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A coupled-cluster method which permits the use of multiconfiguration reference states has recently been
developed in this laboratory. In the present work, it is applied to several states of H, ('Z,"), Li(:S), HeH,{'A,),
and CH,('B,,'d), which include both open and closed shells. These applications are made within an

approximation in which the cluster operator (T) is truncated at T,, T=~T', + T, and the expansion of ¢ ~7 He”
is truncated at the double-commutator level. For cases where a single configuration function ceases to be a
good starting point, it is found that a single configuration based truncated coupled-cluster procedure may
exhibit serious difficulties. In such cases we find it possible to choose a multiconfigurational reference state for
which our coupled-cluster procedure converges reasonably rapidly. This paper contains several illustrations of

such convergence characteristics.

l. INTRODUCTION

In recent years, it has become ever more common to
apply the methods of molecular quantum mechanics to
numerous chemical phenomena in which knowledge of
the potential energy surface at the equilibrium and dis-
torted geometries of the molecule is essential, So-
called size-consistent (SC)''2 methods are especially
desirable in such applications. Rayleigh—Schrédinger
or many-body perturbation theories and certain cou-
pled-cluster (CC) methods are examples of SC theories.
CC theory based on the exponential operator [exp(7)]
ansatz has been developed using a Hartree—Fock (HF)
single determinant reference function for closed-shell
systems, ¥”°

Recently, we developed a CC method® which admits a
multiconfiguration (MC) reference wave function
& =3 xCyxXx, Where the {x,} label the configurations. In
this method, closed- and open-shell problems can be
solved using the same formalism. The theory is cast
in terms of the generators of the unitary group, which
leads to fast computation of requisite matrix elements.
Although CC methods for open-shell systems have
previously been discussed™® and extensively used in a
single determinant framework'? by others, the results
presented here represent the first applications of an
open- and closed-shell theory which employ a multi-
configurational self-~consistent field (MCSCF) reference
function,

To understand why we feel that it is desirable to have
available a MCSCF-based CC method, consider the sim-
ple reaction Be('s) +H,(*Z,) - Be H, (*4,), which we as-
sume to occur via a concerted bond insertion step which
preserves C,, symmetry, The dominant configuration
of the reactants is 1a2 2a%34%, where la,=1sg,, 2a;
=0, 1, and 3a;=2sg,. For the products BeH,, the dom-
inant configuration is la%2¢% 15%, where la; =1sg,,
2a; = 0pey, and 15, = op,n. Clearly, there will be an
avoided configuration crossing along the reaction path
of the ground state *A, surface being considered here.

Now consider how a single configuration based CC
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wave function attempts to describe the !4, wave function
along the reaction path (RP). If the 1a%24%3a? config-
uration is chosen to be the reference function | &) on
which exp(T) operates to yield the correct wave function
1*4,)=exp(T) 18), we expect the amplitudes occuring in
the T operator (see later) to be small when we are on
the reactant side of the RP, As we approach the region
of the avoided configuration crossing, we expect ampli-
tudes in 7, which describe double excitations (7',) out
of |®), to approach unity in magnitude [so that

exp(T) &)= |&)+ T |&)+- - - will contain both of the above
configurations with large amplitude]. Also, if the
orthonormal basis orbitals are obtained from a single
configuration SCF calculation on the 1a2 243 3a% refer-
ence determinant, we expect amplitudes in 7, which
describe single excitations (T,) out of %), to be rela-
tively large (~0.1) (because they describe orbital relax-
ation effects which should be significant when one at-
tempts to use SCF orbitals of {@) in situations where
1'A,) contains two dominant configurations). To imple-
ment a single configuration CC theory, we therefore
need to be able to deal with these large 7 amplitudes.

Actually, the situation becomes even more difficult
as we move along the RP toward the product (BeH,) re-
gion, Here, I'4,) is dowinated by the 1a?2a%1b% con-
figuration, [&)= [1a? 2a} 3a3) is only a minor component
of 1'4,). Hence, the T, amplitudes are very large
(>>1.0) because ['4,) = [&)+ T |&)+--- must contain
relatively little |®) and a large amplitude of T, ).
Moreover, in the product region, the SCF orbitals of
[®) are very bad for use in describing BeH,; the 15,
orbital of &) is an SCF virtual orbital of the la? 242 342
charge density which (for products) in no way corre-
sponds to the 1s%, 04,40 % charge density. Therefore,
we also expect the T, amplitudes to be vary large in the
product region of the RP.

From the above analysis of a not atypical chemical
reaction, we see that single configuration based CC
methods can work, but only if they are capable of deal-
ing with 7 amplitudes which range from small (~0,01)
to large (>>1,0) values. Of course, some of the diffi-
culties pointed out above could be removed by using the
1a% 24 3a? configuration as a reference function on the
reactant side of the RP and the 1a?2a% 1563 configuration
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on the product side. Such “solutions” are, however,
not satisfactory. What do you do near the avoided
crossing and where, along the RP, do you switch from
one reference configuration to the other ?

We feel that the problems outlined above are better
dealt with by using a multiconfiguration reference func-
tion (1aZ2a%3a? plus 142 2¢% 1bZ for this example) so that
exp(T) will always contain small (£ 0, 1) amplitudes., We
admit that it is possible to use a single configuration
reference but only if the following two conditions are
met:

(i) One must not, in deriving a set of CC equations
which govern the T amplitudes, discard higher powers
of T in comparison to lower powers of T. If T is large
this would be entirely incorrect, As we will see later,
this means that one can not throw away the cubic and
quartic commutators [see Eq, (6)] which arise in
exp(—T) Hexp(T); they may be as large or larger than
the lower commutators if the T amplitudes are large,.
Only in special cases (T'= T,) will the contributions
made by the cubic and quartic terms to the energy and
to the equations which govern the T amplitudes vanish
identically.

(ii) One must be able to numerically solve the equa-~
tions for T using an algorithm which is capable of find-
ing large T amplitudes, Procedures which are based
upon iterative solutions starting with a perturbation
theory estimate of the T amplitudes may be dangerous
to use. Rather than face the formidable difficulties
which arise in using the single configuration reference
function, we have chosen to explore (as an alternative)
the use of a MCSCF reference function within a CC
framework. The remainder of this paper deals with
our findings about how this MCSCF-based approach per-
forms.

We first apply the CCMC method to several model
systems [for which full configuration interaction (CI)
calculations can be done] to explore the effect of the
choice of reference function on the computational accu-
racy and efficiency. Based upon the experience gained
from these model calculations, we have also applied the
method to a chemically more important system (CH,,
’B,, and 'A,). Section II gives a brief sketch of the for-
mal development carried out in Ref, (8). Section III
describes aspects of the computational implementation
of the method, and Sec. IV contains our results.

ii. DESCRIPTION OF OUR CCMC METHOD

We begin by letting |0) define a “core function” in
which all orbitals are doubly occupied, These orbitals
remain passive in the sense that they remain doubly
occupied in all configurations {x,} of the multiconfigura-
tional (MC) reference and in all determinants arising in
exp(T)®. That is, the T operator does not excite elec-
trons from these core orbitals. The choice of the core
is dictated by the chemical problems at hand. In the
reaction Be +H,~ BeH,~ BeH +H, it may be acceptable
to choose the 1s orbitals of Be to be the core, In study-
ing Ni + CO—~NiCQ, it could be appropriate to include
the CO o, and #n, (lone pair on oxygen) orbitals in the

core (along with the obvious 1s,, 1s,, 1sy, 25y, 2bm),
even though these orbitals are energetically not widely
separated from the “active” (e.g., #n,, Tgo, Tho) Orbit-
als, That is, the core orbitals need not include only the
low ~energy inner-shell orbitals., The chemical process
under study defines the active orbitals; the remaining
orbitals can then be treated as core orbitals as far as
that particular process is involved. We emphasize that
the reduction in the size of the problem effected by a
particular choice of the core (passive) orbitals is
merely a matter of convenience. One can, of course,
always choose the core |0) to involve no electrons,
thereby treating all orbitals as active, Those orbitals
which occur in the various configurations of the MC
reference function but which are not always doubly oc-
cupied we refer to as valence orbitals. Our CC method,
therefore, deals only with how to treat electron corre-
lation among the valence electrons.

The multiconfiguration (MC) reference wave function
used in Ref, (6) is expressed in the form

8(C,x) = ;x,( Crr X =2%l0), (1)

where the configurations y, are written in terms of
operators which add valence electrons to {0)., That

is, ©} contains only valence creation operators (in nor-
mal order). These valence orbitals are designated by
Greek subscripts @, 8,.... As was done in Ref, (8),
we assume that the MC function & is expressed as a
linear combination of all configurations {y,} which can
be formed by distributing the N valence electrons among
the M valence orbitals, TFor this reason, we say that

& consists of a full -valence CI wave function. For the
Be +H, example used in Sec. I, the valence orbitals
could be the 2a,, 3a,, and 15, orbitals (with the 1a,
orbital being a core orbital). & would then contain all
valence configurations (243 3a%, 245 162, 342 162, 24, 3a, 152
consistent with 1A1 symmetry (the 12% component of
each configuration was suppressed). The precise form
of the core and valence (1a,, 2a,, 3a,, 1b,) orbitals is de-
termined via the MCSCF process. In this MCSCF step,
the amplitudes {C} of the above four configurations are
determined as are the full set of core, valence, and ex-
cited MCSCYT orbitals,

We designate the (excifed) orbitals not occupied any -
where in & by Roman subscripts p, ¢,7,s,.... The
subscripts i, j, k, and / are used to denote arbitrary
orbitals. Within this notation, the cluster operators,
which will eventually be allowed to act on the MC ref-
erence function &, are expressed as follows:

N
T=3.T,,
s=1

with

1
T, = Z traera’ Ty = '2' z t'rasBeraaBy LIRS (2)
ro

rosB

The amplitudes t,,, ¢,,4, ... are the fundamental quan-
tities to be evaluated in the CC calculation. Here,

€y =€y ey — Oy, and e;; = ¥ ai,a;, are the gener-
ators of the unitary group, with a%, being a Fermion
creation operator for an electron in spatial orbital ¢,
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and spin state o« or B).

In writing the T operator as in Eq. (2), we have in-
troduced one of the fundamental approximations of our
method, We restrict T to excite electrons from the set
of valence orbitals to the excited orbitals, 7T contains
no terms of the form ¢ _ge,, which would cause excita-
tions among the valence orbitals, or {4, €.z, Which
would cause “semi-internal” excitations from valence
orbital 8 to valence orbital @, and from y to excited
orbital s, Because our reference function & is of the
full-valence CI form, excitations among the valence
orbitals above (f,4e,5) would generate no new config-
urations when acting in & (and hence would only allow
for adjustments in the C, mixing coefficients) which is
expected to be of little importance because these valence
orbitals have been MCSCF optimized, Likewise, by
neglecting the semi-internal excitation terms (/,4,,€,45,)
we are making an approximation, but one which we feel
the FVCI reference function makes physically reason-
able. For example, in the BeH, case, the effect of a
t15,30 25,30, term would be to generate from the 2aj 3a2
configuration a 2a% 16, 2b, configuration (properly spin
coupled). A term f4,,3, 44,3, WOUld give a configuration
2a,4a,1b} when operating on 3¢516%2. Both of these two
resultant configurations could instead be generated by
valence -to -excited T operators which gre included in
our calculations: 2a?1b,2b, arises from €2b,15, OPET -
ating on 24%1b%. Moreover, the importance of these
configurations is expected to be small because they cor -
respond to valence orbital relaxation configurations.

If the MCSCF process has already optimized the valence
orbitals to adequate precision, further relaxation
should be minimal, In summary, we feel that the use
of the FVCI reference function whose orbitals have

been MCSCF optimized makes our approximation (re-
stricting T to contain only valence-to-excited excita-
tions) quite reasonable.

The Hamiltonian can alsobe written in terms of the
above unitary generators as

H=(O]Hf0)+ Zfi]N[eii]+% 2;1 VijklN[eikejl] ’ (3)
17 i
where

Jij= hi+ Z) @Vieje =

cel0

Viccj) ’ (4)

and ce |0) denotes that the orbitals ¢, run over the core
orbitals. Here, Z;; and V;;,, are the usual one- and
two-electron integrals in the Hamiltonian. Because of
the normal ordering of the operators in H, and because
T contains no core-orbital operators, any time H op-~
erates on a function of the form 77|&), the terms in-
volving core-orbital integrals vanish, That is, the
indices i, j, k, I in the last two terms of Eq. (3) need
not be summed over the core when H operates on any
function containing a frozen core.

Because our T operator only contains operators of
the form e,,, €,,., etc. (which involve only valence-
to-excited orbital promotions), the usual intermediate
normalization property of exp(7T)&

(dleTa)=(®]®) + I t,a(dle @)+ =1, (5

A. Banerjee and J. Simons: Multiconfigurational coupled-ciuster theory

and the {exact) truncation of the commutator expansion

H=eTHeT=H+[H, T|+ % (TH, Tl T]
1 1
+ gyifia, 1), T, T]+;1—![[HH,TLT1,T],T1 (8)

are straightforward to verify.

In a single-configuration based CC theory, the above
[Eq. (8)] quartic truncation of the commutator expan-
sion also occurs. Moreover, if one approximates 7 by
T, (i.e., if one neglects 7, Ty, etc.), Then the cubic
and quartic terms in Eq. (6) contribute nothing (in the
single configuration case) to the equations [Eq. (9) and
(10)] governing the t amplitudes and the energy. Such a
T =T, approximation is made in the so-called coupled
pair many-electron theory? (CPMET), It is our opinion
that if one insists on using a single configuration ref-
erence function then, as we illustrated in Sec. I for the
Be +H, example, one can not neglect the orbital relax-
ation effects described by 7T,, in which case Eq. (6)
contains all four commutator terms, Certainly if one
has good reason to believe that the single configuration
reference function dominates the true wave function
(i.e., that the t amplitudes are small), it makes good
sense to then (as an approximation) neglect the cubic
and quartic commutators in Eq. (6). However, to do
so when the single configuration reference function
represents a nondominant or even minor contribution
to the true wave function is not proper because in such
cases the t amplitudes (including 7';) will be large
=1.0).

In the work presented here, we have ignored the
cubic and quartic commutators in Eq. (6) because we
have reason to believe that our MCSCF reference func-
tion already contains the dominant contributions to the
true wave function, and hence that the t amplitudes are
small,

Assuming that exp(T) is the operator which, when
acting on &, gives an eigenfunction of #

v=e"3, ™
with
HV=EV¥ , (8)

then the unknown ¢ amplitudes (¢,., tmgns; +« - ) CBN De
calculated by projecting Eq. (8) against a sufficient set
of “excited” functions &,y a..= €,4ss... | ®), and using
Egs. (5) and (6) to give

(,0ep... |H|3)=0 . (9)

Once the ¢ amplitudes are known, the total energy can
be calculated from

(p|H|®)=E , (10)

Although the configuration mixing coefficients C are
presumed (in Ref. 6) to have already been determined,
and hence held fixed, it is possible to further extend the
range of the theory by calculating the C coefficients by
projecting Eq. (8) against the configurations of the ref-
erence space {x;}

(x| Bl®y=EC; . 1y
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Because Eqgs. (8) and (11) both contain reference to the
C and t coefficients, the calculation of t and C would
then require an iterative scheme. In the present appli-
cations of the theory developed in Ref. 6, we choose to
compute C via a small multiconfigurational self-con-
sistent field calculation and to then calculate t via Eq.
{9). This approximation procedure is in line with that
put forth earlier,® and it avoids the need for iterative
determination of t and C.

In Ref, 6, we give detailed expressions for the matrix
elements arising in Eq. (9), subject to the following
approximations: (i) the T operator manifold is
truncated to include one- and two-body operators (T,
and T,), and (ii) the expansion for the effective Hamil -
tonian # [Eq. (6)] is truncated at the double commutator
level, Approximation (i) is generally accepted to ac-
count for most of the electron correlation effects in
atoms and molecules, Approximation (ii), whose justi-
fication was discussed briefly above, is common to al-
most all CC calculations which have been performed to
date®® (417 of which have involved only single -deter-
minant reference states). Adoption of this second ap-
proximation assumes that the ¢ amplitudes are small
(«<1) for the chosen reference function &, Otherwise,
terms arising from the third and fourth commutators
in the expansion for H[Eq. (6)] would be important and
the truncation of Eq. (6) at the quadratic terms would
lead to meaningless results,

In most of the applications presented here, we have
also explored the use of one further approximation
which is dictated by computational considerations.
Even the linear and quadratic commutators occurring
in H[Eq. (6)] lead to three-body density matrix ele-
ments (see Ref, 6) in the equations [Eq. (9)] which de-
termine the ¢ amplitudes (but nof in the equation giving
the energy). Only density matrices whose indices
simultaneously involve both valence and excited orbitals
occur in these equations. However, the lists of these
three-body density matrix elements is too large to be
efficiently incorporated into our CCMC implementation,
In CC methods which are based upon a single -determi-~
nant reference state, the evaluation of these three-
body density matrices is substantially easier than in
our (MC) case because, as is well known, all such den-
sity matrix elements are either zero or unity. In the
present work, we chose to carry out two sets of cal-
culations; one in which these higher density matrices
are ignored and another in which they are properly
treated. In this way, we attempt to test the hypothesis
that they can often be safely ignored. In some of the
results presented below (those involving only two active
electrons —H, and certain CH, cases), the three-body
density matrices vanish identically; hence, they present
no problem. In other cases, we have evaluated the fuil
effect of the higher density matrices as well as the re-
sults obtained in their absence., As is shown by the re-
sults given below, it seems that the neglect of these
specific higher-body density matrices may often be
justified. It is our feeling that, although these initial
results are rather encouraging, further systematic ex-
ploration of this question is called for.

Before moving on to investigate, via numerical appli-
cation, how well the proposed CCMC method works, we
first turn our attention to the computational implementa-
tion of the technique.

11l. COMPUTATIONAL CONSIDERATIONS

We have implemented, on the Utah DEC 2060 com -
puter, the CCMC method developed by us in Ref, 6,
The computer implementation of the CCMC method in-
volves both calculation of the MC reference wave func-
tion and subsequent evaluation of the cluster amplitudes,
using the CCMC equations given in Ref. 6. The cal-
culational details of the procedure undertaken are dic-
tated by our decision to use the unitary group ap-
proach,*™'' As seen in Ref. 6, the matrix elements of
H and H can be written as sums of products of integrals
and density matrix elements f;,(® |e 4 13),

Viu(® leqs, |®). For any nontrivial problem, neither
of these two lists can be kept in the computer’s fast
memory, Because we have chosen to write all matrix
elements in terms of density matrix elements of the
reference function &, all {e,s) and (e ,g,,) involve only
the valence orbitals of &, As a result, it is most effi-
cient to permit the flow of the program to be driven by
the (longer) list of integrals. That is, for each block
of integrals, we read in and sort the entire {e,,) and

(€ 45, lists and we update the appropriate matrix ele-
ments of H or A. The machinery of the unitary group
approach provides very efficient algorithms!! for the
calculation of density matrix elements through a non-
redundant and “global” organization of the configura-
tions {x4}. In addition, since the H and 7T operators
are explicitly constructed to be totally (spin and space)
symmetric, the symmetry of & is preserved throughout
the calculations. Two steps involved in the calculation
of the cluster amplitudes require further elaboration,

A. Solution of the nonlinear equations

As can be seen in Ref, 6, retaining up through the
double commutator in the expansion of 7 yields nonlin-
ear (quadratic) equations for the ¢ amplitudes

Fi)=A+Bt+Ctt=0, (12)

Here, the matrices A, B and C arise, respectively,
from the zero-, one-, and two-commutator terms of
Eq. (8). The dimension () of this problem, which is
the number of # amplitudes, can become so large that
the list of A, B, and C matrix elements cannot be kept
in the computer’s high speed memory. In the litera-
ture, ™ one can find efficient solution procedures for
handling large dimensional linear equations A +Bt=0,
as well as discussion’® of how one might treat the non-
linear CC equations via linearization procedures. In
what follows, we present our own approach to this non-
linear equation problem. Our approach begins with the
above [Eq. (12)] set of quadratic equations, and results
in a small dimensional set of quadratic equations which
can be solved in the computer’s high speed memory.

In most such procedures, the matrices are projected
onto a (smaller dimensional) space spanned by a new
set of variables ¢,=3Ta,t;i=1, ..., p<m. To solve
the above equations [Eq. (12)], we need to use a pro-
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cedure appropriate to the nonlinear case.
sent the desired solution vector t as

Let us repre-

t=agty + gty —t) + Ayt —t,) + -+ =D a,at, (13)
=0

where At; is the difference between the jth and (5 - 1)th
approximations to t, and At,=t,. As a criterion for
convergence, we require o, -0 (hopefully for p <<m).
Substituting Eq. (13) into Eq. (12) and projecting against
(At |, we obtain

(at; [AY+ D aat | Blat)+D . a,aat|c]at,at) =0,
i ik

or, in matrix notation
A+aB+Caa=0, (14)

where the {a,} are now viewed as the unknown coeffi-
cients. These are a set of nonlinear equations in the
(smaller dimension) projected space which can be solved
in the computer’s high speed core memory by (as in our
calculations) the Newton-Raphson (NR) procedure or its
variant Ba%*V = - A -Ca'V’a"’, which yields an updated

a™! from a previous a*’,

The convergence of this procedure obviously depends
upon the choice of the initial vector'® t,, as well as on
the method used to generate the successive t;’s (or
At;’s) which are needed to form the A, B, and C arrays
in Eq. (14).

1

Given some choice of t;, further At;,’s can be obtained
from the following algorithm based on iterating Eq, (12)

[B,+(Ct), )t =-A~B,t, —(Ct),1, . (15)

Here, the subscripts d and » refer to the diagonal and
off-diagonal parts of the respective matrices. By sub-
tracting [B,+ (Ct;),]¢; from this equation, we obtain an
expression which can be used to iteratively obtain the

{as;}

(B4 +(Ct)),lAL,,, = = F(t)) . (16)

By starting with a t;, Eq. (16) then generates succes-
sive At;’s, which can be orthogonalized, and used in
Eq. (14) to construct the (smaller dimensional) pro-
jected-space problem. The solution of Eq. (14) then
gives values of {a;}, =1, ..., p. If for some p,
|, |~ 0 within a tolerance, we say that the process has
reached convergence. The final t amplitude array is then
given in terms of the @ by Eq. (13), If the dimension
(p) of these reduced equations becomes larger than can
be handled, one can simply take a new tq to be given by
the “current” t [Eq. (13)] and start the procedure over
again with this t,,

Of course, it is important to address how one obtains
t, at the start of the entire calculation. An obvious
choice of t; is the one satisfying the linear CCMC equa-
tion A+Bty=0. This starting value for t, has been
successfully used!? in cases where the single-determi-
nant reference function & dominates the exact function
exp(T)®. In such cases, one expects the magnitudes of
the t amplitudes to be small («<1,0), and hence the
C tt term should be smaller than the Bt and A terms.
However, in such single -determinant-based CC theo-

A. Banerjee and J. Simons: Multiconfigurational coupled-cluster theory

ries, it is not at all clear that this starting point for t,
will be successful’*™ when & does not dominate the
exact exp(7T)%. In some cases, & might evenbe a
negligible component to exp(7T)}®. For such problem
cases, one could achieve an initial estimate for the t
amplitudes by carrying out a CI calculation (the CI ex~
pansion coefficients then being used to approximate t).
By then developing iterative solutions to Eq. (12) in the
neighborhood of this t;, one might be able to efficiently
converge to a solution. Alternatively, one can (as in
our CCMC method), by employing the MC reference
function, maximize the chances that all t amplitudes
remain small (since the large contributions to the
exact state are already in $). In this case, the linear-
ized solution A + Bty =0 should represent a useful start-
ing point.

B. Calculation of core-orbital contributions

The core orbitals are those which, by definition,
are not correlated by either the reference wave func-
tion or the CC method, They are assumed to be doubly
occupied in all configurations of & and of 7 |®). More-
over, as pointed out after Eq. (3), the Hamiltonian need
not contain reference to integrals involving these core
orbitals whenever H operates on a function of the form
T"1$). Based on these facts, it can be shown® that the
core contributions (i.e., the core~core, core-valence,
and core-excited orbital interactions) can be grouped
into a simple effective one-particle potential (f) of the
form given in Eq. (4). Moreover, f need be calculated
only once at the beginning of the CCMC calculation.
The use of this potential then obviates any further ref-
erence to core orbitals in the construction of the matrix
elements of H and #. This fact is especially helpful
since it reduces the size of the lists of two-electron
integrals and density matrix elements which need to be
randomly accessed from a peripheral device in the con-
struction of the A, B, and € matrix elements.

IV. RESULTS AND DISCUSSION

Applications of the above outlined CCMC theory have
been carried out on four systems, H,('Z}), Li(%S),
HeH,('4,), and CH,(*B,) which we view as nrodel prob-
lews because the basis sets used are sufficiently small
to permit a full CI calculation to be done so that the
“exact” answers can be known. This fact allows us to
gauge the accuracy of CCMC results obtained by starting
from any of three different MC reference functions
which we have explored: the single-determinant re-
stricted Hartree-Fock (RHF) wave function, a CI-type
wave function expressed in terms of RHF orbitals, and
a MCSCF-type wave function. For the closed-shell
systems, we have also compared our results with the
CPMET (T'=T,, & equal to a closed-shell single-deter-
minant Hartree—Fock function) results. For such
cases, our CCMC theory exactly reduces to the CPMET.

When considering various reference functions for use
in a CCMC calculation, it should be kept in mind that a
good reference function not only should have the poten-
tial of giving good total energies; it should also produce
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small t amplitudes so that our CCMC iteration process
will converge rapidly and so that our neglect of the
cubic and quartic commutators of Eq. (6) is justified,
An MCSCF reference function which includes the qual-
itatively essential configurations for the description of
the exact state!’ is shown below to have these attractive
attributes. For such an MCSCF reference function, the
T, contributions are expected to be negligible whenever
the nonlinear contributions from T, and T, are small,
This follows from the generalized Brillouin theorem
(GBT)'® which, for our definitions of & and the 7 oper-
ators, takes the form

(B0 = oy | H |®)=(D,q |H|3)=0 . an

Thus, if T=T,, the GBT requires A=0, from which the
linear approximation to the CC equations yields A + Bt =0
or t=0, so that we expect the T, amplitudes to be small.

As mentioned earlier, we also examined whether one
could, as has been proposed,® obtain reliable results
by neglecting the small subset of higher body density
matrices which arise in the equation governing the t
amplitudes. This was done, as described below, by
carrying out calculations with and without these higher
density matrices,

Based on experience gained from the model calcula-
tions whose results are presented below, we also applied
the CCMC method to a more realistic calculation of the
’B, ground and 'A, excited states of CH, using a larger
basis set. These calculations were performed to per-
mit us to evaluate the accuracy of the CCMC method on
a problem for which numerous other state~of-the-art
theoretical calculations have been done.

The results of all of our CCMC calculations are given
in Tables I-VIII. In each table, the first column de-
scribes the reference function (HF, CI, or MCSCF).
The next column describes the order of cluster excita-
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tions (7, T,) included in the calculation. Column three
gives the total energy as a sum of various contributions
Eyp=Ey+E g +Eq g +Ep, according to Eq. (15a) of
Ref. (6). The fourth column gives the number of itera-
tions needed to obtain convergence to a tolerance of 107!
in the t amplitudes and the fifth column gives the largest
t amplitude obtained from the converged CCMC calcula-
tion. This last information is a measure of how much
correlation lies outside the MC reference space, In

all of the applications presented here, we have assumed
a truncation of Eq. (6) at the quadratic term. The

cubic and quartic commutators are not evaluated, As

a result, we may encounter difficulties in solving the
CC equations in the single configuration reference func-
tion case which might disappear if one were to include
all terms® in Eq, (6). We choose not to calculate the
cubic and quartic commutators but to instead use a
MCSCF reference function. Let us now analyze in some
detail the convergence characteristics demonstrated by
these CCMC results.

A. H (%)

Tables I to IIl describe the results of our CCMC cal-
culations on the lowest 'T; state of H, for various ref-
erence functions at internuclear distances of R=1.4,
4.0, and 6.0 bohr. These bond lengths cover values of
R near equilibrium, when the bond is essentially broken,
and when the bond is nearly half-formed. OQur results
were obtained by using a double-zeta contracted Gauss-
ian basis set.” For this closed-shell two-electron sys-
tem, our intention is to compare the performance of
our method with the CPMET to which our method re-
duces if we take T=T, and & =&y,. In this case, the
CCMC method also reproduces exactly the doubles-CI
(DCI) result, for which our three-particle density ma-
trix approximation clearly has no effect (i.e., the result
of a CI calculation comprised only of doubly excited

TABLE 1. Hz(lz:), R=1.4 bohr, CCMC energies and ¢ amplitudes for RHF, Cl, and MCSCF reference functions.

Energy contributions (hartree)

Calculation Number of Largest
Reference wave function type E, I-:T1 ET1°T1 ET2 Eq,, iterations ¢ amplitudes
1. &y Ty -1,126815 1071 1071 ~1.126815 1 10
2, dyp T,(CPMET) —1,126815 ~0,0258 ~1,152 669 3 ~0,06
3. @y T, +T, -1,126815 107 107 -0.0 ~1,152760 3 0,06
4. ©=C,02+C,0. .
C,=0.9887, Cy=—0. 05088 T —1,129904 —0.0042 —0.0015 —1,135 709 5 0,468
5. #=Cy0i+C,0l
C,=0.9987, Cy=—0.05088 T, —1.129904 —-0.0137 -1, 143593 4 0.268
6. #®=C,02+C,d’
C1=0.9987. Cy==0.05088 T +T, -1,129904  —0,0101 -0, 0003 -0,01227 -1,152699 4 0.269
7. $=Cy0l+C, 0} MCSCF - 4
C,=0.9934, Cy=~0, 1145 T, ~1,146 921 10 10 —1,146 921 2 107
8. &=C 0i+Cyol MCSCF
C,=0,9934, Cy=~0,1145 T, -1.146921 -0.0057  —1,152 872 4 0.1
9. &=C,;d%+C,d% MCSCF y
C,=0.9934, Cy=~0.1145 T+ T, —1.146 921 10 -107% —0.0058  —1,152 749 4 0.1
10. DCI —1.152669
11. FCI -1.152 764
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TABLE II. Hz(l}".;), R =4.0 bohr, CCMC energies and t amplitudes for RHF, CI, and MCSCF reference functions.

Energy contributions {hartree)

Calculation Number of Largest
Reference wave function type E, Er, ETI_TI ET2 E ot iterations t amplitudes
1. &y T —0.901978 1078 1071 ~0.901978 1 107
2. by T,(CPMET)  —0.901978 ~0.0998 ~1.001851 6 0. 34(t,2)
u
3. dyp T +T, ~0.901978 107 107 —~0.1081 —1.009691 6 0, 54
4. &=C db+C,d} - ) 0.20 ¢ —o, 0,
Cy=0.8768, Cy=~0.4807 T, —0.989253 —0.019 10 ~1.008035 3 amplitude
5, $=C 0h+Cy0 )
C1=0.8768, Cy=—0,4807 T, —0.989253 -0.0005 ~0.989774 2 0.01
6. &=C oi+Cyal ; ; :
C1=0.8768. Cy=0, 4807 T(+T, —0.989253 —0.019 —0.0003 - 0,0003 —1.009699 3 0,19
7. $=C,d*+C, 0’ MCSCF . ” -1 ' . -3
C1=0.08596, C,=—0.5109 T —1.00956 10 10 —1.009569 2 10
)
8. &=C,0,+C,0f MCSCF X . ;
C,=0.08596, Cy = 0,5109 T, —1.00956 ~0.0001 —1.009 704 2 0. 03
9. ®=C,0}+C, 0} MCSCF ‘ X - " . )
C1=0.08596, C,=— 0. 5109 T +T, —1.00956 10 10 ~0.0001 ~1,00708 3 0.03
10. DCI —~1,001851
11. FCI —1.009709

configurations). Table I displays the CCMC results for
R =1.4 bohr (which is near the equilibrium bond length).
With a RHF reference function (% = o?), the results
(rows numbered 1-3) show that energy contributions
from T, alone are negligibly small (~107 a,u.) due to
the Brillouin theorem (BT), and that they increase
slightly (~107° a,u.) when T, is added, due to the T,-T,
coupling. The resulting CC energy is within 4x107°
hartree of the full-CI (FCI) result (which is, of course,
the exact result in any theory CC, CI, ete.), the dis-
crepancy being due to the neglected commutators in-
volving T3, T3T,, etc., which are small because ¢, is
small, The CPMET (i.e., T =T,) result clearly repro-
duces the DCI value, as it must.

At this geometry, ci is the only dominant configura-
tion. The o2 configuration, which is needed for the cor-

rect dissociation to two H(®S) fragments, has an ampli-
tude of —0.11 in the MCSCF reference function at
R=1.4 bohr. Using a two configuration (C,0%+C,0%)
MCSCF reference function, the CCMC energy (rows
numbered 6~8) for T =T, + T, comes within 1x10™ a.u.
of the FCI value, and the T, contributions are found to
be negligible (due to the GBT). For a two-configuration
CI reference function {using RHF orbitals), the T, con-
tribution is not negligible since the o, orbital is not op-
timized (as it was in the MCSCF case). Hence, the

o, 0, configurations resulting from single excitations con-
tribute significantly via 7T,.

Difficulties in the CC calculations based upon the RHF
reference function [with a quadratic truncation of Eq.
(6)] begin to emerge as we move toward the dissociation
limit. As shown in Tables II and III for R=4.0, 6.0

TABLE III. Hz(‘E;), R =6,0 bohr, CCMC energies and ¢ amplitudes for RHF, CI, and MCSCF reference functions.

Energy contributions (hariree)

Calculation Number of Largest
Reference wave function type E, ETt ET1-T1 ET: E ot iteration ¢ amplitudes
-13 =15 -6
1. dyp T, —0.808908 10 10 —0. 808 908 1 10
2. ®=C,0t+C,o0, . -5 ;
T ~0.976505 —0.0198 10 —~0.996 396 3 0.1
C,=0.7532, Cy==0.6577 !
3. #=Cyat+C,0l . 5 ; -2
—0.976 505 - 10 —0. 976 508 2 10
C=0.7532, C;=0.6577 T2 5
4, &=C,2+C,d, . 5 4 oo .
+ —0.976505 —~0.0198 10 -10 ~0. 996 926 2 0.12
C{=0.7532, Cy=—0.6577 T+ T,
5. &=C0di+C,0% MCSCF < 10 . 4
—0.9970 10 10 ~0.997016 2 10
C,=0.7433, C, =~ 0. 6689 7 99701
6. &=Cy0p+C; 0, MCSCF T, —0,99701 - 107 —0.997018 3 0.02
C,=0.7433, C;=—0.6689
7. #=C,d}+C,o MCSCF T+ T, —0,99701 ~107 1071 —107 —0.997018 3 0.02
Cy=0.7433, C,=—0.6689
8. DCI —0.983244
9. FCI —0.997018
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bohr, respectively, the RHF wave function o2 becomes
a poorer representation of the ground state. The prop-
er wave function in this region is a combination of ¢2
and 02, For R=4.0 bohr, the solution of our CC equa-
tions via the Newton-Raphson process showed conver-
gence difficulty. The final solution to which the NR
process converged depended strongly upon the initial
choice of t and the damping factors used in the NR
iterative process. The final solutions'® shown in the
2nd and 3rd rows of Table II were obtained by monitor-
ing the magnitude of the t,ﬁ amplitude and by comparing
the resultant CCMC energy with the FCI energy (which
is, of course, available only for such “model” calcula-
tions). Certainly, it might be possible!® to devise iter-
ative schemes based upon solving the quartic CC equa-
tions which can converge in such large-t cases. How-
ever, within our approach to the CC problem the appear-
ance of large t amplitudes makes the NR solution of the
CC equations very difficult, At R=6.0 bohr, we were
unable to converge the quadratic (not quartic) CCMC
equations except by taking the 7, amplitudes from a
doubles CI wave function. Upon doing so, we were able
to converge to the DCI (which equals CPMET) energy.
For starting t amplitudes which were far from the con-
verged values, our truncated CC equations displayed
significant convergent trouble.

Even though it is possible to devise iterative solu-
tions®® of the CC equations which do converge and hence
allow this CPMET calculation to reach the “correct”
DCI solution, we find that the DCI result itself yields a
progressively poorer result with increasing R value,
the energy difference (Eyc;~Ep) being —0,00009,
~0.008, —0.013, and -0.015 hartree, respectively,
for R values of 1.4, 4,0, 6.0, and 10.0 bohr. The rea-
son, of course, is that the dissociating fragments
{H(%s) in this case] are themselves open shell systems
which require both double excitations and single exci~
tations (to relax the orbitals),

In contrast to the above single-configuration case,
CCMC calculations using CI or MCSCF reference func-
tions which include the essential configurations (o2
and ¢2) showed no convergence difficulties, The CCMC
results with the MCSCF reference function (which im-
plicitly includes the orbital relaxation effects to first
order) with 7' =T, gave essentially the FCI energy val-
ues at R=4.0, 6.0, and 10,0 bohr. On the other hand,
use of the CI reference function, which also yields a
CCMC energy close to the FCI value, gives rise (at
R =6 bohr) to large T\ amplitudes, which attempt to
account for the orbital relaxation which is absent in the
CI function, but which was already present in the
MCSCF reference function,

For either an RHF or MCSCF reference function, it
is expected that 7| contributions will be small whenever
the T\ ~T, coupling is small. This result is a conse-
quence of the BT or GBT, and does not necessarily
hold for the CI-type reference functions which use RHF
or natural orbitals. Therefore, by using an MCSCF
reference space containing the dominant (essential)
configurations, it can be virtually assured that T, con-
tributions can be made small, which then allows one to
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eliminate further consideration of 7,. CC solutions
which are related to the reference solution via large
(of the order of 1) f amplitudes are very difficult to lo-
cate and are poorly represented in the “truncated”
commutator expansion which we choose to use here.
The CI- or MCSCF -type reference function, which in-
clude dominant configurations, give CCMC energies
comparable to the corresponding FCI energies., It is
found that the CCMC energies obtained from linear
CCMC equations (A +Bt =0) generally lie below the FCI
energies, This has also been observed for the case of
a closed-shell single -determinant reference function in
CPMET by Cizek* and Pople ef al.,'? and Mukherjee'®
has shown that the linear CC energy for such cases
with T=T,, always lies below the corresponding DCI
energy.

B. Li{%9)

Table IV describes the results of our CCMC calcula-
tions on the 2§ ground state of Li using five s-type con-
tracted Gaussian functions. For Li(%S), the RHF con~
figuration®® &g,y =1s%2s is an open-shell configuration,
Some workers have extended the scope of their closed-
shell RHF -based CC formalism to include such open
shell cases by using spin-unrestricted Hartree-Fock
(UHF) single -determinant reference functions'®?? in
which, of course, the wave functions are not exact spin
eigenfunctions. In our formalism, such calculations can
be performed without violating spin symmetry (and
hence the CC function corresponds exactly to a spin
eigenvalue), All of the results, except those given in
rows 4 and 11, involve neglect of the three -body density
matrices. Rows 4 and 11 give results for the full treat-
ment of all density matrices. The CC results for a
single configuration reference state (rows numbered
1~4) are found to be within 0.5x107® hartree of the FCI
value since, in this 5s basis, the RHF configuration is
the dominant configuration, Inclusion in the reference
function itself of all of the configurations constructed
within the orbital space {1s, 2s, 3s} allows the CCMC
calculation to capture the residual higher order corre-
lation effects and reproduce the FCI value to within
0.7x107* hartree with T, alone. In this case, the
MCSCF reference wave function itself captured almost
all (99, 9%) of the available correlation energy. The
subsequent CCMC calculations, not surprisingly, give
very small cluster contributions with t, =0,
Ep=Eq-q =0, and Eqp,= ~0.00003 hartree. Since
Li is a three-electron system, the three-body density
matrices have a chance to affect our results. The re-
sults given in rows 5-10 were obtained by neglecting
the set of three-body density matrices which arise (the
one- and two-body matrices are, of course, treated at
the MC level ). In row 4, we give results in which the
three-body density matrices are properly treated when
& is taken to be the 1s%2s reference. Again, compari-
son of rows 4 and 3 provides some support for neglecting
these higher density matrix contributions. In row 11,
we give the result of a CCMC calculation in which & is
the eight-configuration MCSCF function T= T, +T,, and
all of the three-body density matrix elements are cal-
culated properly, Comparison with the results of row
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TABLE IV, Li(%$), cCMC energies and ¢ amplitudes for RHF, CI, and MCSCF reference functions.

Energy contributions (hartrees)

Calculation Number of Largest
Reference wave function type E, ET1 Epi-rq I:‘Tz E,y iterations t amplitudes
1. #yp=ls'2s T, -7.36869  —10% 107 -7.368690 2 107
2, dyp=1s'2s T, —7.36869 -0.01565 -7.384 347 3 -0.02
3. dyp=1s'2s Ti+T, —7.36869 ~10% 107 ~0.01568 —-7.3843M 3 -0.02
4, dyp: 1s'2s T +T, ~7.36869 -107° 107 —-0.01593 —7.384621 3 -0,02
(full)
5. &q;: eight configurations within Ty —-17.36872 —10% 107 —7.3681723 2 1073
the orbital space of
{1s, 2s, 3s}
6. &gy eight configurations within T, -~17.36872 ~0.014844  —7.383568 3 -0,06
the orbital space of
{1s, 2s, 3s}
7. &g: eight configurations within Ti+T, —7.36872 -10% 107 ~0,014859 —7,383583 3 0,06
the orbital space of
{1s, 25, 3s}
8. @yosor: eight configurations within T -7.38503  —-10° 10710 —17.385035 2 107
the orbital space of
{1s, 2s, 3s}
9.  @pygop: eight configurations T, ~7,38503 —0.00001 —7.385045 2 0. 06
within the orbital space of
{1s, 2s, 3s}
10, pgop: eight configurations Ty+T, —-7.38503  ~107 -10°  -0.00003  -7.385070 2 0.06
within the orbital
space of {1s, 2s, 3s}
11, &g 5: Eight configurations T(+T, —17.38503 —-107 107 —0.00003 —~7.385078 2 —-0.06
within the orbital space of (full)
{1s, 2s, 3s}
12.  FCI —~7.385117

10 show that neglect of the higher density matrix was,
in this case, accurate.

C. CH,(38,) model calculation

CCMC calculations on the B, ground state of methyl-
ene were performed at its equilibrium geometry®’
(64cn=132.4, Ry =1.082 A) using a double-zeta con-
tracted Gaussian!” (C:4s, 2p/H: 2s) basis set. The
results of these CCMC calculations are displayed in
Table V. In Sec. IVE, we present the results of
CCMC calculations on the 3B, and 4, states using a
larger basis set; here, we only describe the pertinent
points of this small-basis model study for which full-CI

results are available.

The triplet RHF wave function

can be described in terms of the C,, symmetry of the
molecule as &g, (*B;) = [0)3a, 15,, with the (frozen)
core being given by [0)= 11a%24%15%). For this partic-
ular choice of the core, which gives the most simple
approximation to the active orbital space, the calcula-
tion reduces to an effective two-valence-electron prob-
lem. Thus, our CCMC calculation, using the RHF ref-
erence function and T =T,, should exactly reproduce the
corresponding DCI (within the active orbital space) re-

sult,

The fact that the largest f amplitude arising in

the RHF -based CC calculation is 0. 04 indicates that the
RHF configuration is the dominant configuration for the
description of this triplet state,
prising that the two-configuration CCMC calculation pro-
duces a very small change is the total energy. The

TABLE V. CHz(sBi), CCMC energies and ¢ amplitudes for RHF and MCSCF reference functions.

Thus, it is not sur-

Energy contributions (hartree)

CH,(’B,) Calculation Number of Largest
Reference wave function type E, ET1 Er-r, I:‘T2 E iterations t amplitudes
1. &xp=3ayldy —38.90851 —10% 1078 — 38, 908514 2 107
2, $yp=3a31b —38,90851 - 0.0032 -38.911763 3 0.04
3. $yp=3a; 1, Ty+T, -38,90851 107% 107 —0.0032 —38,911 781 3 0.04
4, dwecF =C1(3a11b1)
+Cy(4ay2by) ~38.91177 107 —38.911781 2 0. 006
C1=0,9986, C,=0.0052
5. DCI —38.911763
6. FCI —38,911780
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TABLE VI. HeHz(‘A‘), CCMC energies and ¢t amplitudes for RHF and MCSCF reference functions.
Calculation Energy contributions (hartree) Number of Largest
Reference function type E, Eq, E ot iterations ¢t amplitudes
1. &ygp=1al1s} T,(CPMET)? ~2.52846 —0.144986  —2,673449 22
2. dyp=1a} 165 T, {fuld) —2.52846 —-0.144986  —2,673449 4 ~0,35
3, dycsor: four configurations within T, -2,67374 —0.00523 —-2,678975 3 ~0.17
the model orbital space of
{1(11 2&1, lbz}
4, $pceop: eight configurations within T, ~2.67962 —0.00262 ~2.682252 2 ~0.009
the model orbital space
of {1ay, 2ay, 3ay, 165}
5. ®wpop: eight configurations within T, (full) —2.67962 -0.002 69 ~2.682322 2 —0,009
the model orbital space
{1ay, 2a, 3ay, 16;}
6. FCI -2.683104

aReference 19,

final energy is found to be within 10 hartree of the cor-
responding ¥FCI (with the sgwe frozen core) value,

D. HeH,('A,)

The CCMC cal culations on HeH,('4,) were performed
using an approximately double -zeta quality basis set
(H: 2s/He : 3s) of Gaussian functions®® at the C,, geom-
etry Oyope—y =170°, Ryy_;y=1.0 A, Certainly, the low-
est energy configuration of HeH, is of 1a?24% (*4,) sym-
metry at large He-to-H, distances. However, at near-
linear geometries with He inserted between the two H
atoms, the lowest energy configuration is of 142 153('4),)
symmetry, This configuration involves the bonding
1sy +1sy, +1sy. interaction which gives the 1a, orbital
and the nonbonding 1s,-1sy- interaction. We chose to
carry out test CCMC calculations near the linear geom-
etry where the 143 1b§ configuration dominates the wave
function. For this four-electron closed-shell system,
we can compare the performance of our CCMC theory
with the results of the CPMET calculations obtained in-
dependently for us by Krishnan.!® Our CCMC theory for
a closed-shell single -determinant RHF reference func-
tion reduces to the CPMET model when the three-body
density matrix elements are included, and when we take
T=T,. As the results of Table VI (rows 1 and 2) in-
dicate, the CPMET energies obtained in our work and
those of Krishnan are identical, However, when the
CCMC reference function is improved (but the three-
body density matrices are neglected) to include the
(163~ 1a;?) configuration {which had the largest ¢ ampli-~
tude in the single-configuration CC study), the CCMC
energy (row 3) is found to lie 0,006 a.u, below the
CPMET value. The reason for this improvement is that
T operators when acting on a larger reference function
give higher-order correlation effects in the CCMC
equations. To underscore this point and the inherent
flexibility of the CCMC method, we also included in
the reference space configurations of the form
(163 ~aja;") corresponding to the largest ¢ amplitudes
(0.17) occurring in the above CCMC calculation. The
resulting CCMC calculation (row 4) reproduced the FCI
energy to within 0.0008 a.u. Using this prescription

for successively expanding the reference function’s con-~
figuration list, one can progressively improve the
quality of the CCMC calculation. In row 5 of Table VI,
we give the CCMC energy, which is obtained using the
same MC reference function as used for row 4 put with
a full evaluation of the three-body density matrices,
which, in row 4, were neglected. The fact that the
energies of rows 4 and 5 are identical to within

7.0% 107 a,u, further supports the neglect of the high-
er -body density matrices,

The main conclusions to be drawn from these model
CC calculations can be summarized as follows, The
RHT configuration reference state gives good conver-
gence of the (NR) iterative solution to the {quadratic
truncated) CC equations only when the RHF function is
the only dominant configuration in the correlated state,
When there exist configurations outside the reference
space that give rise to large (~0.2) ¢ amplitudes, the
equations determining the CC amplitudes are poorly
represented within the truncated commutator [see Eq.
(8)] expansion. As a result, the truncated quadratic
equations may not yield meaningful results (no matter
how one iteratively solves them). An MCSCT reference
function which includes ¢!l dominant configurations
gives CC energies that are better than the RHT -based
(quadratic truncated) CC energies, produces fewer con-
vergence difficulties, and yields T, contributions which
are often negligible (because the GBT is nearly obeyed).
A CI-type reference function (which also includes all
the dominant configurations) is also a potentially good
starting point, However, the T, contribution may not
be small in this case.

E. Lowest singlet and triplet states of methyiene:
Moderate basis

Based on the experience gained from the above model
calculations, we applied the CCMC method to calculate
the adiabatic splitting between the lowest *B, and ‘4,
states of CH,, using a larger basis set, This choice
of system is motivated by the large number of theoret-
ical calculations already existing in the literature, 2072
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TABLE VII. CHz(lAi, 331), CCMC energies and ¢t amplitudes for RHF and MCSCF reference functions.

CH,('Ap): Caleulation Energy contributions (hartrees) Number of Largest
Reference wave function type E, Er ET1‘T| ETZ Eyy iterations t amplitudes
1 dyp 7, —38.876642 107  +107 ~38. 876 642 2wt
2, dyp T, — 38, 876 642 ~0.02721  —38,903853 4 0. 05
3. &=C;3a}+C, 1%, MCSCF T, —~38,897532 —107 —1078 —38. 897532 2 107

C;=0.980278, C,=—0,197622
* gllc&zlfgchéfbé;f«fsﬁ; 622 T, — 38897532 —0.01153 —38,909061 3 0,06

CH,(*84):
1. ®yp=3a b, Ty —~38.91698¢  —107  +1078 —38.916 984 2 107
2. dyp=3a.1b, T, ~ 38,916 984 0.00618 —38,923174 3 0. 04
3. #=Cy3a,16,+Cy day 2, MCSCE T, ~38. 902 570 0.00031 38923722 3 0.08

C(=0.99866, C;=—0, 051702

which allows us to gauge the performance of our CCMC
method. In addition, since the 'A, state is closed
shell and the 3B, state is open shell, it gives us a chance
to compare our method with others which use RHF and
UHF descriptions for these two states, We employed
the (4s,2p, 1d/2s) contracted Gaussian basis set used
by Kenney et al.® for their MBPT calculation on CH,.
The d-polarization functions have been shown to be im-
portant for the description of many such carbenes 2’2
The equilibrium geometries used for the 4, and °B,
states were those determined by Bauschlicher and
Shavitt?® (14, :6,40,=102.4°, Rcuy=1.116 A, °B;: 8ycy
=132.4°, Roy=1.082 A). The triplet RHF wave func-
tion can be described in terms of the C,, symmetry of
the molecule as &q4.(*B,)= 10) 3¢, 15, and $yu(14,)

= {0)34%, with the core chosen to be (0)=[14%2a% 153).
It has been shown in the calculations of Meadows and
Schaefer?! and Bauschlicher and Shavitt?® that the
correlation is almost identical for both of these states
and for the above choice of core. Hence, the decision
to treat the la,, 2¢,, and 1b, orbitals as frozen and
doubly occupied is probably quite valid. We could, of
course, simply decrease the definition of “core” to in-
clude only the lay(1s.) to test this hypothesis; however,
Refs. 20 and 21 already did this for us. Finally, be-
cause there are only two active electrons in both the
4, and 3B, states, we have no three-body density ma-
trices to worry about.

With the choice of core and valence orbitals made,
CCMC calculations were performed using both RHF
and MCSCF reference states. In performing the calcu-
lations whose results are displayed in Table VII, we
included six a,, three b,, three b,, and one a; orbitals
in the active space (i.e., the space in which T operates).

Tor the '4, state, use of the 322 RHF reference con-
figuration in the CC theory yields a large {, amplitude,
corresponding to the double excitations 3a%— by .> This
(b1)? configuration was subsequently appended to the
MCSCF reference wave function, thereby leading to a
two-configuration MCSCF reference function C,3a?

+ CZ”’%, with ¢,=0.98, C,=~0,20, whose CCMC energy
lies 0,006 a.u. below that obtained when the RHF ref-
erence function was used,

Analogous RHF- and MCSCF-based CC calculations

were performed on the 3B, state. To assure that all of
the important configurations of the *B, state are included
in the reference space, we carried out an RHF -based
CC calculation and found (see Table VII) the largest ¢
amplitude (0.04) to correspond to the 3a; 1», ~aib; ex-
citation, The resultant two-configuration MCSCF cal -
culation (C,3a;1b, + C,4a,2b,) gave a relatively weakly
occupied second configuration (C, = ~0,05) and led to a
negligible decrease (0.3 kcal/mol) in the CCMC energy.

Table VII shows the singlet—triplet energy splittings
obtained in our calculations as well as those obtained
by other authors. Our converged CCMC value for the
14,-%B, splitting (9.2 kcal/mol) can be compared to the
value of 13,1 kcal/mol obtained by Kenney et al.? using
many-body perturbation theory (MBPT) with the sawme
basis set, Part of this discrepancy of 3.9 kcal/mol is
due to the spin symmetry breaking in Kenney’s spin-
unrestricted MBPT calculation for the triplet state.
Some of the difference is also due to the fact that we are
using a MCSCF reference function, whereas Ref, 22
used a single configuration based MBPT. Because our
single (RHF) configuration based CC energy splitting is
12.1 keal/mol, it may be more appropriate to compare
this result to the 13.1 kcal/mol obtained in Ref. 22.
We would then ascribe, at most, 1.0 keal/mol to the
spin contamination (UHF) problems. Of course, a more
detailed comparison is impossible because the MBPT
calculations of Ref. 12 did not include the nonlinear T¢

TABLE VIII, CH,(B,-'4,) difference energies.

AE (kcal/mol)

ARHF 25, 31
ABB(RHF) —14,{2MCN 12,20
al*By(2MC) - '4,(2MC)H] 14.45
APB(T,: RHF)-!4,(Ty: RHF)] 12,12
APB(T, : 2MC) = 14,(Ty: 2MO)] 9,20
Reference 20 10.6
Reference 21 10.9
Reference 22 13.1
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terms which are present in our RHF (and MC) based
CC results.

CONCLUSION

We have demonstrated that our CCMC procedure ren-
ders itself a practical tool for the study of electronic
energy levels of molecular systems. By admitting an
MCSCF reference function, the method allows one to
treat on equal footing configurations which are essen-
tial at any geometry along the potential energy surface
or reaction path., As we stressed in Sec. I, the ability
to do so is especially important when one wishes to treat
concerted reactions in which reaction barriers arise
from avoided configuration crossings.
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