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Abstract

It is shown how branching ratios can be obtained from complex coordinate rotation calculations.
The procedure is applied to a rotational Feshbach resonance in a model atom-diatom van der Waals
complex which has two open channels present, and to a simple two-channel model potential problem
which has been treated by other workers.

1. Introduction

Two methods have recently received much attention for use in direct cal-.
culations of energies and widths (or, equivalently, lifetimes) of electron-atom and
electron-molecule scattering resonance states; the method of complex coordinate
rotation [1] (complex scaling) and the Siegert method [2, 3]. The coordinate
rotation (CR) method has, in the past few years, been extensively applied to the
study of electron scattering resonances involving atoms and molecules [1]. Very
recently, it was also demonstrated that rotational predissociation [4] (in H2) and
- metastable states of atom~diatom complexes [5, 6] can also be effectively studied
by this method. A few calculations using the Siegert method have been performed
on several autoionizing states of H™ [3, 7], He [7], and He™ [8].

. As is emphasized later in this paper, the cCR method permits the straightfor-

ward treatment of resonance states which possess N' open channels, by the
inclusion of appropriate square integrable functions in the basis set. Extension of
the Siegert method to many channel problems requires addition of N divergent
Siegert-type wave functions to the basis set, each such function corresponding to
outgoing flux with kinetic energy appropriate to its channel. Numerical problems
associated with the evaluation of the Hamiltonian matrix elements in such a basis
set have not been adequately discussed in the literature. Analytic continuation
techniques have been successfully employed in the one open channel case andina
“square well” model two channel case [9], but it is not clear how feasible and
accurate such calculations would be when one must deal with several Siegert
functions having different divergence rates.

Both the cr and Siegert methods calculate the complex resonance eigenvalue,
the imaginary part of which gives the total width of the resonance. The question
that naturally arises is how to compute the branching ratios (and partial widths)

* University of Utah Graduate Research Fellow.
+ Camille and Henry Dreyfus Fellow; John Simon Guggenheim Fellow.

@© 1982 John Wiley & Sons, Inc. CCC 0020-7608/82/040727-13501.30



728 BACIC AND SIMONS

given the resonance eigenvalue and the associated cr or Siegert wave function.
Expressions for calculating partial widths from Siegert wavefunctions have been
derived in two recent papers [9, 10]. Moreover, Noro and Taylor [11] recently
demonstrated how one could use the crR wave function, together with appro-
priately chosen “unperturbed” wave functions (the ®4 of Ref. 11) to compute
branching ratios. It is the purpose of the present paper to demonstrate how the
branching ratios can be extracted from Cr calculations with little additional effort
in a manner which differs from that of Ref.11 in that no use is made of
unperturbed wave functions. The significance of this point is made clear below.
We do not intend to make a critical comparison of the Siegert and CrR methods.
Our primary reason for considering the Siegert method is so that we can use the
available expressions for branching ratios in terms of the Siegert wave function
together with the connection between Siegert and crR wave functions shown here
to obtain branching ratios from CR results.

In Section 2 we show that under certain circumstances, the Siegert and CR
resonance wave functions are proportional to one another. We exploit this factin
Section 3 to derive an expression for the-branching ratio. In Section 4 we use our
method to study two model problems: a rotational Feshbach resonant state in an
atom—-diatom van der Waals complex with two open channels and a simple
two-channel model potential problem previously treated by Noro and Taylor
[11]. Section 5 contams some concluding remarks.

2. Relation Between Sieg_ért' and crR Wave Functions

Let us consider the scattering of a (distinguishable) particle A at r by a
molecule BC whose internal-state energies and wave functions are denoted by ¢,
and T,(R), and whose internal Hamiltonian is Ag< (R). The Schrodinger equation
for the composite A + BC system is (u is the A—BC reduced mass)

2 :
(.—%..Vf-i—hgc""](r, R)-E) tj’/s(l',R}=_0- _. (21)

The wave function ¢, is, in the Siegert method, expanded in terms of products of
target-molecule functions 7, and scattering functions. These scattering functions
are expanded in a convenient basis of localized square integrable functions {g;(r)}
and, for each open channel, an outgoing Siegert function S,(r). For s-wave
scattering, the S, (r) are usually taken to have the form (1—e ") ¢™"/r, where
(1- e_‘_"") is a “‘cutoff function” used to guarantee proper r—)O behavior, and
hk ,,/2;4 E- En- When such an expansion

Z T.8iBn+ Y A T.S. (2.2)

ni{open)
is used in Eq. (2.1), premultiplication by T,.g; and T,,S.., and integration over r
and R leads to a (non-Hermitian) eigenvalue problem for the resonance energy E
and the expansion coefficients B,; and A,. This eigenvalue problem must be
solved iteratively since the energy E appears in the expression which defines
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the Siegert functions’ wave vectors k,. Upon convergence, one eigenvalue E
of the secular problem may be consistent with the E used to define the k,. This is
the desired (complex) resonance energy E..

We may alternatively calculate the resonance energy (its position and width)
by using the coordinate rotation method. Under the well known transformation
(which is applied only to that coordinate which lies in the continuum)

rore®. (2.3)
The Schrodinger equation (2.1) becomes
R , :
(-Ee-m Vi Ve, R)+hac = E(6))bolr, R) =0, 2.4)

It has been shown that if the rotation angle @ is taken large enough (but <37), the
desired resonance eigenvalue of Eq. (2.4) will become @ independent. Hence by
computing the eigenenergies of Eq. (2.4), or some approximation to the same, as #
is increased, one should be able to identify the resonance eigenvalue as that one
which becomes independent of (or at least slowly varying with )8 for § beyond
some critical angle. Upon the expansion of i, in a finite square integrable (without
Siegert continuum functions) basis set, the desired complex resonance eigenvalue
(Ecr) can be found by the above outlined process and is given by

ECR=Er—f(r/2), ; {2‘5.)

where E, and I" represent the position and width of the resonance state, respec-
tively. The resonance eigenfunction y,(r) is square integrable and vanishes at the
origin. The “critical” value of the transformation angle 6 at which the resonance
eigenvalue becomes invariant (or relatively stable) with respect to further
increases of 8, will be denoted as ..

In contrast to the square integrable nature of the CR wave function the Siegert
function is divergent for r- oo since each of the wave vectors k, has negatwe
1mag1nary part (since E. does) .

K= kabe ™, ' - (2.6)
Wheré . g : .
lka| = V2 [(E, — £,)% + T?/4]"* (2.7)
and : iz
il el L{a
Bn.=7tan (——E,_E"). _ ke R

To achieve any connection between the Siegert state and ,(r, R) it is, of course,
necessary to remove the divergent nature of the Siegert wave f unctiOn

If the Siegert expansion given in Eq. (2.2) is evaluated atre”, ° the asymptotlc
(r-» o0) pieces become (for s- wave scattering) L

A, T.S.re’y=e° A,T,r " exp[ilkn|r cos (6—,6,,)—|k,,]rsin (9'-5,,)},
: : ! : - (2.9)
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which is square integrable if § > B,,. With this hint at how to make the desired wave
function connection, we can evaluate Eq. (2.1) (the equation obeyed by ¢,) atr ¢

and use

d g
ace®) . ar (@:10)
to write
2
( —23— e V2 Vre™ R)+hge —E) Us(re®)=0. (2.11)
17

The rotated Siegert wave function u,(re'), thus obeys the same equation
[Eq. (2.11) or Eq. (2.4)] and boundary conditions as s (r) for § >max (8,), since
for these @’s, the most divergent component of ¢ has been made square
integrable (just as ) and, for 6 >max (8,), ¥, has a §-independent eigenenergy

E()=E.=E,—-il'/2. (2.12)

Thus, when 6 >max (8,), ¢.(re®), and ¢,(r) satisfy identical second order
differential equations and obey the same boundary conditions at r =0 and r » 0.
We therefore conclude that the two functions are proportinal to one another, i.e.,

Us(re’®)=Kie(r) for 6>max (B8,). (2.13)

We emphasize that the above proportionality holds only when 6 > max (8,.). For
6 <max (8,), ¥:(r ") does not belong to the class of square integrable functions.
Hence, it cannot be compared to ,(r). In addition, for § =max (B,), Egs. (2.4)
and (2.11) are not identical since for these angles, E(6) in Eq. (2.4) does depend
on 6. Let us now explore the proportionality between ¢ (r ¢*®) and y,(r) to achieve
the desired branching ratio result.

3. Evaluation of Branching Ratios

For the purpose of deriving a branching ratio expression we assume that, for an
atom-diatom scattering problem, a resonance state has been located and its
position and width calculated (via both the Siegert and cr methods). The resultant
CR resonance wave function can be written in the square integrable basis {g;} as

k’fe(r)zZZICn:(f?)Tng:(r). (3.1)
The Siegert wave function for the same resonance state, evaluated at r e”, is
ﬂb,(r eie]=zaniTng!(r ei8]+ Z AnTnSn(r eiﬂ). (3-2)
n i

n(open)

In both Egs. (3.1) and (3.2), the T,,’s are target-molecule wave functions and the
g/’s are localized square integrable wave functions, just as in Eq. (2.2).

As was shown in Section 2 [Eq. (2.13)], ¢,(r) and ¢, (r ') are proportional to
one another for  >max(3,). Projecting both sides of Eq. (2.13) onto a particular
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target state T,,, we obtain
T Bmgi(te®)+ ApSn(r e®)=K T Cou(0)gi(r). (3.3)
i [

The first term (i.e., the summation) on the left-hand side of Eq. (3.3) consists of a
sum of localized exponentially decaying functions. It describes the resonance state
in the region where atom-diatom interaction is significant (i.e., the nonasymptotic
region). We assume that this region can be bounded by a sphere withradius R = L,
beyond which the potential interaction is essentially zero and the localized wave
function amplitude is vanishingly small. This implies that

B.g(re®)=0 forr>L. (3.4)

The optimal choice of L is discussed below, when we come to apply the results
obtained here to a model atom-diatom scattering problem. Under this assump-
tion, Eq. (3.3) becomes (using the explicit form of the Siegert continuum functions
S.) ;

ilk,, lreite=6,,)

Am re'e9_=K Y Cu(®)g(rir>L) forr>1L. (3.5
7

The symbol g(r|r > L) in Eq. (3.5) means that the argument r is to be restricted to
the region r > L. The rotated cutoff function f(re™®) = (1—e~*"") is omitted from
the left-hand side of Eq. (3.5), since for r > L, f(r ¢'®)=1. After slightly rearrang-
ing Eq. (3.5) and integrating both sides of the equation over r, from L to infinity
[keeping in mind that exp(i|k,,|re'® ') > 0 as r > co for § > B,.], we arrive at the
following expression for A,,:

A=K e il Bnlg Mnltntma % Cr(6) j g(r)rdr.  (3.6)
L

? which is given by

Calculation of branching ratios requires the amplitude |A .

5 ¥ . g oo 2
PO | e e % Cr(8) J g(r)rdr| . B
L
Then, the branching ratio for any pair of open channels is given by
A2 2ezikm|Lsin{a—ém1 E!Cm.-(e)L gi(r)rdr|?
A, =% | TeTeweg, (3.8)
P

% Coi(8) I g(rrdr
L

This result, when evaluated at the value of 6[8=max (8,)], represents our
technique for evaluating the branching ratio for open channels m and p.

In the limit of a narrow resonance, for which the width I' is smaller than the
spacings between the target’s internal energy levels (the thresholds), the partial
scattering width I',,, can be interpreted as the decay rate of the metastable state
into the open channel m [10]. In this case, the ratio of partial widths for any two
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open channels can be calculated using the branching ratio expression, Eq. (3.8):
/Ty =|Am/A,|". (3.9)

If the A,.’s are normalized so as to require

N
Y |AuP=1, (3.10)

m=1

the partial widths sum (for the case of a narrow resonance) to the total width I":

r=yr.. (3.11)

Thus, the coordinate rotation method allows us to determine the total width and
all of the partial widths, using Eqs. (2.5) and (3.9), respectively.

Our branching ratio expression, Eq. (3.8), contains the parameter L, the
practical choice of which remains to be discussed. However, it does not contain
reference to an ‘“‘unperturbed” scattering wavefunction such as appears in
Ref. 11. We do need to know what the asymptotic form of the Siegert function is in
each channel, but we do not have to separately solve a scattering problem (with
the interchannel coupling turned off) to obtain unperturbed functions. It is quite
clear from the discussion preceding Eq. (3.4) that the value of L should be
sufficiently large that it falls outside the region where the atom—diatom interaction
is appreciable. In CR calculations on atom-diatom collision complexes [5, 6], as
mentioned briefly in Section 2, the radial wave function is expanded in terms of
square integrable basis functions. Our own CR calculations [12] show that
increasing the size of the basis set (adding L? functions capable of describing the
atom-diatom translational motion at larger and larger r, beyond the ‘“range” of
the potential interaction) results in a resonance eigenvalue that is ““stable” in the
sense that it is insensitive to further addition of basis functions. As Hazi and
Taylor [13] demonstrated long ago, square integrable basis sets are capable of
describing the resonance wave function both in the strong interaction region and
in regions where V =0 (if the basis extends to these regions). We have indeed
observed [12] in plotting the r dependence of our open-channel wave functions
that a damped sinusoidally oscillating function of the correct de Broglie
wavelength can be obtained within our basis sets. Clearly, L should be chosen so
as to lie in this “region of stability” beyond which (r > L) addition of radial basis
functions does not change the resonance eigenvalue. In this region ‘“beyond” the
atom-diatom potential well, the resonance eigenfunction has the “asymptotic”
form given in Eq. (3.5). Hence by using Eq. (3.8), we can calculate the branching
ratio. We would not expect the calculated branching ratios to be very sensitive to
the choice of L, as long as L lies in the asymptotic region described above. Of
course, for practical reasons, one hopes to choose L to have it in the asymptotic
region, yet to have L small enough that a reasonably small number of square
integrable basis functions {g;} can be used to span the space r<L.
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4. Model Problems
A. Atom-Diatom Rotational Feshbach Resonance

The cr procedure developed in Sections 2 and 3 is applied here to a model van
der Waals atom-diatom A-BC system which has two open channels present. The
Hamiltonian for this system is :

2 2
H(R,r, 9)=—-ﬁ- [—lgi(r2 i)—{—2]-4-JB¢;;’2+ V(r, 8), 4.1)
2u Lrodr dr] r

where u is the reduced mass of the system [mampc/(ma +mac)]; 6 is the angle
between the diatom orientation vector R and the atom—diatom separation vector
r; 1% is the square of the angular momentum operator associated with rotation of A °
about BC; j* is the square of the angular momentum operator associated with
rotation of BC; and By is the rotational constant for BC, treated as a rigid rotor.
The interaction potential used in this study is taken to be a sum of Lennard-Jones
functions having various angular dependances

V(r, 8) = Vo(r)+ Va(r)P; (cos 6), (4.2)
where :
Vo(r) =4el(0/r)'* = (a/r)] 4.3)
and :
Va(r)=4elb(o/r)*—a(o/r)°]. (4.4)

The values of all of the parameters necessary to specify the model are given in
Table I. Rotational Feshbach resonances involving one open channel were
previously treated for this model problem by the authors [5] and by Chu [6]
employing the cr method, and by Grabenstetler and LeRoy [14] using a more
conventional scattering approach. A metastable state correlating with the iso-
tropic closed channel (j =/=2,J =0) was considered [5, 6, 14]. The quantum
numbers j and / refer to the rotation of R and r, respectively, and J refers to the
total angular momentum. The angular basis used in these studies was restricted to

TaBLE 1. Parameters characterizing
the model system.

ulamu) 1.981
By(cm™") 60.551
el[crn'1 ) : 60,408
o(A) ' 3,4745
a 0.09

b 0.5




734 BACIC AND SIMONS

I, j=2 and J=M =0. Thus, only a single open channel (j=[=0, J=0) was
allowed.

In the present work j =0, j = 2, and j = 4 states of the rotor are incluced in the
basis and the total angular momentum is restricted to J =0. Hence, two open
channels, (j=/=2,J =0)and (j = [ = 0,J = 0) are available. To expand the radial
wave function we used sets of M Gaussian basis functions (M =12, 15, 18, 25).
Then, by using the coordinate rotation technique (as described in detail in our
earlier paper, Ref. 5) we determined the resonance (complex) eigenvalue asso-
ciated with the closed channel (j=1[=4, J=0) for each of the basis sets. A
portion, greatly enlarged to emphasize the behavior near the stable point, of the
optimal @ trajectory (for the large M =25 basis) belonging to the resonance
eigenvalue is shown in Figure 1. The Gaussian basis functions used in this basis
have exponents a =39.86 and centers (in A) given by r,=3.3+(/—1)x0.264
(1=1=25).

— 0.080 —
—0.084 — 30 32
- e
n 23.__“. 5
= 2 A
'e —o.088 o
o a .
— - 22 e
w . .
—0.092— M
~ 20 »
i L]
—0.096— *
41 18e .
-1 .
—0.100 y I . )
120581 1205.63 1205.65
E,,(cm")

Figure 1. Segment of the @ trajectory of the resonance eigenvalue associated with

the metastable level (j=/=4,J=0) of the model atom-diatom van der Waals

system (M = 25). The 6 increment is 2% 107 rad. The numbers show the rotational
£ angles 6 x 10°.

It is easily determined from the 6 trajectory (Fig. 1) that the resonance energy
is 1205.63 cm™*. The width I'(=—2Im E) is 0.171 cm ™. Essentially the same
results were obtained for the smaller M = 15, 18 basis sets. Because the center of
the eighteenth Gaussian basis function occurs at r1g3=7.8 A, and in view of our
discussion in Section 3 regarding the choice of L, it seems to be appropriate to use
values of L larger than 7.8 A in computing the branching ratio via Eq. (3.8). A
 series of branching ratios |A|*/|Aol* computed for various values of L is given in
Table II. It is immediately apparent that for L>9.5 A the branching ratio
becomes constant to the extent that it is essentially independent of the choice of L.
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TasLE II. Branching ratios for the atom-diatom prob-
lem calculated using Eq. (3.8).

o 2
L(R) IAy/A, |
8.40 1.9253
8.60 3.6760 x 10°
8.80 6.9039 x 10°
9.00 3.0094 x 10}
9.20 5.9606 x 10*
9.40 1.2354 x 10°
9.50 3.7135 x 10°
9.55 3.2992 x 10°
9.60 3.1304 x 10°
9.65 3.0577 x 10°
9.70 _ 3.0260 x 10°
9.75 3.0118 x 10°
9.80 3.0051 x 10°
9.85 3.0013 x 102
9.90 2.9987 x 10°
9.95 2.9966 x 10°

10.00 2.9946 x 10°
- 10.0 2.9927 x 102
10.10 2.9909 x 10°
10.15 2.9890 x 10°

The value of the branching ratio can, qulte unamblguously, be determlned to be
3.0x10%

B. A Model Two-Channel Potential Problem

Noro and Taylor [11] (NT) demonstrated their procedure for obtaining
branching ratios from cr calculations on a model two-channel potential problem;
comparison with their results therefore provides a more direct test of our method.

The radial Hamiltonian for the NT model problem is [11] (for s wave, in atomic
units)

1
H= Er —+ Ho(x)+ V(x, r, (4.5)

where Hy is a target Hamiltonian defined to have two eigenstates

Hﬂ(quba (I) Ea(ﬁa (x)s a= 13 2. (4'6)
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The matrix elements of the interaction potential between target eigenstates are
defined as follows [11]:

Ues(1)= [ dx 620V (x, 1ebp(x) = Usgr™ e ™,

~110 - =75
U~(_7_5 7‘5). 4.7)

The energies of the target states are 0.0 and 0.1. A Slater-type orbital basis set was
chosen [11] for expansion of the r dependence of the crR wave function

a=1,2,
i=12,...,18,

with the orbital scaling parameter £ =4.0. The resulting 6 trajectory is shown in
Figure 2, where we see that, for ¢ greater than 0.14 rad, Ecr becomes essentially
independent of the rotation angle. The value of Ec at this stable point is the same
as that obtained in Ref. 11 (see Table III).

Joloe, ) =E C ()’ e~} 4.8)

—0.000! -
__—0.0006
o 7 | )
g = . .g
— J LT3
uj -~
—0.00 11— o
1l .z
—0.00186 L R R T ! PR (G T G PO (e | |'|
47665 47675 47685 47695
Eg (cm™)

Figure 2. # Trajectory of the resonance eigenvalue of the two-channel model

potential problem. The @ increment is 2 X 1077 rad. The numbers show the rotational

angles 6 x 10% Individual trajectory points cannot be resolved on this scale, for
¢ >ca. 0.14 rad.

We also found that the branching ratios computed via Eq. (3.8) depend very
little on the choice of the parameter L, provided that L is greater than ca. 8 A {one
can see from the paper of NT [11] (Fig. 1) that the two-channel model potential is
practically zero for r beyond 8 A}. However, we find that the branching ratios do
exhibit # dependence which, over a certain range of angles, is rather mild (up to
® = 0.26 rad, see Table IV). The resultant values of the partial widths I'; and I';
calculated on the basis of these branching ratios are given in Table III, together
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TaBLE III Two-channel model potential results.

CCR results Rumerical
This work of HT1! results of NT!!
E. 4.7682 4,7582 4.7682
r 0.001420 0.001420 0.001421
i 0.000020% 0.000059 0.000061
Ta 0.001400% 0.201361 . 0.001360

* Obtained at # =0.24 rad (see Table IV).

with the results of Noro and Taylor [11]. Because the branching ratio is so small,
I'; and T'> must be determined to very high precision (ca. 1%) in order to
guarantee that I';/T'; is significant. It can be seen from Figure 2 of Ref. 11 that the
NT values of I';/T’; obtained via the cR method range from 0.04 to ca. 0.05 for
values of § near the “‘stationary point.” Our values of I';/T2, up to 8 = 0.26 rad
- (beyond which, for reasons apparent from Table IV, one can have no confidence
in the branching ratio results) vary from 0.012 to 0.014 as theta waivers around
our stationary point. In fact, it is quite impressive that the two distinct methods,
employed by NT [11] and in the present work, are able to obtain branching ratios
within a factor of 3.for this difficult.case where I'; is only a few percent of [',. We
feel that the level of agreement is satisfactory. Moreover, we find it interesting that

TaABLE IV. Branching ratios for two-
channel model potential

: e/s_"ad 1'],/r2a
18 o.0021
.20 0.0130
.22 0.0139
.28 : 0.0141
.26 0.0143
.28 0.0170
.30 0.0154
32 0.0128
.34 0.0102
.36 0.0236

* Calculated using Eq. (3.8).
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a technique which is based upon looking at the large-r behavior of the rotated
wave function (ours) agrees quite well with one (NT) which emphasizes the small-r
(interaction region) behavior of the rotated wavefunction. In both methods, it is
difficult to obtain a value for I';/T"; which is highly insensitive to theta (partly
because I'; is so much smaller than I';); these difficulties are emphasized in
Figure 2 of Ref.11 and in our Table IV. This fact makes a highly critical
comparison of the two methods rather difficult. It would be useful to find a model
problem for which T'y/T"» is of the order of 0.1 which would make such a
comparison easier. :

5. Concluding Remarks

The fact that we choose to examine the large-r behavior of the cr wave
function is, in a sense, what distinguishes our approach from that of Ref. 11 where
the small-r (strong interaction) region is emphasized. The price which we pay in
attempting to extract the branching ratios from the asymptotic behavior of ¢, is
that we have to have a large enough r basis to accurately extend beyond the
“range” of V. By concentrating on the small-r region, the workers of Ref. 11
avoid this basis set problem. However, in return, they must know more than just
the asymptotic form of the open channel decay states; they have to compute
separately the full (asymptotic and small-r) scattering state which describes the
A-to-BC relative motions in the absence of interchannel couplings. We avoid
such “unperturbed” calculations. For problems involving interactions among
several indistinguishable particles (e.g., electronic Feshbach resonances), it is not
entirely clear how one should best go about computing the “‘unperturbed”
open-channel functions needed in Ref. 11. To “‘turn off”” the coupling which gives
rise to the metastable state is more difficult there, especially if one is using a
multiconfigurational wave function to describe the resonance state. We therefore

_feel that further investigations of the kinds of branching ratio formulas given here
and in Ref. 11 are necessary if we are to gain understanding of how to best
evaluate resonance-state properties.

Clearly, further numerical experience is required before we can make more
definitive statements about the range of applicability of our branching ratio
expression. The two open channel rotational Feshbach resonance problem
treated here represents the first application of our results to a full three dimen-
sional scattering problem. It is our plan for the immediate future to apply the
several open channel cR methods as described here to vibration-rotation Fesh-
bach resonances involving van der Waals complexes such as Hel,. Our desire is to
explore the range of utility of the method and to then carry out model studies for
van der Waals complexes which are of current experimental interest.
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