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In 1939 Siegert demonstrated [1] how ene could obtain scattering resonance pbstudng:{e), widths (I‘)

and lifetimes (7 = #/T’) by solving the Schrodinger equation under the constraint that the solution has 3 .I :
no incoming wave amplitude. The imposition of this constraint gives rise to complex values for the resonance ..

scattering energy (£ = ¢ — iI'/2). The resultant scattering wavefunction , which in the asymptotic region
contains only outgoing amplitude [exp(ikr)/r; k = v/2mEJh?], is not square integrable (L2) since exp(ikr) =
= exp(i|k|r cosB) exp(| k|r sin B) where k = | k| exp(—if). This non-L? nature of Y has given rise to dif--
ficulties in applying Siegert’s method (SM) to atomic [2] and molecular [3] autoionization processes. -

Miller and co-workers recently have applied the SM to autoionizing states [2,3] by augmenting a standard =

(L?) set of electronic basis functions with a “cut-off” Siegert function of the form [exp(ikr)/r][1 — exp(—r)].
The resulting secular equation was solved for its complex eigenvalues (E;) which permitted k to be recal- -
culated (as +/2mE /A7) to give a “new” Siegert function. This iterative procedure was carried to convergence
at which one eignevalue E; was equal to h2k?/2m. This eigenvalue then gave the resonance paramcters ;
eand I through E; = e — i['/2. :

As pointed out very clearly by Miller et al. in Refs. 2 and 3, the true Siegert functions [wllh lm(k) <
0] can not be used in a straightforward manner to compute matrix elements of the electronic Hamiltonian
because of the divergent (for large r) behavior of exp(ikr)/r. The approaches taken in Refs. 2 and 3 toavoid -
this problem were to evaluate the requisite integrals over the Hamiltonian either with Im(k) replaced by -
—Im(k) [2] or with Im(k) slightly positive so that exp(ikr)/r is L2 [3]. That is, although the resonance
energy and the true Siegert wavefunction have Im k < 0, the necessary integrals are evaluated for Im k
> 0 and it is assumed that the resulting eigenvalues are independent of this fact (i.e., that E(k) = h%k%/2m
is analytic in k). Yaris, Lovett, and Winkler [4] have pointed out that one could a.vmd the divergent integrals
that arise from the true Siegert function. These authors thus demonstrated that the SM could be employed
in a more straightforward manner [with Im(k) < 0, throughout]. The purpose of this letter is to shed further
light upon this situatioa by showing that the “tricks™ [replacing Im(k) by —Im(k) or by a small positive
number] used by Miller et al. [2,3] are, in fact, valid because they can be viewed as nothing more than special
coordinate rotation (CR) calculations involving L2 basis functions.

As Rescigno, McCurdy, and Ore [5] have suggested, it is possible, and probably even wise, to employ
the coordinate rotation method (CRM) [6] to only the “active orbital” arising in electron-molecule collisions.
The philosophy of the CRM [7,8] is that by “rotating” or scaling the coordinate of the scattering particles
by an amount exp(ifl) (r — exp(if)r) either in the Hamiltonian (H) or in the “trial wavefunctions,” one
maps the non-L2 resonance eigenfunctions of H into L2 functions having the same resonance energies. The
advantage of the CRM is that one can employ L? basis functions in electron scattering problems with r;
replaced by r; exp(if)). In a many-electron problem, indistinguishability requires that the coordinates of
all electrons be scaled by the same amount. The suggestion made in Ref. 6 is that one can scale a single
orbital in any multi-electron Slater determinant; the antisymmetric nature of such determinants assures
that indistinguishability is not violated. The physical motivation for considering this proposition is that
only a single electron is unbound in the kind of electron-molecule scattering processes most commonly studied
[2,3,4,6]; the remaining electrons are bound and should have their energy unchanged by coordinate rotation
[5.6].
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It is now possible to show the connection between the “methods”™ used in Refs. 2 and 3 and the kind of
CRM put forth in Ref. 6. If the Siegert function’s asymptotic component exp(ikr)/r is subjected to a rotation
of magnitude 6, it becomes proportional to exp(i| k|r cos(8 — B)) exp(—| k| sin(8 — B))/r which is L2 If
the rotation angle f is chosen to be 23, then this rotated Siegert function is identical to that used in Ref.
2, where the Im(k) — —Im(k) device was used to make the Hamiltonian matrix elements calculable. The
choice § = 8 + 6 (6 is small and positive) leads to the modified Siegert wavefunction used in Ref. 3. As
pointed out in Ref. 3, the latter approximation (f = 8 + 6) seems to work better than the Im(k) — —Im(k).
This is not at all surprising to one who is familiar with applications of the CRM. It is well known that the
desired resonance eigenvalues remain relatively stable (to 6 variation) near 6 = 3, whereas the (unavoidable)
use of finite basis sets makes these eigenvalues quite 8-dependent for 8 > 8 (e.g., 6 = 2). In future appli-
cations of the Siegert method, it is suggested either that one exploit the developments made by Yaris et
al. [4] to completely avoid divergent integrals [for Im(k) < 0] or that one use the § = 8 + & device to “rotate”
the Siegert function into the L? class upon which the desired resonance eigenvalue E; = A2k?/2m should
be (relatively) f-independent.
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