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Abstracts

Thecoupled-cluster approach to obtaining the bond-state wave functions of many-e\ectron
systems is extended, with a set of physicaIly reasonable approximations, to admit a multiconfiguration
reference stale. This extension permits electronic structure calc!Jlations to be performed on correlated
closed- or open-sheIl systems with potentiaIly uniform precision for all molecular geometries. Explicit
coupled cluster working equations are de!ived using a multiconfiguration reference stale for the case in
which the so-caIled cluster operator is approximated by its one- and twa-particIe components. The -
evaluation of the requisite matrix e\ements is facilitated by use of the unitary group generators which
have recently re_ceivepwide attention and use in the quantum chemistry community.

Le procede des amas couples paul obtenir des fonctions d'onde pOPI les etats lies d'un systeme IlN
electrons a ele generalise dans le cadre d'un nombre d'approximations raisonnablesdu point de vue
physique, pOPI utiliser un etat de reference m!JlticonfiguratiormeI. Cetle extension permet des calculs
de la structure electronique pOPI des systemes Il couches fermees ou ouvertes correlees avec une
precision qui i:st uniforme paur toPles les geometriesmoleculaires. Des eq!Jations explicites gont
obtenues avec un etat de reference multiconfigurationnel dans le CBSou le soi-disant operateur d'amas
est remplace par ges composantes Il pne et deuxparticules. Le calcul .des elements matriciels
necessaires est facilite par I'utilisation des generateurs du groupe unitaire.

Das Verfahren mitgekoppelten "Clusters" fiir die Berechnung von Wellenfunktionen fur gebun-
defie Zustiindeeines Vielelektronensystems ist im Rahmen gewisser physikalisch angemessenen
Niiherungen e:rweitert worden, um einen multikonfigurationelIen Referenzzustand zu erlauben. Mit
dieser Erweiterung konnenBerechnungen der Elektronenstruktur von Systemen mit korrelierten
abgeschlossenen oder offenen Schalen und mit einer potentiell einheitlichen Genauigkeit.fiir alIe
Molekiilgeometrien' ausgefiihrt werden. Explizite Gleichungen werden mit einem multi-
konfigurationeIlen Referen:tzustal1d fUr den Fali abgeleitet, wo der sogenannte Clusteroperator von
seinem Ein- und Zweiteilchenkomponenten angeniihert wird. Pie Auswertung der erforderlichen
Matrixelemente wird durch die Anwendung der Generatoren der unitiiren Gruppe erleichtert.

1. Introduction

A cluster expansion formalism was developed by Coester [1] for treating
N-fenrtion nudear systems. Cizek (2] and othe~s[3] expressed this formalism
such thatit was mate suitable for electronic structure ca1cu]a~ionson c1osed-shell
systems and actually applied the resu]ting equations in an ab initio framework to -

the ground states of a lew closed-shell molecules [4]. More recently, attempts
have been marle to extend the f()rmalism toopen-shell systems [5, .6]and Freeman
et al. [7] have applied the method to the uniform electron gag.
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The basic idea of the coupled cluster (cc) method for closed-shell systems is to
express the exact wave function i{Ias a cluster expansion in the neighborhood of an
independent-particIe wave function (a single Slater determinant) cI>containing N
electrons:

1/1= eT cI>=exp (~ Ts) (N!)-l/Z detlcPa, cP(3,...1,
(1)

where, for example, a second-order cluster operator Tz = Lrsa(3t~(3a:a;a(3aa
produces (TzcI»twa-particIe "excited" configurations when operating on cI>.The
Schrodinger equation

(H - E) 1/1 = (H - E) e T cI> = O (2)

is then projected against sufficient set of excited functions 1cI>~~"'..)to generate a
series of equations for determining the cluster amplitudes t~~"'..,

(cI>~~"'..1e -T H e TIcI» = O (3a)

and the electronic energy

(cI>le-T H e T/cI» ==E. (3b)

The fact that the excited functions cI>~~"'..=a:a; . . . a(3aalcI»contain the same set
of indices as in the corresponding Toperators gives a unique set of equationsfor
the amplitud es t~~"'...Among the attractive features of ibis description are (i) that
it de termin es the optimum cluster functions in a fully coupled mann er, and (ii)
that the method provides a mechanism for obtaining only the linked-cluster
(Le., operators Ts cannot be written as a product of other laweT order Ti 's) con-
tributions to all physical properties. This latter fact then leads to so-called
size-consistent or size-extensive results [unlike results of limited configuration
interaction (CI) calculations].

In actual calculations, truncation of the cluster operator manifold (usually up
to Tz) bas, thus far, been an inevitable practical necessity. Treatment of the most
general set of cc equations requires solutions of coupled fourth degree equations.
For the Tz truncated operator manifold, calculations performed at different hond
lengths or angles will be of similar precision only if the reference state is of similar
precision at these geometries. In general, a Hartree-Fock (HF)reference function
would certainly not be expected to give a balanced description at both the
equilibrium and distorted geometries of a molecule. In order to extend the cc
method such thatit is equally applicable to a much maTe general class of systems
(closed- and open-shell molecules near and far from equilibrium geometries), we
propose to employ the multiconfiguration reference state coupled cluster method
(CCMC)described in d>etailhelowo

2. Formal Development

A. Notation

For reasons which are related to the computational efficiency of the resultant
expressions as explained in maTe detail below, we develop the cc equations in
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terms of the so called generators [7-10] of the unitary group {eli}' The initial
applications of such unitary group methods [10,11] to molecular systems have
shown that this approach provides a systematic and very efficient procedure for
organizing the density matrix element evaluations which arise in most quantum
chemicalprC!blems and eliminating redundancies through introducing a "global"
organization of the electronic configurations employed in. the calculatlon. The
generators of theunitary group can be defined in second quantized form as

. t
eij = L a iuO-ju>

lT
(4)

where a ilT and a/u>respectively, are creation and annihilation operators for an
e1ectron in spatial orbital ePiand spin state u (a or (3).These generators satisfy the
commutation relations

[eli>ek/l. = 8jkei/- 8/iekj' (5)

In terms of these generators the nonrelativistic electronic Hamiltonian bas the
form

1
H =~(ilhlj)e/j +-2 ~

k/
(ijlvlki) (eikej/- 8jkei/) ==h + v,

1/ IJ
(6)

where h and v are the one- and two-e1ectron parts of the Hamiltonian, respec-
tively, and the elements (ilh U)==kij and (ijl Vlki)== V/jk/ feler to the one- and
two-e1ectron integrals over tbe spatial orbital basis lePi}'

B. Choice ol Relerence Stare and Ciuster Operators

The multiconfigurational (MC) reference state and the cluster operators Ts
which we discuss below bave been cbos en to preserve same of the essential

. properties of the HF reference state. The MCreference state bas tbe form

<I>(C, <1»= L XK«I»CK,
. k.

(7)

where tbe XK«I» are configurations constructed tram the set of orbitaIs {ePa},a =
1, . . . , m, with m < UJ,UJbeing the total number of basis orbitaIs: The reference
function <I>is naw assumedto be a full-cI wave function witbin the restricted space
{m}. That is, the set XK contains al! N-electron configurations which can be
constructed tram the orbital set {ePa}. For calculation of properties in which
core-electron correlation effects are of no importance, a well established
approximation is to "freeze" the set of core orbit aIs in the description of the wave
function. The occupancy of. the core orbitaIs does not vary then among the. set
{XK}. For such calculations <I>is taken to be a full-valencecI wave function within
the restricted (valence) space {m} and the core orbitais remain frozen throughout
the calculation (in <I>as well as in the subsequent cc calculation). However, it
should be pointed out that tbe development that follows is independent of
whether or not this frozen-core approximation is made. The m.orbit aIs over which
<I>is defined are to be chosen as the minimum num ber of orbitais needed to give
the qualitatively essential description of the potential surface. For example, for
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t4e H2e~;) molecule,rn.=2,{m}={(Tg,O"u} and thefull-cI reference stale iS .
<1>=C10";+CiO"~. For a description of NH(b1 ~+) in whicb, 10"220"2isdefined as

"" 2 .

the core, the essential configurations at Re and Roo are 30"21'1T'2and 30"40"1'1T'.
Thus, {m}={30",40"}, and the full-valence CI reference functi.on <I>"contaiits the
{3172,30"40",40"2}c.onfigurations. From these examples it is elear that, with a
proper and judici.ous choice .oithe restricted orbital space {m}, <I>will contain .only
a few.configurations and is therei.oreeasily calculated. It is important tostress that
aur intention is to include in <I>only the qualitatively essential configurations
needed to describe the stale oi the molecule at all geometries ot interest. We are
not, h.owever, attempting to permit <I>itself ta include high .order electron
correlation effects;the cc operatar e T isdesignedto take care oi the latter effects.
P-articular ch.oices.of the orbitais appearing in the configurations .of<I>(Le., specific
linear combinati.ons<Pi=1:::aiij ot the basisorbitalsgj), such as MCSCFor natural
orbitais,. which might beespecially useful in solving the resulting cc equations will
be discussed in Section 3. '

The cluster .operat.ors defined with respect to the ab.ove MCreference stale <I>
are as folloVl's:' c

N

T= L 1'.,
s=l

with

T1 = Lt:era, T2= L tZl3e,ae213,""
ra ,c,'" :. (rs).a./l

(8)

Here the Greek subscripts a, {3,.. ~ feler to the "occupied" orbitais ot <I>(within a
"frozen care" approximation, a does n.ot include the c.ore orbitais) arid Roman
subsl:;riptsr,s, . . .feler ta the .orbitaIsn.otoccupied in aDYconfigurations oi <1>.The
notation (rs) implies the restrictions r s s. Subscripts i, j, k, and l are used later to
denote unrestricted summation indices. following a development very analogous
to that arising in the case when <I>isthe HFsingle configuration function, the ab.ove

" choices.oi MCreference stale [Eq. (6)] and cluster operators" [Eq. (8)] lead to the
ioll.owing results:

. (i) lntermediate normalization of '" is achieved

«I>le T <1» = «1>1<1»+ L tZI3«I>!e,aesl3l<1»+...= 1,
(rs)al3 '

(9)

whichoccurs because a,I<I»= O.
(ii) The Baker-Campbell-H.ousd.orff expansion gives a finite commutat.or

series having anty five terms

,e-THeT =H + [H, T]+ ;![[H, TJ; TJ+ ;![[[H, TJ, TJ, T]

1 --

+ 41[[[[H, T], TJ, TJ, T],

(10)
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since H contairi~ at most two-particle operators. Terms of higher order in T in the
above series involve commutators of the type [era,eS(3]which are identicalIy zero.
This finite exact expansion holds whether or not T is truncated to some order
Ts>S sN.

The coupled-cluster wave function bas the form

I/J=e~<I>, (11)

where <I>and T are given by Eqs.(7) anci(8), respectively. The total energy cluster
amplitudes t~(3are determined by projeding the Schrodinger equation (2) against
a sufficient set of "excited" functions {era:eS(3. . . I<I»},

«I>Ie -:H e c-TI<I»= E (12)

«I>~~"'..le -':TH e TI<I»""; O, (13)

eraes(3 . . .I<I» ~ I<p~p"',,>. (14)

Equation (13) reduces exactly to closed form nonlinear algebraic equations which
can be solved for the cluster amplitudes t~~':'...The nonlinearity of theequations is
due to intercluster coupling; for example, thecoupling between one- and two-
particIe clusters bas the amplitude t:trlo- Since the qualitatively essential
configurations are already containedin the MCreference state <I>,we expect the
magnitudes of these amplitudesto be smalI. Thus it is likely that the difficulties
involved in solving, by linearization prjteratiori methods, the resulting cc
equations will be less severe than if <I>wen~taken to be a single configuration wave
function. It is onr intention to develop the CCMCequations within-the approxima-
tion of T ==T1+ T2 and retaining up to double commutators in the expansion of
Eq. (10). This approximation, i.e.,including up to two-particle clusters and their
interactions, bas been generalIy accepted to account for most of the electron
correlation effects in atoms and molecules: ' '

" At this point a few observations regarding the general set of Eqs. (13) should
be made. If {m} is chosen so that <I>is a single configuration (=<I>HFfor closed shell
systems), the above equations reduce exactly to the conventional cc equations
with the <PHF reference state. The equations [Eqs. (13)] advocated here are not, in
principie, exact (except when<I> is a singleconfiguration). This is because the
operator manifold T of Eq. (8) is not c:omplete'unless italso includes the terms

LalLt~ealL'La1f:1It~~ealLe(3l1'etc., which have the effect of generating relaxed'
amplitudes t~II:::'or relaxed rriixing coefficientsCK for the configurations XK in <I>.
aur stipulation that <I>be a fulI (valence)clwave function within the restricted
space {m} was introduced to guarantee that these valence orbitais need not be
further optimized to any major extent.That tS,although the configurations <I>span



E = (H) + ([H,Td) + ([H, T2])+l([[H, Td, T1]), (15a)

with

1 .

(H)=I.hij(eij)+- 2 '~kl
Vijk/(eik,j/),

I) l)

(15b)

([H, T1]) = L t: (E hir(eic,) + ~ Vijkr(eja,ik»),ra l lIk
(15c)

([H, T2])= L t':~ L Vijrs(eia,jf3),
(rs),a,f3 ij

(15d)

([[H, Td, T1]) = L t: L t~ L Vijpr(eja,iA),
ra pA ij

(15e)

(ii) The c1uster coefficients t: and t':f3re suIt from solvings Eqs. (16) and (17):

«l>:le -TH eTI<l» = O, (16a)

which leads to

«l>:IHI<l» = L hmi(elLi)+ L Vimkj(eik,IL)'
i ijk

(16b)

«l>:I[H, T1]1<l»= L t: (hmr(elLa) -8mr E hai(elLi)
ra l

+ L (V;mjr(elLa,ij) + Vmijr(eia,lLj»)
ij .

+8mr ~
k V;ajk(elLk,i)),l)

(16c)

«l>~I[H, T2]1<l» = (rI,f3 t':f3[~,~Va~i~(elLi).+ (1 + P':f3)

x (8ms ~ hir(elLf3,ia) + ~ Vmirs(elLa,if3) + ~ V;jkr(elLf3,ja,ik») l (16d)
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«I>:I[[H, TtJ, T1JI<I»"= L t: L tf (1 + P;!A)(-8mphAr(e,.,.a) + ~ Vimpr(e"a,iA)
ra pA I

+8mp L. (- VAiir(eia",)- ViAir(e"a,ii» ),
IJ

(16e)

«I>:I[[H, 1-zJ,TtJl<I»= L t~(3L tf (1 + P;:(3)(- Vl3arp(e"A) + 8(3r L Vaiip (e"A)
(rs).a(3 pA i

+ 8ms L (- Vi(3pr(e"a,iA)- Vil3rp(e"A,ia)- Viarp(e"l3,iA)
i

+ VaiiP(e,,(3,rA») ,

«I>:I[H, TzJ, Tz)I<I» = O;

(16f)

(16g)

«I>::le -TH e TI<I»= O, m$n (17a)

«I>::IHI<I» = l(1 + P::) L V mnii(e"i.vi),
ii

(17b)

. «I>::I[H, T1JI<I»= L t:(l + P::) (~V~nir(eva"'i)+8mr L. Vnaii(e"i,vi»), (17c)ra I IJ

«I>::I[[H, T1J, TtJl<I» = L t: I tf [ 8mr8np I VAaii(evi",)
ra pA ii

+ (1+ P::)(l + Pf:)( l Vnmpr(e"a.vA)

+8mp ~(VAnir(eva",i)- VAnir(e"a,vi»)].I
(17d)

«I>::I[H, TzJI<I»= L t;:I3{ (l+P~I3)(l+P::)
(rs)al3

x
[ lVmnrs(e~a,vl3)-l8mr8ns L. Val3ii(e"i,v)+8mr8ns

IJ .

X(-~hai(eVI3"'i)-~ Viaik(eV(3",k,ii»)+8ms

x (hnr(e,,(3,va)+ t Vinir(e"l3,va,i) + t Vniir(e,,(3,ia,vi»)]},

(17e)
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«I>::I[[H, T2J, T1JI<I»= L t';:l3L t~ (1+ P';:(3)(l+ p:n
- (rs)",13 pA "

+ { 8mp8nr ~ VA"Si<e~I3,vi) + 8ms(8l3v Vanpr<e~A)

+ 8av Vnl3pr<e~A») - 8mp VnArS<e~I3,va) + (1 + P:;'A)[8ms8nr

x (h"p<e~I3'VA)- E VI3"ip<e~i,VA)-I. Vi"jp<e~l3,vA,i)
I II

- t V;"pj<e~I3'Vj'iA») - 8ms ~ Vinpr<e~I3'V"'iA)]}.
(17f)

«I>::I[[H, T2J, T2JI<1»= L t';:l3 L t~~(1+P';:I3)(l+P~~)(l+P::)
(rs)",13 (pq)A,u

x
{ I. Vjipr<e~(3,vuej"eiA) + (1 + P:;'AP~';,-)II

x [8mp8na( -! VuArs<e~l3,v,,)+ ~ ViArs<e~(3'VU'i"») + 8ms8nq

(17g)

, ~fe(e~(:I}:J<e"I3,~v),<e"I3,~v,Ar)are elements of the density matrices defined over

tbe;occupied orbit aIs of the reference state <1>:

" + t
eal3,~v = e"l3e~v - 813~e"v == '- a"ull ~u'avu'al3u

uu'
(18)

and

e"I3.~v,ATJ= - e,,(3e~veATJ+ 813~8vAe"TJ + 813~e"v,ATJ + 8vAe"I3,~TJ + 8I3Ae"TJ,~v

" t t t
== '- a"ua~u'aAu"al3ullvu'aTJu'"

<TU'u"

The expressions have been arranged in a form such that the summation indices
incIuding i,j, k, and l sum over the occupied orbitaIs of <1>,In writing Eqs, (15)-(17)
we have empIoyed an exchange symmetry operator P';:I3,which operating on a
term to the right, interchange the indices (r, a) to (s, (3).
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3. Operational Considerations

As shown in Eqs. (15)-(18) the multiconfigurationalcoupled cluster (CCMC)
equations reduce to a set ot nonlinear algebraic equatiorls which can be solved for
the cluster amplitudes t: and t~;"!Il)h~ working CCMCequatiolls, the factors
wbich multiply such amplitudes are sums of products of one- and two-electron
integrals and elements of reduced density matrices which must beefficient1y
evaluated and processed. We naw tum aur attention to these mate practical

One advantage of employing the unitary group generatorsfor expressingH, Tk
and the requisite density matrix elements is that the cluster operators ofEq. (8)
are automatically single t coupl~d. Le., they preserve the spin syrtimetryof the
referencewave function. For example, an element of th~ T2 operatorwritten in

rms of the one-particie creation and annihilation óperators hasthe form
e~p.esv= LTU'a;utlp.utl;u,avu" which is indeed single t coupled. Th~refore, the
calculations of the den sity matrix elements(eal3)' (eal3,p.v),(ep.I3,p.v,~u)involve ooly

spin components. Shavitt [10] has developed very efflciertt
algorithms for the calculations of such d~nsity matrix elements.We further stress

. that only the orbitais which are occupied in <I>appear in the needed density matrix
el~ments since arl<I»==«I>la;5; O, Thus; the number of such density n1atrix ele-
ments is limited by the choice of the "occupied" orbital space. The symmetry .
properties of product.s of generators (eal3,p.v= ep.v,al3and eal3,p.v,M= ea(3,AU,p.V=
ep.v,al3,M= ep.v,M,a(3=eAu,p.v,at3= eAu,al3,p.v)allow us to. calculate .thedensity
matrices in a lawet "triangular" array. Furthermore, only the nonzero matrix
elements or those larger dian a prescribed tolerance need' be stored. In the
above working equations We have chosen to arrange terms such that the
unit ary generators occur in fbe form eipeI-This choice is motivated by the fatt that
Shavitt bas shown that the evaluation of MCdensity matrix elements in terms of

. eii.klvia unitary group methods gives .rise to a very useful factorization of the
.contributions to the desired density matrices which would not occur if one were to
evaluate (eiJ-ekl).Clearly, w~ wish to achieve this added efficiency in out computer
programs. .

In the above derivation, the partition of the Hamiltonian (H = h + V) w-as

marle in terms of one- and twa-particie operators but the exact nature of the
orbital basis waSnot specified, although we did indicate why MCSCForbitais wo1.ild
probably be quite desirable (because then Tl =O).The fact that <I>is a full-valence
CI wave fullction (and, is thus invariant with respect to a unitary transformation
among the valence orbitais) gives a certain degree of freedom in the choice of
orbital basis. Because the MCSCFoptimization of the valence orbitais of <I>would
be expected toJead to negligible one-particie cluster amplitudes T1 =O, and to
thereby reduce the complexity of th~ MCCCequations, we favor the useof the
MCSCFbasis for actual ca'lculations. Altematively, one could choos~ the orbital
basis such that either the one-particIe density matrix or the "generalized Fock
operator" Fii= (ilu Ij)+La(3(eal3)Viai(3is diagonal, where ucontains thekinetic

. energy and the e1ectronrluclear attraction energy terms, There is no one choice
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whichil ób~ousiY"'?oorr:ectl";T~1f~tiiPllim~;ra.a~thallyapplying the CCMC
method to atomie and moleCUlarp1oblems~iS'fne~ded.

L(,~,.>:;'>,iif;iJ1~~~%~~~~~~~;.~tli;;~';f{' "
oc/4., ConClucJi!1gReDIluks: ;.r;,-

, '" - .'~' -",C"", '

We have obtained explicit equa:tións for the"'exponential one- and two-
electron cluster operators which act on a referencestate'of MCform to field an
approximation to the true Schroclinger eige11function. Th~ 'resuiting equations
have been cast in a computationally traetable form through the use of the
generators of the unitary group in a war which makes lbem applieable to closed-
or open-shell systems. By stipulating that <I>be a fuIl (valence) CI reference
function, we wece able to obtain CCMCequations which are no moce complicated
in form than those arising in HF-reference function cc apprmiches. As pointed out
clearly in onr development, the resulting equations are not exact since we do not
properly treat the readjustment of the "oceupied" orbitals {~a} which takes place
due to the interaction (through e T) with new configurations which involve the
orbitais {~p}. Nevertheless, we feel that this extension of the cc f:ramework to
pennit a very important new family of reference functions represents a significant ,

step forward in this area.
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