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Abstracts

Trial wave functions, written as the sum oCa configuration interaction expanaion and an
explicitly correlated term wbich is notantisymmetric, are proposed Coruse in calculating the
electronic properties oCatoms. and molecules. A variational principle, modified to allow
the use for suro partially antisymmetric wave functions, is developed. It is shown that the
consequences of partial antisymmetry on calculated expectation values can be estimated.
The method avoids difficult three-electron integrals wbich arise in other theories.

On propose des fonctions d'onde d'essai, ecrites COmmela somme d'un developpement
d'interaction de configurations et d'un terme correle explicite, qui n'est pas antisymmet-
rique, pour le calcul des properietes electroniques des atomes. et des molecules. Un principe
de variation a ete developpe qui permet l'emploi de fonctions d'onde partiellement anti-
symmetriques. On demontre que les consequences de cette antisymmetrie partielle pour
les valeurs moyennes calculces peuvent etre estimees. Avec la methode developpee id
on evite ]es integrales difficiles a trois clectrons.

Es wird vorgeschlagen fiir die Berechnung der elektronischen Eigenschaften von
Atomen und Molekiilen Versuchsfunktionen zu verwenden, die aIs die Summe einer CI-
Entwicklung und eines explizit korrelierten Glieds geschriben werden konnen. Dieses
Glied ist nicht antisymmetrisch. Ein Variationsprinzip wird beschrieben, das den Gebrauch
solcher teilweise antisymmetrischenFunktionen erlaubt. Es wird gezeigt, dass die Wirkungen
dieser partiellen Antisymmetrie aur die berechneten Erwartungswerte abgeschatzt werden
konnen. Mit dieser Methode konnen die schwierigen Dreielektronenintegrale vermieden
werden. .

1. IntroclucDOD

The success of explicitly.correlated wave functions* in predicting the electronic
properties of atoms containing a rew electrons [1-6] has inspired considerable
research aimed at using wave functions in variational calculations on larger
atoms and molecules [7-9]. Many of the complications which arose in attempts

t N.S.F. Postdoctoral Fellow (1970-1971). Present address: Department oCChemistry, The
University oCUtah, Salt Lake City, Utah, USA.

:::Explicidy correlated wave Cunctions depend explicitly on the interelectronic coordinates rij .
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to incorporate relative coordinates ('ii) into a triaI wave function (1p) can be
traced to the requirement that 1pbe antisymmetric under permutation of particIe
coordinates (space and spin). For examp1e, in the many-electron-theory of
Sinanoglu [7] IDe particIe exchange operator PiJ' whose presence is due to the
antisymmetry of 1p,introduces into the effective two-electron Hamiltonian difficult
three-'electron integrals involving '12' '13' and '23' Even for simple mo1ecu1ar
systems, e.g., LiH, the necessary. twa-center, three-electron integra1s containing
'12 , '13 , and '23cannot presently be easilyeva1uated[10].t

Because of the computationaI difficulties in using explicitly correlated wave
functions, IDemethod of configuration interaction (CI)remains IDemost commonly
accepted technique for going beyond Hartree-Fock in predicting electronic
properties of atoms and molecules. The principaI weakness of the cr method is the
rather slow convergence of such an expansion of1pin Slater determinants. t Pseudo-
naturai orbitais [11] can be extracted erom smalI CI calcu1ations and then used to
form Slater determinants for a 1arger cr expansion, but even in this optimum case
[12] convergence may be very sIow. In same instances a smalI CI expansion pro-
vides a significant improvement over IDe Hartree-Fock wave function (e.g., in the
Beryllium atom, where IDe configurations Is22s2and Is22p2are important), but
further increases in quaIity require the addition ofmany more Slater determinants.
GeneralIy, the correlations between loosely-bound outer electrons, which arise
erom the near degeneracy of IDehigher "occupied" Hartree-Fock orbitais whh the
Iower "unoccupied" orbitaIs,§are accurately described by these smalI cr ex-
pansions. However, the dynamical correlations,1I which dominate the core-
electron interactions and which are also present to a 1esser extant in intershelI
correlations, can on1y be correctly described by an extensive cr expansion or by
the use of 'ii in the trial wave function.

To incIude both dynamical and non-dynamical correlations in 1pwe consider
in Section 2 a mixed expansion in terms ofboth Slater determinants and explicitly
correlated functions. The difficulties which arise erom the antisymmetry require-
ment are overcome by writing IDe trial wave function as IDesum of a CIexpansion,
which is properly antisymmetric, and a correlated expansion which is not antisym-
metric. Although IDe resulting triaI function is not necessari1y antisymmetric
(this is IDeprice of eliminating such prob1ems as three-electron integra1s), we show
in Section 3 that it can be used in variational calcu1ations of IDeelectronic energy
1evels and that IDe consequences of this partial antisymmetry can be estimated.

t Although three-electron, one-center integrais have been calculated, their presence is a
aignificant complication, er. [10].

~ Using natura} orbitals to form the Slater determinants leads to the most rapidly convergent
series, cf. [12].

§ By occupied (unoccupied) orbitals we mean those orbitals which do (do not) occur in the
Hartree-Fock wave function.

II For a good discussionof the various types of correlation which appear in atoms, see the papers
in Bibliography [8]. '.
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The approach taken here is close1yre1ated to that of Peat [13] and coworkers.
In Peat's notation, we restrict aur trial wave function to lie within the srace
spanned by the symmetric eigenvectors of the Q.-matrix having eigenvalues -1

and -(~) -1. However, we do not expand the wave function in a basis consist-
ing of products of corre1ated geminals as Peat bas clone.

2. The Partially Antisymmetric Wave Function

We choose to expand the trial wave function "P(l, 2,3, . . . , N) in the following
form:

"P(l, 2, . . . , N) = Xo<l>(l,2, .. . , N)

(1) N R M N

+! ! X::<I>~;(l,2, . . . , N) + ! ! X;8;i{1, 2)<1>'8(3,4, . . . , N)
.<8-1r<g-N+l i=1.<8

where <I>is aSIater determinant t composed of the N "occupied" Hartree-Fock
spin orbitals:j:

(2) <1>(1,2,... N) =dN[4>l(l)... 4>N(N)]

<I>~;is a double excitation§ function in which the "occupied" 4>,11and 4>11are
replaced by the "unoccupied" 4>rand 4>8respective1y

(3) <I>~;(l, 2, . . . , N) = dN[4>l(l) . . . 4>r(e). . . 4>.(0) . . . 4>N(N)]

and <1>.8is the (N - 2)-e1ectron minor of <I>formed by removing the first twa rows
and the eth and Oth columns of <I>

<I> (3 4 ... N ) - (- 1)
'+8+1+2...A

.8 " , - .J4lN-2

(4) ~ [4>1(3) . ; . 4>'-l(e + l)4>'+1(e + 2) . . . 4>8-1(0)4>8+1(0 + 1) . . . 4>N(N)]

The N-e1ectron antisymmetrizer d N is defined by

(5) d N = (N!)-1/2 ! (-1)1' P
peS.v

t The approach is easily generalized to treat a linear combination of Slater determinants in
case more than one determinant is required for symmetry reasons, e.g. to make 'P an eigenfunction
of fl'2.

t It is notnecessary that Hartree-Fock orbitais be used; ifother functions are used thenone would
probably want to add single-and higher-excitations to the expansion of'P given in Equation (I).

§ The generalization to inc1ude single excitations is straightforward and is probably necessary
if the <Piare not unrestricted Hartree-Fock spin orbitals. We will inc1ude only double excitations
because this is the most common case.

II Greek indices e, 8, ex,and f1 are used to indicate "occupied" spin orbitais while r, s, t, and v
are reserved for "unoccupied" spin orbitais.
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and is proportional the (idempotent) antisymmetric projection operator ON

(6) ON = (N!)-1/2dN

The ~i are explicitly correlated two-electron functions (spin geminals) which are
chosen before the calculation is begun. They are chosen so as to accurately
describe the dynamical correlations between various electron pairs in the system
of interest. t The only restrictions on the ~i are the orthogonality conditions
given below: ~

(7a) f~:(l, 2)d2cp.(l)CPs(2)dTl dT2 = O

f ~:(l, 2)d2cp.(I),pr(2) dTl dT2 = O

f ~7(1, 2)d2CPr(l)cp.(2) dTl dT2 = O

(7b)

(7c)

(7d) f ~:(l, 2)~j(l, 2) dTl dT2 = bij

for B, () = 1,2, . . . N; i,j = 1,2, .. .M; r,s = N + l . . . R. In the above
expressions Mis the number of correlated spin geminals which we choose to use in
the calculation, R-N is the number of"unoccupied" spin orbitals appearing in the
CIpart of "P,§ and N is the number of electrons.

The variational parameters Xo, X:;, X;s are to be determined in twa steps. For
a specific system we first decide which of the coefficients X:: and X;s are to be
taken as non-zero. This choice is marle according to which spin orbital pairs
(B, ()) interact (virtually) with which "unoccupied" spin orbita! pairs (r, s) to
yield non-dynamical correlation, and which spin orbital pairs (B, ()f are best
described as dynamically correlated. For example in the Beryllium atom we
would certainly want X~::i." to be non-zero, whereas the dynamically correlated
lS2 core would require at least one non-zero X;..l.. The intershell (ls2s) corre-
lation, which is usually quite smalI due to the localization of the twa orbitals in
different regions of space, caD probably be treated by including either non-zero

t Same experimentation is clearly needed to find a set of rules for constructing reasonable {'t}
for specific molecular problems. The experience of researchers who have used theories such as
Sinanoglu's many-electron theory would undoubtedly be very valuable in these regards.

~These constraints force one to orthogonalize the chosen {'i} to one ano~er and to the Slater
spin geminais J.Jf2[c/>;(I)t{>j(2)].This can be clone using any of the standard techniques (Schmidt
orthogonalization, symmetric orthogonalization, etc.). They are much weaker constraints than the
strong orthogonality which arises in Sinanoglu's many-electron theory [7].

§ We have in mind a rather limited CI expansion whose purpose is to include non-dynamical
correlations. Thus, R will probably be much less than the total number of Hartree-Fock spin
orbitais (occupied and unoccupied) which is determined by the size ofthe atomic-orbital basis set.
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X;;:z. or Xt.z.. ODce the above decisions have been marle, the non-zero variational
parameters are chosen so as to minimize the en~rgy functional defined in Section 3.
Because the trial wave function given in Equation (I) is not necessarily antisym-
metric, the usual definition of the energy as the expectation value of the N-electron
Hamiltonian is somewhat modified.

3. The Variatioaal Problem

Jf the trial wave function 'ljJwere totally antisymmetric, we could define the
electronic energy E in either ofthe following twa equivalent ways ('ljJis taken to be
normalized to unity):

(Ba)
E ==f 'ljJ*(I, 2, . . . , N)HN'ljJ(I, 2, . . . , N) d7'l . . . d7'N

or

(Bb)
E ==f 'ljJ*(I, 2, . . . , N)K(I, 2)'ljJ(1, 2, . . . , N) d7'l' . . d7'N

where the N-electron Hamiltonian HN is assumed to consist of a symmetric sum of
one~electron operatorsf(i) and two-electron operators g(i,j)

(9)
N N

HN ==! f(i) + ! g(i,j)
i=l i< ;-1

and the reduced Hamiltonian K is given by

(10)
K(I,2) ==(:) {g(l, 2) + (N - 1)-1[f(1)+ f(2)]}

The equivalence of the above twa definitions of E caD easily be verified by using
the identity of the electrons.and the antisymmetry of 'ljJ.

However, the tria! wave function given in Equation (I) is not necessarily
antisymmetric, and so the energies defined by Equations (8a) and (8b) are, in this
case, not identicaI. We arbitrarily choose to define an energy functional E by
Equation (8b). There are twa principal reasons for this choice. Firstly, the energy
functional given in Equation (8b) is, as shown later, bounded Erom below by a
num ber which depends on how nearly antisymmetric aur wave function iso The
existence of this lower bound is takenas justification for the variational calcu-
lation ofthe energy. Secondly, the problem ofminimizing_E to find the optimum
values of the variational parameters Xo, X;: , x:l, is computationa!ly tractable;
only one- and two-electron integrals arise, there are no three-electron integrals
involved.

Before we proceed with the development of a variational method, we first
introduce the concept ofa measure ofantisymmetry p. [14], defined as the square
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of the norm of the antisymmetric component of 'lP

/-l ==J °N'lP*(I, 2, . . . , N)ON'lP(I, 2, . . . , N) dT1' . . dTN

Because (!)Nis a projection operator [see Equation (6)] /-l is bounded by O ~
/-l ~ I, and the value /-l= I implies a totally antisymmetric wave function. For
the trial function in Equation (I) the calculation of /-lis easily performed by using
Equations (7a)-(7d) and the orthonormality ofthe spin orbitais {«Pi}' The result is

(II)

(12)
N R

(
N

)
-1 M N .

/-l = IXol2+0<t-1r<S~N+1IX;:12+ 2 i~0~-1IX:812

Because 'lPis normalized to unity we algo have

(13)
N R 111 N

I = IXol2+ ~ ~ IX;;I2 + ~ ~ IX;812
0<8-1 r<s-N+1 i-I 0<11-1

Notice that a non-zero X;II contributes an amount IX;1I12to the normalization

constraint [Equation (13)] but only (~rlIX;812to the value of /-l[Equation (12)];
dearly this must render /-lless than its maximum value of I. The result /-l= I can
only be obtained ifall ofthe X;IIvanish; Le., in the case ofa pure CIwave function
(not necessarily exact).

Let us naw consider the relationship between the energy functional defined by
Equation (8b) and the following expectation value ofthe N-electron Hamiltonian:

1: ==J ON'lP*HNON'lP dT /JON'lP*ON'lP dT

Because the function (!)N'lPis totally antisymmetric, P:must be an upper bound to
the true ground-state energy of the system Eo

(14)

(15) 1: ~ Eo

but it is not necessarily true that E ~ Eo. Making use of the definitionsof E, 1:,
and /-l,as wen as the Schwarz and triangle inequalities,one can derivet the im-
portant inequality shown below~:

(16)
,1: - /-lEI ~ (I - /-l)IKlmax+ 2~(1 - /-l)J 'lP*K2(I,2)'lPdTT/2

t See pages 1039-1040 ofBibliography [14] for details.
t Any other symmemc two-electron operator can be substituted for the Hamiltonian if an

appropriate redueed operator is defined.
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where IKlme.xis the eigenvalue of maximum absolute value associated with the
operator K(1,2) in the space spanned by the two-electron functions

{d2[4>i(1)4>l2)],i,j= 1,2,"'R; ~i(1,2), i= 1,2,"'M}

It should be noteci that K2(I, 2) (5 K(l, 2) K(l, 2)) is the square ofa two-electron
operator, and thus is itself a two-electron operator. Therefore the integral appear-
ing in Equation (16) involves only one- and two-electron integrals.

The above inequality is easily rearranged to give the following lower bQund to
the energy functional E:

(17) E ~ Eo - tY..

where tY..is defined as

tY..5 _(1-'-1- I)Eo + (1-'-1- l) IKlme.x+ 2[ (P-I-l) Jtp*K2(1,2)tpd,-T/2

If the ground-state energy Eo is negative, as is the case for bound systems, .Llis a
non-negative quantity which approaches zero as I-' approaches unity. Thus the
bound E::: Eo - Ll approaches the usual variational bound E ~ Eo as I-'
approaches one.

The inequality of Equation (17) can now be seen to justify the use of the func-
tional E for variational calculations, in the following sense. Ifthe parameters Xo,
X;;, and X;8 are chosen so as to minimize E (call the minimum value E*), then
Equation (17), together with the definitions of I-' [Equation (12)] and Ll [Equation
(18)], tells us that E* can fall no more than Llbelow the true ground-state energy
Eo .t Thus, evaluating I-' and tY..at the optimum values of Xo , X;;, and X;8
affords us a measure of the consequences of the partial antisymmetry of tp.

The problem of minimizing E subject to the constraint that tp remain norma-
lized is a linear variational pr?blem. To obtain the optimum values of the varia-
tional parameters and the minimum value (E*) of E we must calculate the lowest
eigenvalue (and its associated eigenvector) of the matrix K whose entries are the
matrix elements of K(l, 2) between pairs of the basis functions <1>,<1>:;,and
~i<1>.8'The evaluation of «1>1K 1<1»,«1>1K 1<1>:;),and «1>~;1K 1<1>~p)can be

(18)

t Bounding J tp*K.21p d,-by IKI~e.xand using O ;;;;fi ;;;; I, we can generalize the right sicie of
Equation (16) so that IE- flEI ;;;;~', where~' is independent of fi. However, this is not necessary
for justifying the minimization of E. The philosophy of Dur modified variational approach is as
follows: the values of Xo, X:3, and X:8 which minimize E result in a value of fi given by Equation
(12). If we judge fi to be not sufficiently c1ose to unity, then the calcu1ation is fruitless; new spin
geminals {~i} must be chosen for a new calculation. However, ifthe resu1ting value of fi is reasonably
c1ose to one, then Equations (16)-(18) can be used to estimate the consequences ofpartial antisym-
metry. Thus, for afixed set of spin geminals, we minimize E and then calcu1ate fi. The resulting
value of fi, when substituted into Equation (17), allows us to staLewith confidence that the minimum
value of E(E*) bas not fallen more than ~ be1ow the true ground-state energy Eo .
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accomplished by using the well-known rules for calculating matrix elements of the
Hamiltonian between Slater determinants [15]. Using Equations (7a)-(7d) and
the orthonormality of the {rpi} one can derive expressionsfor the remaining
elements DeK:

(
N

)
-1/2

J(19a) «I>IK l~i<l>.9>= 2 .#2[rp.(1)rpe(2)]*K(I, 2)~i(1, 2) dTl dT2
.

(
N

)
-1/2

f(19b) «I>~IKIEi<l>"JI>= lJ,,/JJle2 .#2[rpr(l)rp.(2)]*K(I, 2)Ei(l, 2) dTl dT2

(l9c) <~i<l>.elK l~i<l>"JI>= lJ",lJJleI~:(l, 2)K(I, 2)~i(1, 2) d7'l d7'2t

The practical details of the method proposed here are clearly very similar. to
those of the CI approach. One is faced with evaluating various one- and two-
electron integrals which are then used to construct the matrix K whose lowest
eigenvalue is E*. The eigenvector of K belonging to theeigenvalue E* then
gives the optimum values of Xo, X;: , and X:e. The principal computational
difficulty ofthe method, beyond that occurring in a CIcalculation, is the evaluation
of the two-electron integrals appearing in Equations (19a)-(19c). This added
complexity must be balanced against the advantages mentioned earlier (no need
for an extensive CI expansion, explicit correlation, no three-electron integrals,
etc.) in deciding whether this approach represents a useful tool for calculating
electronic properties of molecules. Results of using such partially antisymmetric
wave functions in specific molecular calculations are, of course, also essential in
making this decision. We plan to carry out same calculations in the near future
which, hopefully, will shed same light on the value of the proposed method.

r

4. CoDcl~cling ReJDaI'ks

In this paper we have proposedthe use of explicitly correlated, partially
antisymmetric wave functions for calculating the electron~c properties of atoms
and molecules. Such trial functions can simultaneously treat both dynamical and
non-dynamical correlations, while avoiding the difficult three-electron integrals
which arise in other theories. A modified variational method, based on minimiz-
ing the energy functional E of Equatioa, (8b), was developed, and a bound was
placed on the amount. E could fall below the. true ground-state energy Eo. The
measure of antisymmetry p" which determines this bound on E, also allows us to

t These formulas can be used to calculate the expectation value of any two-electron operator
(by defining a correspondingreduced operator), once the optimum valuesof Xo' X::, and X:, are
known. Thatis, in calculaling f1Jl*J(I,2)'lcErwith 'l given by Equation (l), one ~eed onlyknow
the Xo' X::, X:e , thoseintegrals involvingthe reduced operator J(l, 2) which are analogousto the
integrals in Equations (19a)-(19c), and the standard two~electronintegrals <"'i"'ilJ ""k"'&>which
arise in CIcalculations.
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estimate the consequences ofpartial antisymmetry on other calculated expectation
values by using Equation (16).

The necessary greps in app1ying this method are as follows:

(1) Decide which of the X:; and X:9 are to be non-zero (see page 442).
(2) Choose a set of exp1icitly corre1ated spin gemina1s and orthogona1ize them

to one another and to the Slater geminals {d2[4>1(1)4>m(2)]}to form the {~i}'
(3) Calculafe the integra1s in Equations (19a)-(19c) and the integrals needed

. to form the CIpart of the K-matrix.
(4) Form the K-matrix.
(5) Find the lowest eigenvalue of Kand its associated eigenvector. The

eigenvalue is E*; the eigenvector gives the optimum values of Xo , X:: , and X:9 .
(6) Calculate the expectation values orany one- or two-e1ectron operator(J)

ofinterest (f lp*J(I, 2)11'dT, see footnote, page 446).
(7) Use Equation (12) to evaluate the measure of antisymmetry p.. If the

value of p. calculated in step (7) is not reasonably close to unity, the resulting wave
function cannot be used with much confidence. In this case, the remaining four
greps need not even be carried out; one should choose new {~i} and return to step
(2).

(8) Calculate IKlmaxofEquation (16) by finding the largest (in absolute value)
eigenvalue of K(l, 2) in the basis ofthe Slater geminals and the ~i'

(9) Using the optimum variational parameters calculate f 1p*K21p dT.

(10) Evaluate I::.by using Equation (18).
(11) Use Equation (16) to estimate the consequences of partial antisymmetry

on the expectation values of any other one- or two-e1ectron operators.
Although we have presented formaljustificationfor using explicitly corre1ated,

partially antisymmetric wave functions in molecular calculations, the real test of
the theory lies in its application to particular problems. It might prove very
difficult to choose a set of corre1ated spin geminals {~i} which gives geod anti-
symmetry (p. ~ l) and, at the same time, accurate1y describes the dynamical
corre1ations of e1ectrons in the molecule. It mayaiso be that spin geminals which
prove acceptable in describing corre1ation and yielding geod antisymmetry lead to
very large values of IKlmax, so that the value of I::.given in Equation (18) is too
large. The results ofL6wdin and Lim [16] indicate that the value oflKlmax can be
expected to increase fairly rapidly as the number of e1ectrons is increased. Thus,
for a given value of p., the bounding function I::.cannot be assumed to increase
slowly (if at all) with N. However, it is possible that themaximum relativeerrat in
the energy I::./Eodoes vary rather slowly as a funcJion of N. Therefore, it may be
possible to maintain maximum errors of a rew per cent over a wicie range of N.
The data of L6wdin and Lim and the results of Peat and coworkers on Li, He2,
and Li2 (see Bibliography 13) seemto substantiate the slow variationt of I::./Eofor

t For example, Lowdin and Lim [16] find that IKlmax/Eo changes [rom 1.0 to 2.2 as N is varied
[rom O to 8.
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N in the range O to 8. To evaluate more realistically the advantages and disad-
vantages of this theory, we plan to carry out more test calculations in the future.
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