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Abstracts

The coupled-cluster approach to obtaining the bond-state wave functions of many-electron
systems is extended, with a set of physically reasonable approximations, to admit a multiconfiguration
reference state. This extension permits electronic structure calculations to be performed on correlated
closed- or open-shell systems with potentially uniform precision for all molecular geometries. Explicit
coupled cluster working equations are derived using a multiconfiguration reference state for the case in
which the so-called cluster operator is approximated by its one- and two-particle components. The |
evaluation of the requisite matrix elements is facilitated by use of the unitary group generators which
have récently received wide attention and use in the quantum chemistry community.

Le procédé des amas couplés pour obtenir des fonctions d’onde pour les états liés d'unsysttme a N
électrons a été généralisé dans le cadre d'un nombre d’approximations raisonnables du point de vue
physique, pour utiliser un état de référence multiconfigurationnel. Cette extension permet des calculs
de la structure électronique pour des systémes & couches fermées ou ouvertes correlées avec une
précision qui est uniforme pour toutes les géométries moléculaires. Des équations explicites sont
obtenues avec un état de référence multiconfigurationnel dans le cas ol le soi-disant opérateur d’amas -
est remplacé par ses composantes i une et deux particules. Le calcul des éléments matriciels
nécessaires est facilité par I'utilisation des générateurs du groupe unitaire.

Das Verfahren mit gekoppelten *‘Clusters” fiir die Berechnung von Wellenfunktionen fiir gebun-
dene Zustinde eines Vielelektronensystems ist im Rahmen gewisser physikalisch angemessenen
Niherungen erweitert worden, um einen multikonfigurationellen Referenzzustand zu erlauben. Mit
dieser Erweiterung kdnnen Berechnungen der Elektronenstruktur von Systemen mit korrelierten
abgeschlossenen oder offenen Schalen und mit einer potentiell einheitlichen Genauigkeit fiir alle
Molekiilgeometrien ausgefiithrt werden. Explizite Gleichungen werden mit einem multi-
konfigurationellen Referenzzustand fiir den Fall abgeleitet, wo der sogenannte Clusteroperator von
seinem Ein- und Zweiteilchenkomponenten angenéhert wird. Die Auswertung der erforderlichen
Matrixelemente wird durch die Anwendung der Generatoren der unitiren Gruppe erleichtert.

1. Introdﬁction

A cluster expansion formalism was developed by Coester [1] for treating
N-fermion nuclear systems. Cizek [2] and others [3] expressed this formalism
such that it was more suitable for electronic structure calculations on closed-shell
systems and actually applied the resulting equations in an ab initio framework to
the ground states of a few closed-shell molecules [4]. More recently, attempts
have been made to extend the formalism to open-shell systems [5, 6]and Freeman
et al. [7] have applied the method to the uniform electron gas.
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The basic idea of the coupled cluster (cc) method for closed-shell systems is to
express the exact wave function ¢ as a cluster expansion in the neighborhood of an
independent-particle wave function (a single Slater determinant) ® containing N
electrons:

¢;=er¢'=exp(ZTs) (ND7V2 det|o, v T § = A

where, for example, a second-order cluster operator To=Y ., osa falaaaa
produces (T>®) two-particle “excited” configurations when operating on ®. The
Schrédinger equation

(H-E}=(H=-E)e"®=0 2)

is then projected against sufficient set of excited functions [®5"..) to generate a
series of equations for determining the cluster amplitudes ¢.z'".,

(@G5 le” " He |®)=0 R
and the electronic energy
(Dle""He™|®)=E. (3b)

The fact that the excited functions ®;". = a a! - - - aga,|®) contain the same set
of indices as in the corresponding T operators gives a unique set of equations for
the amplitudes f;5.... Among the attractive features of this description are (i) that
it determines the optimum cluster functions in a fully coupled manner, and (ii)
_ that the method provides a mechanism for obtaining only the linked-cluster
(i.e., operators T cannot be written as a product of other lower order T;’s) con-
tributions to all physical properties. This latter fact then leads to so-called
size-consistent or size-extensive results [unlike results of limited configuration
interaction (c1) calculations].

In actual calculations, truncation of the cluster operator manifold (usually up
to T>) has, thus far, been an inevitable practical necessity. Treatment of the most
general set of CC equations requires solutions of coupled fourth degree equations.
For the T, truncated operator manifold, calculations performed at different bond
lengths or angles will be of similar precision only if the reference state is of similar
precision at these geometries. In general, a Hartree-Fock (HF) reference function
would certainly not be expected to give a balanced description at both the
equilibrium and distorted geometries of a molecule. In order to extend the cc
method such that it is equally applicable to a much more general class of systems
(closed- and open-shell molecules near and far from equilibrium geometries), we
propose to employ the multiconfiguration reference state coupled cluster method
(ccmc) described in detail below.

2. Formal Development .
A. Notation

For reasons which are related to the computational efficiency of the resultant
expressions as explained in more detail below, we develop the cc equations in
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terms of the so called generators [7-10] of the unitary group {e;}. The initial
applications of such unitary group methods [10, 11] to molecular systems have
shown that this approach provides a systematic and very efficient procedure for
organizing the density matrix element evaluations which arise in most quantum
chemical problems and eliminating redundancies through introducing a “global”
organization of the electronic configurations employed in the calculation. The
generators of the unitary group can be defined in second quantized form as

€ = Z a La;m : (4) .

where a|, and aj,, respectively, are creation and annihilation operators for an
electron in spatial orbital ¢; and spin state o (a or B). These generators satisfy the
commutation relations

[el'l‘! €kl ]— = 5;'3:3 it — Bueyj. (5)

In terms of these generators the nonrelativistic electronic Hamiltonian has the
form

ke Lol e :
H =Y (i|nlj)e;+5 _ZH (ijlvlkl) (ewen — Seu) =h + v, (6)
i if

where h and v are the one- and two-electron parts of the Hamiltonian, respec-
tively, and the elements (i|h|j)=h; and (ij|V|ki)= Vj3, refer to the one- and
two-electron integrals over the spatial orbital basis {¢:}.

B. Choice of Reference State and Cluster Operators

The multiconfigurational (MC) reference state and the cluster operators T,
which we discuss below have been chosen to preserve some of the essential
- properties of the HF reference state. The Mc reference state has the form

B(C, ) =T xx ($)Cr, _ ™

where the xx (¢b) are configurations constructed from the set of orbitals {¢.}, a =
1,..., m, with m <w, w being the total number of basis orbitals. The reference
function @ is now assumed to be a full-c1 wave function within the restricted space
{m}. That is, the set xyx contains all N-electron configurations which can be
constructed from the orbital set {¢,}. For calculation of properties in which
core—electron correlation effects are of no importance, a well established
approximation is to “‘freeze” the set of core orbitals in the description of the wave
function. The occupancy of the core orbitals does not vary then among the set
{xx}. For such calculations & is taken to be a full-valence c1 wave function within
the restricted (valence) space {m} and the core orbitals remain frozen throughout
the calculation (in & as well as in the subsequent cc calculation). However, it
should' be pointed out that the development that follows is independent of
whether or not this frozen-core approximation is made. The m orbitals over which
® is defined are to be chosen as the minimum number of orbitals needed to give
the qualitatively essential description of the potential surface. For example, for
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the Ha(' 2 g) mOICCule, m=2,{m}={o,, o'“} and the full-c1 reference state is
b= Clcr,I + C;02% For a description of NH(b! %) in which 10220 is defined as
the core, the essential configurations at R, and R are 30°17~ and 3c4oln’.
Thus, {m}={30, 4}, and the full-valence c1 reference function & contains the
{302, 3040, 40} configurations. From these examples it is clear that, with a
proper and judicious choice of the restricted orbital space {m}, ® will contain only
a few configurations and is therefore easily calculated. It is important to stress that
our intention is to include in ® only the qualitatively essential configurations
needed to describe the state of the molecule at all geometries of interest. We are
not, however, attempting to permit @ itself to include high order electron
correlation effects; the cc operator e ” is designed to take care of the latter effects.
Particular choices of the orbitals appearing in the configurations of & (i.e., specific
linear combinations ¢; = ¥} a;&; of the basis orbitals &), such as MCSCF or natural
orbitals, which might be especially useful in solving the resulting cc equations will
be discussed in Section 3.

The cluster operators deﬁned with respect to the above Mc reference state @
are as follows:

N
T_ z Ts:
s=1
with
=) s T2=( )Z . 1ag€ral2p; - « - - (8)

Here the Greek subscripts a, 3, . . . refer to the “occupied” orbitals of ® (within a
“frozen core” approximation, a does not include the core orbitals) and Roman
subscripts r, s, . . . refer to the orbitals not occupied in any configurations of ®. The
notation (rs) implies the restrictions r < s. Subscripts i, j, k, and [ are used later to
denote unrestricted summation indices. Following a development very analogous
to that arising in the case when @ is the HF single configuration function, the above
choices of Mc reference state [Eq. (6)] and cluster operators [Eq. (8)] lead to the
following results:
(i) Intermediate normalization of ¢ is achieved

(DleT D)= (D|D)+ T tZa(Dleaes|®)+---=1, 9)

(rs)ap

which occurs because a,|®) = 0.
(i) The Baker—Campbell-Housdorff expansion gives a finife commutator
series having only five terms

e He™ = H+[H, T+ o.{H, T}, T+ L.{[[H, T}, T}, T]
: (10)
+$[[[[H, T]! T]s T]: T},
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since H contains at most two-particle operators. Terms of higher order in T in the
above series involve commutators of the type [e,., €3] Which are identically zero.
This finite exact expansion holds whether or not T is truncated to some order
T,S=N.
C. Working Equations
The coupled-cluster wave function has the form
y=e"®, (11)

where ® and T are given by Egs. (7) and (8), respectively. The total energy cluster
amplitudes ¢;; are determined by projecting the Schrdinger equation (2) against

- asufficient set of “‘excited” functions {e,.ess * * * |®)},
(Ple""THe T|®)=E (12)
and .
(D3 e THeT|®)=0, (13)
where
emesp * * * | D) =|D5s1). (14)

Equation (13) reduces exactly to closed form nonlinear algebraic equations which
can be solved for the cluster amplitudes ;... The nonlinearity of the equations is
due to intercluster coupling; for example, the coupling between one- and two-
particle clusters has the amplitude f,t5s. Since the qualitatively essential
configurations are already contained in the Mc reference state ®, we expect the
magnitudes of these amplitudes to be small. Thus it is likely that the difficulties
involved in solving, by linearization or iteration methods, the resulting cc
equations will be less severe than if ® were taken to be a single configuration wave
function. It is our intention to develop the ccMc equations within-the approxima-
tion of T =T, + T, and retaining up to double commutators in the expansion of
Eq. (10). This approximation, i.e., including up to two-particle clusters and their
interactions, has been generally accepted to account for most of the electron
correlation effects in atoms and molecules.

At this point a few observations regarding the general set of Egs. (13) should
be made. If {m} is chosen so that ® is a single configuration (=®yr for closed shell
systems), the above equations reduce exactly to the conventional ccC equations
with the ®yr reference state. The equations [Egs. (13)] advocated here are not, in
principle, exact (except when @ is a single configuration). This is because the
operator manifold T of Eq. (8) is not complete unless it also includes the terms
Yoo Taloiie Lot 126,60, etc., which have the effect of generating relaxed
amplitudes ¢3,. ., or relaxed mixing coefficients Cx for the configurations xx in ®.
Our stipulation that ® be a full (valence) c1 wave function within the restricted
space {m} was introduced to guarantee that these valence orbitals need not be
further optimized to any major extent. That is, although the configurations ® span
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the configuration space defined over the orbital set {m}, the mixing coefficients
Ck, having been calculated in the absence of configurations involving the remain-
ing orbitals {w —m}, are not completely optimal.
The explicit expressions arising in Egs. (13) with T = T + T are as follows:
(i) The total energy is given by :

E=(H)+((H, Ti)+{(H, T)+X[H, T:], 1D, (152)
with
HY=Zhifey+3 T Vielewsd, (15b)
W T =L 6(Thle)+ T Vinlews)), (150
(H, T>D = ]Z . tag 2 Viirs(€ia.ia); (15d)
H T TD =36 ST Vipplepa) (15¢)

(ii) The cluster coefficients t;, and t result from solvings Egs. (16) and (17):

(®Te THeT|®)=0, (16a)

which leads to

(@ H|D) =3 e+, Vimi(eias), (16b)
@I, TI® =L 1o no(eua) =8 T hailess)
4T (Vir{eu)+ Vi i)

+6n Viar(eusi)) (16¢)

(@LIH, T:1®)= % r;’,g[amvaﬁue,‘om +P%,)

rs)e.B

X (8 T hukeusia) ¥ Viin(eunis) + £ Vinlewssoas)) |, (160)
i i ifk
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(OLIH, T, Tul0y =315 T (1 +PB) (B (eua) + T Vinar(eua)
+8mp ; — Vaijr<eiu,g;‘) = Viirle ;m,f;'))) s _ (16e)
(rs),x@ pA

@IIH, T.], ToI®y = T 125 T 8(1+ Pe){ = Voarews)+ 85 T Vs (er)

+ 8ms E{ (- ‘/ispr(euu,n) = "’:'Brp(em.ia) i %ﬂrp(em&i;\)

+ Val’l'p (euﬁ,n\)))’ (lﬁf)
(®LI[H, Tz), T»)|P)=0; (16g)
finally, :
(®e THeT|®)=0, m=n ~ (17a)
' gives
(O H|®)=3(1+PL) 2 Vmnii{€uinids (17b)
if

(@IIH, TiI0) = £ a1+ PE)(S Viwslera)+ 0 T Vilewan)) - 170
(OLLH, T3, Tul0) = £ 3 2] BBy T Vicaleran)
+ (14 PEA+PE)(} Vi euan)
e (Ve Vawlerand)] 070

(@TIH, T:I®)= T 12| L+ )1+ PI)
X [ mmnrs (eua vB) 28mr8ns 2 Vaﬁl; (ep.a v,‘) + smrans
X ( Y haileugui) — 'E_;,c Viaik (evﬂ.uk,!,f)) + 8ms
if

x( aiCis; .,.,.>+): Vinir{€up,va,ii) +E Vair{€up.ja, ”))]}

(17e)
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(@VH, T2, T1]P) g L tap 5}\ X(1+PZ)(1+PY
b

rsle,8

+ { ampanr E VAasi (euB, vl'> = Sms (aﬂv Vunpr(eu-l )

T anvvnﬁpr(eua )) T ampvm\rs<euﬁ.m) a7 {1 i P;p‘\ [amanr
X (hap (enan)— Z Viaip(€uin) = E Viaip(€ugon.ii)
i if
= z mapj(euﬁ.vj,i,\)) = ams Z %npr(eus,vu,i.k >] }’ {1 7f)
i . i

rs)e, B (pglre

(PLVIIH, T2], T:]®) = : T 4% Y PRy LRI P
X {Z Vﬁpr<en8,vcreiaeil)+ (1 +P;pj\Pgr)
if
x [6,,, nq(_%Va-J\rs(e“B_m)'f‘z‘: ‘/j,\,-s(egg‘w‘;ﬂ)) + amsanq
x(Z‘: Vispr{€uamoin) + L Vigrp(€unioia)

+1E Vaneusson)) |} (17g)

Here (€.s); {€ap.uv)s {€ap,uvar) are elements of the density matrices defined over
the occupied orbitals of the reference state ®:

o e + +
€ag uy = €ap€ui — sﬂneav o z Aacd wo'Qva' Ao (18)
=t

and
€apuvin = — €ap€uifan 5 aﬁuav-\'ean it ‘Sﬁneav.!m * 5.,;\8 af,un + aﬁi\e an,

=3 gl alns. gt
oo'a”
The expressions have been arranged in a form such that the summation indices
including i, j, k, and ! sum over the occupied orbitals of ®. In writing Egs. (15)-(17)
we have employed an exchange symmetry operator Pz, which operating on a
term to the right, interchange the indices (r, @) to (s, B).
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3. Operational Considerations

As shown in Egs. (15)-(18) the multiconfigurational coupled cluster (ccMc)
equations reduce to a set of nonlinear algebraic equations which can be solved for
the cluster amplitudes ¢, and t7.. In the working ccMc equations, the factors
which multiply such amplitudes are sums of products of one- and two-electron
integrals and elements of reduced density matrices which must be efficiently
evaluated and processed. We now turn our attention to these more practical
considerations.

One advantage of employing the unitary group generators for expressing H, T
and the requisite density matrix elements is that the cluster operators of Eq. (8)
are automatically singlet coupled. i.e., they preserve the spin symmetry of the
reference wave function. For example, an element of the T, operator written in
terms of the one-particle creation and annihilation operators has the form
et =3 a',’,a,ma ! @,0, which is indeed singlet coupled.' Therefore, the
calculations of the density matrix elements (e.g), (€ap,uv) {€us.uvac) iNVOlve only
nonredundant - spin components. Shavitt [10] has developed very efficient
algorithms for the calculations of such density matrix elements. We further stress
that only the orbitals which are occupied in & appear in the needed density matrix
elements since a,|®)=(®|a; =0. Thus, the number of such density matrix ele-
ments is limited by the choice of the *“occupied” orbital space. The symmetry
properties of products of generators (€ag .y = €uvap aANd €apuvic = Caprour =
Cuvaprc = Cuvic.aB =Crc.uvaB = €rsapuv) AllOWw us to- calculate the density
matrices in a lower “triangular” array. Furthermore, only the nonzero matrix
elements or those larger than a prescribed tolerance need be stored. In the
above working equations we have chosen to arrange terms such that the
unitary generators occur in the form e;; .. This choice is motivated by the fact that
Shavitt has shown that the évaluation of Mc density matrix elements in terms of
e Vvia unitary group methods gives rise to a very useful factorization of the
contributions to the desired density matrices which would not occur if one were to
evaluate (e;ex;). Clearly, we wish to achieve this added efficiency in our computer
programs. - :

In the above derivation, the partition of the Hamiltonian (H = h + V) was
made in terms of one- and two-particle operators but the exact nature of the
orbital basis was not specified, although we did indicate why McscF orbitals would
probably be quite desirable (because then T =0). The fact that & is a full-valence
c1 wave function (and, is thus invariant with respect to a unitary transformation
among the valence orbitals) gives a certain degree of freedom in the choice of
orbital basis. Because the McscCF optimization of the valence orbitals of ® would
be expected to lead to negligible one-particle cluster amplitudes T; =0, and to
thereby reduce the complexity of the Mccc equations, we favor the use of the
MCSCF basis for actual calculations. Alternatively, one could choose the orbital
basis such that either the one-particle density matrix or the “generalized Fock
operator” Fy = (ilulj)+¥ .5 (€ap) Viaje is diagonal, where u contains the kinetic
energy and the electron nuclear attraction energy terms. There is no one choice
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which is obviously “‘correct”’; more-eipérieﬁce' in actually applying the ccMmcC
method to atomic and molecular problems is needed.
4. Concluding Remarks

We have obtained explicit equations for the exponential one- and two-
electron cluster operators which act on a reference state of Mc form to yield an
approximation to the true Schrodinger eigenfunction. The resulting equations
have been cast in a computationally tractable form through the use of the
generators of the unitary group in a way which makes them applicable to closed-
or open-shell systems. By stipulating that & be a full (valence) c1 reference
function, we were able to obtain ccMc equations which are no more complicated
in form than those arising in HF—reference function cc approaches. As pointed out
clearly in our development, the resulting equations are not exact since we do not
properly treat the readjustment of the “occupied” orbitals {¢, } which takes place
due to the interaction (through e”) with new configurations which involve the
orbitals {¢,}. Nevertheless, we feel that this extension of the cc framework to
permit a very important new family of reference functions represents a significant
step forward in this area.
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