Electron Propagator Studies of Molecular
Anions

JACK SIMONS
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Abstract

Electron propagator (EP) or Green's function (GF) methods have been successfully employed
to compute electron affinities for a large number of molecules having either a closed-shell or sin-
gle-valence-hole dominant electronic configuration. The accuracy of such calculations, if carried
out through third order, has often been comparable to that of reasonable configuration interaction
(cI) calculations. However, as a computational tool, EP methods have not yet been adequately de-
veloped in relation to general open-shell molecules and atoms, and only recently have they begun
to be generalized to describe states having two or more dominant configurations. Thus although
GFs look promising as methods for ab initio calculation, much formal and programming work re-
mains to be done before this approach can be said to compete with CI methods. On the other hand,
GFs provide us with a mechanism for focusing on the one-electron (EP) or two-electron [polarization
propagator (PP)] features of any problem. It is this fact that makes GFs an attractive route for de-
veloping chemical models which may or may not make use of experimental data. Although such
a viewpoint has been widely used in solid-state physics, not enough work has been done on making
models based upon the EP or PP. In this article, both the computational and formal history of GFs,
as they apply particularly to molecular anion studies, are overviewed. The author’s opinions con-
cerning the current status and future development of the area constitute a large part of the presen-
tation.

1. Introduction

Quantum-chemical studies of negative ions present special challenges [1].
Typical electron affinities (EAs) range from 0.1 to 2 eV, whereas valence and
core ionization energies of neutral molecules span 5-20 ¢V and 100-1000 eV,
respectively. To be of practical utility for studying EAs, quantum-chemical
methods must have accuracies in the £0.2 eV range.

As a result of their weak electron binding energies, the charge densities of
anions are more diffuse than those of corresponding neutral species. This makes
it essential that one augment conventional atomic orbital basis sets [2] with more
diffuse funetions when attempting to study anions.

Before examining how electron propagator (EP) methods [3] have been uti-
lized to probe EAs, it is appropriate to ask what the EP can be used for. First, it
can be used to compute (within the Born-Oppenheimer approximation) EAs
or electron detachment energies (DE). Within this utilization, it is important
to address how accurate such computed energies are and what factors influence
this accuracy.

The EP also provides an ab initio one-electron effective potential (the nonlocal
energy-dependent self-energy) which governs the electron-molecule interaction.
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TABLE 1. Comparison of EP and other EAs.*

Experimental or Other

ﬂiou Calculated E.A. (ev) Calculated E.A.
o™ 1.76 1.87°
BeH™ 0.77 0.74°
CN" 3.70 3.82°
oty 2.25" 2.471
BO™ 2.79 2.4 - 3,14
Hee™ 3.18 2.9423
Li,” 0.46 -
LiNa™ 0.45
Na, 0.42
LiR™ 0.30 0.328
0.20
LiF~ 0.46 -
0.42
NaH™ 0.36 =
0.29
BeO~ 1.76
1.41
NH,~ 0.42 0.74%
NO,™ 2.60 2.8f
Be,” 0.38
Bey” : 1.0
Bea- 1.0
Mg~ 0.49

* All results were obtained in the author’s lab except those for Cl;~.
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Given such an effective potential, one wonders whether it can be developed along
semiempirical lines within an atomic or localized orbital representation and
whether the elements of the self-energy matrix are transferable within such a
basis. It may also be productive to look into performing a moment decomposition
of the self-energy based upon expansions in powers of (r</rs) with rs being
identified as the radial coordinate of the *“extra” electron. In this manner, one
could obtain an expression for the potential energy of interaction of an electron
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and the neutral target molecule in powers of r~1, thereby giving the charge-
dipole, charge-induced dipole, etc., contributions. Finally, in situations where
core electrons produce severe difficulties for state-function-based methods the
EP may show greater computational and/or formal promise.

With these ideas in mind, let us examine both the performance record of EP
methods as applied to anions as well as the difficulties in improving upon existing
EP methods.

2. Overview of Computational Results

How well has the EP done on atomic and molecular anions? In Table I we
present several results obtained via the EP methods which are outlined briefly
in Sec. 3. The precision levels of these results are very much in agreement with
what Cederbaum and co-workers [4(a)], Ohrn et al. [4(b)], and Freed et al.
[4(c)] have found within EP calculations of ionization potentials of neutral
molecules. The following conclusions seem to have evolved from such studies:

(1) Double zeta plus polarization plus diffuse (for anions) basis functions
are needed. '

(2) A second-order treatment of the self-energy (see below) is not adequate
because an accuracy of £1 eV is unacceptable for EAs.

(3) The third-order self-energy is often adequate (£0.25 eV), although some
work indicates the need to go to higher order in selected “terms” or “diagrams”
(e.g., to sum orbital relaxation effects to all orders).

As a result, it appears that EP methods can, in certain circumstances, be

competitive with configuration interaction (CI) methods and can yield results
to within £0.2 eV.
* However, the forecast is not all good. It should have been noted that none of
the above examples had an open-shell reference state! Either the anion or its
neutral parent was closed shell. In fact, using presently available EP technology,
it would be difficult to study the oxygen atom or the methylene molecule, the
first being an open-shell species and the latter requiring a two-configuration
reference function for its singlet state.

To understand why open-shell and multiconfigurational states present
problems, let us briefly sketch what goes into formulating [3] a workable EP
method and where existing methods fail.

3. Formulating EP Methods

Let us begin by considering the ingredients of any EP. The matrix represen-
tative G(E) of the EP is commonly written [3,5] as follows:

Gy(E) = G*|(E1 — A)1|jY)
= (Yi(ET = B)~1j*|¥) + (Y((ET — B)~'j%)i|y),

where V¥ is the so-called reference function, A and 1 are the Hamiltonian and
identity superoperator, and j* and i are the fermion electron creation and an-
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nihilation operators. In order to develop any workable EP theory one needs to
approximate Y and (E1 — H)~! in some manner which is “balanced.” Let us
begin by examining possible choices for the reference function .

(1) Single-determinant restricted Hartree-Fock (RHF) reference functions
have been used for closed-shell systems [4(b),5-7]. This choice can yield, with
a proper treatment of (E1-H)~!, the self-energy through second order in the
fluctuation potential.

(2) Single-determinant unrestriced Hartree-Fock (UHF) functions or a
Roothaan RHF function has been used for open-shell species [4(a),4(b),8-10].
This can also give a second-order self-energy.

(3) A second-order Rayleigh-Schrodinger perturbation theory (RSPT) de-
velopment of the reference wavefunction (either RHF or UFH based) is capable
of yielding [4(b),11] the self-energy through third order, and gives results
equivalent to Cederbaum’s diagrammatic approach [4(a)]. This approach has
proven to be most useful but runs into difficulties when the perturbative as-
sumption breaks down (e.g., for H; at large internuclear distances or for slightly
stretched N or for singlet CH5).

(4) Recently, attempts have been made to incorporate more general MCSCF
or CI reference states [12,13]. By moving away from the RSPT philosophy, one
loses the concept of order. Hence some new criteria have to be used to “balance™
the quality of the reference function with that of (E1 — A)~!. Such MCSCF
functions do not permit one to easily generate a zeroth-order one-clectron
Hamiltonian in terms of which the orthonormal molecular orbitals may be de-
fined. Moreover, the use of such MCSCF reference functions in the EP gives rise
to three-electron and higher density matrices, whose computational evaluation
presents formidable problems.

Thus although advances are being attempted, we are not yet at the stage where
very flexible MC reference functions can be employed in EP theory. As indicated
above, any EP method also must involve a means for treating the superoperator
resolvent. Approximations to (E1 — H)~! are usually based on the concept of
the inner projection [14]:

(E1 = H)™" = |h)(h|ET - A[h)~'(h],
and making some choice for the operator manifold
h=(itjt*k, .. )
= (h[,hg. . -)'
Also the matrix representative
(h|ET — A|h)"!
is usually further approximated [3] by decomposing it in to blocks arising from

the hy, hs, etc., components of h. In coming up with reasonable choices for the
h operator manifold several things have to be kept in mind.
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TABLE I1. Effects of various h operators on .

h : hy CI Interpretation
b * 12,21b Dominant Anion
1 T

Configuration

2b;" 1a,%2b; + X1b, 220, Relaxation of b

Plus Contamination
RO
lbl Za1 1a1 Tal]bTZa1 Relaxation of 1a
i e gaT L
Zbl 1bT 1b1 X H:t1 ‘2b] Contamination
2b,*16,"10,"1a, 12, X 1bj2a,? a Pair Correlation
2a1‘2a]+lb]+la]?ar 1b12612 ay Pair Corre‘lation

* Not allowed in h space according to Manne [15(a)| and Dalgaard [15(b)].

First, each h operator must be symmetry adapted (space and spin) so that h
Y has the desired symmetry given that Y has some specified symmetry. This step
is nontrivial in the case that y does not belong to a totally symmetrical (or de-
generate) spacial representation or if ¥ is a spin eigenfunction having S # 0.
Secondly, the manifold h must be potentially complete but not over complete.
Manne [15(a)] and Dalgaard [15(b)] have shown that the set
(p*t.ptqta, ... ,at,atBtp,...)is complete when one defines particle (p.q.r)
and hole (,(3,7) with respect to any ore configuration in the reference function.
This sounds useful, but let us consider an example to see the problem that re-
mains.

In Table II we list selected elements of the operator manifold h together with
their effect on either of the two configuration reference functions appropriate
to the 14, state of CH,. Only the two “active” valence orbitals of CHj, are ex-
plicitly treated, and only those h operators which can generate a 2B anion when
acting on this { are considered.

If

¥ = [la} + X167IN-1/2 (14, CHy),

then for a 2B, anion:
h = 1b},2b1, 16124 1a,, . . ..

Let us now look at the terms generated by h acting on y.

The data presented in Table II clearly illustrate that important configurations
arise from the h; and hs spaces which, in conventional EP developments, are not
treated as accurately as contributions arising from h;. This makes the usual
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(hy,h3,hs) partitioning and subsequent approximation of (E1 — A)~! difficult
to carry through. Clearly, what is needed is a systematic operator manifold se-
lection procedure analogous to the automated configuration selection processes
[16] used by CI and MCSCF practitioners.

Thus although EP methods are presently competitive when the perturbative
approach is valid, we need to generalize the development to admit general MC
reference functions and “balanced” operator manifold choices.

4. Other Uses of the EP

In addition to the above role as a tool in computational quantum chemistry,
there are other uses that can be made of EPs. The EP provides a reduced one-
particle picture which can be a more convenient starting point for developing
semiempirical approximations (parameterizations, ZDO, etc.) or examining
transferability. This requires the EP to be expressed in an atomic or localized
valence orbital basis [3,17]. The development of EP theory along such lines is
probably essential if these methods and ideas are going to become an integral
part of the chemist’s vocabulary.

When studying anions (with their diffuse charge density), and especially when
examining temporary (resonance continuum state) anions, it may be useful to
analyze the self-energy’s dependence on the radial position (r) of the “extra”
electron. (Csanak and Taylor [18] used the bipolar expansion of 75 to decom-
pose the two-electron integrals appearing in the second-order self-energy. By
then assuming that r~ can be associated with the “extra” electron, one can obtain
a “moment expansion” for the self-energy in powers of 5'. The coefficients in
this power series involve various moments of <. This approach should be a useful
means of developing expressions for the large-r behavior of the self-energy and
for thereby relating the self-energy to charge-dipole, charge-induced dipole,
etc., contributions.

When studying electron-atom or electron-molecule collision resonances
(shape or Feshbach), it has become fashionable to make use of complex coor-
dinate methods [19] (CCM). In applying CCM to such problems within a wave
function approach, one encounters difficulty because of the low-energy core
electrons. The problem arises because it is difficult to describe a complex scaled
core orbital ¢.(fe’?) which has radial components of the form exp[—a r exp(iB)]
in terms of the usual unscaled atomic orbital basis {¢;(r)}. As a result, spurious
variation in the complex coordinate rotated energy expectation value (caused
by this basis set inadequacy) overshadows the energy variations due to the
“extra” scattering electron, thereby rendering the CCM method practically
useless. In contrast, EP methods allow one to focus on a valence-level problem
and thereby remove explicit considerations of the rotated core. The EP achieves
this because it provides a one-electron effective potential (self-energy) that can
be analytically continued to complex coordinates. This approach has recently
been explored [20(a)-20(c)], and shows promise as a tool for studying shape
and Feshbach resonances.
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