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Abstract

We present the first application of the coordinate rotatión method, within the time-deperident
Hartree-Fock framework, to calculation of positions and widths of metastable' excited states. The
method is briefly outlined and results of its application to 1P excited states of Li- are given.
Comparison of OUTresults to those obtained using electron scattering methods by other workers is
algo made.

1. Introduction

Here we report the first application of the complex coordinate rotation (CCR)
technique [lJ to the time~dependent Hartree-Fock (TDHF)polarization propa-
gator [2J. This propagator gives approximate electronic excitation energies of
the systems for which it is ca1culated. The coordinate rotation techhique permits
us to select those excitation energies which show resonance behavior and hence
correspond to metastable excited states of the system. In an ideal case, the
energies of bound excited states should 'not be affected by the rotation, whereas
the energies of unbound seattering and resonance states should show the kind
of behavior described in Ref. 1. Since the re suIt of a propagator ca1culation
gives differences between a bound state (the so-called reference state which is
usually the ground state) and excited states (some of which are unbound), we
should see analogous behavior manifested in the excitation energies correspond-
ing to unboundexcited states. Before presenting ,and discussing t'he. resuIts of
the first such applications of the complex coordinate rotation method, we review
the tools of propagator theory and we show how these tools are extended to
the complex rotation case.

2. Review of Propagator Theory

Normally the general propagator is defined [2J as follows:

«A (t); B (t')))= -ie(t - t')(A(t)B(t')

~ ie(t' - t)(B (t')A(t), (1)

where e is the Heaviside function [e (t) = lif t> o; e(t)= o if t< oJ and A and
B are arbitrary Heisenberg-type operators in second quantization form. If A
and Bare bosons (Le., i( they conserve electron number), one should use the
minus sign on the second term above; in the case of fermions, the plus sign is
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used. For the polarization propagator, operators A and B are both the electric
dipole operator, which is expanded inthe (boson) form

rop = I (r)srSt"
rs

(2)

where

(r)sr.= f u: rUrdu. (3)

Here {UJ is a 'setof orthonormaI spin orbitaIs, whose exact nature is discussed
below, and s t and, are the electron creation and annihilation operators corres-
ponding to orbitaIs Us and Ur. The integral over du refers to integration over
space and spin coordinates. By taking t' = O, the above propagator can be
rewritten, for A and B equal to the dipole operator, as

«A(t);B» = ~ie(t)(A(t)B) ~ ie( -t)(BA(t».

Thenusingthe fact that the.Heisenberg operator A (t) bas the form

(4)

A(t) =exp (iHt)A exp (-iHt), (5)

and inserting a resolution of the identity between A and B, we can write the
following formall)' exact expression:

«A(t); B» = I {-iew exp [it(Bo - Bn)](OIAlil)(nIBIO)n

- ie( ~t) exp [-it(Bo - Bn)](OIBln)(nIAIO)}, (6)

where 10)is the exact ground state and the set of functions {In)} is assumed to
consist of the exact eigenstates of H. The Fourier transform «A; Bh of the
above propagator is defined as .

""

«A; B»E L"" dt «A (t); B» exp (iEt) exp (':"7Ilt/), (7)

which leads to

«A; B»E = l
.

im I ( (OIAln)(nIBI~) (OIBln)(nIAI~)), 1'1-+0+ n B - Bn + Bo + 171 B - Bo + Bn - 171 .

where 71originates from tlie convergency factor exp (-7Ilt/) used in defining the
Fourier transform. The energy differences Bn - Bo appearing in the denominators
of «A; B»E give rise to pole s corresponding to excitation energies.

The introduction of the rotated Hamiltonian [1,3] H[ra exp (ie)] = H(t) (a
and e are r:ealparameters) gives rise to a modified, polarization propagator.
lnstead of using eigenstates of H in Eq. (6) one now bas to use [3] eigenstates
of the rotated H(t), as,a result of which the eigenvalues Bo, Bn become eigen-
values of H(t). For bound states, these eigenvalues will be the same as before
(although the eigenstates are different), while for unbound states they will be

(8)
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changed. The poles of the resulting propagator will then occur at the rotated
Henergy differences which will, in general, be complex.

The actual evaluation of the propagator is performed by using the super-
operator formalism described in Ref. 4, from which on~ obtains an equation of
the form

«A; Bh = (Alh)(hIEf -!llhr1(hIB),

where the super operators H and f are deiined by

(9)

( HXJ=[H,XJ]-;fxJ=x; (10)

andthe "binary product" Cby

(XJIXi) = (OI[X},Xi]-IO). (11)

In this formalism, the singularities of the matrix (hlEf -Hlh)-l correspondto
the poles of the propagator given in Eq. (8).

The introduction of the rota ted H(g) into thedeiinition of the polarization
propagator requires[3] that the reference state 1O)used in the deiinition ofthe
super operator "binarry product" be an eigenstate of H(g), not of H. This follows
because we assumed that H (g)IO)= EoIO),and, although Eo isunchanged relative
to its unrotated value, 10) is no longer the "unrotated"eigenfunction ofH.
Hence, in Eqs. (9)-(11), 1O)refers to the "rotated" reference state and H refers
toH(g). . . . ..

In the single-coniiguration formulation of the above out1ined theory~ one
introduces the following approximations: .. ..~

(i) 10)is assumed to be a single determinant Hartree-Fock state IHF)conslstirtg
of orbitais which have been coordinate rotated to make IHP) an approximate
eigenstate of H(g).

(H) The operator space h is limited to single particIe-hole and hole-particIe
operators h2 deiined as h2 = {m t a; a t m} = {q ~",; q"",,}, where the Greek letters
feler to spin orbitais occupied in IHP) and the Roman letters to spin orbitais
unoccupied in IHP).These operators are collected into column vectors qt and q
below in writing expressions for the matrix elements needed to compute the
polarization propagator. This choice of hmeansthat we are only considering
single excitations relative to the reference state IHP)so we cannot expect to be
able to compute excitation energies which'refer to do.ubly excited states of OUT
system. Using the above mentioned approximations, the matrix (hlEf - H(g)lh),
whose evaluation permhs usta iind the desired poles (and heRce excitation
energies), becomes . .

M= ((qtlE!- :I(g)lqt) (qtIE!- ~(g)lq»)(qlEl -H(g)lqt) (qlEl -H(g)lq)

(
E1-A -B

)== -B -E1-A' (12)
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where

A'= (qtIH(t)qt= (qIH(t)lq),

B= (qtjH(t)lq) = (qIH(t)lq\

(qtlqt) = (qlq) = 1; (qtlq) = O.

Singularities in the inverse of this matrix occur when:

(13)

(14)

(15)

(
E1-A o-B

)(
X
) (

O
)-B -E1-A Y = O . (16)

The solutions .of this, (non-Hermitian) eigenvalue problem can alternatively be
fauna by solving a smaller dimensional eigenvalue problem of the form [5]

(A+B)(A- B)(X- Y) =E2(X- Y). (17)

Byforming tripIet and-singlet components ohhe operators

g;"a(S) = (Firl(m:a~~ m~a-':},
iLq;"a(T) = (Fi)-l(m:a+- m~a_),

(18)
, ' 'o

owhere m, a are grb,i~alindices, and the subscripts label the ms componentsof
electron spin, wecaIl separate the above eigenvalue proble into separate single t
andtripIet problems:;oBy then using the second quantization expression [3] for
the complex rotated electronic Hamiltonian, it is possibleto obtain explicit
forniulas for the elements of the requisite A and B matrices for either (Sor T)
spin case.

Therotated Hamiltonian, which is nothi!lg but; H(tr), is written in second
quantizedform . 00.'0 o.. oo

H(t) = L [t2trs+tVrs(t)]rts
rs

1
I t t+t-2 L (rs tu)r s ut,

rstu
(19)

where

trs=J Ur(-tv2)Usdu, (20)

Vrs(t)=- f Ur(~lr-~itl) Usdu,

(rslfu)= f [{rUs Irl~r21l{t~u du.i~du2.1;iii'

(21)

(22)

The spin orbitaIs {Ur} can, at this stage of development, be any orthonormaI set.
Shortly it will be argued that the {UT}should be the unrotated Hartree-Fock or
MCSCFspin orbitaIs when these approximations are usedfor the reference state
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10).Por future convenience, it is algo useful to define

hrs (/;) = f Ur (- tv2 ~2 - ~ Ir !~i~l) Us do-
(23)

and

hrs= hrs(l).

Upon substituting the above If(~) into Eqs. (13) and (14), one can obtain
expressions for the A and B matrix elements in terms of the t", V", and (,situ)
integrals and the reference-state den sity matrices (Ol,t siO) and (Ol,t s t tu lO). As
DonneUy and Simons have shown [3], one can develop a computatioQaUy
straightforward method for implementing this step by introducing a perturbation-
like expansion for the referencefunction 10). As mentioned earlier, 10)should
be the "rotated" ground staLe; that is, lO) should contain rotated orbitais.
However in the approach taken here tram Ref. 3; H(~) is written on a zeroth
order part Ho consisting of the Hartreee:.Pock 'Hamiltonian pertaining to the.
unrotated problem plus a perturbation V(~) containing both'the usual fluctuation
potential and the effects ol. "rotation" on H[V(~) = H(~) - Ho]. In this case, it
is most convenient to choose theUnrotated' Hariree-Pock orbitais as the set {Ur}
used to express H(~) as iI;.Eq. (19).The elements of the A and B matrices can
then be evaluated correct through first orderin V(g), toobtain the lowest order
correction to the unrotated TDHFpropagator;'" "',',' . "'.

Alternatively, one could carry outacoordinate rotated scFcalculation to
obtain, in a nonperturbative manner, rotated orbitais to use as the {Ur}. One
could then take 10)to be a Hartree":"Pock determinant. of tlJ.ese rotated orbitais.
Although this approach is more satisfactory than that taken here because it
avoids the perturbative treatment Of the effects' of rotation'on 10), it is computa-
tionaUy~much more. demanding since it requires transformation ot aU one and
twa electron integrals forevery valueof fJ and a. We feel that we have demon':
strated in Ref. 3 the commutational tractabiIity ot the perturbative approach
put forth here. The resultant first orderperturbation based expressions for the
single t (S =O) and tripIet (S = 1) components of the rotated A matrix defined in
Eq. (12) are

A~~:~~=8a~I~2tmn +~Vmn(g) +~(8m~Em - hm,,)]

-8mn[et~a + ~V~a(~) +g(8aI3Ea-::hl3a)]g(mnll3a) +2g(1- S)(malnl3),

(24)

where we have naw chosen to "'e.xpressdthe 'complex scaling (g) as g =
(l/a) exp(~i8),whichthengives'fise,in the Hamiltonian,to

(25)

The subscripts ma and 1713feler to the rowand eolumn indices of A, respectively.
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Formulas for the singlet and triplet components oi the 8 matrix defined in
Eq. (11) are obtained in like mann er:

B~;'~~/3= g[(anl/3m)-2(1-S)(aml/3n)]. (26)

In Eqs. (25) and (26), the Cm are the energies of the unrotatedHartree-Fock
orbitals (coming from HO), and the other integrals appearing are defined in Eqs.
(20)-(23). These A and 8 matrix expressions reduce, for g = 1, to the usual TDHF
matrixelements as given, for example, in Ref. 6.

H, i~stead of a single determinant reference state,one uses a multiconfigur-
ational reference staLe (MC-TDHF),the general features out1ined above remain
the same, but the explicit equations for th~ A and 8 matrix elements change.
We stm define the excitation operator space in terms of excitations tram the
reference staLe

~2~{m t a; a t m}= {q~a; qma}

but the occupied and unoccupied orbital ,Jabels '"naw feler to a dominant
determinant in the MC reference staLe. Th,eorbitals themselves are, of course,
fully consistent MCSCForbitals for the unrotated problem. Ingeneral, a complete
operator -space caD be defined inthis way~ if we include all high er order (two-
particIe twa-hole, etc.) excitations (see Ref. 7). As in the single-configuration
case, we use aperturbative approa~h [3]10 estimate the effeCts of rotation on
the MCreference staLe. In this case the perturbation V(g)is H(g) - H(l).

The MC-TDHFversioD":of the above M. can" be' expressed in the following
manner:

(

ES-A -8
)

'

(
SI/l.O

)(
E1-A' -8'

)(
' SI/l. '0

)
-

M = -8. -ES-A = O SI/l. -8" -.s1-A' O SI/l.'
(27)

where

S = (qtlqt) ~1,

A' = S-;1/2AS-1/2,

8' = S-I/28S-1/2 ,

(28)

(29)

(30)

and A and 8 are defined in Eqs. (13) and (14). Thus in the MC-TOHFapproxima-
tion, the search for singularities of Mproceeds in the same fashion as before,
with the only difference being that A' and 8'are substituted for A and 8.

To implement such an MC-TDHFtreatment, we need to know the S, A, and
B matrices. In the expressions given below, the indices feler to spin orbitaIs
rather than to spatial 'orbitals. Of course, the proper singlet and tripIet com-
ponents caD easily be expressed in terms of orbitals usingJhe definition in Eq.
(18). The relevant overlap matrix elements are

Sma,n/3= (q~alq:/3) = 5mn(a t/3)-5a/3(n tm), (31)
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where the notation (Op) refers to (oloplo), and lo) is the MC reference staLe.
Likewise, the A and B matrix elements become

Ama.nl3(~) = hmn(g)(a t{3)+ hl3a(g)(n t m)
.t ,';~, te;'""';""

- L [8al3hin(g)(zm)+8mnhl3i(g)(a z)]
i

+ L [(iall{31)(t n t /m)+ (inllml)(t a tl{3)
il

- (in !la )(it t m{3) - (mil{3/)(a t n t li)]

x L [8al3(inIj/) < tl lm) + 8mnWI{3/)(ita t /j)]
ij/ ,

(32)

and

Bma.nl3(~) = han(g)(m t (3)+ hl3m(g)(n ta) +g L [(imll{3/)(it n t/a)
il

+ (in Ila/)(t ~ t /(3)- (in I/m )(t /t a{3) -(ail{3/)(m tn t li)].
(33)

In Eqs. (32) and (33), the summation indices runover all occupied and unoccupied
orbitais. .-

4. AppIicatiQhto Excited States of.Li- and Be

In the calculations discussedhere, we are looking for excitation energies Eex
which, for same set of rotation parameters (ao and 80), become relatively
independent of a and 8: .

(JEex

/
'. = (JEex

j

=O.

(Ja .c.,ao' (J8 - (Jo

If both the ground ap~ excited states ;lre bound, we expect Eex to be independent
of a and 8 for aU a, B. In contrast, if the excited staLe is metastable, we expect
E~~'tobe independent ofB only for large enough B (see Ref. 1). In calculations
using limited basis sets it will, in general, not be possible to find such a set of
parameters. Instead one usually finds that at same values ofa and 8, Eexbecomes
significantly less dependent on a and 8. If onecarries out calculatioris at constant
a and varying B, the points where the "slowing down" occurs'are often associated
with "kinks" in the graphs of the excitation energies (see, for example, Fig. 1).

In OUTcalculations, the complex resonance energy Eex is tak en as the excita-
tion energy at which the maximum slowing down occurs. The real part of this
energy gives the energy of the resonance staLe while the imaginary part gives
half the width. In calculating Eex ==E* - Bo, we are implicitly assuming that the
ground-state energy Eo is fully independent of the rotation parameters a and
8. This is not rigorously the case, and to make it true we would have to perform
a rotated SCFor MCSCF calculation for each set of values of a and 8 to obtain
the "rotated" reference staLe energy. This would, of course, greatly increase the

(34)
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Figure L Complex excitation energy for .fixed a =1.656 with (J varying from 1.0°
(right-hand side) to 10.0° tn intervals of 1.0°. Shown here is resonance No. 1 for

. basissetNo.5.

difficulty' and cost of such calculations. Therefore, we haveifistead chosen to
assume that the reference state energy Bo would,even itl aur finite basis sets,
be more () independent than the resonance excited state which we are interested
in studying.

All of the calculations reported here were performed using basis sets consist-
ing of Gaussian-type orbitaIs (GTO). The first step in each calculation is to
perform a Hartree-Fock (SCF)or multiconfigurational Hartree-Fock (MCSCF)
calculation to generate a set of molecular orbit aIs associated 'with the above
mentioned operatorspace. The reference state is then tak en' to the converged
SCFor MCSCFground state obtained in this calculation. .

Be (1 S -+ 1 S, 1 P)

In order to test aur computer program and, to provide estimates of the
accuracy to be expected of the method, we carried out a calculation of the 1S -+ 1S
and 1S -+1P excit.ations energies of Be in the absence of aDYcoordinate rotation.
The basis set used consisted of 5s and 4p Gaussian-type orbitaIs (see Table I),
Hand the twa configurations used in the MCSCF calculatibn were 1s22s2 and
1s22p2. The converged CI expansion coefficients obtained in the MCSCF pro-
cedure were 0.9515 and -0.1778, respectively.

In Table IIwe show several of the lowest singlet excitation energies obtained
from our calculatlon together with results of Yeager and J~rgensen [8] and
experimental results from Ref. 9. Since aur calculations were performed using
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TABLE I. Basis set for Be calculation.

Exponent
Con trac tion
coef:icien t

l 5 1264.5857

189.9368

43.1590

12.0987

3.8063

1.2729

.001945

.014835

.072090

.237154.

.469199

.356520

2 5

3 5

4 5

5 5

.7478

.2200

.0823

.0300

1.00000

1.00000

1.00000

1.00000

l P 3.196$

.7478

.2200

.0500

.0125

.0031

.055980

.261551

.793972

1.00000

1.00000

1.00000

2 P

3 p

q,

Gaussian-type orbitaIs, where J0rgensen and Yeager used Slater-type orbitaIs
(STO),we cannot expect complete agreement. However, the results in Table II

. do show satisfactory agreement between the two sets of theoretical numbers,
AIso, our agreement with the experimental data is good, although not as.good
as that obtained witli the c.onsiderably larger STObasis used in:Ref. 8. Therather

TABLE II. Lowest single t excitation energies for Be (in eV.)

Symmetry
. a
experiment MCTDHFb MCTDHFc

2p lp

35 lS

5.28

6.78

5.89 6.09

6.95 7.79

3p lp

4p lp

7.46 7.69

8.53

7.80

8.33 8.50

45 lS 8.09 8.26 17.66

a Experimental results from Ref. 9.
b Reference 8.
e This werk uses basis set shown in Table I.
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large discrepancy for the fourth excitation of lS symmetry is pro babI y due to
aur limited basis set which is not designed to yield highly accurate descriptions
of orbitaIs with high principal quantum number. -

. "~,"':; ,

lp)

;},'To look for possible excited states of Li- which are metastable, we performed
'-:,'i:a's'ihg1"edel'eiminant singlet TDHFcalculation on 1S Li- induding in aur operator

sp'a<;e!singleexcitations{q t; q} of p symmetry and using five different basis sets.
,Ba.ted:,upo'n the' results of e + Li scattering ca1cuIations carried out by Moores

ud N9rcross [10J, we expect that a resonance state might appear near 0.0301 a.u.
~6i~fiy~:the 2S ground state of Li) with a width approximateIy' equaI to the

energy.Jn aur preIiminary ca1culations, we scanned the region of a
describedby ad1; 2J and OdO; 30J deg, and we pIotted the compIex
l1ergies as functions of O for different vaIues of a. An example of
h is shown in Figure 2. Most of the' excitation energies plotted in
did not show any stabiIity "kink"behavior but were simpIy rotated
tih quadrant of the complex pIane in a manner consistent with

;e behavior (see Ref. 11). In contrast, certain of the Iower Iying
,:,rgiesdispIayed, for specific vaIues of a, trajectories which bad a
ependence ance O reached a criticaI vaIue. Adoser Iook at these
bIe trajectories in the neighborhood where' the "slowing down"
lep that for som e vaIue of a and O the rotated excitation energies

55 60

olIeC1ion of theta trajectories for the second resonance with a ranging

o 1.60 in intervals of 0.02. As the alpha values increase, the trajectories are
e left. The theta values go tram 0° to 20° in intervals of 1°. The calculation

was performed with basis set No. 5.
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Figure 3. Close view ol the "slowing down" region ol the second resonance shown
in Figure 2. a I:anges lrom 1.46 to 1.50 in intervals ol 0.02. The .8 trajectories

start from the left at theta = 9°, 8 increases in steps ol 1.0°.

trajectory'had the "kink" form shown in Figure 3. For values of () lessthan the
critical value Be (where the "kink" occurs), the behavior of this trajectory was
moce or less continuumlike, but for larger B values it slowed down considerably.

The kind of behavior described hece is characteristic of all of the results (

obtained using five different basis sets, although the values of a and B at which
the kink occurred varied from basis to basis. As is shown in Figure 1, the
beginning of the "slowing down" occurs close to the tipof the kink. Therefore,
we took the value of this complex excitation energy (~) at this stable point to
represent the desired complex resonance energy. The real part of /1E was taken
as the energy of the resonance stale (relative to the presumed stable ground
state) and the imaginary part as half the resonance width.

Within eachof the five different basis sets used, we discovered twa stable
resonance energies when following the above described computational pro-
cedure. In Table III we describe OUTbasis sets, and in Table IV we give the real
and imaginary parts of the resultant complex resonance energies together with
the values of the a and B parameters at which the (esonances- wece determined
foreach basis. In Table V we list the excitation energiesobtained in the TDHF
calculations for each basis.

The seattering calculatio~ on LC don~ by Moóres and Norcross in Ref. 8
shows a broad feature near 0.029 a.u. (which they do not attribute to a resonance
stale of Ln with a width of 0.029 a.u. In contrast, aur calcuIations show twa
resonance states lying in this energy range. A narrow resonance with an energy
near 0.03 a.u. and a width of 0.003 a.u. and another broader resonance with an



286, NIELSEN AND SIMONS

TABLE III. Contracted GTO basis sets 1-5 for Li..

Exponent 13contraction
coefficient

p contraction
coefficient

l s

Basis Set No.- l

642.41895

96.79849

22.09109'

6.20107

1.93512

.63674

.00214

.01621'

.07732

.24579

.47019

.34547

2s p

-------------------------------------------------------------------------

\

2.19146

.59613

.07455

.00894

. 1410l
.03509

.19123

1.08399 .94535

2 s'p'

~---------------

1.00000.02867 1.00000

3 p

-------------------------------------------------------------------------

.12'179

.0283

.0092

.15559

.60768

.39196

==================-============================-============-=========-==

4 p

BasisNo. 2 ~ Sameas No. l with one p function added

.30000 1.00000

====--===========--===-============-====-==-====~=-================--=-=-

5 p

Basis No. 3 - Same as No. 2 with one p function added

.10000 1.00000

=============-===-============-==-======-==-========-==--==--=-=--=======

6 p

Basis No. 4 - Same as No. 3 with one p function added

.80000 1.00000

==============-=-=-=== =--=-= == ==---===--=-==-----

7 p

Basis No. 5 - Same as No. 4 with one p function added

.20000 1.00000

energy oi approximately 0.057 a.u. and a width of 0.05 a.u. are found. It might
be possible to interpret the Moores and Norcross result as consisting oi OUTtwo
"overlapping" stalego The lowest one would, in OUTcalculaiiOrt, correspond to
an excitation from the 1s22s2ground stale to 1s22s2p stale which then decays
by shape resonance tunneling to give 1s22s Li and an electron in a p wave. The
broader higher energy resonance corresponds to another shape resonance
(1s22s3p) of LL In addition to the broad feature near 0.029 a.u., Moores and
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TABLE IV. Results of rotated TDHF calculation on Li-e p).a

a Ali energies are in units of 10-3 a.u.

Norcross also studied the sharp "window resonance" which lies jusLbelow the
ls22p channel opening. This sharper (Feshbach) resoIiance, whose electronic
configuration is likelyto be [11]ls22p3s, could not'be investigated in OUT
calculation because it corresponds to a doublyexcited configuration relative to
OUTls22s2 reference stale. .

r""" :

TABLEV. Unrotated lp e~citationenergiesfor Li- for basi~sets 1-5 (in a.u.).

Basis sets no.

First Reson.nce

Basis Re[ -lmE alpha theta
\' ,;(degrees)

30.2 3.13 I.B4

2- 31.0 1.59 1.67

29.5 1.91 1.69

29.2 1.09 1.66

29.1 1.24 1.66

Second Resonance

Re[ -lmE alpha theta
(degrees)

61.4 27.7 1.52 14

61.6 29.5 1.49 15

57.3 25.4 1.53 14

56.1 24.4 1.53 14"
56.0 20.8 1.50 12

2 3 4 5

.0296 .0294 .0219 .0208 .0206

.0982 .0944 .0889 .0848 .0834
"','

.2047 .1993 .1996 .1828 :1687

2.2367 .6398 .6120 .4261 .3822

2.3333 2.2211 1.1833 .9800 .7437

2.3976 2.3278 2.2208 2.2198 1. 5050

2.3966 2.3205 2.3187 2.2192

2.740 l 2.3931 2.3902 2.3187

2.7394 2.4854 2.3840

3.2175 2.5981' 2.5705

3.0659 2.8993

4.3986 3.0310
"

3.5891

4.9527
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In summary; weused a coordinate-'rotated version of the TDHF and its
multiconfiguration extension to look for metastable excited states of Li- which
are of lp symmetry. We found twosuch resonances, one near 0..0.6a.u. with a
width of 0..0.5a.u. and a second near 0..0.3a.u. having awidth of 0..0.0.3a.u. The
superposition of these twa 'shape resonances could account for the broad structure
seen by Moores and Norcross in-their e + Li scattering calculations.
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