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The convergence properties of several iterative methods for the optimization of orbitals and configuration
mixing coefficients in multiconfigurational electronic wave functions are compared. All of the iterative
methods considered here are derived from corresponding approximate energy expressions. These energy
expressions are discussed within the context of their suitability for the calculation of noninfinitesimal wave
function corrections. A method based on the partitioned orbital Hessian matrix and which uses an

approximate super-CI secular equation for the wave function corrections is shown to posses second-order
convergence and to have the largest radius of convergence of the methods analyzed in detail in this work for
several molecular examples. Particular attention is given to convergence properties for excited states, where

the differences between these methods are most significant.

1. INTRODUCTION

The convergence properties of several iterative meth-
ods for the optimization of orbitals and configuration
mixing coefficients in multiconfigurational electronic
wave functions are compared. An examination of the
iterative procedures reveals that each may be derived
from some approximate energy expression which is cor-
rect in the sense that it is valid within some neighbor-
hood of the trial wave function. These approximate
energy expressions and the corresponding iterative pro-
cedures are examined both at a formal level, to deter-
mine various types of failures that may occur, and at
an empirical level to determine the symptoms of these
failures. Particular attention is given to the excited
state wave function optimization problem, for which it
is shown that some approximate energy expressions are
more appropriate than others in determining noninfini-
tesimal wave function corrections. A detailed charac-
terization of valid excited state wave function solutions
leads to conditions that may be imposed during the itera-
tive wave function optimization process in order to avoid
convergence to undesired solutions.

Section II contains a discussion of the methods which
are compared in this work. The exponential operator
notation is employed to derive the second-order matrix
expressions appropriate for Newton—Raphson iterative
methods. The failures of these Newton—Raphson meth-
ods are examined and the level shifting methods and ap-
proximate super-CI methods are discussed as ways of
overcoming these failures. Section III presents the ap-
plication of these methods to several molecular systems,
inlcluding PO(’z*), CH,(1'A,2'4,), and BeO(1-413*,
1'a).
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1. DISCUSSION OF METHODS
A. General

We begin the discussion of the convergence charac-
teristics of these wave function optimization methods
with a formal comparison of the equations used in the
different iterative procedures. We use the exponential
operator method of Dalgaard and Jga‘rgensenl and of
Yeager and Jgrgensen’ and we will follow the derivation
of Shepard and Simons® using the unitary group approach
for configuration and density matrix specification.

Given a molecular orbital basis and a configuration
space spanned by {I m)}, an improved trial multiconfig-
uration wave function |mc’) is written in terms of a cur
rent trial wave function

lmcy=)_.C,|m) (1a)
as
|me'y=eih et |me) . (1b)
The unitary operators e“z and e‘g are expressed in
terms of the Hermitian operators A and S:
A =Ek(rs)i(En —Esr)E Z k(ra)T(n) ’ (za)
s (rs)
PN ' -~
S=, pail|nXme| - |mc)(n|)EZ: PaPn s (2b)
n#mc n

where E,, is a generator of the unitary group® and the
states {ln}} span the orthogonal complement of the state
|mc) within the configuration space. The e'$ operator
effects mixing coefficient variations, while the &'
operator effects orbital variations equivalent to the or-
bital transformation

o' =9, ®)

where the components of the matrix K and the vector k

© 1982 American institute of Physics 543

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



544

[with (7s) treated as a single index] are related accord-
ing to

K= _Ksrzk(rs) (r>s) .

With the electronic Hamiltonian operator?
~ 1 ..
HZZhu E;+ "Z (i lkl)eu,kz
t5 2 1kl

defined in terms of the one- and two-electron integrals
hy, and (7j (%) in the molecular orbital (MO) basis and

e ;,m=E;;Ey —6,,Ey;, the trial energy E(k, p)
={mc'|HImc') is required to be minimized with respect
to the parameters {k,), p,; While subject to any varia-
tional constraints from interacting lower energy states.
The commutator expansion may be used to collect terms
of E of various orders in the parameters {&, p}

E(k, p)=(nc|H +[H,iA])+ (A, iA],iA] +[A, 5]
+3{[H,45],8)+[[A,iA), i8]+ |mc) . (4)

We impose the condition on the wave function that the
energy is stable to first order with respect to the pa-
rameters {&, p}

9F - &
=(mcl|[H,iT ,,]|mc)=0 for all (rs),
0R(rs) lx=0,n=0 (52)
ba
9E ~ o
={mc|[H,iP,]|mc)=0 for alln . (5b)
9D [x=0,p=0

The first of these conditions [Eq. (5a)] is referred to
as the generalized Brillouin theorem® and the second
condition [Eq. (5b)] implies that the mixing coefficients
are an eigenvector of the Hamiltonian matrix H(mc) con-
structed in the configuration basis. For a sufficiently
complete configuration space, the minimum energy solu-
tion satisfies Eqs. (5a) and (5b). For excited states
with an insufficiently flexible configuration space, the
minimum energy solution may not satisfy Eq. (5a), be-
cause of root switching with lower states (sometimes
referred to as “variational collapse”). We assume
hereafter that Eqs. (5a) and (5b) are satisfied for the
desired minimum energy solution. Equations (4) and
(5) cannot be solved in closed form for the optimum pa-
rameters {k, p}, and iterative schemes must be devised
to reach the desired solution which satisfies Eqs. (5a)
and (5b) and which minimizes the energy.

B. Second-order Newton-Raphson methods

In the second-order Newton—Raphson methods for
iteratively solving Eqs. (5a) and (5b), Eq. (4) is trun-
cated after the second-order terms in the parameters
{k, p} and rewritten in a symmetric matrix form as

w
E¥(k, p) =E(mc) + (k' p") <v>

B C k
+%(kf p') ct M> p s (6)

where
w(rs):<mc'[1}5ii‘(rs)”mc> ’ (73.)
v,,:(mc'[ﬁ,iﬁ,,]’mc) , (Tb)
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B(Pq)(rs) = %(mCI[[H, iT(pq)]! iT(r.g)]

+[[I}’ if‘(rs)]s if‘(pa)] lmc} ’ (T
C(rs),n:c:r,(rs) -——-(mcl[[H, if(rs)]a ZP”] Imc> ] (7C

M. =¥mell[A,iP,),iP, ) +[[H,iP, ], iP,]|mc) .  (Te

The (7) vector is the wave function gradient vector, anc
is composed of the orbital gradient vector w, the ele-
ments of which are the generalized Brillouin theorem
terms, and the state gradient vector v. The

o )

matrix is the wave function Hessian matrix, and is com-
posed of the orbital Hessian matrix B, the state Hessian
matrvix M, and the coupling matrix C. If the mixing co-
efficients are optimum for the current set of orbitals,
the state gradient v has zero elements. Applying the
necessary stability conditions to the above second-order
energy expression gives

& 2e)+()-C)

If this set of linear Newton—-Raphson equations is solved
for the parameters {&, p} and if these parameters are
used to modify the mixing coefficients and to transform
the orbital coefficients, then in the neighborhood of a
solution the magnitudes of the elements of the wave func-
tion gradient vector decrease as the square of the ele-
ments of the gradient vector of the previous itera-
tion.!=%¢ This kind of convergence characterizes a
second-order iterative procedure.

If alternatively we choose the current mixing coeffi-
cients to be optimum so that v=0 at all times, Eq. (8)
may be solved for p in terms of k. The resulting ex-
pression may then be used to eliminate p from Eq. (6)
and give

EMK)=EGne) +k'w+ik'(B -CM-IChk . (9)

The matrix (B —CM™C") is the partitioned orbital
Hessian matvix. While B is the Hessian matrix for fixed
or frozen mixing coefficients, the partitioned orbital
Hessian is the matrix of second partial derivatives with
respect to orbital variations when the mixing coefficients
relax optimally along with the orbital changes. The
Newton-Raphson equations resulting from Eq. (9) take
the form

(B-cMIiCHk+w=0. (10)

C. Characterization of wave function solutions

We begin the examination of these two Newton—Raphson
procedures, Eqs. (8) and (10), with an analysis of con-
verged wave function solutions. Once a solution, w=0
and v=0, is found for the necessary conditions, it must
be analyzed to determine if it is a solution which mini-
mizes the energy or only represents an energy saddle
point or maximum. For this purpose the energy expres-
sion of Eq. (6) is written, since the gradient terms are
equal to zero at convergence, as
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B C\/k

E®(k, p) = E(mc) +3(k" p") ct m/\p (11)

For the lowest energy state of a given symmetry, it is
lear from this expression that, for a small arbitrary
vave function change given by some (}) vector, E(k, p)
= E(mc) if and only if the wave function Hessian matrix
)ossesses no negative eigenvalues. For higher energy
states of a given symmetry the situation requires further
liscussion.

Within the configuration space we require that the en-
ergy is minimized with respect to mixing coefficient
changes, but that it remains a rigorous upper bound to
the exact excited state energy (i.e., the appropriate root
of the full CI problem). It is well known’ that the suc-
cessively higher eigenvalues of the H(mc) matrix satisfy
these conditions for the corresponding excited states.
This is equivalent to the requirement that for the Nth
excited state (N=0 is the lowest energy state, N=1 the
first excited state, etc.) the M matrix must possess ex-
actly N negative eigenvalues. We further require this
trial energy, the appropriate eigenvalue of the H(mc)
matrix, to be minimized with respect to an arbitrary or-
bital variation. For w=0, the energy expression of
Eq. (9) gives

E®()=E(mc) + k"B -CcM-Ichk . (12)

It is again clear that, for both the lowest energy state
and for higher energy states, E(k)= E(mc) if and only if
the partitioned orbital Hessian matrix possesses no
negative eigenvalues,

Therefore, to characterize the lowest energy state,
solutions satisfying the necessary conditions [Eqs. (5a)
and (5b)] are further required either; (1) to possess a
wave function Hessian which is positive semidefinite, or
else (2) to possess mixing coefficients which correspond
to the lowest eigenvalue of the H{(mc) matrix and simulta-
neously to possess a partitioned orbital Hessian matrix
that is positive semidefinite. For higher energy states
of a given symmetry, the requirements are that the mix-
ing coefficients correspond to the appropriate eigenvec-
tor of the H(mc) matrix and that the partitioned orbital
Hessian is positive semidefinite. We show in Appendix
A that for the Nth excited state, the last condition is
equivalent to the requirement that the wave function
Hessian matrix must possess exactly N negative eigen-
values while the state Hessian matrix M also possesses
N negative eigenvalues.

It can of course happen, particularly with relatively
limited configuration spaces or near avoided crossings,
that the best approximation to the N th excited state
wave function within the given configuration space does
not correspond to the (N +1)st eigenvalue of H(mc), and
thus does not satisfy the conditions outlined above. But
such a solution, which has fewer than N negative eigen-
values of the state Hessian M, is difficult to identify
confidently as the appropriate solution, and does not
provide a rigorous upper bound for the desired energy.
As previously noted (Sec. IIA), this situation (which can,
in principle, be avoided by enlarging the configuration
space) is not considered in the present treatment., In-

545

stead, we are concerned with the process of locating the
solution when it does satisfy the stated conditions.

Because the iterative procedure requires the one- and
two-electron integrals to be transformed to the current
molecular orbital basis in each iteration, ® it is impor-
tant to minimize the total number of iterations required
to reach the desired solution. In general, it is not pos-
sible to search large volumes of orbital and state space,
converge the Newton—Raphson equations to the nearest
energy stationary points, characterize the solutions ac-
cording to the above criteria, and finally select from
the possible solutions which satisfy these criteria the
one with the lowest energy. A more reasonable ap-
proach to follow is to avoid undesired solutions as much
as possible during the iterative procedure. When this
is done, large volumes of wave function space will not
have to be searched for possible solutions, Also, if
adequate starting orbitals can be acquired (e.g., from
a nearby geometry on a potential energy surface, SCF
or modified SCF orbitals, approximate natural orbitals,
etc.), then only one or a few solutions may have to be
examined for the final wave function selection.

A comment concerning the number of solutions may
be in order. Although in the general multiconfiguration
case an analysis has not been performed, in the special
case of a two-electron closed-shell single configuration
Stanton® has shown that the number of possible solutions
grows exponentially as (3" -~ 1)/2 with the number » of or-
bital basis functions. In the general multiconfiguration
cases, the number of possible solutions could be even
larger, since there are more orbital degrees of free-
dom. As more configurations are added, a saturation
point will be reached where the number of orbital de-
grees of freedom begins to decrease due to the introduc-
tion of redundant operators. Finally, in the limit when
all possible configurations have been included, all or-
bital transformation operators are redundant and the
solution is determined completely within the configura-
tion space. In contrast to the orbital space, the config~
uration space cannot possess multiple energy minima
satisfying the same conditions. In many cases it is ad-
vantageous, therefore, to eliminate orbital degrees of
freedom in favor of configuration degrees of freedom by
modifying the configuration space. A familiar example
of redundant orbital transformation operators is given
by the configuration space consisting of all single excita-
tions from a single reference configuration into a set of
“external” orbitals unoccupied in the reference configu-
ration. In this case the energy is invariant with respect
to transformations within this external orbital space,
provided the mixing coefficients are allowed to adjust.
Trivial redundant operators also occur between orbitals
that are doubly occupied in all configurations and be-
tween orbitals that are unoccupied in all configurations
because, in these cases, the corresponding gradient
terms are zero regardless of the mixing coefficients
set. From the large number of possible solutions with
w=0, v=0, most will correspond to the wrong eigen-
vector of the H(mc) matrix or, for the correct eigen~
vector, some will correspond to saddle point or maxi-
mal solutions with respect to orbital variations, and the
remaining (one or more) solutions represent minima.
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Of these minima, we are of course interested in the
lowest (global) minimum.

During the iterative wave function optimization pro-
cedure 2 large number of undesired solutions may be
avoided simply by ensuring that the current set of mix-
ing coefficients correspond to the appropriate eigenvec-
tor of the H(mc) matrix. Using the unitary group ap-
proach, >4%10 thig CI step has been made so efficient as
to be comparable in effort to the integral transformation
step even for configuration spaces of dimension much
larger than can conveniently be employed in a full wave
function optimization procedure. When the mixing coef-
ficients correspond to the appropriate CI eigenvector,
other undesired stationary point solutions are charac-
terized by partitioned orbital Hessian matrices that have
negative eigenvalues. Thus, if there are several nega-
tive eigenvalues of the partitioned Hessian, no further
iterations within that region of orbital space may be re-
quired. If there is reason to believe that the current
orbitals are reasonable, then information from the gra-
dient vector and Hessian matrix may still be used to de-
termine some improvement to the current orbitals, even
though the Newton-Raphson procedures fail under these
conditions. Two approaches to the problem will be dis-
cussed; a level shifting approach and a super-CI ap-
proach. We examine these two approaches and develop
hybrid methods that have some of the advantages of both
approaches.

D. Level shifting methods

The level shifting or mode damping approaches (e.g.,
Ref. 1) are based on considerations that may be ap-
preciated by examining an example in which the energy
depends on only one variable. The Newton-Raphson pro-
cedure for energy minimization may be written as

k1 = ko - w(ko)/B(ko) ’

where k, is the initial guess, k; the improved estimate,
w(k,) the gradient evaluated at k;,, and B(k,) the Hessian
evaluated at 2,. In general, the energy function has
several minima characterized by zero gradients and
positive Hessian values, several maxima characterized
by zero gradients and negative Hessian values, and in-
flection points characterized by zero Hessian values,

At least one inflection point exists between each mini-
mum and maximum. One of these minima, for our pur-
poses the one with the lowest energy, is the desired
solution. When the initial guess is close to this desired
solution and the second order energy expansion includes
the dominant features of the function, then the Newton—
Raphson procedure will display second-order conver-
gence to that solution. However, if higher order terms
are important, the Newton—Raphson procedure may con-
verge slowly, oscillate about the solution, or even di-
verge away from the neighborhood of the energy mini-
mum. As the initial guess approaches an inflection
point, the small denominator in the Newton—Raphson ex-
pression causes an overestimation of the step size. The
radius of convergence of the Newton~Raphson procedure
to the desired energy minimum is thus somewhat less
than the distance to this inflection point. Instead of us-
ing the Newton—Raphson procedure, the modified proce-
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dure
ki=ky- W(ko)/(B(k()) + 6)

can be used in an attempt to increase the radius of con
vergence, If 6 is some level shift parameter that force
the denominator to be positive, then the steps would be
in the correct direction, along the negative gradient, bt
probably not of the correct length to ensure rapid conve
gence. This modification increases the radius of con-
vergence past the inflection point and toward the energy
maximum, Thus the level shifted procedure, in gen-
eral, is not a second-order iterative procedure but has
a larger radius of convergence than the Newton—Raphso1
procedure. In Appendix B we give an explicit example
of these considerations for a one-dimensional model
problem.

When the energy depends on several degrees of free-
dom, the usual approach is to transform the variables
to a basis which diagonalizes the Hessian and to attempt
to treat each of the new directions, or normal modes,
independently of each other as separate one-dimensional
problems. The above one-dimensional analysis may
then be applied to each of these individual normal modes.
Yeager et al. 1 yse the magnitude and sign of the eigen-
values of the wave function Hessian matrix and other in-
formation to determine if level shifting parameters 6,
are to be used. These modes are treated as if they are
independent of each other, and different parameters are
used to shift along different modes. The complete di-
agonalization of the Hessian may be avoided with the
equivalent procedure

B C B C
= + !
(Ct M> shifted <Ct M> Z S

where the vectors u; are the eigenvectors corresponding
only to the shifted eigenvalues. When some modes re-
quire level shifting, then the remaining modes may also
require modification, particularly if the step sizes are
fairly large, since the decoupling provided by the di-
agonalization of the Hessian is only approximate. In re-
gions of wave function space that are not represented
well with a second-order energy expansion, this de-
coupling may not be qualitatively accurate, and simulta-
neous shifting of all modes would be required to achieve
convergence. A difficulty with this approach is that
there is no apparent way to determine optimum shift pa-
rameters 0;. If they are chosen too large then conver-
gence may be slow; if they are not large enough the pro-
cedure may fail fo locate some minima or even diverge.
There is also no reason to expect a satisfactory set of
8, for one iteration or geometry to be satisfactory for
another. Another serious problem occurs for excited
state calculations. If the elements of the coupling ma-
trix C are small, then the normal modes will correspond
either predominantly to orbital directions or predomi-
nantly to state directions, and the only negative eigen-
values that should occur are those which are predomi-
nantly in the state space. If the coupling between the
orbital and state directions is large, however, this sep-
aration does not occur and the modes will contain mix~-
tures of both orbital and state directions. If there are
too many or too few negative eigenvalues of the wave

(13)
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inction Hessian, then it is difficult to tell which ones
hould be shifted in order to move toward a valid solu-
ion. Since a valid solution is characterized by a posi-
ive semidefinite partitioned orbital Hessian, an alter-
ative approach is then to apply level shifting based on
he eigenvalues of the partitioned orbital Hessian ma-
rix.! The above analysis is then applied to the second-
>rder energy expression [Eq. (9)] and the Newton-
Raphson procedure of Eq. (10). This method has the
advantage of not requiring a decision as to which nega-
tive eigenvalue modes to keep or reject, but still no
prescription is apparent for the determination of the
optimum shift parameters.

E. Super-Cl methods

There are several variations of the super-CI based
iterative schemes. -1 We present the iterative
schemes most closely related to the second-order energy
expression of the previous section. The super-CI pro-
cedure of Grein'*!? involves constructing a single-exci-
tation configuration basis from the current multiconfig-
uration wave function:

{|me), (Epg =Eg)|med; p>q} .

The matrix representation of the Hamiltonian is con-
structed and diagonalized in this basis according to

<H(sci) w \ /x s o\ /k
w' Emo)\1)TEED\gr 1 /\1] >

H(8¢1)(pgy(rey = M| (B, = E, JH(E,, - E, ) |mc), (14)

S(bq)(rs) =(mc I (Eap - qu)(Ers _Esr) lmc) .

The orbitals are then transformed according to Eq. (3)
or some approximation to it. If the super-CI eigenvector
corresponds to the lowest eigenvalue, then E(sci) repre-
sents a rigorous upper bound to the lowest state of the
particular symmetry and is bounded from above by the
current approximate energy E(mc) because of the
bracketing theorem. 5 I the neighborhood of an energy
minimum, the orbital transformation lowers the energy
such that E(mc’)~ E(sc¢i). Since both the approximate
energy E(mc) and the orbital corrections are calculated
to lower the energy in each iteration, the super-CI
method has the favorable aspect that it converges only
to local minima and avoids saddle point and maximal
solutions. However, as has been demonstrated, 1316
second-order terms of the double excitation form

(mc|HE,, E,, |mc)

are neglected in the calculation of the orbital corrections
and no coupling between the orbital changes and mixing
coefficient changes is accounted for, so the method does
not demonstrate true second-order convergence.

Additionally, for excited state calculations using this
super~CI method, no constraints are incorporated in the
calculation of the orbital corrections to prevent the root
switching problems associated with the ‘“variational
collapse” of the wave function. If the E(mc) term is
shifted!” so that the current wave function dominates the
super-CI eigenvector (i.e., |kl <<1), then convergence
may be obtained for excited states with some sacrifice
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in the convergence rate. We show in Appendix A that
without this shift parameter to approximate the effect

of the lower energy states, this super-CI method may
not converge to certain types of valid excited state solu-
tions.

An alternative procedure is to include explicitly the
complement states of the configuration space in the
single excitation basis

{|mc>, ‘n>; (EN —E@)ImC>} .

If the appropriate eigenvector of the configuration space
is chosen to construct the single excitation space, and
if the appropriate super-CI eigenvector is chosen to
transform the orbitals, then again both E(mc) and E(sci)
represent variational upper bounds to the excited state
energy and E(sci) is bounded from above by E(mc).
Coupling between the orbital changes and mixing coef-
ficient changes is included via the matrix elements

H(s¢i)y, pq) = | H(E,q — Egy) o),

so that the variational collapse and root switching prob-
lems are avoided in some cases.

The H(sci) matrix may be modified to include some of
the second-order terms usually neglected in the super-
CI schemes, 13 put the resulting E(sci) is no longer a
variational upper bound of the state of interest. The
eigenvector solution of the super-CI equation still at-
tempts to minimize E(mc’) instead of only stabilizing it
to first order, so a major advantage of the super-CI ap-
proach is still retained. Chang and Schwarz'® have re-
ported on the convergence properties for some excited
states using this nonvariational approach with the or-
bital-state coupling included.

F. Approximate super-Cl methods

A major disadvantage of the super-CI methods dis-
cussed above is that the construction of the Hamiltonian
and overlap matrices in the single excitation basis be-
comes very time consuming as the number of configura-
tions increases. In contrast, the Hessian matrix con-
struction requires only the reduced one- and two-particle
density matrices calculated from the configuration basis
and mixing coefficients. ' We wish to use the form of
the super-CI equations as a guide in the derivation of
iterative procedures that have the energy minimization
advantages of the super-CI procedures, but are ex-
pressed in terms of the Hessian and gradient matrix ele-
ments, which are relatively easy to calculate. To this
end, we rewrite the second order-energy expression
[Eq. (6)] as

B C w k
E®k,p)-Emc)=aE=3k'p'1)[C" M v || p

wt v o/ \1
(15)
Of course, requiring AE to be stationary results in the
usual Newton—-Raphson iterative procedure of Eq. (8).
We now introduce an error of order |(k' p')[? into this
expression to bring it closer to the expectation value
form of the super-CI energy expression
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k B C w
(kK pt1)s| p JAE=3(K'p'1)[Ct M v pl,
1 wh vl 0 1

where the S matrix is some overlap matrix of the ap-
propriate dimension. Stabilization of AE in this modi-
fied equation results in the secular equation

B C w k
C"' M v p |=2AES| p

w v Qg 1 1

(16)

If the S matrix is chosen to be the Chang and Schwarz
overlap matrix, '8 then this set of equations is equivalent
to their super-CI secular equation. If the M and C ma-
trices and the v and p vectors are neglected, this secular
equation becomes equivalent to the Banerjee and Grein
super~CI equations with the double-excitation terms dis-
cussed in the previous sections included in the H(sc?)
matrix elements.'*'!* Since the approximate super-CI
energy E(mc)+ AE is no longer a variational upper bound
for the state energy, and since the contribution of the S
matrix involves the second-order error introduced into
the second-order energy equation, it might be expected
that various approximations to the matrix elements of
S would have little effect on the convergence rate.
Shepa.rd20 and Lengsfield21 have reported satisfactory
convergence by approximating the S matrix with a unit
matrix for both ground and excited state calculations.
Convergence has even been obtained in cases where the
initial orbital guess was poor and Newton—Raphson iter-
ative procedures failed to converge. This approximate
super-CI secular equation

B C K k
C'" M v |{p|=2aElp 1)
w vt 0 1 1

is derived from the correct second-order energy ex-
pression with the introduction of a second-order error
and is equivalent to minimization of the energy subject

to the same “normalization” constraint that is implicit

in the derivation of all the super-CI iterative procedures.
This constraint guarantees the existence of a solution

to the minimization problem even when the Hessian
possesses negative eigenvalues and the second-order
energy expression [Eq. (6)] would therefore not possess
a minimum. We apply this approximate super-CI itera-
tive scheme to a one-dimensional model problem in Ap-
pendix B, and compare its convergence properties to
those of the Newton-Raphson procedure. Herein, we
refer to methods that require the calculation of a large
Hamiltonian matrix (in terms of individual single-excita-
tion configuration state functions) and its subsequent con-
traction to the smaller H(sci) matrix as super-CI meth-
ods. This includes the methods of Banerjee and Grein
and of Chang and Schwarz. Methods that do not require
this contraction, but attempt to take advantage of an
analogous secular equation [e.g., Eq. (17)] will be called
approximate super-CI methods. Although in other con-
texts a different classification might be more appropriate,
for our purposes in this work the most significant ad-
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vantage of the approximate super-CI methods over the
traditional super-CI methods is the ability to exploit tt
commutator expressions for the required matrix ele-
ments. The formal commutator evaluation results in
matrix element expressions which involve only the re-
duced one- and two-particle density matrices and mo-
lecular integrals.?'!%2% This results in more efficient
matrix construction algorithms than can be achieved wi
the traditional super-CI methods.

When convergence is achieved with the approximate
super-CI method of Eq. (17), the mixing coefficients
must still correspond to the appropriate eigenvector of
the H(mc) matrix, and the partitioned orbital Hessian
matrix should have no negative eigenvalues. We show
in Appendix A that, for the Nth excited state, this is
equivalent to requiring the M matrix to have N negative
eigenvalues and requiring the (N + 1)st lowest root of the
approximate super-CI secular problem to be zero. The
problem with using Eq. (17) directly, however, is that
there appears to be no obvious procedure, during the
iterative process, to move away from regions of wave
function space that possess negative eigenvalues of the
partitioned Hessian.

To gain further insight into the relation between or-
bital corrections obtained from the approximate super-
CI iterative procedure and iterative procedures based
on the second-order energy expression of Eq. (6), Eq.
(17) may be rewritten in a form resembling Eq. (8),

(" w0)0)0)-6)

where ~A=2AE =k'w+p'v. Since adding a constant to
the diagonal elements of a matrix results in shifting all
the eigenvalues of the matrix by this constant, it is clear
that solving the approximate super-CI system [Eq. (17)]
is equivalent to a special case of the wave function level
shifting procedure with all of the shift parameters set
equal to A. 20,22 The advantage of this procedure over the
general level shifting procedure is that there is a well
defined prescription for the calculation of the shift pa-
rameter . As the wave function converges, this pre-
scription gives shift parameters that automatically de-
crease and will not tend to overdamp the orbital change,
as constant shift parameters along certain modes might
tend to do. When the current orbitals are far from cor-
rect, this procedure has the advantage that all the modes
are shifted. Thus, much of the ambiguity of a general
level shifting procedure is avoided with this approximate
super-CI method.

(18)

To determine the convergence properties of this ap-
proximate super-CI method, we write the derivatives of
the energy with respect to the {, p} parameters as

3E
a8k w B C\/k

_ o e?
E] “\v/ T \ct m p el
9p

where we assume that near a solution
ole)=ov)=cw =0k =0(p)<1.

the (}) vector which is determined from the approximate
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per-CI equations [Eqs. (17) and (18)] may be written

k B c\!/w
0 ==l M v +0(xe)

1bstitution of this (:) into the expression for the deriva-
ves gives

8E

= 0(re) + 0(€?) ,

I'his shows that if the shift parameter satisfies o())

% 0(g) then the iterative procedure will display second-
order convergence. For the approximate super-CI pro-
cedure described above,

A=-2AE =-K'w-plv=0(e? .

Therefore, the approximate super-CI procedure of Eq.
(17) is a true second-order iterative procedure, even
though it has been referred to as an approximate second-
order procedure,?%?!

If we apply the same approach to the partitioned or-
bital Hessian second-order energy expression [Eq. (9)]
the resulting approximate super-CI equation is

B-CcMIC' w\/k k
w' o/\1)=28E\, ) >

where we have again set S(sci) =1 for convenience. The
solution of this approximate super~CI eigenvalue prob-
lem is equivalent to the solution of the equation

(19)

B+r-CMICHk+w=0, (20)

where A=-2AE = -k'w. Thus, this super-CI iterative
procedure is equivalent to a special case of a level
shifted partitioned orbital Hessian iterative procedure.
When the shift parameter A is equal to the negative of
the lowest approximate super-CI eigenvalue, it is neces-
sarily large enough to ensure that the shifted Hessian
matrix has non-negative eigenvalues because of the
bracketing theorem. Since A= 0(€?), this super-CI iter-
ative procedure displays second-order convergence in
the neighborhood of a local minimum, 2*

If the eigenvector obtained from Eq. (17) or (19) is
scaled by a factor o before it is used to define the wave
function corrections, then the resulting iterative proce-
dure is still second order, provided (1 —a)=0(c?). This
condition is satisfied when the eigenvector is scaled to
unit norm [e.g., @ =(1+X'k)""? in Eq. (19)]. This con-
ventional super-CI normalization may therefore be
viewed as resulting in a damped iterative procedure
whenever k is large.

When v=0, Eq. (20) may be compared with the parti-
tioned form of Eq. (18)

B+r-CM+2)1C'k+w=0. (1)

While Eq. (20) shows that the super-CI method based

on the partitioned orbital Hessian results in an iterative
procedure that moves away from undesired regions of
wave function space, Eq. (21) shows that the same is not
necessarily true for the super-CI method based on the

wave function Hessian. In particular, for excited states
the value of » may be large enough to shift away the
negative eigenvalues of the state Hessian matrix M that
must exist for a valid wave function solution. This
changes the nature of the C M"'C' contributions, and thus
has a large undesirable effect on the orbital corrections,

Another problem encountered with the wave function
Hessian super-CI method [Eq. (17)] is that for poor or-
bitals there may not exist an eigenvector whose dominant
component is the current |mc) state. The choices that
are available for the orbital corrections for the Nth ex-
cited state include: (1) the vector corresponding to the
(N +1)st eigenvalue, (2) the vector corresponding to a
negative eigenvalue which has the most dominant Imc)
contribution [i.e., the smallest {(k' p')!], and (3) some
combination of the vectors corresponding to the negative
eigenvalues, We have used Eq. (21) along with a second-
order perturbation theory approximation (i.e., A=Y w}/
B,,) to achieve the third option, ° but have found this un-
satisfactory in many cases. These problems with the
wave function Hessian super-CI method are similar and
related to the failure of the normal modes to decouple
adequately the independent search directions in the wave
function level shifting iterative procedure when the cou-
pling elements are large.

We emphasize at this point that these failures of these
iterative methods are not caused by the breakdown of the
approximate energy expressions. In the neighborhood
of the current wave function, these energy expressions
are correct. The reason that some of these methods
may fail where others succeed is that they use the energy
expressions in different ways to calculate noninfinitesi-
mal wave function changes. It therefore remains to be
demonstrated which of these methods employs the ap-
proximate energy expressions in the most appropriate
manner.

lIl. DISCUSSION OF RESULTS

We now examine the applications of the iterative meth-
ods discussed in the previous sections to some molecu-
lar examples. We have previously16 compared, in some
detail, the fully variational super-CI formulation of
Grein and co-workers!®!*!7 with the Newton—Raphson
methods, We restate the conclusions of that comparison
before proceeding to the level shifted methods and ap-
proximate super-CI methods.

When the variational super~CI method of Grein is com-
pared to the Newton-Raphson method with the coupling
matrix C neglected, both methods display first-order
(i.e., geometric) convergence near the final solution.
However, the radius of convergence of the super-CI
method is much greater than that of this Newton-Raphson
method. When the coupling matrix is included in the
Newton—Raphson method, it displays true second-order
convergence in the neighborhood of the final solution, as
Egs. (6) and (9) would indicate, but its radius of conver-
gence may be even smaller than when the orbital-state
coupling is neglected. We demonstrated that conver-
gence to undesired saddle point solutions, even with
fairly optimal configuration mixing coefficients, is a
chronic failure of the second-order Newton-~Raphson
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method. This previous work, 18 along with more recent
experience, >'2 leads us to advocate the use of the
second-order Newton—Raphson method only when the
wave function is sufficiently refined so that convergence
can be assured,

Before proceeding to the remaining comparisons, we
present useful energy lowering prediction formulas that
may be used to estimate convergence. The second-
order energy expression of Eq. (6) or (when v=0) of
Eq. (9) may be used to predict the energy which would
be obtained as E{mc) in the next iteration as a result of
the currently determined wave function changes. For
example, when k satisfies Eq. (10), then E® (k) — E(mc)
=3k'w. When an approximate super-CI method is used,
either the true second-order energy expression or the
modified second-order expression leading to the eigen-
value equation (16) or {19) may be used. We find that
AE =-2/2 (where — A =k'w is the appropriate eigenvalue
of the approximate super-CI secular equation) usually
leads to an underestimation of the energy change. The
use of the true second-order energy expression with k
determined from the super-CI secular problem results in

E®(k) - E(mc) =k'w + 2k'(- Ak - w)
= —32(1 +k%)
=-3r/2%,,

where z,,, is the coefficient of the [mc¢) function in the
normalized form

k
z=(1 +k*k)-“2<1>

of the appropriate super-CI eigenvector. This scaling
of the super-CI eigenvalue usually produces better pre-
dictions of the energy lowering than the unscaled quan-
tity. These approximate energy lowering expressions
require information from the current iteration only, and
are therefore more suitable for use as convergence
criteria than energy extrapolation procedures which re-
quire information from previous iterations.

In Table I we show the accuracy of these predicted en-
ergy lowerings for the 25* state of PO with a minimal
basis for the single configuration case using the approxi-
mate super-CI iterative procedure.?® The prediction of
the first iteration is only accurate to two significant fig-
ures, but on the third iteration it is seen to be accurate
to five significant figures. Four iterations were re-
quired to obtain convergence to machine accuracy in the
energy (=~ 10°'® hartree), starting with orbitals from the
!5* closed-shell cation state. This convergence may be
compared to that obtained by Banerjee and Grein, !* who
used both a first-order SCF iterative procedure which
failed to converge and a variational super-CI procedure
which converged rapidly. It may also be compared to
the convergence obtained by Grein?® and by Kosugi?’ using
modified SCF iterative procedures. In agreement with
Grein and in contrast with Kosugi, we find that the 25*
state lies below the 'Z* cation, and is therefore stable
with respect to ionization at the listed bond length. For
this calculation the difference between the approximate
super-CI iterative procedure and the variational super-
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TABLE I. Convergence of a single-configuration wave func-
tion for the ’=* state of PO with a minimal basis® at R =2, 78t
a,u. Orbital corrections are obtained from the approximate
super-CI secular equation. Initial orbitals are from the cati.

Iteration AFE Predicted AE
1 (~414,8165976078) —1.675546E -0%
2 —1.633922E-02) —2,981959E -05
3 — 2,984 003E -05 —3.857819E-10
4 —3.857835E-10 —5.104739E -20

— 414,832 966 6707
—-414.8241285906

ECEY
E(1Z*) (cation)

*The P-atom basis is (6222, 62) from A. D. McLean and G. S.
Chandler, IBM Research Report RJ 2665 (34180), IBM
Thomas J. Watson Research Center, Yorktown Heights, NY
(1979). The O atom basis is STO-6G from W. J, Hehre, R, ¥
Stewart, and J. A, Pople, J. Chem, Phys. 51, 2657 (1969).

CI procedure of Grein is that the latter method neglects
some second-order terms, as discussed in the previous
sections. This calculation was also performed with the
Newton-Raphson method, and similar convergence and
similar accuracy of the predicted energy lowerings were
obtained. This example does not demonstrate the dif-
ference between the partitioned orbital Hessian super-
CI (PSCI) and the wave function Hessian super-CI (WSCI)
methods, since there is only one configuration.

To determine the differences in the performance of
these iterative methods, first under favorable condi-
tions, we will now proceed to examine the convergence
of the PSCI, WSCI, and the wave function Hessian level-
shifted (WLS) iterative methods. For the latter method
we follow the suggestion of Yeager et al.'! and introduce
a tolerance criterion of 0.1, For the Nth excited state,
all eigenvalues A; of the wave function Hessian that fall
below this tolerance for i{> N are changed to ;; =0.1.
Table II shows the convergence for the 2 1A1 excited state
of methylene at the 1 1A1 geometry as described by the
two most important closed-shell configurations. The
PSCI method and the WSCI method show very similar
convergence properties; both converge to machine pre-
cision after the sixth iteration. The first iteration of
the WLS method shows that damping is probably required
for more modes, although all the extra negative eigen-
values of the wave function Hessian are removed by the
second iteration, The converged wave function Hessian
possesses a small positive eigenvalue (x,=0.0755). The
choice of 0,1 for the shift tolerance causes this eigen-
value to be modified in each iteration. This modifica-
tion destroys the second-order convergence which would
have been obtained otherwise, and illustrates a general
weakness of the level shifting method. The choice of
shifting parameters (or tolerances, as with the present
method) is very critical to the convergence, and an ap-
propriate set of parameters for one iteration may not be
appropriate for another. Next we consider this same
state of methylene under less favorable conditions.

Table III shows the convergence of the PSCI, WSCI,
and WLS methods when the initial orbitals are a poor
description for the final wave function. The initial or-
bitals for these calculations are obtained from the con-
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ABLE II. Convergence of a two-configuration wave function for the 2‘A1 1st::axte of CH, ina DZ
wsis! at Reg=2.14 a.u,, «HCH=105.1°, Starting orbitals are from the 1'A4, state.

eration E(PSCI? E(WscD®

— 38,206 8024178
— 38,655 560 9952
—38.703 3358233

' — 38,703 780 0967

; — 38, 7037825187

~38.7037825197_

—38.296 8024178
- 38,654 9153621
- 38,703 3778229
— 38, 7037810851
-38,7037825193

wa

—38.7037825197_

7
8
9

E(WLS)® N
—38.296 8024178 3
— 38, 627 025 5465 1
— 38,700 915 5690 1
— 38,703 776 9711 1
- 38,703 7823345 1
—38.703 782 5087* 1
~ 38,703 782 5190 1
—38.703782 5196 1

="

— 38,1703 7825197 _

*Partitioned orbital Hessian super-CI method, Eq. (19).
b¥ave function Hessian super-CI method, Eq. (17).

*Wave function Hessian level-shifted method (with a tolerance of 0, 1).
4N is the number of negative eigenvalues of the wave function Hessian of the corresponding

iteration of the WLS method.

®*The converged wave function Hessian has an eigenvalue of 0.0755. The tolerance of 0.1 re-
sults in the modification of this eigenvalue in each iteration, and thus destroys the second-

order convergence,

1. C. Snyder and H. Basch, Molecular Wave Functions and Properties (Wiley, New York,

1972), pp. 20-25.

verged set for the 2 1A1 state by mixing each of the oc-
cupied orbitals with a virtual orbital by a 15° rotation.
This gives a relatively poor description of both the 1 1A1
and 2 1A1 states, as may be inferred from the energy of
the first iteration. The PSCI method is seen to converge
monotonically in the energy to machine precision after
seven iterations. The second iteration of the WSCI
method has no super-CI eigenvector in which the [mc)
state is dominant. We chose the second lowest vector,
which also was the vector with the largest |mc) compo-
nent, but the energy diverged on the subsequent itera-
tions. The WLS method also is not successful in con-
verging to the desired solution. The number of negative

eigenvalues of the wave function Hessian is actually seen
to increase on successive iterations., The last two
columns show the result for the same starting orbitals
but with rescaling applied to the k vector. When the
magnitudes of the elements of the k vector are large,
they correspond to rotations of the orbitals by many #
radians. By scaling the k vector we move in the direc-
tion determined by the approximate energy expression,
but we also require the orbitals not to vary too drasti-
cally. For this example we rescaled when (k'k)> 0. 25,
which corresponds to a maximum allowed rotation of
about 7/6. The orbital rotations obtained by the PSCI
method in the first column were always below this toler-

TABLE III. Convergence of a two-configuration wave function for the 2 1A1 state of CH;. Starting orbitals were obtained by 15°
rotations of occupied-virtual orbital pairs of the converged 2 IA, orbital set.

Iteration E(PSCD E(WSCID) E(WLS) N2 E(WSCD® E(WLS)® N?

1 -33.6078086296 -~33.6078086296 ~33.6078086296 5 -33.6078086296 ~33.607 808 6296 5
2 —38.1671023122 ~34. 332369 2856° ~27.833992 0917 7 — 31,407 908 1827 —~34,7333501114 3
3 -38.3710751004 +51.7342937176 ~27, 2028016212 8 - 30.971 158 2955 ~35.943 063 8673 6
4 - 38.6936322358 divergence +195, 407416 4417 12 ~32.565684 3356 ~37.318354 4858 3
5 - 38, 703754 9575 divergence ~34.690134 1873 ~38.274 0712173 5
6 —38.703 782 4832 ~ 37,264 2880716 ~ 14,454 353 8427 8
7 —38.7037825197_ ~37.666 352 5924 divergence

18

~38.7037825197_

N is the number of negative eigenvalues of the wave function Hessian matrix in each iteration of the adjacent WLS column,
bWith rescaling. When k'k>0.25, k is replaced by {0.25/(k*K))!/2 k. This happens during the first ten iterations of the WSCI

method and during all iterations of WLS,

“The lowest eigenvector of the wave function super-CI equation has 2,,;=0.62, and the second lowest vector has z,,=0,.62. The
second vector is used, with appropriate normalization, for the orbital transformation.

J. Chem. Phys., Vol. 76, No. 1, 1 January 1982

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



552 Shepard, Shavitt, and Simons: Convergence of wave function optimization

TABLE IV. Convergence of a symmetry restricted® full
valence space multiconfigurational wave function for the BeOls*
ground state. The canonical SCF orbitals were used for the
initial iteration. The basis set® and bond length (R =2. 5 bohr)
are from Ref. 21,

Iteration E(PSCI® E(WSCI-NR)¢
1 —89,43062100 —89.430 62149
2 ~89,51247144 —~89.46921173
3 —89,541714 71 — 89, 502 796 62
4 —89.54346419 — 89,524 62069
5 ~ 89, 543498 97 ~89,53577303
6 —89.54349956_ ~89.540 77584
7 —89,54347339
8 ~ 89, 543499 07
9 - 89,54349913

*Including only 0 — ¢, 7 —m,, T,~~7, excitations relative to the
Hartree—Fock configuration; see Ref. 21.

bSee C. W. Bauschlicher Jr. and D. R, Yarkony, J. Chem,
Phys. 72, 1138 (1980).

°Present work, using the PSCI procedure. The k vector was
rescaled to unit magnitude in the first iteration, as explained
in the text, E(SCF)=-89,422816 04 hartree.

9Results of Lengsfield, Ref. 21. The WSCI method was used
for the first six iterations [with the eigenvector of Eq. (17)
scaled to unit magnitude], followed by the wave function Hes-
sian Newton—Raphson method for the final iterations. E(SCF)
=-89,422 81568 hartree.

ance, although for some calculations we do find it neces-
sary to apply this rescaling even with the PSCI method.
The fourth column shows that the WSCI method con-
verges to the correct solution, although not monotoni-
cally, after 18 iterations. The WLS method, still with
a shift tolerance of 0.1, does not converge even with re-
scaling.

Werner and Meyer28 have recently implemented a wave
function optimization procedure that is not based on the
minimization of a second-order energy expression of
any of the types discussed in this paper. Instead, the
stabilization of a different approximate energy expres-
sion leads to an analog of a Fock matrix, which is itera-
tively modified to include all the second-order and cer-
tain higher-order contributions from the wave function
variations. The orbital modifications result from con-
ditions that are formally analogous to those of the ortho-
gonal gradient method of Hinze and co-workers.*® One
reported example®® of the convergence of this method in-
cludes a comparison for the lowest I+ state of BeO with
a WSCI iterative procedure implemented by Lengsfield.21
Tables IV and V respectively, compare the performance
of the PSCI method with the WSCI results of Lengsfield
and with the second-order approach of Werner and
Meyer, all with the same configuration space, basis set,
bond length, and initial orbitals,?'?® The straightfor-
ward application of the PSCI procedure to this problem
is shown in the first column of Table IV. The only de-
viation from the strict application of this procedure is a
rescaling of the k vector to a magnitude of 1.0 in the
first iteration (initially k'k~16.9). This rescaling is

J. Chem. Phys., Vol. 76

appropriate for comparison with the WSCI results in th
second column, which are based on the normalization t
unit magnitude of the entire eigenvector of the WSCI m:
trix [Eq. (17)] as discussed in Sec. I F. The differenc
of three iterations required to reach convergence be-
tween the PSCI and WSCI methods is not entirely typica
for ground state calculations—the energy changes in co:
responding iterations of the two methods are usually
within an order of magnitude of each other for ground
states. The reasons for the relatively slow WSCI con-
vergence in this case, particularly during the initial
iterations, are not investigated further in this work.
The small differences between the listed energies for
the two calculations at the SCF, starting iteration, and
converged energy levels are presumably due to different
integral accuracy and SCF convergence criteria in the
corresponding calculations.

Table V compares the results of the PSCI method to
those of the method of Werner and Meyer.28 Although
this method is not analyzed in the present paper, we in-
clude this comparison for completeness. Following the
procedure of those authors (and unlike the calculations
of Table IV), the lo and 20 orbitals are frozen in their
canonical SCF form. The iteration numbering begins
with zero to be consistent with Ref. 28. The orbital-
state coupling is neglected for one iteration with both
methods, and no rescaling is applied to the PSCI method
in any iteration, Under these conditions the PSCI method
converges in one fewer iteration than in Table IV. Al-
though the method of Werner and Meyer appears to be
somewhat better behaved, any advantage is not signifi-
cant enough to reduce the number of iterations required
to achieve convergence in this example. The difference
in the total energy lowerings between the two columns
of Table V is presumably within integral accuracy and
SCF convergence tolerances, although the two sets of
results of Table IV are in closer agreement than those
of Table V. The difference between the final energies
of Tables IV and V shows the effect of the frozen orbital
approximation for the 1o and 20 orbitals. An interesting

TABLE V. Convergence of a multiconfigurational
wave function for the BeO ground state. The con-
figuration space, basis set, bond length, and start-
ing orbitals are the same as in Table IV, but the
inner-shell 1¢ and 20 orbitals are frozen in their
canonical SCF form.

Iteration AE(PSCD* AE (WM)P

0 (- 89.430621 00)

1 —0.10121193 —~0.107099 54
2 —0.01117251 —0. 00559730
3 —~0.00041865 —0.000107 72
4 ~ 0. 000006 17 —0.000 00009
5 —0.000000 00 ~0.000 00000
AE(1-5) —0.11280926 —0.112804 65

2This work, using the PSCI procedure. The:final
energy is — 89,543 430 26 hartree.
bResults of Werner and Meyer, Ref. 28 (total ener-

gies not quoted).

, No. 1, 1 January 1982

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Shepard, Shavitt, and Simons: Convergence of wave function optimization 553

ABLE VI. Convergence of the 2 !5+ state of BeO with a configuration space consisting of all
ngle excitations from the valence orbitals.* Starting orbitals are the converged 1 15+ state or-

itals.
.eration E(PSCI) E(WSCI) E(WLS) NP
—89.278374 9687 —~89,278374 9687 —89.278374 9687 1
H — 89,364 3744495 —89,364898 3572¢ —89. 3628678007 1
3 —89.3653811758 ~89.361 0572510 —89,365327 83508 1
) —89.3653831234 ~ 89,304 8390022 —89,3653551755 1
S - 89,3653831236 _ divergence —89.365367 9347 1
6 —89,365373 9885 1
7 — 89,365 376 9994 1
8 — 89, 365378 6578 1

*The bond length is 2. 569 bohr.

The basis set is 6-31G for Be [J. D. Dill and J. A. Pople, J.

Chem. Phys, 62, 2921 (1975)] and 6-311G** for 0 [R. Krishnan, J. S. Binkley, R. Seeger, and

J. A, Pople, J. Chem. Phys. 72, 650 (1980)].

PN indicates the number of negative eigenvalues of the wave function Hessian matrix in each itera-

tion of the WLS method.

“The second lowest eigenvector had z,,,=0.906, while the third lowest had z,,.=0.415. The second
lowest vector, with appropriate normalization, was used to define the orbital transformation.
9There are two small positive eigenvalues of the wave function Hessian matrix that are shifted in

each iteration,
WLS method.

feature of all the calculations of Tables IV and V is that
none of the methods display true second-order conver-
gence except perhaps in the last one or two iterations.

It has been our experience that this indicates the absence
of some important configurations from the configuration
space (possibly the excitations between the ¢ and 7 or-
bitals which have been omitted in this example?!), but
this is not explored further here. Finally, it should also
be mentioned that methods based on stabilization, rather
than minimization, of an approximate energy expression
can converge to saddle points and not just to minimum
points on a surface. The fact that some methods tend
preferentially to converge to extremum points (local
minima and local maxima) instead of saddle points is not
formally well understood in all cases.?® However ex-
perience with any of the iterative methods, when applied
to a variety of both ground and excited states, must ulti-
mately determine their ranges of applicability.

We next consider convergence for the first excited
s* state of BeO. The symmetry restricted full valence
configuration space used for the ground state leads to
root switching during the excited state orbital optimiza-
tion (again indicating the absence of important ground
state configurations). Some of the most notoriously dif-
ficult wave function convergence is found for configura-
tion spaces which contain many configurations which dif-
fer from each other by single excitations. ?*! However,
it is the single excitations relative to the dominant con-
figurations of the lower energy states that are most im-
portant in avoiding the root switching problem. Because
we are concerned here with convergence characteristics
and not with chemical interpretation or prediction based
on our results, we have chosen to use a configuration
space that consists of all single excitations from the oc-
cupied valence orbitals (30, 40, 17, and 17,). Table VI

Modification of these eigenvalues destroys the second-order convergence in the

shows the convergence of the PSCI, WLS, and WSCI
methods for the 2'5* state of BeO with this configuration
space, starting with the 1 %* orbitals obtained with the
same configuration space. The PSCI method converges
to machine precision after the fifth iteration and dis-
plays second-order convergence throughout. On the sec-
ond iteration of the WSCI method the energy is slightly
lower than with the PSCI method, but the super-CI
secular problem results in two vectors with large |mc)
components. The second lowest vector has the largest

[ c) component, and was used to define the orbital
transformation, but the energy on the subsequent itera-
tions is seen to increase, The WSCI method never pro-
duces a vector whose dominant component is the |mc)
state after the second iteration, The WLS method would
have displayed second-order convergence with a differ-
ent choice of shift tolerance (again 0.1 was used). The
converged Hessian possesses two small eigenvalues (X,
=0.0093, x; =0.0336) which are modified in each itera-
tion. Again this modification of the Hessian matrix de-
stroys the second-order convergence.

We would like to emphasize at this point that the re-
sults of Table III and Table VI should not be intrepreted
as evidence that the WSCI and WLS methods cannot con-
verge for these states. Indeed for the usual case, where
adequate orbitals are available, and where the wave
function Hessian matrix has only eigenvalues with large
magnitudes, all these methods display very similar con-
vergence. In this study we have chosen to compare
these different methods under more difficult conditions.
With this in mind, Tables III and VI should be interpreted
simply as evidence that other constraints or modifica~
tion are required for the methods based on the wave
function Hessian to obtain convergence in some cases
for which the partitioned orbital Hessian method con-
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FIG, 1. Successive convergence of the lowest four excited g+
and 'A states of BeO (all correspond to ’A, in the reduced C,,
symmetry in which the calculations were carried out) in an all-
single-excitations configuration space using the PSCI iterative
method. The bond length and basis set are those specified in
Table VI, Starting orbitals for each state are the converged
orbitals of the next lower state. Only as many iterations as are
needed for 10~ hartree convergence in the energy (circled points)
are shown for each state, but the iterations were continued in
each case to at least 107° hartree convergence. The energies
listed next to the circled points are the fully converged values.
The dashed lines show the behavior of the other states as the
orbitals are optimized for successively higher states (full lines).

verges without difficulty. We should also stress that for
ground state wave function optimization these methods
usually behave similarly. It is for excited state calcu-
lations, such as those of Tables III and VI, that the dif-
ferences become most significant.

Finally, in Fig. 1 we show the PSCI method applied
for some of the lowest electronic states of '>* and A
symmetry (both of these symmetries correlate to 1A1 in
the reduced C,, symmetry in which these calculations
were performed) with the all-singles configuration ref-
erence space. We have plotted the energy of these states
as a function of iteration (i.e., the number of two-elec-
tron integral transformations) as the orbitals are suc-
cessively optimized for the first excited state (21z*),
second excited state (11A), and so on. Only the itera-
tions required to achieve 1075 hartree accuracy in the
energy are plotted, but the iterations were actually con-
tinued until machine precision was obtained. Although
the energies of these states are not quantitatively accu-
rate, it is clear that all convergence problems caused
by root switching have been circumvented by the choice
of the all-singles configuration space. Second-order
convergence is observed for all of these states beginning
with the first iteration for each state. In fact the fifth

Shepard, Shavitt, and Simons: Convergence of wave function optimization

root of this series (4'2*) converges to machine precisi

in the wave function after only four integral transforma
tions starting with the 1's* orbitals. Systematic config
uration selection!"?4*? could be applied to augment this
reference space in order to bring the individual energie
into quantitative agreement with more exact calculation:
As long as the important single excitations are included
for the lower energy states, the root switching problem
should continue to be avoided, since there appear to be

no pathalogical near degeneracies.

IV. SUMMARY AND CONCLUSIONS

The convergence characteristics of several wave func-
tion optimization methods which are based on valid ap-
proximate energy expressions have been compared. We
have formally shown that the approximate super-CI
methods compared in this paper are true second-order
iterative methods and have demonstrated that they can
display second-order convergence in practice. Of the
methods analyzed in this report, the iterative method
based on the partitioned orbital Hessian matrix and which
uses the solution of an approximate super-CI secular
equation displayed the best convergence properties. This
method was shown to be a special case of a level shifted
Newton~Raphson iterative scheme, with the advantage
that empirical tolerance criteria and level shift param-
eters need not be specified. The types of failures that
may occur with these methods have been analyzed, with
particular attention being given to excited state calcula-
tions. Finally, we have also analyzed in detail the con-
ditions satisfied by valid ground and excited state wave
functions, and have shown how these conditions may be
used during the iterative optimization procedures dis-
cussed in this paper to avoid convergence to undesired
solutions.,
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APPENDIX A: CHARACTERIZATION OF THE
SOLUTIONS OF THE ITERATIVE PROCEDURES

A valid wave function solution for the Nth excited state
(N =0 is the lowest energy state, N=1 the first excited
state, etc.) should provide a rigorous upper bound to the
Nth excited root of the full CI problem, and should cor-
respond to an energy stationary point (w=0,v=0), This
stationary point should be a minimum with respect to
orbital variations, and therefore should possess a posi-
tive semidefinite partitioned orbital Hessian matrix
(B —CM-IC"), while the state Hessian matrix M should
possess exactly N negative eigenvalues. In this Ap-
pendix we will use these conditions and the partitioning
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.chnique of Lowdin!’ to demonstrate the necessary and
ifficient conditions that are satisfied by valid solutions
1 the Newton-Raphson and super-CI iterative proce-
ures discussed in this paper.

Newton-Raphson procedures

The Newton—Raphson procedure based on the parti-
ioned orbital Hessian requires the straightforward ap-
slication of the above conditions to characterize valid
wvave function solutions, and need not be analyzed fur-
ther. For the Newton-Raphson procedure based on the
wave function Hessian matrix, consider the eigenvalue
problem of the wave function Hessian:

(e WCh-C).

where the order of the B matrix is b, the order of the
M matrix is m, the eigenvalues of B are Bj=B,=<:-:

= B,, and the eigenvalues of M are My=M,=+++ =M, .
For any A; for which the x; components of the eigenvec~
tor are nonvanishing, the above eigenvalue solutions are
equivalent to the solutions of the partitioned equation

B-CM-21chx=2x.

If we define the multivalued function L()\) as the eigen-
values of the matrix (B — C(M - )~'C"), and the single
valued function R(A) =, then the eigenvalues of the wave
function Hessian are given by the set of A; for which
there exists an L(x;) =R(};). A graph of a typical L(})
is shown in Fig. 2. The horizontal asymptotes of L()\)
are given as the eigenvalues B, of the orbital Hessian
matrix B with

}‘i‘rgL()\)z{B, 1i=1,2,...,b}.
The vertical asymptotes are located at A values that
correspond to the eigenvalues M, of the state Hessian
matrix. Each branch of L()\) is a nonincreasing function
of A and, except for rather unusual cases, 15 gatisfies a
noncrossing rule with the other branches. As A ap-
proaches a vertical asymptote M,, only one branch of
L()) becomes singular, and has the principal part

L), = - (M, -2)(u'c'Ccu),, ,

where U is the unitary matrix which diagonalizes M,
while the corresponding eigenvector x, becomes propor -
tional to the pth column of (C U).

For a valid wave function for the Nth excited state,
there must be N vertical asymptotes for negative values
of A, and the remaining m — N vertical asymptotes must
correspond to positive values of A. At A =0 the branches
of L(2) take the values of the eigenvalues of the parti-
tioned orbital Hessian, and must therefore be non~
negative for valid wave function solutions. We now ex-
amine the consequences of these conditions on the eigen-
values of the wave function Hessian matrix.

For each of the N negative asymptotes M, (i=1,2, ...,
N) there is an associated branch of L()) which intersects
R(\} at some A<M, <0, and thus we conclude that there
are at least N negative eigenvalues of the wave function
Hessian matrix. If there are more than N negative
eigenvalues of the wave function Hessian, then there are

555

R(M) =x

|

i

|

|
| |
M, M
FIG. 2. Typical plot of the multivalued function L (A} (compare
Ref, 15). The branches of this function represent the eigenvalues
of the matrix B-C(M —A)"! CT, and the eigenvalues of the wave
function Hessian matrix are represented by the intersections of
these branches with the line R(A) =A, The intersections of the
branches with the A=0 line are the eigenvalues of the partitioned
orbital Hessian matrix and should be positive for valid wave func~
tion solutions. The vertical and horizontal asymptotes are the
eigenvalues of the matrices M and B, respectively.

additional intersections of L{\) and R(2) for negative A,
and since the branches of L()\) are nonincreasing, the
branches corresponding to these additional negative x
intersections must also cross the A =0 line with negative
values. This is not allowed for valid wave functions,
and therefore the wave function Hessian may not have
more than N negative eigenvalues for valid solutions.
A valid wave function for the Nth excited state may
therefore be characterized as possessing N negative
eigenvalues of the M matrix and exactly N negative
eigenvalues of the wave function Hessian matrix. This
type of characterization is useful for Newton~Raphson
procedures based on the wave function Hessian matrix.

It is also clear from Fig. 2 that, for a valid wave
function that corresponds to the Nth excited state, there
may be up to N negative eigenvalues of the orbital Hes-
sian matrix B. If B possesses negative eigenvalues,
then iterative procedures based on energy minimization
(rather than stabilization) within the orbital space alone,
without any coupling of the state space, cannot converge
to these solutions, since they appear as saddle point
solutions within that space. The ability to converge to
such solutions, while avoiding undesired solutions, would
be a critical test of the flexibility of an iterative wave
function optimization method. In practice, the B matrix
has been found to be positive definite in all cases ex-
plicitly tested so far.

2. Approximate super-Cl procedures

The approximate super-CI procedure based on the
wave function Hessian uses the (N +1)st eigenvalue and
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associated eigenvector of the equation

B C w k k
c"' M v p| =22E| p
wh v 0 1 1

to define the wave function corrections in each iteration.
At convergence (w=0,v=0), the eigenvalue spectrum of
this super-CI matrix is identical to the spectrum of the
wave function Hessian matrix, with an additional zero
eigenvalue that may be associated with the vector

0
0
1

Valid wave functions may be characterized by solutions
for which the M matrix has N negative eigenvalues and
the (N +1)st lowest super-CI eigenvalue is equal to zero.

The super-CI procedure based on the partitioned or-
bital Hessian uses the lowest eigenvalue and associated
eigenvector of the equation

72 0 e ()

to define the orbital corrections in each iteration. In
each iteration the M matrix possesses N negative eigen-
values as a consequence of solving the H{mc) CI prob-
lem for the appropriate mixing coefficients. At conver-
gence (w=0), the eigenvalue spectrum of this super-CI
matrix is identical to that of the partitioned orbital
Hessian matrix, with an additional zero eigenvalue as-
sociated with the vector (}). Valid wave functions are
characterized by solutions for which the M matrix has
N negative eigenvalues and the lowest eigenvalue of this
super-CI matrix is equal to zero.

APPENDIX B: APPLICATION OF THE NEWTON-
RAPHSON AND SUPER-CI ITERATIVE METHODS TO
A ONE-DIMENSIONAL MODEL PROBLEM

In this appendix we discuss the application of the itera-
tive procedures to the minimization of a simple one-
dimensional model problem. Several of the difficulties
with these procedures are not encountered with one-
dimensional problems, particularly those related to ex-
cited state calculations, but valuable insight may still
be obtained by consideration of this kind of model. We
choose as our model the problem of locating the energy
minimum of the function E = - cosk at £=0 using the
iterative procedures discussed in this paper. For this
energy function, the gradient and Hessian are given as

aE .
M)(ko): ’a? :Smko y
kg
2'E
B(ko)zg'k‘z‘l :Cosko N
kQ

and the second-order energy is
E® (k)= —cosk, + Ak sink, +3(Ak)? cosk, ,

where Ak=Fk —k;. The energy minimum at =0 is char-
acterized by a zero gradient and positive Hessian, the

inflection point at {%! =#/2 with a nonzero gradient bui
a zero Hessian, and the local maximum at 2| =7 with
a zero gradient and a negative Hessian. The Newton—
Raphson iterative procedure is given as

By =ko—wlko)/Blky) =k —tank, .

Near the desired solution k=0 this procedure actually
displays third-order convergence of the form

ki~ =(1/3)k) for kg~ 0,

for this model problem instead of the usual second-orde
convergence, but this is unimportant to our present dis-
cussion.

As the initial guess for the Newton-Raphson procedure
approaches the inflection point, the small denominator
causes the corrections to become too large, and thus
limits the values of %, for which the procedure converges
The radius of convergence is given by the solution close
to #/2 of the equation 2k, =tank, or k,=1,165561185.
For |kyl >k, the Newton~Raphson procedure fails either
because of divergence or because of convergence to the
local maximum at k=7.

The level shifted procedure is given as
ki =Fky — (sinkg)/(cosk,+85) ,

where 6 should be chosen to ensure a positive denomi-
nator so that the steps are along the negative gradient.
If we choose 6>1,0, then the radius of convergence is
extended beyond the |k! =7/2 inflection point and up to
the |k| =7 maximum. Near the |kl =7 maximum the
small gradient in the numerator causes only small steps
to be taken, and thus slows the convergence rate. Near
the £ =0 minimum the convergence is only first order

5
kizko"ko/(1+6)=‘f+_6'ko, fork0z07
when 8 is kept fixed. An alternative form of level shift-
ing is to adjust 6 so that the denominator is always equal
to a positive constant. This results in the local conver-

gence of the form
ky=ky = (sinko)/A ~ by — (kg = £3/6)A

near k,~0. The fortunate choice A =1 for the denomi-
nator results in good convergence, while other choices
result in only first-order convergence. Such a fortunate
choice cannot be made in general. Another alternative
is to switch from the level shifted procedure back to the
Newton—-Raphson procedure when the denominator is
large enough. For this model problem a choice which
results in a Newton—Raphson iteration for [k, >k, will
diverge. The convergence of the level shifting proce-
dure is thus very dependent on the choice of several
arbitrary parameters, including shift parameters and
criteria for switching to the Newton-~Raphson procedure.

The approximate super-CI iterative procedure applied
to this problem results in the use of the lowest eigen-
value solution of the equation

<cos ky sin k0> (Ak) <Ak>
=2AE
sink, 0 1 a 1 ’

or equivalently
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By =ky - (sinkg)/(cosky+ 1),

here
A= —2AE =3[ - cos by + (cos® by + 4 sin ky)'/?] .

‘ear the solution then k=~ (2/3)%}, so that the super-CI
:erative procedure, like the Newton—Raphson procedure
or this model, displays third-order convergence. The
enominator is non-negative in the super-CI procedure,
mnd thus the radius of convergence extends past the |z
=7/2 inflection point. It is only when the initial guess
.8 very close to the maximum |k =7 that the small
lenominator begins to cause a fatal overestimation of
the step size. The radius of convergence of this proce-~
dure is the solution near 7 of the equation

k,=sink,/[cosk, + (cos® k, + 4 sin’ £ )V/?] ,
or k,~2,97003735.

Thus the radius of convergence is increased by more
than a factor of 2.5 over that of the Newton-Raphson
method, with no sacrifice of the convergence rate near
the final solution, To ensure convergence for (k4| > 7,
third and fourth derivatives would be required, accom-
panied by a solution of the resulting second- or third-
order equation for the lowest energy minimum. This
nonlinear problem is not considered in this paper.
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