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Abstract

It is shown how branching ratios can be obtained horn complex coordinate rotation calculations.
The procedure is applied to a rotational Feshbach resonance in a model atom-diatom van der Waals
complex which has twa open channels present, and to a simple two-channel model potential problem
which has been treated by other workers.

1. Introduction

Two methods have recently received much attention for use in direct cal-
culations of energies and widths (or, equivalently, lifetimes) of electron--'atom and
electron-molecule scattering resonance states; the method of complex coordinate
rot;ltion [1] (complex scaling) and the Siegert method [2,3]. The coord inate
rotation (CR)methodhas, in the past few years, been extensively applied to the
study of electron scattering resonances involving atoms and molecules [1]. Very
recently, it was algo demonstrated that rotational predissociation [4] (in Hi) and
metastable states of atom-diatom complexes [5,6] can algo be effectively studied
by this method. A few calculations using the Siegert method have been performed
on several autoionizing states of H- [3,7], He [7], and He - [8].

As is emphasized later in this paper, the CR method permits the straightfor-
ward treatment of resonance states which possess N. open channels, by the
inelusion of appropriate square integrable functions in the basis set. Extension of
the Siegert method to many channel problems requires addition of N divergent
Siegert-type wave functions to the basis set, each such function corresponding to
outgoing fl.uxwith kinetic energy appropriate to its channel. Numerical problems
associated with the evaluation of the Hamiltonian matrix elements in such a basis
set have not been adequately discussed in the literature. Analytic continuation
techniques have been successfully employed in the one open channel case and in a
"square well" model twa channel case [9], but it is not elear how feasible and
accurate such calculations would be when one must deal with several Siegert
functions having different divergence rates.

Both the CRand Siegert methods calculate the complex resonance eigenvalue,
the imaginary part of which gives the total width of the resonance. The question
that naturally arises is how te>compute the branching ratios (and partial widths)
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given the resonance eigenvalue and the assOciated CR or Siegert wave function.
Expressions for ca1culating partial widths from Siegert wavefunctions have been
derived in twe recent papers [9, 10J. Moreover, Noro and Taylor [11] recently
demonstrated how one could use the CR wave function, together with appro-
priately chosen "unperturbed" wave functions (the <1>13of Ref. 11) to compute
branching ratios. It is thepurpose of the present paper to demonstrate how the
branching ratios can be extracted from CRca1culations with little additional effort
in a manner which differs from thatof Ref. 11 in that no use is made of
unperturbed wave functions. The significance of this point is made elear helowo
We do not intend to make a critical comparison of the Siegert and CR methods.
aur primary reason for considering the Siegert method is so .that we can use the
available expressions for branching ratiós in terms of the Siegert wavefunction
together with the connection between Siegert and CRwaveJunctions shown here
tOobtain branching ratios from CRresults. .

In Section 2 we show that under certain circumstances, the Siegert and CR
resonance wavefunctiqns are proportional to one another, We exploit this fact in ...

. Section3 to derive an expression for the-branchingratio:ln Section4 we use bur
method to study twa model problems: a rotational Feshbach resonant state in an
atom-diatom .van derWaals complex with. twe open channels and a simple
two-channel model potential problempreviollsly treated by Noro and Taylor
[11]. Section 5 contains some eoneluding rema.rks.

2. Relation Between Sieg~rt and CRWaveFunctions

Letus consider the seattering of a (distinguishable) partiele A at r by a
molecule BC whose internal-stateenergies and wave functions are denoted by En
and Tn(R), and whose internal Hamiltonian is hBdR). The Schr6dinger equation
for the composite A + BC systemis (f.-Lis the A-BC reduced mass)

2 .

(-lLV;+hBC+ V(r,R)-E )1/15(r,R)=0.
2f.-L .

(2.1)

The wave function'i/i5is, in the Siegert method, expandedin terlIls of ,products of
target-molecuIe functions Tn and seattering functions. These seattering funCtions
are exparidedina convenient basis of localizedsquare integrable functions {gier)}
and, fore'ach openchannel, an outgoing Siegert functlon Sn(t). For s-wave
scatteriilg, tne Sn(r) are usually taken to have the form (1 - e -Ol')e iknr/ r, where
(1-"-e-OIr)is a "cutoff function" used to guarantee proper r-~ O behavior, and
h?k~/2f.L ~E - En.When such an expansion

1/15 = I TngjBnf+ I AnTnSn
nj n(open)

(2.2)

i~used in Eq. (2.1), premultiplication by Tmgr and TmS;",and integrationover r
and R leads to a (non-Hermitian) eigenvalue problem for the resonance energy E

-and the expansion coefficients Bnj and An. This eigenvalue problem must be
solved iteratively since the energy E appears in the expression which defines
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the Siegert functions' wave vectors kn. Upon convergence, one eigenvalue E
of the secular problem may be consistent with the E used to define the k~. This is
the desired (compiex) resonance energy Ee.

We may alternatively calculate the resonance energy (its position and width)
by using the coordinate rotation method. Under the wen known transformation
(which is applied only to that coordinate which lies in the continuum)

ia
r~re . (2.3)

The Schrodinger equation (2.1) becomes

( f? z'a z 'a. ' )-2j.Le- I Vr+V(re' ,R)+hBc-E(8) l/1a(r,R)=O. (2.4)

It has been shownthat if the rotation angle 8 is taken large enough (but <l1T), the
desiredresonance eigenvalue of Eq. (2.4) will become 8 independent. Hence by
computing the eigenenergies of Eq. (2.4), or same approximation to the same, as 8
is increased, one should be able to identify the resonance eigenvalue as that one
which bec~mes independentof (or at least slowly varying with )8 for 8 beyond
same criticalangle.Upon the expansionof l/1ain a finitesquare integrable (withóut
Siegert continuum functions) basis set, the desired complex resonance eigenvalue
(ECR) can be found by the above outlined process and is given by

ECR = Er - i(r /2), (2.5)

where Er and rrepresent the position andwidth of the resonance state, respec-
tively. The resonance eigenfunction l/1a(r)is square integrable and vanishes at the
origiIl. The "critical" value of the transformation angle 8 at which the resonance
eigenvaluebecomes invariant (or relatively stable) with respect to further
increases of 8, will be denoted as 8e.

In contrast to the square integrable nature of the CRwave function the Siegert
function is divergent for r~ 00 since each of the wave vectors kn has negative
imaginary part (sinceEe does) .

kn = Iknl e-i{3n, (2.6)

where

Iknl=.)2 [(Er - in)z + rZ/4Jl/4 (2.7)
and

I3n=han-1( r/2 ).
Er - en

(2.8)

Toachieve any connection between-.the Siegert stateand l/1a(r,R) it ts, of course,
necessary to remove the divergent nature of the Siegert wave function.

. If the Siegert expansion givenin Eq. (2.2) is evaluated at r ela,theasymptotic
(r ~ ex))pieces become (for s- wave sqattering)

AnTnSn (r eia) = e-la AnTn,-l exp[ilknlrcos (8 -l3n) -Iknlr sin (&'~I3n)J,
'. '. (2.9)
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which is square integrable if 8 > {3n.With ibis hint at how to make the desired wave
function connection, we caDevaluate Eq. (2.1) (the equation obeyed by I/Js)at r ele
and use

d

d(reie)
-je de -

dr (2.10)

to write

h2 -

(-2/.L e-2ieV;+V(reie,R)+hBC-E) I/Js(reie)=O. (2.11)

The rotated Siegert wave function I/Js(rele), thus obeysthe same equation
[Eq. (2.11) or Eq. (2.4)] and boundary conditions as I/Je(r)for (j> max ((3n),since
for these 8's, the most divergent component of I/Js bas been marle square
integrable Uustas I/Je)and, for 8> max ((3n),I/Jebasa 8.,.independent eigenenergy

E(8)=Ec=Er-irf2. "(2.12)

Thus,when 8>max(~n)' I/Js(rei~), and-I/Je(r) satisfy identical second order
differential equations and obey the same boundary conditions at r =O and r~ 00.
We therefore conclude that the twa functionsare proportinal to one another, Le.,

I/Js(reie)=Kl/Je(r) for 8>max({3n)' (2.13)

We emphasize that the above proportionality holds only when 8> max ({3n)'For
8 $ max ((3n), I/J.(rele) does not belong to the class of square integrabldunctions.
Hence, it cannot be compared to I/Je(r).In addition, for 8 $ max ((3n), Eqs. (2.4)
and (2.11) are not identical since for these angles, B(8) iDEa. (2.4) does depend
on 8.Let us naw explore the proportionality between I/Js(reie}and I/Je(r)to achieve
the desired branching rafio result. "

3. Evaluation of Branching Ratios

For the purpose of deriving a branching rafio expression we assume that, for iln
atom-diatom scattering problem, a resonance stare bas been located and its
position and width calculated (via both the Siegert and cRmethods). The resultant
CR resonance wave function caD be written in the square integrable basis {gl} as

I/Je(r) = L L Cnl(8) Tngl(r).
n I

(3.1)

The Siegert wave function for the same resonance stare, evaluated at r e je,is -

ie' " . ie. ie
I/Js(re )=LLBnITngl(re )+ L AnTnSn(re ).

n I n (open)
(3.2)

In both Eqs. (3.1) and (3.2), the Tn's are target-molecule wave functions and the
gl'S are localized square integrable wave functions, just as in Eq. (2.2).

As was shown in Section 2 [Eq. (2.13)], l/1e(r)and I/J.(reie) ale proportional to
one another for 8> max({3n)'Projecting both sides of Eq. (2.13) anto a particular
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target state Tm, we obtain

L Bmjgj(r elB) + AmSm(r elB) = K L Cml(O)gl(r).
j I

(3.3)

The first term (Le., the summation) on the left-hand side of Eq. (3.3) consists of a
sum of localized exponentially decaying functions. It describes the resonance state
in the region where atom-diatom intt?raction is significant (Le., the nonasymptotic
region). We as~ume that this region can be bounded by a sphere with radius R =L,
beyond which the potential interaction is essentially zero and the localized wave
function amplitud e is vanishingly smalI. This implies that

IB
Bmjgj(re )=0 for r>L. (3.4)

The optimal choice of L is discussed below, when we come to apply the results
obtained he re to a model atom-diatom scattering problem. Under this assump-
tion, Eq. (3.3) becomes (using the explicit form of the Siegert continuum functions
Sn) .

ellkmlrei(e-l3m)

Am IB -KLCml(O)gl(rlr>L) forr>L.
re I

(3.5)

The symbol g(rlr >L) in Eq. (3.5) means that the argument r is to be restricte d to
the region r > Lo The rotated cutoff function f(r e 18)=(1 - e -areie) is omitted from
the left-hand side of Eq. (3.5), since for r > L, f(r elB)= 1. After slight1yrearrang-
ing Eq. (3.5) and integrating both sides of the equation over r, from L to infinity
[keeping in mind that expUlkmlr el(B-l3m))~ Oasr ~ 00for O> 13m],we arrive atthe
following expression for Am :

00

Am == -K eIBZlkm!e(i(B-l3m) e -ilkmILei(e-l3m) L Cml(O) f gl(r)r dr.
I L

Ca1culation of branching ratios requires the amplitude lAm12,which is given by
'. 00 2

IAmI2=KilkmI2e2Ikm'LSin(8.-I3~)I~Crnl(O)IL gi(r)rdrl.

Then, the branching ratio for any pair of open channels is given by
CO

foo I

I

Am

l

2 -'-
I

km

/

2 e21kmlL sin(B-13m)

I

~ C.M) ,. g,V),d, '
Ap - kp e21kplLSin(B-l3p). f

00 I .
L Cpl(O) gl(r)r dr
I L

(3.6)

(3.7)

(3.8)

Thisresult, when evaluated at the value of O[O=max (I3n)], represents aur
technique for evaluating the branching ratio for open channels m and p.

In the limit of a narrow resoriance, for which the width r is smaller than the
spacings between the target's internal energy levels (the thresholds), the partial
scattering width r m can be interpreted as the decay rate of the metastable state
into the open channel m [10]. In this case, the ratio of partial widths for any twa
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open channels can be calCulated using the branching ratio expression, Eq. (3.8):-

f mirr = IAmIApI2. (3.9)

If the Am's are normalized so as to require

N

L IAmI2=1,
m~l

(3.10)

the partial widths sum (for the case of a narrow resonance) to the total width f:

f =L f n' (3.11)
n

Thus, the coordinate rotation method allows us to determine the total width and
all of the partial widths, using Eqs. (2.5) and (3.9), respectively.

Our branching ratio expression, Eq. (3.8), contains the param eter L, the
practical choice of which remains to be discussed. However; it does not contain
reference -to an "unperturbed" scattering wavefunction such as appears in
Ref. 11. We do need to know what the asymptotic form of the Siegert function is in
each channel, but we do not have to separately solve a scattering problem (with
the interchannel coupling turned off) to obtain unperturbedfunctions. It is quite
elear from the discussion preceding Eq. (3.4) that the value of L should be
sufficiently large that it falls outside the region where the atom-piatom interaction
is appreciable. In CR calculations on atorn-diatom collisión complexes [5, 6], as
mentioned briefly in Section 2, the radial wave function.is expanded in terms of
square integrable basis functions. Our own CR calculations [12] show that
increasing the size of the basis set (adding L 2 functions capable of describing the
atom-diatom translational motion at larger and larger r, beyond the "range" of
the potential interaction) results in a resonance eigenvalue that is "stable" in the
Sense that it is insensitive to further addition of basis functions. As Hazi and
Taylor [13] demonstrated long ago, square integrable basis sets are capable of
describing the resonance wave function both in the strong fnteraction region and
in regions where V"'" O (if the basis extends to these regions). We have indeed
observed [12] in plotting the r dependence of aur open-channel wave functions
that a damped sinusoidally oscillating function of the correct de Broglie
wavelength can be obtained within aur basis sets. Clearly, L should be chosen so
as to lie in this "region of stability" beyond which (r > L) addition of radial basis
functions does not change the resonance eigenvalue. In this region "beyond" the
atom-diatom potential well, the resonance eigenfunction bas the "asymptotic"
form given in Eq. (3.5). Hence by using Eq. (3.8), we can calculate the branching
ratio. We would not expect the calculated branching ratios to be very sensitive to
the choice-ot L, as long as L .lies in the asymptotic region described above. Of
course, for practical reasons, one hopes to choose L to have it in the asymptotic
region, yet to have L smali enough that a reasonably smalI number of square
integrable basisfunctions {gl}can be used to span the space r:5,L.
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4. Model Problems

A. Atom-Diatom RotationaZ Feshbach Resonance

The CRproeedure developed in Seetions 2 and 3 is applied here to a model van
der Waals atom-diatom A-BC system which bas twa open ehannels present; The
Hamiltonian for thissystem.is

1/

[
1 d

(
d
)

Z2

]. H(R,r,8)=-2p, r2dr r2dr -r2 +Bd/+V(r,8),

where p, is the redueed mass of the system [mAmBC/(mA+ m:ac)];8 is the angle
between the diatom orientation veetor R and the atóm-diatom separation veetor
r; zZis the square of the angular momentum operator associated with rotation otA "

about BC; l is the square of the angular momentum operator associated with
rotation of BC; and Bd is the rotational eonstant for BC, treated as a rigid rotor.
The interaetion potential used in this study is taken to be a sum of Lennard-Jones
funetions having various angular dependanees

(4.1)

V(r, 8) = Vo(r) + V2(r)P2 (cos 8), (4.2)

where

Vo(r) = 4e[(u/ r)12 - (0'/ r)6] (4.3)

and

.v2(r) =48 [b (0'/ r)12 - a (0'/ r)6]. (4.4)

The values of all of the parameters neeessary to specify the model are given in
Table I. Rotational Feshbach resonanees involving one open ehannel were
previously treated for this model problem by the authors [5] and by Chu [6]
employing the CR method, and by Grabenstetler and LeRoy [14] usii1g a more
eonventional seattering approaeh. A metastable state eorrelating with the iso-
tropie closed ehannel- (j = l= 2, J ='O) was eonsidered [5,6, 14]. The quantum
num bers j and Z refer to the rotation of R and r, respeetively, and J refers to the
tatal angular momentum. The angular basis used in these studles was restricted to

TABLE L Parameters characterizing
the model system,

iJ(amu) 1.981

Bd(cm-1) 60.551

et cm-l) 60.408
o

C;(A) 3.4745

a 0.09

b 0.5
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l, j::;2 and J = M = O. Thus, only a single open channel (j = l = O, J = O) was
allowed.

In the present work j = O,j = 2, and j = 4 states of the rotor are inc1ucedin the
basis and the total angular momentum is restricted to J = O. Hence, rwo open
channels, (j = l =2, J = O)and (j = l = O,J = O)are available. To expand the radial
wave function we used sets ofM Gaussian basis functions (M = 12,15,18,25).
Then, by using the coordinate rotation technique (as descdbed in detail in our
earlier paper, Ref. 5) we determined the resonance (complex) eigenvalue asso-
ciated with the c1osed channel (j = l = 4, J = O) for each of the basis sets. A
portion, greatlyenlarged to emphasize the behavior near the stable point, of the
optimalfJ trajectory (for the large M = 25 basis) belonging to the resonance
eigenvalue is shown in Figure 1. The Gaussian basis functions used in this basis
have exponents a = 39.86 and centers (in A) given by '1= 3.3 + (l-l) x 0.264
(1::; l::;25).

- 0.080

- 0.084 30 32

28---~:. ... .22. .
-
T
E -0.088
(.)-
UJ -0.092

.
20 . .

-0.096
.

18. .
-0.100.

1205.61 1205.63 1205.65

ER(cm-l)

Figure 1. Segment of the fJ trajectory of the resonance eigenvalue.associated with
the metastable level (j = 1=4, J = O)of the model atom-diatom van der Waals
system (M = 25). The fJ increment is 2 x 10-4 rad, The numbers show the rotational

t' angles fJx 104,

It is easily determined horn the fJtrajectory (Fig. 1) that the resonance energy
is 1205.63 cm-I. Thewidth f(=-2ImE) is 0.171 cm-I. Essentially the same
results were obtained for the smaller M = 15, 18 basis sets. Because the center of

. the eighteenth'Gaussian basis function occurs at '18 = 7.8 A, and in view of aur
discussion in Section 3 regarding the choice of L, it seems to be appropriate to use
values of.i., 'larger than 7.8 A in computing the branching rafio via Eq. (3.8). A

. sedes of branching ratios IA212/1Aol2computed for vadous values of L is given in
Table II. It is immediately apparent that for L> 9.5 A the branching rafio
becomes constant to the extent that it is essentially independent of the choice of L.
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TABLE II. Branching ratios for the atom-diatom prob-
lem calculated using Eq. (3.8).

L(A) !A2/Ao12

8.40

8.60

8.80

9.00

9.20

9.40

9.50

9.55

9.60

9.65

9.70

9.75

9.80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

1.9253

3.6760 x 103

6.9039 x 102

3.0094 x 101

5.9606 x 101

. 3
1. 2354 x 10

3.7135 x 102

3.2992 x 102

3.1304 x 102

3.0577 x 102

3.0260 x 102

3.0118 x 102

3.0051 x 102

3.0013 x 102

2.9987 x 102

2.9966 x 102

2.9946 x 102

2.;9927 x 102

2.9909 x 102

2.9890 x 102

The value of the branching ratio can,quite unambiguously, be determined to be

3.0x 102. ...

B. A Model Two-Channel Potential Problem

Noro and Taylor [11] (NT) demonstrated their procedure for obtaining
branching ratios from CR ca1culations on a model two-channel potential problem;
comparisonwith their results therefore provides a mocedirect test of our method.

The radial Hamiltonian for the NTmodel problem is [11] (for s wave, in atomie
units) .

1 d2
H = --~+ Ho(x) + V(x, r),2 dr (4.5)

where Ho is atarget Hamiltonian defined tohave two eigenstates

Ho(x )cPa(x) = EacPa (x), a = 1,2. (4.6)
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The matrix elements of the interaction potential ~between target eigenstates are
defined as follows [11]:

Ua(3(r)= J dx 4>:(x) V(x, r)4>(3(x)= Ua(3r2e-r,

u= (
-1.0 -7.5

).
-7.5 7.5

(4.7)

The energie s of the target states are 0.0 and 0.1. A Slater-type orbital basis set was
chosen [l1J for expansion of the r depenpence of the CR wave function

l/Je(x, r) = L Cj (x)rj e-I;r}aJ

a = 1,2,

j=1,2,...,18,
(4.8)

with the orbital scaling parameter g = 4.0. The resulting e trajectory is shown in
Figure 2, where we see that, for e greater than 0.14 rad, BcR becomes essentially
independent of the rotation angle. The value of BCR at this stable point is the same
as that obtained in Ref. 11 (see Table III).

-0.0001

-0.0006

I
Eu

I-lo
,"-8
86

w

-0.0011 84

82

4.7675 4.7685

ER (cm-I)

Figure2. (} Trajectory of the resonance eigenvalue of the two-channel model

potential problem. The (}increment is 2 x 10-2 rad. The numbers show the rotational

angles (}x 102. Individual trajectory points cannot be resolved on this scale, for
(}>ca.0.14rad.

-0.0016
4.7665 4.7695

We aIso found that the branching ratios computed via Eq. (3.8) depend very
little on the choice of the parameter L, provided that Lis greater than ca. 8 A {one
can see from the paper of NT[11] (Fig. 1) that the two-channel model potential is
practically zerofor r beyond 8 A}. However, we find that the branching ratios do
exhibit e dependence which, over a certain range of angles, is rather mild (up to
e = 0.26 rad, see Table IV). The resultant values of the partial widths fI and f2
calculated on the basis of these branching ratios are given in Table III, together
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TABLE III Two-channel model potential results.

Numerical
results ef NTll

4.7682

0.001421

0.000061

0.001360

a Obtained at (j =0.24 rad (see Table IV).

with the results of Noro and Taylor [11]. Because the branching ratio is sa smalI,
f 1 and f 2 must be determined to very high precision (ca. 1%) in order to
guarantee that f df 2 is significant.It can be seen tram Figure 2 of Ref. 11 that the
NT vahies ef fdf2 obtained via the CR method range tram 0.04 to ca. 0.05 for
values of e near the "statianary point." OUTvalues of f df 2, up to e = 0.26 rad
(beyond which, for reasons apparent tram Table IV, one can have no confidence
in thebranching ratio results) vary from 0.012 to 0.014 as theta waivers around
aur stationary point. In fact, it is quite impressive that the twa distinct methods,
employed by NT[11] and in the present wark, are able to obtain branching ratios
within a factor oL3.for this difficultcase where flis only a few perce nt of f 2. We
feel that the level of agreement is satisfactory. Moreover, we find it interesting that

TABLE IV. Branching ratios for two-
channel model potential

e/rad r,;r2 a

CCRresults
This werk ef rnll

E 4.7682 4.7532r

r 0.001420 0.001420

r1 0.000020a 0.000059

r 0.001400a 0.001361

.18 0.0121

.20 0.0130

.22 0.0139

.24 0.0141

.26 0.0143

.28 0.0170

.30 0.0154

.32 0.0128

.34 0.0102

.36 0.0236

a Calculated using Eq. (3.8).
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a technique which is based uran looking at the large-r behavior of the rotated
wave function (ours) agrees quite welI with one (NT)which emphasizes the small-r
(interaction region) behavior of the rotated wavefunction. In both methods, it is
difficultto obtain a value for f df 2 which is highly insensitive to theta (partly
because flis so much smalIer than f 2); these difficulties ale emphasized in
Figure 2 of Ref. 11 and in aur Table IV. This fact makes a highly critical
comparison of the twa methods rather difficult. It would be useful to find a model
problem for which fdf2 is of the order of 0.1 which would make such a
comparison easier.

5. Concluding Remarks

The fact that we choose to examin e the large-r behavior of the CR wave
function is, in a sense, what distinguishes aur approach from that of Ref. 11 where
the small-r (stron g interaction) region is emphasized. The Plice which we pay in
attempting to extract the branching ratios from the asymptotic behavior of I/Je is
that we have to have a large enough r basis to accurately extend beyondthe
"range" of V. By concentrating on the small-r region, the workers of Ref. 11
avoid this basis set problem. However, in return, they musi know mOle than just
the asymptotic form of the open channel decay states; they have to compute
separately the fulI (asymptotic and small-r) scattering state which describes the
A-to-BC relative motions in the absence of interchannel couplings. We avoid
such "unperturbed" calculations. For problems involving interactions among
several indistinguishable particles (e.g., electronic Feshbachresonances), it is not
entirely elear how one should best go about computing the "unperturbed"
open-channel functions needed in Ref. 11. To "tum oft" the coupling which gives
rise to the metastable state is mOle difficult there, especially if one is using a
multiconfigurational wave function to describe the resonance state. We therefore

. feel that further investigations of the kinds of branching ratio formulas given herc
and in Ref. 11 ale necessary if we ale to gaili understanding of how to best
evaluate resonance-state properties. . .

Clearly, further numerical experience is required before we cali make mOle
definitive statements about the lange of applicability of aur branching ratio
expression. The twa open channel rotational Feshbach resonance problem
treated herc represents the first application of aur results to a fulI three dimen-
sional scattering problem. It is aur plan for the immediate future to apply the
several open channel CR methods as described herc to vibration-rotation Fesh-
bach resonances involving van der Waals complexes such as HeIz. Our desire is to
explore the rangeof utility of the method and to then carry out model studies for
van der Waals complexes which ale of current experimental interest.
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