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The Siegert Method in ResonanceScatter
Methods
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In 1939 Siegert demonstrated [I] how gne could obt:iin seatterlng r;;6

and lifetimes (7 = h/n by solving the Schrooinger equation under the,-
no incorning wave amplitude. The irnposition of this constraint gives rise 10 coinpiex
scattering energy (E =E - i!' /2). The resultant scattering wavefunction if/,~lUeh'~_-~--

eontain~ oBly outgoing amp
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lit~de [exp(ikr )/r; k =v' 2mlf/h 2], i~not squa
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~=exp(llklr costl) exp(lklr smtl) where k =Ikl exp(-ltl). ThlSnon-L2natureo[1/t~
fieulties in applying Siegert's method (SM) to atomie [2] and molecular [3] autoi'"" ""...

Miller and co-workers recently have applied the SM to autoionizing states [2,3] by'iug

(Ll) set of electronie basis functions with a "cut-off' Siegert function ofthe form [~~ikf>j;.
The resulting seeular equation was solved for its eomplex eigenvalues (Ej) which J!CI1l1ittc-

culated (as v'2mEi/h 2) to give a "new" Siegert function. This iterative procedure was~~,2
at which one eignevalue Ej was equal to h2k2/2m. This eigenvalue then gavethe resonanc
Eand l' through Ej = E- i1'/2. .~ ~ " ;';-_.,.. " 'H"~

As pointed out very clearly by Miller et aL in Refs. 2 and 3, the true-SiegertJuncuollS [Wit
O] caD not be used in a straightforward mannerto compute matrix elementsoftheelectr'b1iie-H'., ", '~'",,- .'..'~
because ofthe divergent (for large r) behavior of exp(ikr)/r. The approaches taken,iJi Refs."2'an(

this problem wece to evaluate the requisite integrals over the Hamiltonian elther~th'IÓl(k)"repla,

-Im(k) [2] or with Im(k) slightly positive so that exp(ikr)/r is L2 [3]. Thaiis, althoJ'ighJli"e"'iCsÓ'nancc..I':;:;;' .

energy and the true Siegert wavefunetion have Im k <O, the necessa~yint;;g~al~"i~t~~aiii7l.tidY6?f'i~ItkT""
> Oand it is assurned that the resulting eigenvalues are independent of tOO [act (i.e::~t E "'oM o,2ni

is analytie in k). Yaris, Lovett, and Winkler [4] have pointed out that one could avoid tbt~ '.0'4~
that arise erom the true Siegert funetion. Thcseauthors thus dem~nstrated tki th(sSM"'emp oyea /J:.,~~"~','V,,", p,,",., ,- ,"

in a moce straightforward manner [with Im(k) < O, throughout]. The purpose oftiiisletti:J;..is to.shediurther. .

light upon 'this situation byshowing that the"trieks" [replaeing Im(k) by-:;Im(k) §r}?y. a.smaUjJOSitive
nurnber] used by MiI1er et al: [2,3] are, in fact, valid because they carl.be view~ as nothin'ifiri"o~.e!thai1~peaal '

eoordinate rotation (CR) ealculations involving L2 basis funetions. :~;t/f!fJr~'t;0f'
As Rescigno, MeCurdy, and Ore [5] have suggested, it is possible, and próbablyeveI,L.wise, tooemploy

the coordinate rotation method (CRM) [6] to only the "active orbital" arising in electron-mol~le collisions. .

The philosophy of the CRM [7,8] is that by "rotating" or scaling the coordinate of the scattering particles
by an amount exp(i6) (r -- exp(i6)r) either in the Hamiltonian (H) or in the "triaI wavefunctions," one

maps the non-L2 resonance eigenfunctions of H into L2 functions having the same resonance energies. The
advantage of the CRM is that one caD employ L2 basis functions in electron sCattering problems with rj

replaeed by rj exp(i6). In a many-eleetron proQlem, indistinguishability requires that t!!e coordinates of
aU eleetrons be scaled by the same amount. The suggestion marle in Ref. 6 is that one caD scale a single

orbital in aDY multi-electron Stater determinant; the antisymmetric nature of sueh determinants assures

that indistinguishability is not violated.The physical motivation for considering this pioposition is that
only a single electron is unbound in the kind of electron-molecule scattering processes mosi commonly studied

[2,3,4,6]; the remaining electrons are bound and should have their energy unehanged by coordinate rotation
[5,6].
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lt is now possible to show the connection between the. "methods" used in Refs. 2 and 3 and the kind of

CRM put forth in Ref. 6. lf the Siegert function's asymptotic component exp(ikr )/r is subjected to a rotation

ofmagnitude O, it becomes proportional to exp(ilklr cos(O (3)) exp( -I ki sin(O - (3))/r which is L2. If
the rotation angle O is chosen to be 2{3, then ibis rotated Siegert function is identical to that used in Ref.

2, where the lm(k) -+-lm(k) device was used to make the Hamiltonian matrix elements calculabie. The

choice 0= {3+ h (h is smal! and positive) leads to the modified Siegert wavefunction used in Ref. 3. As
pointed out in Ref. 3, the latter approximation (O ';" (3 + h) seems to work better than the lm(k) --+ -lIDek).

This is not at al! surprising to one who is familiar with applications of the CRM. It is wel! kROWOthat the
desired resonance eigenvalues remain relatively stable (toO variation) BeaT 0= {3,whereas the (unavoidable)

use of finite basis sets makes these eigenvalues qu!te 8-dependent for O» {3(e.g., O = 2{3). In future appli-
cations of the Siegert method, it is suggested either that one exploit the developments made by Yaris et

al. [4] to completely avoid diveigent integrals [for lm(k) <O] or that one use theO = {3+ h device to "rotate"

the Siegert function joto the L2 class upon which the desired resonance eigenvalue Ej = h2k2/2m should
be (relatively) O-independent.
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