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In this paper, we develop a time-dependent approach to many-body perturbation theory for open shells based
on the resolvent of the Schrodinger equation. We introduce, analogous to the closed-shell case, quantities
S,y =i<¢;le"T-E |y, > /<] ¢, >, where ¥ and ¢; are the jth unperturbed and exact functions,
respectively. The 3 ’s can be expressed in terms of “model space” functions ¢, = £2,* |¢ >, where the 2,
are appropriate creation/annihilation operator products acting on a conveniently chosen closed-shell vacuum
¢. These ¢,’s are not necessarily degenerate with respect to the unperturbed Hamiltonian H,. E, is the exact
{correlated) energy of the vacuum ¢. The Fourier transforms S, (@) of S;{¢) have the form S; (@) = <4, |l@
+E, — H) ¢, >/ <} |, > and thus have poles at energy differences (E, — E,), i.e., relative to the exact
vacuum energy. Using the time-dependent perturbation expansion of S{z), we obtain a Dyson-like equation
N-'w)= N*'w)+Z, where ¥ is defined as N, (0) = <¢,|(@ +E, —H)™'|¢,> and N is the
corresponding unperturbed component. Knowledge of the combining coefficients C, in ¢ = X,C,¢, is thus
not required for finding the poles. We arrive at the Dyson-like equation by first eliminating closed diagrams
and then regrouping the remaining terms in the perturbation series for S into “top” and *“bottom” parts.
Regrouping appropriate to the Brillouin-Wigner (BW) case together with an associated time-integration
procedure yields 3 ®¥ which consists of disconnected and w-dependent diagrams. This is shown to yield the
open-shell BW series in the Bloch-Horowitz form. An alternative regrouping procedure and use of the
“folding technique” of Johnson and Baranger leads to a 3 * which is w-independent, Hermitian, contains

connected diagrams only, and is, thus, size-consistent.

1. INTRODUCTION

In the preceding paper! (hereafter called paper I) we
developed a time-dependent (TD) many-body perturba-
tion theory (MBPT) from the resolvent of the Schro-
dinger equation (SE), and we derived both the Brillouin-
Wigner (BW) and Rayleigh—Schrddinger (RS) series for
the energy of closed-shell systems. In this paper we
extend this idea to the open-shell problem.

For open-shell systems, the unperturbed wave func-
tion ¥’ may contain several determinants. Thus, in
contrast to the closed-shell case, the unperturbed wave
function cannot be characterized by a unique spin—-orbital
occupancy; therefore, a straightforward application of
Wick’s theorem? is not possible. Furthermore, due to
the degeneracy (or near degeneracy) among the deter-
minants of ¥, various alternative choices for the com-
bining coefficients of the determinants may be possible,
This has led to the development of several open-shell
MBPT’s of seemingly different structure, *-1!

The first step in the development of our open-shell
theory is to introduce a vacuum &, chosen to be a
closed-shell determinant, which may have fewer,
greater, or the same number of electrons as the unper-
turbed function ¥°, The vacuum @ is then related to
each of the determinants &, in ¥° through a set of crea-
tion, annihilation, or creation/annihilation operator
products {2;}: 18,)=971®). Since, as will be shown
later, the energies computed in the MBPT developed
here are given relative to the vacuum'’s energy E,, the
interpretation of the energy shift AE=E - E_ is dictated
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by the choice of the vacuum. For example, if & contains
n fewer particles than ¥%, AE represents the correlated
energy shift due to the addition of n electrons. Thus,
for the ground state of Be with the model space functions
{#,} as 15?2s? and 1s?2p?, we may choose the vacuum to
be the closed-shell Be*? configuration 1s®>, The calcu-
lated MBPT energy shift would then be given relative to
the fully correlated Be*? ground state and would corre-
spond to the double electron affinity of Be*?. In con-
trast, for the closed-shell systems treated in I, where
the vacuum is the unperturbed function itself, the cal-
culated energy shift is the correlation energy. We em-
phasize here that we are able to treat problems where
the model space functions {&,} in ¥ are degenerate
{e.g., when multideterminant functions are used only to
give proper space and spin symmetry) as well as nonde-
generate multideterminantal functions (as in the Be case
discussed above). We refer to both of these cases as
“open-shell” cases.

The subsequent steps in the development of our open-
shell MBPT can be outlined as follows. We introduce
a matrix S(¢) involving the resolvent of the SE (¢ — H)!
and obtain a Dyson-like equation giving the energy shifts
AE as poles of 8. The effective Hamiltonian matrix Z
appearing in the Dyson equation contains up to z-body
operators, where n is the number of creation annihila-
tion operators in the ;. A partitioning of the terms in
the expansion of S similar to that used in the closed-
shell BW case leads us to the open-shell BW theory in
which Z is of the Bloch-Horowitz® form. An alternative
partitioning of the expansion of S similar to that em-
ployed in the closed-shell RS case yields a correspond-
ing Z in RS form. The RS development requires use of
the idea of “folding.”*® We have chosen to utilize the
Johnson~Baranger technique of folding since it has the
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advantage of keeping £ Hermitian. For the RS case, we
give explicit expressions for calculating individual state
energies and energy differences for a suitable choice of
the vacuum &,

{l. GENERAL DEVELOPMENTS

We represent the total electronic Hamiltonian of the
system as

H=H,+V, (1)

where the unperturbed Hamiltonian H, is a conveniently
chosen one-particle operator whose exact nature we dis-
cuss in Sec. IV, We denote by {®,} a set of determinants
which are assumed to be exactly degenerate eigenfunc-
tions of H;,, and we represent the vacuum {(which is a
closed-shell determinant) as &. The assumption of
exact degeneracy is made here to keep the development
as straightforward as possible, In Sec. IV, we demon-
strate how this restriction can be lifted so that we can
treat, within the same formalism, nondegenerate cases.
The orbitals occupied in ¢ are called “holes, ” whereas
the unoccupied orbitals are called “particles.” All the
orbitals are assumed to be eigenfunctions of the one-
electron operator k; which comprises H:3; k(i) = H,.

In this hole-particle (h—p) representation, the deter-
minants &, can be written in terms of the vacuum as

|®;)=9;|8), 2)

where the {Q;} are products of appropriately chosen hole
and/or particle creation operators. We call the space
spanned by the set {®,} the model (or reference) space.
Notice that the vacuum & is also an eigenstate of H, with
an eigenvalue E,.

To proceed with our development, we need an analog
of the Gellman~Low adiabatic theorem? for an open-
shell state which adiabatically connects an exact state
¥,y in the Heisenberg representation at time ¢t=0to a
corresponding unperturbed state q/g of H,. The state \I/}’
is expressed as a linear combination of the degenerate
set {3, }:

V=2 C e, . (3)
1
]

Banerjee, Mukherjee, and Simons: Many-body perturbation theory. !

—
1‘| T
——15

_._12
3—— o

- —t

4 —-—18

FIG. 1. A typical term of the expansion in N;(f} of Eq. (8).

The closed components of the diagram (with time arguments
t5, gy I, t3) correspond to the completely contracted opera-
tors. The rest of the diagram has uncontracted operators de-
picted as open lines attached to the blocks with time arguments
t1y t3, ta, t4. As explained in the text, for a nonvanishing con-
tribution to N (#) the lines should be valence lines only.

The Gellman-Low adiabatic theorem for open shells!?
can be expressed as

1 ¥,5) U (0, —=) ¥}

@y~ @0, -0y 1vd ®

where U, is the evolution operator in the interaction
representation. S analogy with the closed-shell theory,
we now introduce the quantities S;; defined as follows:

S: (0 =i(®; |exp[ = i(H = E)t] | ¥, )/ (¥} ¥ ), (5)

whose one-sided Fourier transform is

0
S,-j(w): f dtSij(t) eiwt

1

STE—h Y Y - (6)

= @’i ’
Clearly, S;,(w) has poles at w=E, - E_, which give the
energy shift relative to the exact vacuum energy E..
Our objective is to derive a perturbation expansion for
S(t) =1{S;,;(t)} and to obtain a Dyson-like equation for S
from which we can compute the poles of S. Using the
Gellman-Low theorem [Eq. (4)], we have

_ i(®; lexp(—iH,t) exp(iHt) expl — i(H — E,)t]U;(0, — =) [ ¥]

‘(l)
<

@MU (0, =) %))

. expli(E, - E)tK®, 1U (¢, — =) 1))
=t @ITU(0, =) 147

=N;,/D; .

"

Since the denominator D, does not involve ¢ as a variable, it does not affect the pole structure of S;,(f). We need

therefore consider only the numerator N;;.

Using the perturbation expansion? of Uy(¢, = =), the numerator N;, can be written as

Nyy() =i expli(E, - EDIIZ, (—;—,’)— [ Catydty - (@ | TV )V, (1) -+ V)] 4D . (8)

To facilitate further discussion it will be convenient to view the set of hole-particle creation operators in {Q’,}} as
valence creation operators. We can then expand the time-ordered (7) product 7[ ] in Eq. (8) in normal order using

Wick’s theorem, ? taking & as the vacuum,

A typical term in Eq. (8) that needs to be evaluated is of the form (219, T[ 19,1®), where Q,19)=9, arises from
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the expansion of \Pg according to Eq. (3). A typical term in the expansion of T{ |, using Wick’s thearem, consists

of a normal product of disjoint strings of operators V,(¢;) - -+ V,(#,), where in each string the operator V; is joined
to the rest of the string by at least one contraction. Since the matrix elements (& QN[ 1Q;1®) are to be evaluated
as vacuum expectation values, they must consist of completely contracted terms and, hence, the leftover uncon-
tracted operators in N[ ] must be fully contracted with the operators in ©, and Q; to give nonzero values. Because
; and Q, contain valence operators only, the leftover uncontracted operators in N[ ] giving nonzero contribution to
Eq. (8) must be valence operators only. In diagrammatic language, the normal products N{ | giving nonzero con-
tributions would thus correspond to disjoint strings with open lines (i.e., uncontracted operators) labeled by valence
indices only. A closed block corresponds to a string in which all operators are completely coniracted. Figure 1
shows a typical term N[ ] of Eq. (8).

Note that according to Eq. (8) all the intermediate time variables are to be integrated over the interval (-, ).
We may classify the terms of Eq. {8) using the following device. For a given time ordering of the open blocks, we
collect all possible time orderings of the closed blocks. We then consider all possible time orderings of such open
blocks. This recipe clearly exhausts all of the terms in 7[ ] of Eq. (8). For example, Fig. 1 shows one possible
time ordering of the open blocks involving ¢, f, #;, f;, for which the contribution to N;, of Eq. (8) is

t ty to t3
N;g)(t):iexp[i(Ec—E{))t](—i)4f dtlf dt2f dt3f dty(@; | V() V() Vi) V() | ¥ Dopen

(—i)4 i
VI [ﬂdtsdtedtTdts(cb|T[V,(t5)V,(tG)V,(t7)V,(t8)]|CI>>. (9)

In writing this expression, we made use of the fact that the closed-block terms involving ¢;, #;, ¢;, {3 contain only
completely contracted (cc) operators, so that
NV (t)V (t) Vi (1) V(1) Joe = (@ | TV, (1) V, (1) V, (1) Vi (1) | @) .

Note that the contribution from the closed blocks, which is written within the curly brackets { } of Eq. (9), is
precisely one of the fourth-order terms of the N(f) which appeared in our closed-shell theory [see Eq. (11) of I].
Thus, the complete expression for N; ,(t), corresponding to all possible time orderings among all the open blocks
for all of the closed blocks, has the form

_ i (— i)m . i ¢ i 4 1 losed
Nt =i ol exp(i(E, - EDe] | dty | dt, @ {TVi(t) -+ Vi(t)] | ¥ Depen TN . (10)
m= . o0 -0
The value of N®'®!(t), given in Eq. (4) of I as i exp[(E, - E,)t](® | ¥), then allows us to eliminate the exact vacuum
energy E_ from Eq. (10) and obtain

© (_om ' t
N, ) :izﬂ)(ml; expli(E, 'Eﬁ)t]f dty= - f Aty (B [TV, (1) * ++ V()] ¥Dpen(@ | )

=NE™ (0 [¥) . (11)

Thus the factorization of N;, into an open part times N°**(f) ensures that the correlated energy E_ of the vacuum
drops out of the expression for N;,(t). Since ($!¥) does not contribute to the poles of N, (t), we can proceed to
analyze N %™ (#) only, which contains all of the desired pole information. The one-sided Fourier transform of
N{™(#) has the form

2 ym 0 t t
NP (w) :ZZ;%)— f dtexplilw + Ey - Eb)t] f dty- e f At @ | TV ()« V()] ¥ Dopen - {12)
m o o~ o
Following the lead given by the closed-shell case, our next objective is to write the above terms of N ™ (w) in such
a manner that the terms can be regrouped into a Dyson-like equation. Such regroupings are by no means unique.
As we shall demonstrate below, the BW and RS perturbation series can be generated from two particular groupings.
To facilitate the discussion of these theories, we introduce the concept of a “box.” A box is a part of a diagram
which cannot be further subdivided into two subboxes joined by valence lines only., As should become clear shortly,
the boxes play the same role in our open-shell theory as the closed diagrams of the closed-shell theory of paper 1.
We also introduce a “string, ” which is a connected set of boxes joined by valence lines only. An open diagram of
Eq. (12) will thus consist of a set of disjoint strings.

ll. RESOLVENT THEORY: BW FORM

The expansion for N{%*(w) given in Eq. (12) can be written in normal order as
- - - 0 . t ' -1
N%® (w).—_zg;o(—z)"‘ L dtexpli(w + Ey - E%)t) L dig - L’" dt,,,;«bi |N[Z (m) ] ¥ Depen 5 (13)

where ), N[Z(m)] are the terms from the Wick theorem expansion of TVA4) -+ Vi{t,))= TL2(m)] which gives non-
vanishing contractions when sandwiched between (6 (@, and Q} (). Figure 2 shows a “box representation” of a typi-
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cal term Z,(m). We first find the uppermost time level ¢, lying below the highest time # (=¢) such that a horizontal
cut at #; cuts only the valence lines (i.e., the cut at #, does not go through a box). This step is an exact analog of
the one adopted in the earlier closed-shell BW theory (I). The set of boxes between #; and ¢, will be called the “top
part” and the remaining boxes below ¢, the “bottom part.” If we refer to the top part as X and the bottom part as Y,
we show in Fig. 2 a particular connection {contraction) between X and ¥, If one considers the set of diagrams aris-
ing from all possible connections (including no connection) between

NxY]+N[XY]=TIxY]=T[X]T[Y], (14)
where N[XY] denotes all possible contractions between X and ¥ and N[XY] is the term having no contraction.

The first equality in Eq. (14) follows from Wick’s theorem and the second equality follows because, by construc-
tion, all times in X are greater than all times in Y. It is clear from Fig. 2 that, for a given.top part X, the collec-
tion of all possible bottom parts ¥ would be 3, T[Z(l)], which is the same operator as appears in Eq. (13). Since
all possible top parts exhaust all terms of N }j"“’, we can write

NP (w) =4 fodtexp[z‘(w +Ey—-EDt)(®, | ¥ +i2 (=) (=) fodf
-l 0 -

1=1 m=
t t1.q £ tram-1
Xexp[i(w + Eo "Ef))t] f dtl tee f dtl dthi vt _[ ™ dthm <<pi IT[X(Z)]T[Z(m)”‘I’f open ? (15)

where the first term is just the m =0 term of Eq. (13). Introducing a resolution of identity 1=3, (®;){(&, |
+3, 18,X%,1, where &, are the eigenstates of H, lying outside the model space, and noting that (& | T[X(7)] 1%,)=0,
since X(7) contains only valence creation and annihilation operators, we have

(@, | TIXDITIZ (1)) 9000 =§;<¢, ITIX(D)])] 804, | T[2(m)] | ¥2) . (16)

Thus, we have

= 0
N =i f: dtexplilw + Ey - E}) )&, | ¥ +; ({th(—i)'(—i)"‘ f_” dt expli(w + Ey = ED)t]

xftdti-“ _/:Mdt, I:'dtm"' j-‘:zm-idt,,",(q),]T[X(l)]l@k)(é,,}T[z(m)]lw}’)mn}) ] (17

Equation (17) can be rewritten as

N‘:’;“(w)=if°dtexp[i(w +E0-E§,)t]<<p,|w}’>+2({2(-i)' fﬂ d(t - &) expli(w + Eg = ED)(¢ = ;)]
.o k 1=1 0

-0

< [Catye [ dtyyexplito + By~ Bl explilw + Eo - Bt e, )T[x<z)]|q>,,>o,,,,,.o,}

x {ii(—i)m ‘[“-‘ dt; expli(w + E, —Eﬁ)t,]f_tt dlyyc*” f-‘l*m-i Aty om (Pg lT[Z(m)”‘I’, onen}) . (18)

m=0

We can simplify the expression in the first curly bracket { } of Eq. (18) containing X(1) by making use of the fol-
lowing facts.

(i) Any pair of contracted operators in X(/) inside the boxes of the top part (see Fig. 2) between time vertices ¢
and ¢, contributes a factor of the form exp[iW(¢; —t;)), where W involves orbital energy differences (TW,-2W,).

(ii) The leftover uncontracted operators (corresponding to the open lines of the boxes in the top part) which ought
to be contracted with the Q; and Q operators of (¢, =(219, and |®,)=9Q,1%), contribute factors exp[i(EY - Eo)ty]
and exp[—i(E¥ — E,)t,] which exactly cancel the exp[i(E, - E})#1] and exp[-i(Ef = Eg)¢,] factors within the first curly
bracket.

(iii) To facilitate time integrations, we can transform the time variables f;, t;, ..., t.q to (t; = 1)), (& = 15), . . ., (£
—¢;) with limits (0, ). In terms of these time variables, we write the exponential factors as

expliW(t; = t,)]=expliW[(t; = ta)) + (b =t ++ o+ +(Eg = 1)1} (19)

(iv) With the above change of time variables, we can set the upper limit {; in the second curly bracket equal to
zero, We then immediately note that the expression in the second curly bracket is just NE™Mw).

Using these manipulations, the expression for N{3™(w) of Eq. (18) can be rewritten as follows:
1 1 . -
open — 0 -t dalt, -t
N = TR, mm |‘I’f>+zk:{[(w T -0, d-w

x expli(W, +0)(t, - )]+ - [0 "ty t,) explilW, 4 + ) tyg = 1)) |V o+ V] ¢k>o,,n,,o,] [N‘;‘}'“(w)]} . (20)
1
terms
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Here the factors W,’s are the sum over all W’s arising from Eq. (19) with a common factor (4 —£,4). To write
Eq. (20) in a more compact form, we define the following quantities:

Ne=[1/(w + Eg- EDNS,, (21)
NPT =[1/(w +E,- EH &, | ¥, (22)

P () =z;(—i)“'" j: d(ty - t) expli(Wy + w)(t; - 1y)]
1=

X fo ) d(t,y = t;) exp[i(W,_; + w)(t,g = £,) KB, |V + =« (I~times) *+* V|®popen,top - (23)
Now Eq. (20) can be written as ’
NEm() =N ) + LFEH@EEV@NE () . 24)
Multiplying by N°'°**/D, [see Eqs. (7) and (10)], we have
S, (@) =84,4,(w) +;N‘3’j‘,’2§;’(w)su(m) i (25)

Equation (24) in matrix form reads
N (w) =NP™ (w) + NP (w)ZB¥ (w)N®*(w) . (26)

Equation (26) is a Dyson-like equation, from which, in principle, the poles of N***(w) [or, equivalently, of 8(w)]
can be obtained, However, this form of the equation seems to require explicit knowledge of ¥° [through Eq. (22)]
or of the coefficients C,, [through Eq. (3)). However, we now show that explicit knowledge of the coefficients c;,;
is not required to obtain the poles of N***(w). Using ¥!/=%, C,,&, from Eq. (3) in Eq. (26) and defining

N‘;‘;’“(w)zig(—""%)m-f:dtexp[i(w +Eg—EYt] f: dgg - f:dtm @ TVt + + « Vit @ Dopen » (27
Eq. (26) becomes

N7 w)C =NP"(w) C + R (w)Z®¥(w)N""{(w) C (28)
or, for C nonsingular,

N7 (w) = NP (w) + NP (w)ZBW(w) N*= (w) . (29)

Notice that now all quantities have been expressed in terms of the model space functions of {@,} only. In practice,
the poles of R®®(w) are calculated as zeros of N°*®(w)™ which can be expressed as

Nove (@)t = NP (W)t - 2B%(w) . (30)

Thus, zeroes of N**"(w)™ occur at values of w satisfying (for nonvanishing amplitudes A) an w-dependent eigenvalue
problem

[(HP® () —5®¥(w)]A=0 . (31)
Using the fact [see Eq. (6)] that zeros of N™*"(w)! occur at w=E, - E,, and substituting Eq. (21) for N¥**, we have
wA, =[(E} -E)1 +Z%¥(w)] 4, . (32)

The roots w of Eq. (32) give the required energy shifts relative to vacuum’s exact energy E,. Thus the interpreta-
tion of the energy shift depends on the choices of ® and {Q;}. For example, if & =&y, for n electrons and if the
operators {Q;} are taken to be single-electron attachment (or detachment) operators, E ; = E, would yield the corre-
sponding attachment (or detachment) energies relative to the exact ground state of the n-electron system (i.e., the
E.A.’s or I.P.’s of the system), On the other hand, if the {Q{} are excitation operators, one abtains the excitation
energies relative to the n-electron exact ground state.

To make our discussion more concrete, let us take an example of a typical fourth-order diagram (Fig. 3) of 2%
occurring in an excitation energy calculation with vacuum as &4, and {2;} as {g}a,}. Using the Goldstone diagram-
matic rules, !* we have

1 (AR, (Rl IN) (8 Ima) mBlyd)
(4) —_— 2\ ig 2 a
Zre,rslw) = ~2T[r.(s.:».;,k.l.m (wte +e, G- wre te, te~€-€ € ) wre, te—¢,-€,) " (33)

[
This is precisely a fourth-order term in the open-shell characteristic featﬁres of the BH perturbation theory:
BW perturbation theory in the form derived by Bloch (1) the appearance of {E, ~E,), the energy shift relative
and Horowitz (BH) (1958).° We may note here three to the exact vacuum energy E_ in the denominators of
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FIG. 2. “Box representation” of a typical term in the expan-
sion of N [Eq. (13)]. # is the topmost time argument in the
entire diagram. #; is the uppermost time level below t; such
that a horizontal line drawn at #; cuts valence lines only. The
portion of the diagram between #; and ¢; is the “top” part and
the rest is the “bottom? part of the diagram.

¥; (ii) the appearance of mutually overlapping discon-
nected open diagrams; and (iii) the absence of closed
diagrams. In contrast, in the conventional open-shell
BW perturbation theory16 the calculated energy shifts
(E, —E?) are given relative to the unperturbed energies
E]. In our derivation this change can be effected by a
simple substitution of E, by Ej in Eq. (5). This ease
of interconversion stands in contrast to the time-inde-
pendent derivations of, for example, BH, % and Bran-
dow, #1* where a great deal of “juggling” of energy de-
nominators is required to achieve this reduction.

The key points of our development can be summarized
as follows., In the perturbation expansion of S, contribu-
tions from its closed diagrams were shown to factor out
[Eq. (10)). Secondly, the set of open diagrams can be
regrouped to appear as ZS, where T contains a set of
mutually overlapping disconnected diagrams containing
only open valence lines. This regrouping leads to a
Dyson-like equation for S, Moreover, a knowledge of
the combining coefficients C is not required for calcula-
tion of the poles of S.

Since, in our development, the poles of S appear at
the energy differences E; ~ E,, the state energies E;
may be calculated by adding the value E_ to the poles
E,~E,of 8. Since the vacuum & is a closed shell, E,
can be calculated from the closed~shell perturbation
theory (I).

As found earlier for the closed-shell problem, the
BH (or BW) open-shell MBPT gives rise to diagrams
such as that shown in Fig. 3 (when each disconnected
part contains orbital indices corresponding entirely to
fragments f| and f;) and yields an energy of the form
E, E; which, at dissociation, remains nonvanishing.
Thus, this open-shell BW theory is not size-consistent.

IV. TREATMENT OF QUASIDEGENERACY

In real situations one rarely encounters exactly de-
generate model space functions. In general, one has
only nondegenerate orbitals in the model space and hence
nondegenerate {®,;} with respect to the unperturbed
Hamiltonian, For example, it is customary and con-
venient to construct the set {®;} from the set of Hartree—
Fock (HF) orbitals, which are nondegenerate with re-
spect to the Fock operator f. These &,’s satisfy

F&,=E}d, , (34)

: Many-body perturbation theory. I

where F =3, f(i). In formulating a useful MBPT, it
would be desirable to choose F as the unperturbed
Hamiltonian and V' =H-F as the perturbation. In order
to show how the above choice of a Fock-operator-based
unperturbed Hamiltonian with nondegenerate model space
functions may be made consistent with the development
given earlier, we proceed in two steps.

In the first step we show that starting with nondegen-
erate {‘I>i} it is always possible to choose a one-electron
operator H, which restores the degeneracy of the {®,},
with

Hy=F+2Z . (35)

Then our earlier development of the theory carries
through with the perturbation V given by

V=H-F-Z=V -Z. (36)

To establish the form of the operator Z, we designate
by x{ and x], respectively, the vacuum and valence or-
bitals in the model space which are eigenfunctions of
some one-body operator f:

fxi=€x; (37

and

fxi=€xi - (38)

Then a one-electron operator %, defined in terms of the
valence-orbital projectors |x}!)x;! and as yet undeter-
mined amplitudes 27,

ho=f +2=f+ L IxiXxglat (39)
has the property that

hoX§ = € X (40)
and

hoxy = (€ + 2 X! . (41)
Thus a choice of the amplitudes 2} as

Zi=¢"—¢ (42)

for any arbitrary constant €, leads to an exact degen-
eracy of the orbitals x; with respect to &, with an eigen-
value €. The model space functions {&,} would there-
fore be degenerate with respect to the operator

1 ———t
1
P,
____.__F_____'ﬁ
X A\k 2 __-———tz
. )’_____,___f3
r ™1 ys
—— 1
18 4

FIG. 3. A typical disconnected open diagram contributing to

- Zpw in the open-shell BW theory. This kind of diagram renders

the BW theory size-inconsistent,

J. Chem. Phys., Vol. 76, No. 4, 15 February 1982

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Banerjee, Mukherjee, and Simons

Hy=2 h(i)=F+Z , (43)
i

with Z given by

z IZZ:"“:,“:, . (44)
i€y
The degenerate eigenvalues E} of &; satisfy
Hyd, =Ey®; , (45)
where
Ei= z € +ne’ (46)

i€dg

and »n is the number of valence orbitals in each &,.

Notice that Z of Eq. (44) is a diagonal one-body operator.

In the second step of our treatment of the nondegen-
erate case, we undo the effect of degeneracy brought
about through Z by summing all the terms in the per-
turbation series [Eq. (27)] to infinite order in —Z. The
degenerate unperturbed energies E} then become shifted,
as a consequence of the infinite summaltion, to the cor-
responding eigenvalues EY of F. Moreover, in the en-
ergy denominators the orbital energies €” for the va-
lence orbital x; get shifted to €], the eigenvalues with
respect to f. The remaining part of the perturbation V'
appearing in Eq. (36) can then be treated order by or-
der. The details of this infinite summation scheme have
been described in Appendix A. Here we simply sum-
marize the results., The net effect of the resummation
is a perturbation theory with F as the unperturbed
Hamiltonian and V' as the perturbation. The model
space functions {®,} are no longer degenerate with re-
spect to this partition, but the results in Sec. II still
hold.

Hence, in the next section, where we develop the
resolvent theory in the RS form, we can assume that the
{#;} may not be degenerate.

V. RESOLVENT THEORY: RS FORM

Let us recall the procedure used in the closed-shell
RS case to break N(f) into top and bottom parts. The
top part corresponded to the closed, connected diagrams
involving the highest time vertex and was identified as
Z; the bottom part was identified with N. A straight-
forward application of this procedure to the open-shell
case with the top box identified as the top part runs into
difficulties. The problem is that factorization analogous
to Eq. (14) (i.e., T[XY]=T{X]T[r]) cannot be obtained
for open shells because the top part X and the bottom
part Y generally involve uncontracted operators having
overlapping time arguments, Even though the highest
time in the top part X is above all time arguments in ¥,
a vertex in X where valence lines enter might have a

i

: Many-body perturbation theory. |

1985

FIG. 4. Schematic representation of the series for N ™ in
terms of a string of “pointlike” or instantaneous vertices, ap-
propriate to generating the Trg for open-shell RS theory. The
point with the highest time argument t; in the entire diagram is
the “top” part for RS theory; the rest is the bottom part. The
diagram shown here has time arguments £, >¢, >{;, etc.

time argument less than one in Y (see Fig. 3). A tech-

nique, by no means unique, which allows us to overcome
this problem and still effect such a factorization leading
to an w-independent T is given below.

If a box could be replaced by an equivalent “pointlike”
or instantaneous vertex in which the valence lines enter
and leave at the same time, then a string of boxes can
be represented as a string of points. In other words,
we intend to replace the true series of boxes in N®** by
a model series containing points. A typical term Z ,(m)
of N{}*™, as represented in terms of m pointlike ver-
tices, is shown in Fig. 4:

hd 0
N‘;‘;“(w):igof dtexpli(w + Eq - E)t]

¢ tm-1
X[‘dti‘” '/:” dfm;(d)ilN[ZK(m)”‘p?oven .

(4m)
The sign factors like (- 1)? have been incorporated into
the point like Z’s, If we now choose as the top part X
the point labeled by time #, and the rest of the diagram
as the bottom part Y, and consider all possible connec-~
tions (diagrams) between X and ¥, then the desired fac-
torization immediately follows:

N[XY}+ NX?P]=TIXY]=X(t)T[Y] . (48)

Note that all of the top parts X involve only the single
time argument ¢;. For a given top part X, the collection
of all possible bottom parts ¥ would be 3,3, N[Z . (1)]
which is the same operator as that appearing in Eq. (47).
Thus, this procedure, after all top parts X are consid-
ered, exhausts all the terms of N{}™.

Introducing now the resolution of identity 1=7, 1)
x(®,| and using a manipulation similar to the one
adopted in the passage from Egs. (15) to (20), we obtain

0 ™
NE=(w) =i f_“ dtexpli(w + Eo~ EDt(&, | ¥ +Zk [Z j(; d(t —t)) explilw + Eg - EDt@, | X(t,) | & mn’m]

a0 0 m
xexp[—i(w+Eo—E{,‘)t1]§=_;§;f dty expli(w +E0_Eg)t‘]f” by f‘ Aty g (B | NIZ 1(m)] | ¥ Dopen - (49)

Let us note that X(#;) contains a normal product of creation and annihilation operators with the same time argument
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#. The term X(t,) thus has the form exp(iHt, X) exp(~iH,t,), where X is independent of time. Since (! and &)

are eigenstates of H, with eigenvalues E} and Ef, we have

0 w0
NEn(w)=i [ atexslilw + By - Bl [4) +2 [Z fo dlt - ) explilw + Eo = ER)(t - t) K, |X | 4>K>m,m]

bt 0 ¢ tm
x}%ZL:f_mdtiexp[i(w +E0-E{{)t1]f ldtz---f At st (@ | N[Z 1(m)] | ¥ open

or

NP (w) = NP (w) +Zk:ﬁ‘5‘jg';(w)>:§‘,f NZE(w),  (51)
which reads in matrix notation

N*%(w) = NP* (w) + NP (w) EFN"*" (w) (52)

where NP{5 and NP7; are defined in Eqgs. (21) and (22),
respectively, and L} is

Z?SE ;<¢1 'X l ¢k>open,top . (53)

It should be noted here that £®° in Eq. (52) is w-indepen-
dent by construction.

As was shown earlier in connection with the BW theory
[see Egs. (26)-(31)], calculation of poles of N***(w)
does not require explicit knowledge of coefficients C,;.
Using Egs. (21) and (22) and eliminating C, we have

ﬁ"““(w):ﬁ'(’)'“(w)JrN—%’“(w)ERS ﬁopen(w) .

In practice, the poles of N°**(w) will be calculated as
the zero’s of N***(w)™!, which occur for nonvanishing
amplitudes A satisfying

(54)

[NgPer(w)? ~ZRS]A =0 . (55)
Using Eq. (6) we have the eigenvalue equations
wA,;=[(E}-E +ZI™)4,, (586)

giving the required energy shifts as roots w. Because
=B g w-independent, solution of Eq. (56) is nonitera-
tive for w.

In contrast to the BW theory, the T in the RS theory
consists of connected diagrams only. Thus, for two
non-interacting fragments, the RS analog of the diagram
of Fig. 3 would be connected leading to vanishing inter-
action at infinite separation of the fragments. As a re-
sult, the energy computed via the RS method is poten-
tially size-consistent.

Although the above analysis shows how the RS version
of the Dyson equation is obtained, it was predicated upon
our ability to replace boxes by instantaneous point inter-
actions. We now show, following Johnson and Ba-
ranger, ? that such a replacement is indeed valid.

A. Johnson-Baranger method of folding diagrams

Our objective here is to explore the possibility of re-
placing boxes by equivalent “points” and that a string of
boxes could be made equivalent to a string of points.
Figure 5 demonstrates pictorially a procedure for
achieving such a reduction., Figure 5(a) shows a typical
box between the time ranges ¢; and f,, with {> 4> >0,
>t where f and ' are the times above and below which

(50)

-

the box connects with other boxes of the string. The
time ¢, lies between #; and &, and is chosen to define the
time corresponding to the instantaneous interaction for
the “point. ” The time-dependent part of diagram 5(a)
has the form

T=expliW(t - t;)]
x {exp(iW(t, - t,)|}expliw,(t, - t")] ,

where each W corresponds to an appropriate orbital en-
ergy difference (Z,¢, -~ Z,¢,) between the respective time
intervals. This expression can be rewritten as

T =expli Wt - to) Hexp[— iw(t, — to)] expliw(f - 1,)]
Xexp[-—iWi(tO—tg)]}eXp[iwg(to—t,)] y (58)

which corresponds to the diagram 5(b). The quantity
inside the curly brackets { } corresponds to the “folded”
box which defines the “point” [Fig. 5(d)]. It is evident
from Fig. (5) and the algebra expressed in Eq. (58) that
the folded incoming and outgoing lines in the box [Fig.
5(e)] have arrows pointing in the opposite direction {cor-
responding to the exponential factors exp[-iW, (¢, - t,}]
and exp[-iW,(t; - ,)]}. The introduction of these so-
called folded lines® was necessary to nullify the effect

of “stretching” the external incoming and outgoing lines
of the original box to the point #;,. Clearly no such fold-
ing is required for a box whose incoming time lies above
the outgoing time, as is illustrated in Fig. 6.

(57)

—t
out }ouf *
—_ _______.____________'._____f'
— ! b’ — l
- ) _,_____'____1-2
n in +
¢
(@) (b) ©
out
= ° = NS
in'
d e
FIG. 5. Diagrammatic representation of the folding procedure

of Johnson and Baranger. (a) shows a typical box with time
arguments ¢, and t,. (b) is the same box, but with external
open lines stretched to 2 common time argument £, lying be-
tween t; and ,. The stretched portions are shown with dotted
lines. (c) shows how (b) may be viewed as a diagram with a
pointlike interaction at ¢y, shown separately in (d). (e) shows
what the point is like. The dotted lines on the box in (e) cor-
respond to “folded” lines.
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- *‘
= - to
— 12
(a) (b
i
= ) =
Q0
() d

FIG. 6. For a box whose incoming time lies above the outgo-
ing time, the conversion of the box to a point introduces no
folded lines whatsoever. Figures (a) to (d) show such a con-
version diagrammatically.

Further analysis shows that the above recipe for re-
placing a box by an equivalent point does not simply re-
duce a string of boxes to an equivalent string of points
within the allowable time range unless correction terms
are brought in, Figure 7(a) shows a string of two points
obtained by replacing each box of the string of Fig. 7(b)
by a point. The model series of Fig, 7(a) implies that
t> ty> ty> £ with {> > t, and t,> {;>¢,. The true series
of Fig. T(b), however, requires t>4>t,> ;> t,> .
Thus the model series, which has no restriction on the
relative ordering of ¢, and f;, includes spurious contri-
butions from the range ¢, <{; even though the model re-
striction f,> ¢ still applies. Such spurious contribu-
tions, therefore, must be subtracted from the expres-
sion of the string of points for the desired equivalence

t t
1
LWO W? ‘lWo
(t>to>t2) 1o # f' — t3
S T
(ts>%o>ts) T N o T
ta
U Wi Wi
1’. 1" 'u
(a) (b) (c)

FIG. 7. Emergence of model correcting diagrams for a dia-
gram having two boxes. (a) shows a string of two points ob-
tained by replacing each box of the string shown in (b) by a
point. The restriction on time arguments in the model series
(a) is o>}, with ¢, and ¢} lying between t,, ¢, and &5, #,, re-
spectively. The true series has an additional restriction:
t>t3. The model series (a) has thus a spurious contribution
from the range t,<t;, as shown in (c). Such contributions
must, therefore, be subtracted from the expression for the
string of points for the equivalence to hold. Such terms have
been called model-correcting (MC) diagrams (see, e.g., Ref.
9). Note that as a result the line joining the boxes in Fig. 7(c)
goes the “wrong way.”

oy t
N h
1 1
t =/t o AL
y ' 1'2 16#_-
+—- _fo ______ —_— 1'4
f4 iz
]
t ¢y
{a) b) (c)

FIG. 8. Depiction of a situation where a string of boxes ex-
cludes a time range present in the true series containing boxes.
(a) shows a true series with two boxes and (b) shows the corre-
sponding model series containing two points. The true series
requires £ >t >4y, t3>t,>1", ) >t,. But the model series has

a further restriction ty;>#;. The model series thus excludes
the range ty<th. A true~correcting (TC) diagram shown in (e}
must therefore be added to the model series of (b).

to hold. The spurious terms contained in the model
string of points have the box structure shown in Fig.
7(c) and are called model -correcting (MC) diagrams.
It is evident from Fig. 7(c) that the MC term has inter-
mediate valence line(s) running in directions opposite to
their original direction in the true series [Fig. 7(b)] and
thus appear as folded. Since the entering and leaving
vertices [f, and t; in Fig. T(c)] of such MC terms are,

in general, unequal, these must be folded to a point for
actual evaluation. {MC terms with multiply folded in-
termediate valence lines appear in (i) a string [Fig.
7(a)], in which one or more of the points originate from
a term [Fig. (c)], or (ii) the string containing three or
more points. For details see Ref. 9.}

9

In Fig. 8 we illustrate the other case in which a string
of points excludes a time range present in the corre-
sponding “true” string of boxes. The true series [Fig.
8(a)] requires t> #,> ¢, t;> t,> ', and ;> #,, while the
model series [Fig. 8(b)} has t;>1,> t,, t;> t;>t,, and
ty> t;. Thus the model description excludes the time
range in which > ;. A “true-correcting”® (TC) dia-
gram, as shown in Fig. 8(c), should therefore be added
to the expression of the model series of Fig. 8(b). As
with the MC terms, the TC terms are to be folded to a
point for their evaluation., In addition, there exist
boxes of the true series in which the entering and leav-
ing lines emerge from the same vertex and are thus
automatically pointlike, '?

Thus far we have not specifically discussed any pro-
cedure for choosing the folding time #; defining the point
interaction. Following JB,® we chose ¢, to be midway
between the incoming and outgoing vertices of a box dia-
gram to ensure the Hermiticity of the resulting Z*., In
Appendix B we discuss further the details of the time
integration procedure for the calculation of folded boxes
(points). Unlike the JB folding procedure, with our
choice of boxes the internal holes and particles are
treated symmetrically. Details for calculating the ex-
pressions for folded diagrams are given in Appendix B,
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VI. RENORMALIZATION IN RS THEORY

In many applications of perturbation theories, it is
customary to choose the HF orbitals for the ground
state as the basis set for the calculations, The princi-
pal consequence of this choice is the absence of first-
order diagrams in the one-body . This comes about
since the definition of the unperturbed Hamiltonian H,
includes the effect of all such first-order diagrams
through vypy. To achieve a generalization of this con-
cept, we intend to find a one-particle potential # which
includes a desired set of diagrams to all orders ap-
pearing in £, Introduction of such a one-particle « in
H, defines a partition of H:

H=Hy+V, (59)

Ho=(®|H|®) +‘Z € Na‘a,], (60)
where

Hozzi:ho(i) =;[h(i) +uli)] . (61)

The orbitals x; are chosen to be eigenfunctions of 4,:

PoXs =€k (62)
and the perturbation V is given by
15, » o
V= -ZT“ZM <Z] Ikl)a N[ai a,a,ak] + Z [UHF (3) - u(z)]
=G+ Llvgs (i) - utd)] . (63)

vgr(?) has the form of the HF potential and would reduce
to the HF potential itself if HF orbitals are used. Since
¥ is a power series in V, the diagrams in T will con-
tain contributions from G, vyr as well as u. If we want
certain diagrams not to appear in T (i.e., their con-
tribution should vanish) then we must choose u to achieve
a cancellation between terms coming from G, vyge, and
u. This criterion then serves to define «.'* We illu-
strate this procedure by first considering elimination
of the first-order contributions in T, which leads to the
choice u=uvyp. Although this is obvious from Eq. (63),
we show this cancellation as a prelude to our treatment
of the more general case,

Following the usual Goldstone convention, we desig-
nate the operator vy by a bubble, as shown in Fig. 9(a).
We denote the one-particle potential « by a cross as in
Fig. 9(b). Terms in I containing bubbles and crosses
can be depicted as in Fig. 10, where typical diagrams
up to second order have been displayed. The symbolic
box contains the interactions from G, but contains no

i
O 3
(a) (b)

FIG. 9. (a) Diagrammatic representation of the Hartree—Fock
(HF) operator Vyy as a bubble; (b) a corresponding diagram
for an external one-body potential #, denoted by a cross.

Banerjee, Mukherjee, and Simons: Many-body perturbation theory. 11

(@) (b)

(c) (d) (e)

>«
>

-K

(f)

FIG. 10. Diagrammatic representation of all the terms having
at most a total of two bubbles or crosses. The boxes shown
here are defined as part of a diagram not containing any bubble
or cross. If the cross is defined to have a value equal to that
of the bubble, then [(3), ()], [(b), (d)], and [(e), {({)] mutually
cancel each other.

bubbles or crosses, The lines #, j need not necessarily
be both connected to the box. In particular, when both
i, j are open we have a “no box situation” in which case
the bubble itself is a diagram of Z. (Note that £ con-
tains connected diagrams only.) We take the labels
(i,7) to be unrestricted (e.g., going over holes as well
as particles) because we want to define » over the com-
plete orbital space. Let us recall that vy, is also de-
fined over a complete orbital space. If we now assign
to a cross a value equal to that of a bubble (with the rest
of the box remaining the same), then [{a), (c)], [{(b), (@)],
and [(e), ()] in Fig. 10 mutually cancel each other.
Such cancellations can be shown to be true for higher
order diagrams as well. For this particular type of
cancellation to hold to all orders, we must have
uu=vn.u=2 (i ), (64)
aed
With this choice of u, &, becomes the HF operator from
Eq. (61).

In general, u can be chosen to eliminate any desired
set of diagrams in . As an example, the elimination
for the second-order diagrams is shown below, Since
u is a function of the orbitals {x,}, and since we choose
to define the orbitals as eigenfunctions of h,, Eq. (62)
has to be solved self-consistently. We refer to such an
iterative solution for « and {x;} as a renormalization
procedure.

The principal implication of this renormalization is
the absence of all diagrams in £ which contain an inter-
action which we have chosen to eliminate through 4. As
an example, with the choice of HF orbitals (first-order
renormalization) there would be no diagrams in £ con-
taining a bubble (i.e., there is no contribution from the
Coulomb minus exchange interaction). For the orbitals
{x;} to remain orthonormal, the self-consistent solution
of Eq. (62) requires %, to be Hermitian. Thus u has to
be an w-independent and Hermitian operator. It is {o be
noted that the first-order renormalization leading to HF
orbitals defines u=uvyy as trivially w-independent and
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a a
UaB = b + +
B
B B
p
q
p
Q
FIG. 11. Diagrammatic representation of all the terms con-

tributing to » for a renormalization up to second order.

Hermitian. However, for a general u corresponding to
a higher order renormalization, the diagrams defining

u have to be folded to keep u w-independent and Hermi-
tian. As an example, we have listed in Fig. 11 all the

folded skeletons of u for a renormalization up to second
order.

Vii. CONCLUDING REMARKS

In these first two articles we developed a unified
time-dependent approach for treating closed- and open-
shell perturbation theories in the RS and BW forms,
starting from the resolvent of the Schrddinger equation,
The underlying common feature for both the closed- and
open-shell developments is the dissection of the pertur-
bation series for the resolvent into appropriate “top”
and “bottom” parts leading to Dyson-like equations in-
volving the effective Hamiltonian ¥ in RS as well as BW
form. The highlights of this development for open shells
can be summarized as follows. The energy shifts, cal-
culated as poles of the resolvent in our theory, are ob-
tained relative to the correlated vacuum energy. The
explicit elimination of closed diagrams, corresponding
to the vacuum’s correlation energy, is achieved in a
rather straightforward manner within our time-depen-
dent framework. In the BW case, the w-dependent ef-
fective Hamiltonian Z contains mutually overlapping dis-
connected diagrams with only open valence lines. On
the other hand, the Z for the RS series contains only
connected diagrams and thus leads to a size-consistent
theory.

In the open-shell RS case, the effective Hamiltonian
T was made w~independent and Hermitian by using the
time integration procedure of JB, who prescribed a
recipe’ for “folding” diagrams which converts a time-
delayed interaction into a set of equivalent instantaneous
interactions and also ensures Hermiticity of the instan-
taneous interaction. In the conventional MBPT theories
for closed or open shells, the use of the Bruckner—
Goldstone-type series for AE requires explicit cancella-
tion of the disconnected diagrams common to the nu-
merator and denominator. In contrast, in our approach
it suffices to have a dissection of the series for the

1989

resolvent in which such unwanted diagrams are contained
in the bottom part.

1t is appropriate here to comment briefly on the other
existing resolvent—based perturbation theorles Hugen-
holtz, " Kvasnicka, ® and Bloch and Horowitz® made use
of resolvents in their closed-!" and open-shell®® ver-
sions of MBPT in a time-independent framework. The
elimination of disconnected diagrams in the closed-shell
RS theory of Hugenholtz” and its open-shell generaliza-
tion by Kvasnicka, ° and of the closed diagrams in the
open-shell BW theory of Bloch and Horowitz, required
considerable juggling of the energy denominators due to
their time-independent approach. Lowdin!® reformu-
lated RS and BW perturbation theories using reduced
resolvents, The series he generated were configura-
tion-based rather than orbital-based, and are thus not
immediately adaptable to the MBPT form. Johnson and
Baranger3 introduced guantities akin to our S(#) in their
time-dependent treatment of the open-shell RS theory,
and their development is closest in spirit to our ap-
proach. The major highlight of their work is the “fold-
ing” idea discussed earlier. In our opinion, however,
their general formal development beyond the folding
idea is rather incomplete. In particular, their starting
definition of the resolvent {Eq. (9) of Ref. 9] implies
that the energy shifts are to be found relative to the un-
perturbed vacuum energy E;. Thus a perturbation ex-
pansion of such a resolvent would have contained discon-
nected closed diagrams, whereas in our theory the
presence of the correlated vacuum energy E_ in the
resolvent ensures elimination of these terms. Recently,
attempts have been made to generate Hermitian model
Hamiltonians through Van Vleck unitary transforma-
tions.'®®® The relations between several existing open-
shell perturbation theories have also been recently ex-
plored.?’ With only one model space configuration, the
formulations of Brandow, * Kvasnidka® and ours become
essentially the same.

In the following paper we apply the open-shell resol-
vent theory in the RS form for calculating the 1. P.’s,
E.A.’s, E.E.’s, and state energies of some prototype
systems.
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APPENDIX A

In Sec. IV we discussed a procedure for treating non-
degenerate @,’s in the model space in our perturbation
theory. This goal was achieved in two steps. In the
first step, we restored the degeneracy of the &,’s by
adding a one-body operator Z to F to construct the H,
(Hy=F +Z) of Eq. {35). In this appendix we give the
details of the second step where we exactly undo the ef-
fect of the inclusion of Z in H, by treating —Z in the
perturbation series to infinite order. Operationally
speaking, we then have a perturbation theory in which
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N

SIRR IR IR E RS S R
FIG. 12, Diagrammatic representation of the perturbation
expansion of N %m“ introduced in Eq. (A2) for a two-body Z.

The square vertex corresponds to the operator — Z, introduced
in Eq. (35).

the model space functions {®,} are nondegenerate with
respect to an unperturbed Hamiltonian F and the per~
turbation is now V' =H - F [Eq. (36)].

To begin our analysis, let us denote the perturbation
—~Z in V by a square vertex. A resolvent NY(2), defined
with respect to the operator F, has the form

N3 () =i®, |expl-ilF —E)t]|®,) . (A1)

Its perturbation series with respect to the unperturbed
Hamiltonian H, of Eq. (35) can be developed in a way
analogous to Eq. (11), leading finally to a Dyson-like
equation of the form of Eq. (26):

oopen (w) = Noopen(w) + NO"”“zBW Nooyen (A2)

where Z5Y is just - Z, since Z is a diagonal one-body
operator [see Eq. (44)] involving valence lines only.
The expanded form of Eq. (A2) gives the series for
N2 in powers of Z, as shown in Fig. 12 for a two-
body £. Thus, a collection of valence lines with an in-
finite number of - Z insertions attached to all of them
gives an element of N3°*" in which the Hamiltonian that

appears is F rather than H,,.

A general term in the perturbation series for N°**®
consists of a collection of boxes in which there may be
an arbitrary number of -Z vertices appearing either
on the open valence lines or on the valence lines inside
the boxes and on the lines joining the boxes. The ef-
fects of such - Z insertions on the open lines and on
those lines joining the boxes may be accounted for ex-
actly by replacing the N°® corresponding to these lines
by NY, as implied by Fig. 12. Thus, a typical member
of Z®Y (corresponding to a top part) having any number
of ~Z insertions on the open lines may be represented
as in Fig. 13. If we now consider all of the ~Z inser-
tions on the valence lines inside the boxes, then their
effect can be summed up to infinite orders through a
shifted denominator.' Thus, for the parent box shown
in Fig. 14(a), collection of all the terms in which the
valence line ¥ has all possible - Z insertions results in

FIG. 13. It is shown how a collection of diagrams with a box
and having any number of ~Z insertions on the open lines can
be viewed as a box with renormalized open lines, such that the
orbital energies for the open lines get shifted. The double
lines in A2 correspond to such open lines. Therefore the un-
perturbed quantities N? get modified to N}. This procedure
thus serves to develop the open-shell perturbation theory
where the model-space functions are not all degenerate.

Y

(a)

(@

FIG. 14. Here we show how the series, starting with a “par-
ent” box (a) and with one, two, ... —Z insertions in the inter-
nal hole line ¥ [(b) and {(c)], can be summed to all order leading
to the shifted denominator expression (d) with a shifted orbital
energy for vy [again shown by a double line in (d)].

a “shifted denominator expression”correspondingto Fig.
14(d) in which the “constant” orbital energy € coming
from y gets replaced by the corresponding eigenvalue
€} with respect to f. The expression corresponding to
Fig. 14(d), which is equivalent to all possible ~ Z inser-
tions on y, as shown in Fig. 14(a)-14(c), is given by

R Gt W

pqr w+ €Y~ n=l
1 Bripg)lpglar), _ By 1 pa)alpalev),
NZ,w+(s”-Z';)—€,—eq NZ, wtel-¢ —€, '
(A4)

where we have made use of Eq. (42).

The overall effect of these manipulations is the
emergence of a perturbation theory in which the {&,}'s
are nondegenerate with respect to an unperturbed Hamil-
tonian F, the associated unperturbed energies being EO,
rather than the degenerate EY, and the perturbation is
V' =H-F.

In the subsequent discussion, we drop the double lines
in favor of single lines, but remember that the partition
of H can now be arbitrary.

It may now be said in hindsight that the Gellman-Low
theorem, [Eq. (4)], can be postulated for an arbitrary
partition of H into H,+ V, even when the {®,}’s are not
necessarily degenerate with respect to H,. 12 we should
mention here that a corresponding approach in the time-
independent framework for treating nondegenerate {<I>,}
was also put forward by Brandow.*

APPENDIX B

In this appendix we discuss the details of the time in-
tegration procedure for calculating the contributions
from the folded boxes both for the individual boxes and
for the MC and TC corrections that arise when a string
of boxes is replaced by a string of points. We explicitly
demonstrate the integration procedure for TC and MC
terms arising from a string of two boxes. We follow
essentially the J B? prescription except that the internal
hole and particle valence lines are treated symmetri-
cally in our development,

h f FIG. 15. A typical single-box folded
4 —4 3 4 o diagram in which the incoming line's,
i labeled ¢, are below the outgoing lines,
t labeled . We call this an Al type box.
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P 11 FIG. 16, A typical diagram, cor-
er responding to the box structure
4 of Fig. 15, which is symmetric
ty— — £
OT\ P around the folding time ¢yp. This
gives a Hermitian contribution to
(1\ ~

tp Zag:

1. Contributions from single boxes

In this subsection, we consider single boxes in which
all the external valence lines enter at one vertex and
leave from another vertex. In subsection 4, we treat
the other types of single-box situations,

Case 1. Figure 15 shows a typical single-box dia-
gram, in which the labels f and { appear on the folded
lines attached to the later and earlier times ¢ and ¢,,
respectively. We shall henceforth call this an Al type
box. The lines i or f may, in general, be a group of
valence lines (holes and/or particles) contributing a
factorlike W=12,¢, -Z,¢, for the respective time inter-
vals (as discussed in Sec. VA). The time-dependent
part which contributes to the denominators of such a
folded box is

1

B == fo dlty = t,) expliW (1, ~ 1))

(B1)

To perform the time integrations we write the time base
t; as

X exp[iWi (tg - to)] exp[iW1(t1 - tz)] .

Ly=pily + poty (B2)
with
pLt+py=1, (B3)

Here, p; and p, are to be adjusted to ensure Hermiticity
of Z. Writing (¢, - #) and (¢, —t,) in terms of the inte-
gration variable (¢ - ,), we obtain

1991

FIG. 18, A typical single-box diagram
—t 4 tO Yv)?ere the incoming lines, lfibele':d i,

r (] join the box above the outgoing lines,
t labeled f. We call this an A2 type box.

Hence, the denominator Dy, is
Dyp=[Wpy =1) =W, py + Wi .

Choosing t, to lie midway between t, and t, (py =p,=3),
yields

Dyy=[wy —3(W, +Wp)] .

The denominator D,, is thus always symmetric under
the interchange of the labels i and f. The numerator
N;; corresponding to such a box will only be symmetric
under the interchange of labels ¢ and f if the diagram
corresponding to the box is symmetric about ¢, leading
to an expression N; ,/D,,r for the diagram which is sym-
metric. For a diagram which is not symmetric about
tg, there always exists a conjugate diagram in Z such
that the two are related to each other via a reflection
through a horizontal mirror plane at {, but preserving
the sense of arrows of the diagram. The denominators
of both these diagrams are the same for our choice of
ty. Denoting the numerators for these diagrams as N,
and N{,, one has

Niy=Ngy,

(B6)

(B7)

(B8)

giving a symmetric expression for the sum of these two
diagrams as (N;, + Ny;)/Dy,;. To illustrate these cases,
let us consider some typical examples. Figure 16
shows a diagram which is symmetrie around ¢,. For
this diagram we have

We=€g W;=€,, Wi=€,+€5-¢, .,

The overall contribution of the diagram, which is sym-
metric under interchange of & and 8, is given by

1 (rd1Bp)(aplyd),

. B9
255 [€7+€6—'€g_%(€a+€ﬂ)] (B9)

Figures 17(a) and 17(b) show two diagrams, each of
which is not symmetric about ¢;,, but which together give
a symmetric contribution:

. (B10)

ty=ty=(pg ~1)(ty — 1) (B4)
and
tg - t0= - p1(t1 - tz) . (BS)
)
DY (b1 gp)rq| Bu) laplyd), +(¥618p).(aplvg)lgp | ud),)
;;76 (€u+€6‘€a'€p)[€r+(b'€p'%(€a +€B)]
|
ty t
B, 2
s e P “( 9 )
¢ 4
F' to— A=
t a*
3 y

(a) (b)

FIG. 17. (a) and (b) are two diagrams which are mirror
images of each other. They correspond to the box structure of
Fig. 15 and are not symmetric around ). The two together
give a Hermitian contribution to Z,4.

Figure 17 might be viewed as belonging to the box of the
Fig. 15 in which there are additional time vertices ap-
pearing beyond the interval #;, #,. The integration vari-
ables for such cases, typified by Fig. 17(a), would be
(t‘ - tz) and (tz - t3).

We emphagize here that our definition of “point” in-
cludes contributions from all internal lines of the box,
be they particles or holes. This leads to a symmetric
treatment of the internal hole and particle lines. In con-
trast, JB? perform the folding in such a way that the in-
ternal hole lines are treated as external to the box,
leading to a point with bubbles. In our folding proce-
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T
T;——--<— — \\
t2 T Tle-? ©
g
ta

FIG. 19. A double box model-correcting diagram with an
Al-Al type combination for the boxes.

dure, symmelvic treatment of internal hole and particle
line is possible since the operators appearing in Z [see
Eq. (53)] are in normal order, which therefore already
includes the effect of bubbles. Thus the contributions
of a folded box in our scheme would be different from
that of the JB scheme.

Case 2: Figure 18 shows a typical single-box dia-
gram in which it was not necessary to fold the external
valence lines. We call this an A2 type box. Here the
time-dependent part contributing to the denominator is

1 N ,
2= (=) [ dlty =t explit 1y - 1)
if 0
x expliw, (#; - to)]expliw (4 ~1,)] . (B11)
Using ¢t,=3%¢ +3t,, one obtains a symmetric expression
for Dy,
Dy =3(W + W)+ Wy . (B12)

The symmetry of the corresponding numerator again
depends upon the symmetry of the diagram around {;,

_J

Dy

x exp[iWy(t; - t,)] expliWs(t; = t,)) expliW £, — ;)] exp[iW, (2, — t)] exp[iW (t; = 1)),

t
a g\ 1
" D 3
<ALt
" 9 //ﬁ
1a

FIG. 20. A typical model-correcting diagram with the box
structure of Fig. 19.

and the considerations discussed for case 1 again apply
here directly, From the above cases of single boxes
one has six double-box correcting diagrams, three MC
and three TC, which we discuss now.

2. Contributions from double-box model-correcting
diagrams

Case 1: Figure 19 shows one typical MC diagram in
which both the external valence lines are folded. This
double-box diagram is an A1-Al type combination. T,
and T, correspond to the points of folding of individual
boxes; the model-correcting situation arises in the time
ranges £,<t, and T;= T,, with T;=3(t +1,) and T, =3(t,
+1,). The integration variables that we choose to ob-
tain the denominator are (t; —t,), (t; —t,), and (f; —t,).
From the inequality between T, and T,, we find

l‘3*tzsé(t1—tz+t3“t4) .

Thus the time-dependent part contributing to the denom-
inator is given by

1 " » (172)Ctq-t9) W(1/2) (tg=t,)
—_— :(— 1)3 f d(ti - tg)f d(ts - t4) f d(f:; - tZ)
0 0 0

(B13)

where W,, for example, is the W factor within the time interval (t; —=1,). Let us note that the factor W, for the in-

ternal folded line labeled s appears with a negative sign.

Choosing ¢, as
Ly=pity+paty+psty+pgty,

with 3, p; =1, we have

to—ty=(py = 1)(t; = 1) +(py + pp + py = 1)ty = 1) + (1 = py = py)t5 ~ 1) ,

tg=ty=~pylty = 1) = (py +py + )ty — 1) +(py + )t = 15) .

The expression (B5) then yields

1 -~
N ___,:__‘_\_To
/’11
T, — — 3
| -,
=z t
1»2 -5 9

FIG. 21. A double~box model-correcting diagram with an
A1-A2 combination for the boxes.

(B14)

(B15)

(B16)

13 $ 1
—_— _T1
Tz - *2
- fj\ff—"-"_ To
1a i

FIG. 22. A double-box model-correcting diagram with an
A2-Al combination for the boxes.
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f3 fi 1'3 i

/| S fo— —t
to R ~— —lr ——rto f -—T,

T+ —1 T
ta ]
f ta s
ts
t2

FIG. 23. A double-hox true-correcting diagram with an A2-A2 FIG. 24. A double-box true-correcting diagram with an A1-A2
combination for the boxes., type combination for the boxes.

1/Dif = 1/{[W1 + (Pl - 1)Wf - Ple] [Wz -pW, - (1- PA)WJ
x[(1 = py = p)W, + (py + p)W; =W, I} = 1/{IW; +5(py = pp = L)W, + 3(py ~ p)W; —3W,]
X [Wy + (o +3y+ Py = 2)W, = (zpy + 202 + )Wy =2 W, (1 = oy = )W, + (g + )W, - W, ]} (B17)
To make this denominator symmetric in the 7 and f labels one has to take
pi=3% =0, py=0, py=3,
which means that {, is midway between ¢ and ;. We then have
VD= 1V{[Wy ~2(W, + WO W5 = 2(W, + W))[2(W, + W,) - W, ]}
=1/4Iwy = 3W, =2(W, + WIW,; = 2W, = 3(W, + W) )z(W, +W,) - W, ]} . (B18)

The symmetry of the numerator, as discussed earlier, again depends upon the symmetry of the diagram around #,.
For the specific fourth-order diagram shown in Fig. 20, one has

Wf:€&! W!:€B! W1:€“+Ey-'€p9 W3=€A+€u_eq’ Ws:Ey.

The contribution of this diagram to T is

%u:&;“ {pv Iap>a(7\olyq;nf:/p [ pv) (Bg o), ’ (B19)
where
UDyg=1/{¢, +€,~¢€, —3(€q +€)][€, + €, ~ €, -3(eg +€9 - ¢,]}
-1/e, +e, ¢, -3¢, - 1(eq + €g)][ey + €, ~ €, — 3¢, — (€, + € [[3(e, +€p) - 6,]} . (B20)

Case 2: Figure 21 shows another type of MC diagram involving an A1-A2 combination. The MC situation arises
in the time range T =3(t; +#,)) = Ty =3(t; +¢,) with £,<#,. The pertinent integration variables are (t; - t;), (t; - t,),
and (¢ —t,), of which only (¢, - #,) goes over finite limits 0=<¢,~#,<t, —#,. Thus we have

1/Dyy= (1) fo i d(ty - t;) fo i d(ts = ty) L i d(ty — t,) exp[iw;(t; — t,)] exp[iWy(t; - t,)] exp[— iW, (¢, ~ 1,)] . (B21)

Proceeding as before with {,=pyt; + sty + py {3 + py f5, and choosing the p’s to ensure symmetry of Dy, we obtain
p1=%, P,=p;=0, p3=3, and
VD =1/{2W; ~W, - 3(W, + W) [Wy ~ (W, + W[ Wy + w1} . (B22)

Case 3: Figure 22 shows an MC diagram involving an A2-Al combination, which is the mirror image of Fig. 21.
The contribution to the corresponding denominator may be obtained by interchanging W, and W; in Eq. (B22).

3. Contributions from double-box true-correcting diagrams

Case 1: Figure 23 shows a true-correcting diagram of the type A2-A2, The true-correcting diagram arises in
the time range #;> ¢, and T,> T, with Ty=3(¢ +#), T,=3(f;+#). The time variables for the integration are (¢, - t,),
(¢ ~ty), and (#; ~¢;). The contribution to the denominator is given by

) o o (1/2)(#1-!2)0“344)
1/Dyy= (-1 fo dity = t) fo d(ty ~ 1) f dty - ty)
0

< exp[iWy(t; - t)) ) expliW,(t; — t,)} expliw, (¢, ~ )] expliW, (¢, - )] expliW,(t; - £,)] . (B23)

Defining fy=pyf; +pyty +p3t;+ pyty, and choosing the py’s as py=p,=0, py= p3=%, gives the symmetric de-
nominator
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i/ '
to— 7 —
12

FIG. 25. A double-box true-correcting diagram with A2-Al
type combination for the boxes.

U/Dyp=1/{[Wy +5(W; + WAl W, +5(W, +W))]
x[W, = 3(W, + W)} = L/{[wy +3W, + (W, + W,)]
X [Wy +3W, + 5 (W, + WH[W, - 5(W, + W1} . (B24)

Case 2: Figure 24 shows a true-correcting diagram
of the type A1-A2. The true-correcting situation arises
in the range T, =3(t{ + 1) < Ty =3(t; + £,), with t,> 4.

The variables are (¢ - 1,), (¢ ~¢,), and {t; —=#). The
contribution to the denominator is

I/DU: (" 7:)3 jﬂﬂa d(tg - t1) j;” d(ti - tz) '[)tii'tl d(tz - If4)

X expliW,(t; - b)) expliW(t; — 1) expliw (¢, — )]
(B25)

Introducing fq=py iy +pg by + p3 b3 +py ty, and choosing pg
=ps =3, p,=p,=0 to ensure symmetry of D,, we have

I/Difz 1/{[W3 +%(W, + Wf)]
X [2Wy + 2 (W, + W) + W, ][Wy + W]}

xexpliW(t, ~ 1) ] expliW, (t; = £5)] .

(B26)

Case 3: Figure 25 shows a true-~-correcting diagram
of the type A2-Al, which is the mirror-image of Fig.
24, The contribution to its D;; is obtained by inter-
changing W, and W; in Eq. (B26).

4. Single-box diagrams with multiple enargy and exit
points

Such types of diagrams are too numerous to be given
an exhaustive treatment here. However, the expres-
sions for their denominators follow a general pattern
and it suffices to discuss here a typical example in Fig.
26. Here, for {;=3(t +1,) the symmetric denominator
is

L
Dyo,es=2(€, + €5+ €+ €) ~€,— ¢, .

5. Summary of the diagram rules

Except for the single-box diagrams discussed in sub-
sections 1 and 4, there are no easily stated general
rules for calculating the denominators. For the multiple
boxes from which TC and MC terms arise, one needs to
follow the time integration procedure as discussed in
subsections 2 and 3. However, there are general rules
for the numerator of any diagram, Following are the
general rules for evaluating the numerator for the gen-
eral case and the denominator of the single-box case:
for the numerator, (a) apply the conventional Goldstone~
Hugenholz rules and (b} attach an additional sign factor
(- 1) for each pair of vertices joined by folded internal

: Many-body perturbation theory. 1!

FIG. 26. A representative single-box type diagram in which
there are more than one entry and exit points. In this example,
a hole-particle pair (o, p) are ingoing lines and another hole-
particle pair (8, q) are outgoing lines. However, « enters at
time ¢, while p enters at a different time #,, Similarly, 3
comes out at time #,, while ¢ comes out at £;.

valence lines; for the denominator of single boxes, for
each pair of successive vertices of a folded box, attach
a factor T,6, - %,¢€, +3(Z4€, - Z,¢,). Here h and p are
the internal hole and particle lines between these two
vertices, respectively; d and u are the downgoing and
upgoing external lines, respectively, including the folded
external lines.
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