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Concluding Remarks 
This paper addresses the questions we raised about 

dephasing and vibrational energy redistribution in small 
and large molecules. We outlined the laser techniques that 
can be used to probe these dynamical processes. The 
relavance of optical TI and Tz to selectivity is emphasized; 
the success of laser-selective chemistry must depend on 

(28) Further recent experiments have revealed a dependence of the 
beat pattern as well as the modulation amplitude upon the pressure and 
nature of the carrier gas. These resulta and their interpretation will be 
discussed in a forthcoming paper. 

knowledge of the time scales for irreversible vibrational 
redistribution and the loss of phase coherence. As evident 
from the anthracene (isolated molecule) results, these time 
scales depend on the excess energy in the molecule and 
the degree of internal cooling. 
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A practical, computationally simple procedure is presented for calculating energies and widths of resonances 
in atom-diatom complexes. It combines the stabilization method and a “golden rule” formula, employing only 
square-integrable basis functions. The utility of the procedure is tested on rotationally predissociating model 
atom-diatom van der Waals complexes. In addition, a procedure for performing coordinate rotation in small, 
selected subspaces of stabilization eigenvectors is proposed and applied to a two-open-channel model potential 
problem. A perturbation-based scheme is developed for systematic selection of those stabilization eigenvectors 
which should be included in the subspace. 

Introduction 
In low-energy atom (molecule)-molecule collisions, part 

of the relative kinetic energy of motion may be temporarily 
converted into excitation of the internal (rotational and/or 
vibrational) degrees of freedom of either partner. For 
sufficiently attractive interactions, the additional kinetic 
energy gained may enable states otherwise energetically 
inaccessible to be excited. When this excitation occurs, 
the atom-excited molecule system has insufficient energy, 
in its relative motion, to separate. The transient complex 
thus formed is referred to as a Feshbach or compound- 
state resonance. Eventually, the internal energy is 
transferred back into the relative translational energy, 
leading to breakup of the complex. Hence, these reso- 
nances correspond to predissociating, metastable states 
characterized by total energies, E,, and widths, rr, the 
latter being related to the lifetime 7 by the uncertainty 
relationship 7 = h/F. Another class of resonances are the 
orbiting or shape resonances in which the colliding partners 
are temporarily held together by a centrifugal barrier. 
Literature devoted to theoretical and experimental in- 
vestigations of both kinds of resonance states is extensive 
and has been summarized recently in two articles by To- 
ennies and his collaborators.’J 

In a time-dependent picture, resonances can be viewed 
as localized wave packets made by superposition of con- 
tinuum wave functions, which for a time 7 = h / r  quali- 
tatively resemble bound  state^.^.^ During the time 7,  the 
amplitude of the scattering wave function at  a resonance 
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energy is much larger in the region where the interaction 
potential is significant than in the asymptotic region. The 
localized nature of the resonance wave function has mo- 
tivated the development of several purely L2 methods for 
calculating resonance energies and widths. In such 
methods, scattering wave functions are expanded in terms 
of square-integrable basis functions. Here we can mention 
the secular equation method of Grabenstetter and Le Roy: 
the complex coordinate rotation method: the stabilization 
method pioneered by Hazi and Taylo9 (on which we focus 
our attention in this article), and the closely related 
truncated orthogonalization procedure of Holerien and 
Midtal.’ 

In the stabilization method3~*pe the wave function is ex- 
panded in a square-integrable basis and a finite dimen- 
sional matrix representation of the relevant Hamiltonian 
is constructed. The resonance eigenvalues (one or more) 
are identified as those which are “stable” (relatively in- 
sensitive) to variations of the basis, such as increasing the 
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size of the basis3 or scaling of the spatial size of the basis 
functions. From a so-called stabilization graph the reso- 
nance energy can be estimated directly. Hazi and Taylor: 
Fels and Hazi,le12 and H a d 3  have demonstrated that 
resonance widths can also be extracted from stabilization 
calculations. These methods have been applied to one- 
dimensional model pr~blems~J* '~ and autoionizing elec- 
tronic states of a t ~ m s ' ~ J ~  and H2-.15 

In section I1 we outline a procedure in which energies 
of resonances (predissociating, metastable states) in 
atom-diatom systems can be determined using the sta- 
bilization method. The resonance widths are then calcu- 
lated by employing the "golden rule" formula of Miller, 
the use of which has thus far been restricted to one-di- 
mensional model problems,'*12 autoionizing states of at- 

and Penning ionization.19 The necessary reso- 
nances and continuum wave functions are approximated 
by the appropriate eigenvectors obtained from the stabi- 
lization procedure, very much in the spirit of the paper by 
Hickman, Isaacson, and Miller on autoionizing states of 
He and H-.16 Thus, the method proposed here also in- 
volves expansion in terms of L2 basis functions. However, 
in contrast to the coordinate rotation-based methods, 
which have been applied to similar problems,20-21 it involves 
only real arithmetic; diagonalizations of complex matrices, 
performed repeatedly during the search for resonances in 
the complex plane, are avoided completely. The resulting 
reduction in computation time is very significant. 

The stabilization-golden rule procedure outlined above, 
although computationally simple and fast, has certain 
drawbacks. Determination of resonance energies via the 
stabilization calculation becomes less accurate for broader 
resonances. Miller's golden rule e x p r e s s i ~ n ' ~ ' ~  for reso- 
nance widths can, in its present form, be readily applied 
only to one-open-channel problems. On the other hand, 
the coordinate rotation (CR) methode is very general, ca- 
pable of treating many-open-channel resonances in diverse 
atomic and molecular systems. Yet, the dimensionality 
of the complex symmetric matrix to be diagonalized re- 
peatedly grows very rapidly with the inclusion of additional 
channels thus making the search for resonances prohibi- 
tively time consuming and expensive. One possible solu- 
tion to this problem is developed in section IV. There, we 
combine the stabilization and coordinate rotation (CR) 
methods; the complex scaled Hamiltonian is repeatedly 
diagonalized (in the course of performing a so-called 8 
trajectory) in a small, selected subspace of eigenvectors 
resulting from a previous stabilization calculation. In other 
words, we suggest that CR calculations be performed 
within selected subspaces of stabilization eigenvectors as 
basis sets, thus substantially reducing the dimensionality 
of the problem and, therefore, the computation time and 
cost. A perturbation-based scheme is developed for the 
systematic selection of those stabilization eigenvectors 
which should be included in the subspace. 

In section I1 we describe the stabilization method and 
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Lett.,  37, 63 (1976). 
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Miller's golden rule formula as it is utilized in this work. 
Also in section 11, the Hamiltonian is defined for the five 
model atom-diatom van der Waals systems on which the 
procedure is tested. In section 111, the results of our 
calculations using the stabilization-golden rule method are 
presented and compared with those obtained previously 
using other methods. In section IV, the method of coor- 
dinate rotation in selected stabilization eigenvector sub- 
spaces is analyzed in terms of a simple two-open-channel 
model. Section V contains some concluding remarks. 

11. Stabilization Method and Miller's "Golden 
Rule" Formula 

In the Holerien-Midtal version' of the stabilization 
method, the real eigenvalues E of the Hamiltonian are 
computed as a function of the scale parameter a, the 
resonance positions E, being characterized by the condi- 
tion22 

(dE/ddaopt = 0 (1) 

We have applied their procedure to five model atom- 
diatom van der Waals (vdW) A-BC systems which have 
been previously studied by a variety of other methods. In 
this investigation we have chosen to scale the atom-diatom 
separation vector i as follows: 

i - a i  (2) 
where a is a real number. This could, alternatively, be 
viewed as a scaling of the L2 basis functions used to expand 
the r dependence of the wave functions. The resulting 
scaled Hamiltonian for the model atom-diatom (rigid ro- 
tor) systems is 
H(B,ai,O) = 

where p is the reduced mass of the system (mAmBC/(mA + mBc)l, 8 is the angle between the diatom's orientation 
vedor R and the atom-diatom separation vector 7, l2  is the 
square of the angular momentum operator associated with 
rotation of the atom A about the molecule BC, j 2  is the 
square of the angular momentum operator associated with 
rotation of BC, and Bd is the rotational constant for BC 
(treated as a rigid rotor). The interaction potential V is 
written in the form 

(4) 

where both V, and V2 are (modified) Lennard-Jones 
functions. The basis in terms of which the radial ( r )  wave 
function is expanded consists of the product of free-rotor 
states and, in the present work, Gaussian basis functions 
whose centers span at  least the region of r space where V 
is significant. All of the parameters necessary to specify 
the model problems and the basis set are given in section 
111. 

For a given value of 5, a matrix representation of the 
scaled Hamiltonian, H(R,ai,B), is constructed in the basis 
described above. The resulting matrix has dimension 1N 
x lN, where N is the number of Gaussian basis functions, 
and 1 is the number of channels (open plus closed). Di- 
agonalization of this matrix yields a set of 1N eigenvalues 
and corresponding orthonormal eigenvectors. The diago- 
nalization is repeated for various values of a. The eigen- 
values are then plotted as functions of a to give the so- 
called stabilization graph. For each of the model problems, 

V(r,e) = Vo(r) + V2(r)P2(cos 8) 

(22) N. Moiseyev, P. R. Certain, and F. Weinhold, Int. J .  Quantum 
Chem., 14, 727 (1978). 
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Flgure 1. Stabilization graph for the metastable state In a one- 
open-channel atom-dlatom van der Waals complex (system 11, see 
section 111). A series of avoided crossings represents a resonance 
at 344 cm-‘. 

there is one eigenvalue which is, when compared to other 
eigenvalues, rather insensitive to the changes in a (Figure 
1). As is discussed in section 111, these “stable” eigen- 
values are close to the resonance energies calculated by 
other methods for these same model problems. Figure 1 
also shows that, a t  quite regular intervals, other continu- 
um-like solutions descend toward, and eventually stabilize 
at, the resonance eigenvalue. Such behavior was noticed 
and very nicely analyzed years ago by Hazi and Taylor3 
(for the case of a one-dimensional model problem). This 
observation was also made in a paper by Greenawalt and 
Dickinson who treated bound and quasi-bound states of 
diatomic rnolecule~.~~ The fact that, for certain values of 
the scaling parameters a, the resonance and continuum- 
like eigenvalues approach one another and undergo an 
“avoided crossing” is essential to the procedure described 
below for calculating resonance widths. 

The “golden rule” expression, proposed for use in 
analogous electron-atom resonance problems by Miller 
some 15 years ago,18 expresses the resonance width as 

Here $r is the resonance wave function, x ,  is a continuum 
wave function which is (ideally) degenerate with +r, and 
p represents the density of (translational) continuum states 
at the kinetic energy of the A + BC translational motion. 
Following the proposal of Miller e t  a1.,I6 we approximate +, by the closed channel component (projection) of the 
“stable” resonance eigenvector obtained from the stabi- 
lization calculation. x ,  is approximated by the eigenvector 
corresponding to the descending continuum-like eigenvalue 
(see Figure l), also obtained from the stabilization calcu- 
lation. We stress that x ,  is not obtained by solving a 
separate scattering problem in which only open-channel 

(23) E. M. Greenawdt and A. S. Dickinson, J. Mol. Spectrosc., 30,427 
(1969). 
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TABLE I: Parameters Characterizing the Model 
Atom-Diatom vdW Systems 

p ,  amu 1.9188 1.981 1.8328 1.9191 1.9686 
B,, cm-* 60.0 60.551 60.0 60.0 60.0 
E ,  cm-’ 41.0 60.408 25.362 53.938 69.327 
0, a 3.13685 3.4745 2.9426 3.2423 3.3925 
a 0.13 0.09 0.1036 0.4184 0.1329 
b 0.13 0.5 0.1488 0.1192 0.2370 

The interaction potential is described by eq 6 and 7. 
The interaction potential is described by eq 8 and 9. 

functions are used; xc  contains both open- and closed- 
channel pieces. 

If eq 5 is used in this manner and again following 
Miller’s prescription, I’ is then determined for a number 
of values of a, for which the continuum-like (E,) and 
resonance eigenvalues (E,) are close. The result is finally 
extrapolated to IE, - EJ = 0. As is seen in Figure 2, this 
extrapolation is rather straightforward. However, one 
must, of course, avoid the region of a space where E, and 
E, do not vary linearly with a (i.e., near the avoided 
crossing). The density of continuum states p, which enters 
eq 5, is determined in the way described by Miller et al.,16 
which is based upon fitting the translational energy of the 
A + BC motion to a particle-in-a-box formula which, when 
the basis’ radial extent is used to define the box length, 
gives the quantum number (and hence state density) 
corresponding to this translational energy. 

111. Results of Calculations on Model 
Atom-Diatom van der Waals Systems 

The above procedure, as already mentioned in section 
11, has been applied to five model van der Waals (vdW) 
atom-diatom (rigid rotor) A-BC systems. The Hamilto- 
nian for all of the systems is given in eq 3. These model 
systems fall into two categories. In the first one are two 
weakly anisotropic systems previously treated, using other 
methods, by a number of ~ o r k e r s . ~ ? ~ ~  Their interaction 
potential is V(r,O) = V&) + V2(r)P2(cos e),  eq 41, where 

Vo(r) = 4t[(a/r)” - (a/rI6] (6) 

V&) = 4c[b(a/r)12 - u ( ~ / r ) ~ ]  (7) 

The values of all of the parameters necessary to specify 
the two model systems are given in Table I. Only a single 
metastable Feshbach state correlating with the isotropic 
closed channel 0’ = 1 = 2, J = 0) is considered here. Thus, 
the single open channel of these two (homonuclear) model 

(24) 0, Atabek and R. Lefebvre, Chem. Phys., 55, 395 (1981). 
(25) A. M. Dunker and R. G. Gordon, J.  Chem. Phys., 64,4984 (1976). 
(26) J. T. Muckerman and R. B. Bernstein, Chem. Phys. Lett., 4,183 

(1969). 



Energy and Resonance Wkfth in Atom-Diatom Complexes 

TABLE 11: Comparison of One-Open-Channel (j = 2) Resonance Energies and Widths for the Atom-Diatom Systems I and 
I1 Calculated in Various Ways 
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system I systeAI1 

E,, cm-’ r , cm-l E,, cm-l r ,  cm-l 

S -Ma 349 (2  1) 1.4 (20.1) x lo-, 344 (*1) 0.20 (20.01)  
SEb 342.80  (20.001) 1.1 (*0.1) x 10‘2 338.13 (20.01)  0.16 (20.01) 
ccsc 342.81 1 . 0  x 10‘’ 338.124 0.11 
CCd,P 342.806 
Aed 338 0.11 
Df,P 

a Stabilization-Miller’s “golden rule” formula; present work. Secular equation method of ref 5. Numerical solution 
of coupled equations with Siegert boundary conditions imposed, ref 24. 
e Adiabatic decoupling approximation of ref 28. f Distortion decoupling approximation of ref 28. 

Numerical solution of coupled equations. 
Data and original - _ _  

references quoted-in ref 5 .  

problems has 1 = j = J =,O. The quantum numbers j and 
1 refer to the rotation of R and 7, respectively, and J refers 
to the total angular momentum of the triatomic system. 
The angular basis is restricted to 1, j 5 2, and J = M = 
0. To expand the radial wave functions, sets of Gaussian 
basis functions are used, with exponents equal to 20. These 
exponents were chosen so that neighboring Gaussian 
functions would have appreciable (-25%) overlap. The 
centers of the Gaussian functions are given by 
r, = 3.0 + m X 0.372 A (0 5 m I N) for system I 
r, = 3.3 + m X 0.372 A (0 I m 5 N) for system I1 

N ,  the number of Gaussian basis functions, was increased 
from 15 to 40 in our calculations so that we could monitor 
the convergence of the results. The Gaussian centers r, 
were chosen so as to span the region of r space where V 
is significant. The left-most Gaussian was placed some- 
what inside the classical turning point of the A + BC 
collision (as determined via Vo). The next (and all sub- 
sequent) Gaussian was then placed so that the spacing 
between neighboring functions was less than one-half the 
de Broglie wavelength expected for the open-channel- 
function. 

In the second category are three van der Waals mole- 
cules X-H2 (X = Ne, Ar, Kr) previously treated by Beswick 
and Requena.n These authors expressed Vo(r) and V2(r) 
in terms of Morse potentials. These potentials are not 
homogeneous which makes them somewhat inconvenient 
for use in our method (the matrix elements of the Ham- 
iltonian would explicitly depend on a and would have to 
be recalculated at each point of the stabilization trajectory). 
We therefore chose to fit the Morse potentials of ref 27 
to our own Lennard-Jones-like potentials 

The conspicuous coefficient 2714 in eq 8 and 9 is needed 
if one wants the depth of the potential Vo(r) a t  its equi- 
librium position, rw = (3/2)14u, to be t. The parameters 
u, a, and b were determined by using a linear least-squares 
fitting program. We have found these Lennard-Jones (W) 
12-8 potentials capable of reproducing the Morse poten- 
tials very well (certainly much better than the standard 
LJ 12-6 potentials, which we have also tried). All of the 
parameters necessary to specify the LJ 12-8 potentials (eq 
8 and 9) are given in Table I. 

Beswick and Requena2’ calculated the resonance ener- 
gies and widths in the X-H2 molecules mentioned above 

(27) J. A. Beswick and A. Requena, J. Chem. Phya., 72,3018 (1980). 

TABLE 111: Comparison of Resonance Energies and 
Widths for X-H, (X Z Ne, Ar, Kr) vdW Molecules 

E,, cm- 
~ r ,  cm-’ stabili- 

i zation” Beswickb golden rule” Beswickb 

Ne-H, 
2 364.1 364.5 7 .2  X 5.1 x 
4 1220.8 1224.2 0.14 x 10-3 

4 1200.7 1206.6 0.36 x 10-3 

Ar-H, 
2 347.4 347.2 1.76 X lo-’ 0.77 X lo-’ 

Kr-H, 
2 335 339 0.039 0.012 
4 1192.6 1197.8 0.97 x 10-3 
Stabilization-Miller’s “golden rule” formula; present 

work. Beswick and Requena, ref 27. 

for several values of the rotational quantum number j0’ 
= 2, 4, 6) of H2, thus providing an excellent additional 
opportunity to check our method. For these molecules we 
could investigate the metastable Feshbach states corre- 
lating with the isotropic closed 0’ = 1 = 2, J = 0) and 0’ 
= 1 = 4, J = 0) channels. The latter state has two open 
channels, 0‘ = 1 = 2, J = 0) and 0’ = 1 = 0, J = 0). For the 
radial wave function expansion, we again used Gaussian 
basis sets with exponents equal to 20.0. The centers of 
these Gaussians are given by 

r, = 2.5 + m X 0.372 A 
r, = 2.8 + m X 0.372 A 
r, = 3.0 + m X 0.372 A 

(0 I m I N) for Ne-H2 
(0 I m I N) for Ar-H2 
(0 I m I N) for Kr-H2 

with N ranging from 18 to 40. The reasons for choosing 
this particular set of parameters, i.e., (a,r,J, have already 
been given in connection to the basis set choice for systems 
I and I1 (this section). 

Resonance energies were determined from the stabili- 
zation graphs (e.g., Figure 1). The precision of the esti- 
mates depends on the “stability” of the resonance eigen- 
value which, in turn, depends on the width of the reso- 
nances. The narrower the resonance the greater is the 
stability of its eigenvalue. This observation was made long 
ago by Hazi and Taylor? Narrow resonances are also more 
suitable for determination of widths using our procedure 
since their “stable”, linear stabilization graphs facilitate 
the extrapolation involved in calculation of the widths via 
Miller’s golden rule formula (eq 5). The resonance energies 
and widths of the vdW systems studied in this work are 
listed in Tables I1 and 111. We see that energies of both 
one 0‘ = 2)- and two 0’ = 4)-open-channel resonances 

(28) R. D. Levine, B. R. Johnson, J. T. Muckerman, and R. B. Bern- 
stein, J. Chem. Phys., 49, 56 (1968). 
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(cW/ddqo = 0 (12) 

where vo = a. exp(iOo) is the optimal scale factor.22 The 
resonance condition (eq 1) of the Holorien-Midtal stabi- 
lization procedure’ -0.02 

--0.02 

I ’ I ’ I ’ I  , I ’  -0.04 
3 5. 7 9. I I. 13. 15 

Flgure 3. Model atom-diatom system 11, for N = 30 and a = 0.97. 
Open (- - -; lefthand-side scale) and closed (-: rfghthand-side scale) 
channel components of the resonance radial wave function. 

calculated by stabilization agree well with those obtained 
by other methods. These results lend support to the 
statement that stabilization can, in a computationally 
simple way, give accurate positions of one- or many- 
open-channel resonances, particularly narrower ones in 
triatomic systems. One-open-channel resonance widths, 
obtained by using the golden rule formula (eq 5 )  (the 
golden rule expression, in its present form is inapplicable 
to many-open-channel cases), agree to within a factor 2 - 3 
(at worst) with the widths calculated by using other 
methods. This is, in our opinion, satisfactory, especially 
in view of the relative simplicity of the procedure. 

It is of some interest to briefly discuss the qualitative 
features of the radial wave functions resulting from our 
stabilization calculations. The open- and closed-channel 
components of the resonance radial wave function for 
system I1 (which is typical of the other systems studied) 
are plotted in Figure 3. We see that the closed 0’ = 1 = 
2, J = 0)-channel component of the radial wave function 
is very strongly localized in the region of the potential 
“well” (for system 11, Vo(r) has its minimum at 3.9 A). In 
this inner region its amplitude is much larger than the 
amplitude of the open 0‘ = I = 0, J = 0)-channel radial 
wave function. This corresponds nicely to the physical 
picture of the Feshbach resonance involved: an “almost 
bound” state with the rotor BC excited to j = 2 state and 
an atom A temporarily “trapped” (and thus localized) 
inside the potential well. The open-channel radial wave 
function exhibits the expected oscillatory behavior; it even 
has the expected de Broglie wavelength. 

IV. Coordinate Rotation in the Stabilization 
Eigenvector Subspace 
In the coordinate rotation (CR) method: the dissociating 

coordinate r’ is subjected to the complex scaling trans- 
formation 

7 -+ CyFe’e” t @ (q = (10) 
The spectrum of the scaled Hamiltonian H(7) contains a 
complex resonance (one or more) eigenvalue E (= E, - 
ir/2) which, for angles beyond a certain critical value 8, 
and for certain values of a, is independent of $*zz 

(11) 
Also, for 8 > Bo the resonance wave function is square 
integrable. In actual calculations, using a finite set of L2 
basis functions, one tries to satisfy the first of the con- 
ditions in eq 11 

(dE/dv) = (dzE/dv2) = *-- = 0 

can actually be viewed as an approximation to eq 12, for 
8 = 0. Another fact pointing at the close relation between 
the CR and stabilization methods is the observation that 
for successful location of resonances via complex scaling 
it seems to be absolutely essential to choose a (in eq 10) 
in the immediate vicinity of the avoided crossing (in fact, 
usually from the crossing nearest to a = 1) in the a (or 
stabilization) t r a j e c t ~ r y . ~ ~ , ~ ~  Also, the resonance energy 
determined by the subsequent CR calculation usually 
differs very little from the energy estimated from the 
stabilization g r a ~ h . ~ J O  

It therefore appears plausible that, having determined 
the resonance energy via stabilization, it should be possible 
to calculate the width with less than a complete, full-scale 
coordinate rotation (CR) calculation. One idea suggests 
itself quite naturally. First, the stabilization calculation 
(a trajectory) should be performed, thereby locating an 
avoided crossing in the a trajectory (and simultaneously 
identifying the resonance stat&)). Then, for a within the 
neighborhood of the avoided crossing, a 8 trajectory (a 
series of complex diagonalizations of H(B)) should be done, 
but in a smaller, selected subspace of the stabilization 
eigenvectors which includes the resonance state (eigen- 
vector) and other “important” eigenvectors whose selection 
is discussed below. The rest of the spectrum, i.e., the 
remaining stabilization eigenvectors, which are not as 
“important”, could then be taken into account, if necessary 
by (hopefully) low-order perturbation theory. The idea 
we have just outlined has, in its basic elements, been 
proposed first by Winkler and Yaris31 and Winkler.32 
However, they did not mention stabilization and stabili- 
zation eigenvectors at all. They speak in terms of (pseudo) 
eigenstatea of H(0) (i.e., of the unrotated Hamiltonian) and 
a state which will become the resonance state upon ap- 
propriate rotation. It is not clear how they distinguish that 
particular state among all of the others (which is essential 
for selection of the “important” subspace) without per- 
forming the stabilization or a similar calculation. 

We therefore decided to €urther explore the possibility 
of doing CR calculations using selected subspaces of sta- 
bilization eigenvectors as basis sets, with aim to signifi- 
cantly reduce the dimensionality of the problems and, 
hence, the computation time and cost. As an integral part 
of this effort, a perturbation-based scheme was developed 
to permit the systematic selection of those stabilization 
eigenvectors which sould be included in the subspace. 

We tested the idea outlined above on a model two- 
open-channel problem previously used by Nor0 and Tay- 
lor33 and BaEiE and S i m ~ n s ~ ~  in their studies on CR cal- 
culations of branching ratios. In that case, both the sta- 
bilization and CR methods proved very successful in 
calculating the resonance parameters; thus the model 
seemed suitable for our purpose. The model Hamiltonian 
is (in atomic units)33 

(29) Z. BaEiE and J. Simons, submitted to Int. J. Quantum Chem. 
(30) Z. BaEiE, Ph.D. Thesis, University of Utah, 1981. 
(31) P. Winkler and R. Yaris, J. Phys. B, 11, 1481 (1978). 
(32) P. Winkler, J. Phys. A, 283, 149 (1977). 
(33) T. Nor0 and H. S. Taylor, J .  Phys. B ,  13, L377 (1980). 
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TABLE IV: Eigenvalues of H ( a )  (a = 1, e = 0 )  

n En n En 
1 -2.314 271 304 037 32  1 9  11.133 630 465 733 03 
2 -1.310 073 915 733 37 
3 
4 

-0.537 258 889 746 67 
-0.031 962 419 580 11 

5 
6 
7 
8 
9 

1 0  
11 
1 2  
1 3  
14  
1 5  
1 6  
17 
18 

0.419 778 960 165  17  
0.817 397 093 137 09  
1.079 924 868 152 32 
1.895 866 485 926 64 
1.997 886 132 935 7 1  
3.252 783 698 990 58 
3.275 618 722 388 1 2  
4.764 924 820 855 64 
4.867 090 923 401 42 
5.009 561 296 869 77 
6.419 099 242 275 16  
7.519 821  154 188 84 
7.558 043 504 364 84 
9.029 909 1 2 1  361 47 

20 11.212 647 113 196 75 
21 13.941 303 807 802 51  
22 16.779 513 035 302 88  
23 17.736 1 9 1  714 492 20 
24 23.048 508 597 900 58 
25 25.482 017 323 217 62 
26 30.998 125  085 083 66 
27 39.883 354 472 169 25 
28 44.185 939 157 597 16  
29 66.106 274 509 650 16  
30 69.015 005 428 989 73 
31 122.143 202 116 384 1 3  
32 123.854 187 851 620 1 8  
33 281.286 076 644 219 35  
34 282.231 675 159 305 71  
35 1 139.139 386 726 710 67 
36 1 139.739 659 021 877 82 

where Ho is a target Hamiltonian defined to have two 
eigenstates 

H o ( x ) $ a ( x )  = Ea$a(x)  a = 1, 2 (15) 
The matrix elements of the interaction potential between 
target eigenstates are defined as follows:33 

Uag(r) = Jdx $,*(x)V(x,r)$,&) = U,gr2e-r (16) 

The energies (E,) of the target states are 0.0 and 0.1. A 
Slater-type orbital basis set was chosen% for the expansion 
of the r dependence of the CR wave function 

$&,r) = CCja$,(x)de-Er a = 1, 2 ; j  = 1, 2, ..., 18 
4 

(17) 

The eigenvalues (E,) of the (unrotated) Hamiltonian at the 
point of the stabilization trajectory characterized by a = 
1, in the vicinity of the avoided crossing (see Figure 4), are 
listed in Table IV. In this table, the resonance eigenvalue 
E R  (and the corresponding eigenvector), determined via 
stabilization, is numbered 12. The problem of selecting 
those continuum states (eigenvectors) which are to be in- 
cluded in the subspace in which the complex diagonali- 
zations (0 trajectories) will be performed was approached 
via perturbation theory. 

Due to the peculiar form of the interaction potential 
matrix elements (eq 16), the Hamiltonian in eq 14 does 
not lend itself easily to factorization into some zeroth-order 
Hamiltonian and a perturbation, H’. Therefore, we de- 
cided to treat the coordinate rotation itself as a pertur- 
bation, i.e., to write 

H ( d  = H(a)  + [ H ( d  - H(a)l (18) 
where q = aei8 and H(a)  is the nonrotated partially (real) 
scaled Hamiltonian. Then the perturbation term, H’(q), 
is 

(19) 
The nondegenerate perturbation theory estimate of the 
second-order correction to the resonance energy E R  of the 
unrotated (0 = 0) Hamiltonian can be written as 

(20) 

where the an’s and @R (ai2) are the eigenvectors of H(a)  
(for a = 1 in this case). Each of the terms in the sum- 
mation in eq 20 is a complex number, for 6 # 0. Therefore, 

“(7) = H ( d  - H(a)  

( @RIH’(q) I a n )  ( @nIH’(q) I @R) 
ER(2)(q) = C ’ 

n#R ER - En 
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0,9 80 0,996 1,012 1,028 LO 44 

0,988 1,004 1,020 1,036 
U 

Flgure 4. Stabilization graph for the resonance In the model two- 
open-channel potential problem. 

without going into much detail, we rewrite eq 20 in a rather 
symbolic form (since explicit working expressions are un- 
important for our purposes) as 

Re H’(V)R,n i Im 
ER(2)(q) = C ’ (21) 

n#R E R  - En 

where Re H’(q)R,, is the real part of ( @ ~ l H ’ ( q ) l @ ~ ) ( @ ~ l -  
H’(q)l@R), and Im H’(V)R,~ stands for the imaginary part 
of the same expression. Defining 

we may write eq 21 in the form 
ER(2)(d = ’ C(q)R,n (23) 

Although we and the others have looked into using such 
a second-order perturbation equation to actually compute 
resonance energies as the rotation is “turned on”, it seems 
that such an approach is doomed to failure. The pertur- 
bation is simply too large. However, we do not intend to 
use eq 23 to evaluate the resonance energy and width. 
Rather, we are making use of the perturbation concept as 
a device to identify those eigenvectors which couple most 
strongly to our resonance eigenvector. These eigenvectors 
are then to be used in a matrix diagonalization (not per- 
turbation) determination of the resonance parameters. 

in eq 23 contributes 
both to the resonance energy, through its real part, and 
to the resonance width, through its imaginary part, it 
seemed natural to take the magnitude of the modulus 
IC(q)R,nl (rather than the size of either Re H’(q)R,? or Im 
H ’ ( v ) ~ , ~  of eq 22 alone) as a measure of the coupling be- 
tween the resonance state aR and any of the other states 
an. The selection of the eigenvectors to be included 
in the complex diagonalization subspace is thus based on 
the size of IC(q)ml (see Table V). The larger IC(a)mI, the 
stronger the interaction between @” and @R, the more 
important that the state Gn should be included in the 
subspace. This gives our prescription for selecting the most 
important eigenvectors of H(a).  

A glance at Table V reveals the somewhat disappointing 
fact that no single modulus ~ C ( V J ) ~ , , , ~  (or very small group 
of them) is overwhelmingly larger than the others. This 

n # R  

Since each (complex) term 
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TABLE V: List of I C ( ~ ) R  J a  
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n !C(q)R,nI n lC(q),,nl a 

1 0.000 000 001 249 4 6  1 9  -0.000 209 2 2 1  222 66 
2 0.000 000 044 079 0 5  2 0  -0.000 004 297 709 0 3  
3 0.000 000 0 5 2  774 0 4  2 1  - 0.000 000 002 105 88 
4 0,000 000 043 222 22 22 - 0,000 000 002 105 88 
5 0.000 000 062 280 9 5  23 -0.000 022 616 1 4 2  73  
6 0.000 000 023 1 8 2  37 24 -0.000 004 553 994 44  
7 0.000 000 256 422 17  25 -0.000 000 001 085 8 2  
8 0.000 000 348 348 77  26 -0.000 000 889 394 15 
9 0.000 000 453 1 7 2  78  27 -0.000 000 000 222 91 

10 0,000 000 674 626 09 28 -0,000 000 132 8 4 2  75 
11 0.000 006 785 535 8 1  29 -0.000 000 000 1 7 0  11 
1 2  0.000 000 000 000 00 30 -0.000 000 003 5 7 1  89 
13  -0.009 1 5 3  599 1 5 8  2 6  3 1  - 0.000 000 000 104 9 4  
1 4  - 0.000 363 732 235 44  32  - 0.000 000 004 397 28 
1 5  -0.000 200 2 4 1  352 9 2  33 -0.000 000 000 046 3 0  
1 6  -0.000 007 239 306 7 8  34  -0.000 000 001 050 69 
17  -0.000 555 684 613 44  35 -0.000 000 000 013 93 
1 8  -0.000 414 232 208 0 6  36 -0.000 000 000 263 67 

a Since the perturbation term H’(q )  (eq 19) vanishes for 
e = 0, the coupling elements l C ( q ) ~ ? ~ i  were calculated for 
e = 0.02 rad (a = 1). The choice of e is quite arbitrary; 
the relative magnitudes of the coupling elements are con- 
stant over a wide range of the rotation angles e .  

means that there are a number of states (i.e., stabilization 
eigenvectors) which couple quite strongly to the resonance 
state (eigenvector number 12) and therefore have to be 
included in the subspace. However, since the time required 
to diagonalize a matrix varies as the third power of the 
matrix size, any appreciable fractional reduction in the 
number of eigenvectors which must be treated represents 
a substantial gain. 

The observation that several eigenvectors interact 
strongly with aR is in strong contrast with the case of ‘S 
resonance of He studied by Winkler and Yaris.3I Through 
a similar analysis (although the Hamiltonian involved and 
the choice of its partitioning were very different from ours) 
they concluded that only two (pseudo) eigenstates of H(0) 
needed to be included into the subspace. Thus, the com- 
plex scaling calculation reduced essentially to repeated 
diagonalization of a 2 X 2 complex symmetric matrix, 
apparently yielding very good  result^.^' 

From Table V, it is evident that a group of states exists 
(numbers 11-23 (or 24)) whose coupling elements (Le., the 
moduli IC(V)~J) are by at least a factor of 5-10 larger than 
those of the others. If our concept of strength of inter- 
action, or magnitude of coupling (measured by the size of 
IC(&J) between the resonance and nonresonant states 
has some validity, complex scaling calculations in this 
subspace should give reasonable values for the resonance 
parameters. We see, from Table VI, that a coordinate 
rotation calculation including only the eigenvectors with 
numbers 11-24 reproduces the exact resonance energy (as 
determined by full CR c a l c ~ l a t i o n ~ ~ * ~ ~ )  and a resonance 

width which differs by only 8.8% from the exact width. 
Such CRISES (coordinate rotation in the stabilization 
eigenvector subspace) calculations were performed for 
subspaces of varying dimensions; several of the results are 
shown in Table VI. It is clear that by enlarging the sub- 
space, i.e., by including more of the stabilization eigen- 
vectors, the CRISES results approach more and more 
closely the exact, full CR results. 

It must be emphasized here that neither the initial 
choice of subspace nor its subsequent enlarging should be 
made in an arbitrary fashion. As an illustration, a 7-18 
CRISES calculation was performed. The resulting 0 tra- 
jectory was so featureless that a resonance kink could not 
be located. Yet, the dimension of the subspace, 12, is equal 
to that arising in a 12-23 CRISES calculation which 
yielded a very respectable result (see Table VI). Moreover, 
a 9-21 CRISES calculation gave as resonance parameters 
E = 4.7679 and I’ = 0.001994, which are clearly inferior 
to those of a 12-24 CRISES calculation (see Table VI), 
although the subspace dimensionality is the same, 13, in 
both calculations. What the 7-18 and 9-21 calculations 
have in common is that the selection of the subspaces was 
made ignoring the list of IC(V)R,,,~’S in Table V. Conse- 
quently, several important states, relatively strongly cou- 
pled to the resonance state (measured by the magnitude 
of their lC(~)R,,,l’s) were left out. An additional important 
point emerges from these two examples (and numerous 
other CRISES calculations we have performed): the en- 
ergy difference IER - E,,] occurring in the denominator of 
IC(q)R,,,l plays a secondary role in determining the im- 
portance of a continuum state, @,,, in the present context. 
Evidently, states which have to be included and which were 
missing from both of the above (7-18, 9-21) CRISES 
calculations (for example, states 19-24, in the 7-18 
CRISES calculation, or states 22-24 in the 9-21 calcula- 
tion) lie 7-19 au above the resonance state (see Table IV). 
Inclusion of states 7-11, which are very close in energy to 
the resonance state (see Table IV) helped little. In sum- 
mary, the selection of states to be included in the subspace 
has to be systematic, the criterion being the strength of 
their coupling to the resonance state, measured by the 
magnitude of IC(V)R,,,~. 

The resonance energies apparently converge faster than 
the widths as the subspace quality is improved. This 
should not be too surprising; the stabilization eigenvector 
subspace includes the resonance state which, as we know, 
has an energy very close to the exact resonance energy. 
Consequently, an essentially exact position of the reso- 
nance can be obtained by using subspaces of considerably 
smaller dimensions; a 12-24 CRISES calculation yields the 
exact resonance energy, but the width is still -13% off. 

We have observed, in numerous calculations, that the 
CRISES 0 trajectories follow closely the full CR trajecto- 
ries. A representative example of this is shown in Figure 

TABLE VI: Resonance Energy and Width (in au) for the Model Two-Channel Problem 
CRISES~  calculation CRISES~ + eq 24c eq 24d 

statesa E ,  r Er r Er r 
12-21 4.7679 0.001957 4.7681 0.001900 4.7680 0.001900 
12-23 4.7681 0.001724 4.7681 0.001470 4.7681 0.001583 
12-24 4.7682 0.001598 e e 4.7680 0.001133 
11-24 4.7682 0.001545 4.7682 0.001453 4.7682 0.001472 

9-26 4.7682 0.001441 4.7682 0.001402 4.7682 0.001393 
7-28 4.7682 0.001423 4.7682 0.001416 4.7682 0.001416 

Resonance parameters determined by full complex coordinate rotation calculation:*9333 E,  = 4.7682; r = 0.001420 

second-order correction (eq 24) a t  every point of the e trajectory. 
resonance “kink” located on  a CRISES e trajectory. 
perturbation trajectory. 

a Eigenvectors included in the subspace. Coordinate rotation in stabilization eigenvector subspace. CRISES + 
Second-order correction (eq 24) is added only t o  the 

e The location of the resonance could not be determined from the 
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+ 
I 

I ”  ‘ I ‘ l l ’  
4,7685 

I ” ’  
4,7665 4,7675 

E, (a.u) 

F W e  5. The 6 trajectories of the resonance elgenvaiue of the model 
twwpen-channel potential problem: (+) full coordlnate rotation 0 
traJectory; (0) 11-24 CRISES 6 trajectory. 

5. The CR and CRISES 6 trajectories differ markedly in 
one aspect; while the resonance located by the former is 
almost perfectly stable over a wide range of angles 6, such 
is not the case for the CRISES trajectory (see Figure 5). 

The results in Table VI demonstrate, for this model 
two-open-channel problem, the viability of the CRISES 
approach. They show that CR calculations can be per- 
formed, with very acceptable results, in a subspace which 
includes but a fraction of the total number of stabilization 
eigenvectors (12-14 out of the total of 36 eigenvectors, in 
our case). This drastically reduces the computational effort 
associated with repeated diagonalizations of the complex 
symmetric matrices. 

In addition to the results presented above for the 
Nor-Taylor model problem we performed a few prelim- 
inary CRISES calculations on one of the atom-diatom 
model systems treated previously in section 111. The re- 
sulta were ah0 very encouraging, being essentially identical 
with those obtained in a full CR calculation. 

Can the CRISES results be further improved by taking 
the rest of the stabilization spectrum into account via 
perturbation theory? Winkler and Yaris31 concluded, for 
the case of the lS He resonance, that, while the second- 
order perturbation correction did not change the result 
remarkedly, it affected the backbending (“kinking”) of the 
6 trajectory (see Figure 1 of ref 31). Moiseyev and CertainN 
applied high-order nondegenerate and almost-degenerate 
perturbation theory to CR calculations of lS He reso- 
nances. Their concluding opinion was that the perturba- 
tion approach was not likely to have general utility, mainly 
because the radii of convergence of the series were often 
found to be too small. 

The second-order perturbation theory estimate of the 
effect of the neglected stabilization eigenvectors on the 

(34) N. Moiseyev and P. Certain, Mol. Phys., 37, 1621 (1979). 
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resonance energy and width obtained by our subspace 
diagonalization scheme is given by 

ER(2)(v) = c C(v)R,n (24) 

The notation is that of eq 23. The n €E S symbol means 
that the states belonging to the ”important” subspace are 
to be omitted from the summation. Clearly, we have di- 
vided the stabilization eigenvectors (states) into two 
classes. In the first class are those continuum states an 
which, judging by the magnitude of their JC(B)~~’s ,  interact 
strongly with the resonance state. They, together with the 
resonance state, form a basis in which the CRISES cal- 
culations are performed. The continuum states in the 
second class, considered less important because of their 
smaller IC(B)R,~I’S and therefore left out of the complex 
diagonalization subspace, are summed over in the sec- 
ond-order perturbation correction in eq 24. 

Such perturbative correction of CRISES results can be 
accomplished in two ways. In one, the correction ER(2)(v) 
is added to the (complex) eigenvalue of the resonance state, 
as calculated via CRISES, a t  every point of the 6 trajec- 
tory. If this scheme were to work, the corrected or per- 
turbed 6 trajectory should reveal a resonance kink thereby 
yielding the energy and width. 

The second alternative is to locate the resonance 
(“kink”) via the original CRISES 6 trajectory. The 
CRISES resonance energy and width can then by corrected 
by adding the perturbation correction ER(2)(g0). Here vo 
= aOeieo is the critical value of the scaling parameter 7, as 
determined from the CRISES 6 trajectory. 

The results obtained by implementing both of these 
perturbation correction approaches are given in Table VI. 
I t  appears that ER(2)(v) corrections affect the CRISES 
results in a rather unpredictable, ill-defined, and not al- 
ways beneficial mannr. Sometimes resonance positions 
and widths are improved, but not significantly. In other 
instances the agreement with the exact results is actually 
worsened. In one calculation (12-24, in Table VI) the 
resonance (kink) could not be located at  all with this 
perturbation trajectory. In our opinion, making the ER(2)(v) 
correction is not advisable; it is certainly not worth the 
effort. 

V. Concluding Remarks 
We have shown that the stabilization method is capable 

of yielding accurate energies of one- and two-open-channel 
resonances in triatomic systems. We have also shown that 
the widths of rotational Feshbach resonances of atom- 
diatom systems can be calculated, with good accuracy, 
using two eigenvectors obtained via the stabilization me- 
thod and Miller’s “golden rule” formula. It was especially 
satisfying to demonstrate that the specific “golden rule” 
expression used here, until now tested only on electronic 
autoionization lifetimes of atoms and molecules, can be 
successfully applied to heavy particle predissociation 
phenomena. The present procedure poses no severe com- 
putational problems since it consists essentially of repeated 
diagonalizations of (real) Hamiltonian matrices for various 
values of the scaling parameter a. It appears to be par- 
ticularly suitable for narrow resonances since, in these 
cases, the resonance eigenvalues are very “stable”, thereby 
making the extrapolation arising in the implementation 
of the “golden rule” expression more precise and presum- 
ably accurate. Thus, the present procedure seems to 
complement the range of efficiency of the more common 
(e.g., phase shift analysis) scattering calculations where it 
is often difficult to locate narrow resonances since the jump 
in phase occurs over a very small energy range. 

nES 
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It is likely that the stabilization and golden rule pro- 
cedure can be readily applied to vibrational Feshbach 
resonances as well. Eastes and Marcus have successfully 
used the stabilization method to locate such resonances 
in atom-diatom oscillator colinear  collision^,^^ although 
they made no attempt to evaluate the resonance widths. 
Location of resonances by performing scattering calcula- 
tions proved in the case (narrow resonances) treated in ref 
35 to be very difficult. This again supports our belief that 
the present L2 method will be useful in supplementing 
conventional scattering techniques. 

Considering our results on the model two-open-channel 
problem as well as work of Winkler and Yaris31 it seems 
that the stabilization procedure provides a good starting 
point for a more efficient, less time-consuming version of 

86, 1200- 1204 

(35) W. Eastes and R. A. Marcus, J. Chem. Phys., 59, 475 11973). 

the coordinate rotation technique. Subspaces of stabili- 
zation eigenvectors, selected via second-order perturbation 
theory, allow for significant reduction in the dimensionality 
of the complex symmetric matrices to be diagonalized in 
the course of computing B trajectories. This saving may 
be particularly important for many-open-channel problems 
where the matrix dimensions can quickly become prohib- 
itively large. The results obtained via this scheme compare 
favorably with full coordinate rotation results. Accounting 
for the neglected part the stabilization eigenvector spec- 
trum by second-order perturbation theory does not seem 
worthwhile in light of our results. 
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A Monte Carlo method by which the properties of a collection of interacting nuclei and electrons might be 
accurately calculated is briefly outlined. This method allows quantitative determination of the pairwise 
intermolecular potential and potential surfaces but eliminates the use of these constructs for dense systems. 
Preliminary results on the electron gas, hydrogen solid, and the molecules Hez, LiH, Liz, and H 2 0  are at least 
as accurate as the best previous work. 

Introduction 
Great progress has been made in recent years in quan- 

titatively calculating the equilibrium properties of bulk 
matter just from knowledge of the interactions of the 
constituent atoms or molecules, provided these behave 
classically. This has been made possible through the 
Monte Carlo method, carried out on computers.' This 
method overcomes the mathematical difficulty of evalu- 
ating high-dimensional integrals, such as the partition 
function, by sampling configurations of the system, chosen 
according to their Boltzmann weight. The desired integral 
averages over these configurations are readily carried out 
for any property. The accuracy of the result for a given 
number of particles is only limited by the number of 
configurational averages that are practical to perform. 

Very complex systems, such as long hydrocarbons and 
polymer fluids, have been simulated in this way, using 
simplified model intermolecular potentials. Although in 
these complex systems it is very time consuming to move 
from one configuration to another, the true limitation in 
the quantitative comparison to experiments rests in the 
need for accurate knowledge of the intermolecular poten- 
tial. This is true even for the simplest known liquids- 
namely, those of the rare gases. The intermolecular PO- 

(1) N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, 
and E. Teller, J. Chem. Phys., 21, 1087 (1953). 
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tential, which is the only input required in these calcula- 
tions, is usually derived empirically from low-density data. 
Such data as transport coefficients and second virial 
coefficients are most commonly used, because this infor- 
mation can be readily inverted to yield an intermolecular 
pair potential. Further, very useful information about the 
pair potential can be derived from spectroscopic and mo- 
lecular beam experiments. The best pair potential deduced 
from all these experiments, however, fails to quantitatively 
predict the dense fluid properties even for argon.2 This 
is because the total potential is not accurately represented 
by the sum of pairwise potentials thus derived. Very little 
is known about higher-order corrections to the pairwise 
additive potential. Somewhat surprisingly, however, when 
the asymptotic triplet correction is added, in the case of 
the rare gases, most fluid properties are nearly quantita- 
tively predicted. 

Nevertheless, this is not a satisfactory situation from the 
statistical-mechanical point of view. First of all, in the 
process of obtaining the intermolecular potential, the 
statistical mechanical expressions valid at low density are 
utilized. This logic deprives us of any hope of calculating 
low-density properties from first principles. Secondly, the 
inversion process by which the intermolecular potential 
is derived is not unique. Furthermore, the interaction of 

(2) J. Barker, Reu. Mod. Phys., 48, 587 (1976). 
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