
Multiconfigurational W avefunction
Optimization

Using the Unitary Group Method

RON SHEPARD* AND JACK SIMONst
Chemistry Department. University ofUtah. Salt Lake.City. Utah84112. U.S.A.

Abstract

We have successfully used graphical unitary group methods to implement efficiently both mul-

ticonfigurational self-consistent field 'and configuration interaction ob initio quantum chemical

computer programs. We indicate how these group theoretic methods improve efficiency and we

demonstrate their utility on the ground and excited states of il model problem for which a full-
configuration interaction calculation caD be performed.

I. Introduction

Using the exponential-i-Iambda (ElL) methocl [1']for wavefunction optimi-
zation and the graphical unitary group method [2] for the cal~ulati()n of one-
and iwo-particIe density matrix elements, we have performed multiconfiguration

, self-consistent field (MCSCF)calculations on the ground and excited states of
the Be atom at severallevels of sophistication as a model calculation. We show
how the global convergence problems of the ElL method may be overcome in
these cases. We further show that although completely tlexible configuration
selection is not easily achieved within the unitary group formalism whichwe
have implemented, limited distinct row tables based only on occupation re-
strictions are easily constructed. The resulting configuration lists are neither
so large that chemicaI insights are loginqr are they so restrictive that chemical
accuracy is sacrificed. We show how the graphical unitary group method may
be used to construct efficientIy the matrix elements required in the ElL
MCSCFmelhod without e'.tplicitly performing the iwo-particIe density matrix
construction. Because the ElL method possesses very good Iocal convergence

- propeities, not only accurate energy expectation va-Iuesbut algovery accurate
MCSCFwavefunctions are reported.

The MCSCFwavefunction is a muIticonfiguration wavefunction:

l1/tmc) = LCKIK)
K

where both the configuration mixing coefficients CK and the orbitais are opti-
mized to give the lowestenergyexpectationvalue.A property of the MCSCF
wavefunction is that it satisfies the generalized Brillouin theorem [3] (GBT):

(1)
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(1fmcl[H,itjll-.fmC) = O (2)

for all electron creation and annihilation °I?erator pairs it andj. Not only have
accurate potential surfacesbeen reported using the MCSCFapproach, but several
procedur es including the one-particIe Green function [4], twa-particIe Green
function [5], the time-dependent Hartree-Fock (HF) appróach to linear response
theory [6], gradient techniques for molecular geometry optimization [7], and
the coupled cluster method [8] are being extended to allow for MCSCFreference
states. Some of these procedur es allow for a much simpler implementation if
the GBTis assumed to be valid. Thus, it is important to have a procedure which
allows tbe calculation of very accurate wavefunctions (within the orbita l basis
andconfiguration basis chosen) to be obtained ~fficiently and as general as
possible a configuration space.

We first give a short reviewof the unitary group method and of the ElL orbital
optimization procedure. We discuss OUtimplementation of these iwo methods
and finally discuss the results of applying these methods to the Be atom.

2. ReviewoCthe GraphicalUnitaryGroupMethod

We first review the unitary group method as we have implemented it for OUt
ElL MCSCFprogram and for OUtCI program. In particular, we refer to the
graphical unitary group approach as developed by Shavitt. With ibis method,
the orbital occupation.and spin-coupling information needed for the specification
of a configuration is represented by a particular walk between the head and tail
of Shavitt graph. A limited configuration list is specified by placing restrictions
on the Shavltt graph which corresponds to the full-configuration list. These
restrictions correspond to deleting certain vertices within the graph or to deleting
certa in arcs between the vertices within the graph. The vertices of the Shavitt
graph are labeled with three integers which correspond to the level in the graph
and the A and B values of a Paldus array [9]. A vertex ofa Shavitt graph cor-
responds to a distinct tow. The tabular listing of all distinct rows along with the
forward and backward chaining indices and various other information is called
a distinct row table. If a slight generalization is marle to the Shavitt graph which
allows multiple vertices with identical A and B values but with different arcs
connecting to these multiple vertices, then a completely arbitrary configuration
list may be specified. Extensions of ibis type have previously been used for the
purpose of limiting the configuration list to correspond to single irreducible
representation of the point group ofthe molecule [10] and to restrict the con-
figuration list to correspond to the HF interacting space [11]. Since the effort
involved in the construction and use of the one- and twa-particIe density matrix
contributions)ncreases as the size of the distinct row table(DRT)and also as
the number of configurations specified by the DRT, there is a trade~offof effi-
ciency between increasing the complexity of the DRTandreducing the number
of configurations with ibis approach.

The N-particIe basis of configurations specified in the unitary group method
is called the Gelfand- Tsetlin basis. These configurations are equivalent, within
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a phase factor, to configurations constructed using the geneological procedure.
Grabenstetter [12] bas developed a very efficient projection procedure.for cal-.
culating the coefficients of primitive spin functions which spaD the space of the
geneological spin functions. Jf desired, the configurations specified by the unitary
group method could be expressed in terms of Slater determinants using this
procedure. This is useful for calculating the reduced density matrices of the spin
orbital basis which, in tum, are needed for properties which depend explicitly
on the spin (e.g., spin density). The one- and two-particle reduced density matnx
elements required for spin-free operators, on the other band, may be calculated
directly using the unitary group formalism because the generators of the unitary
group may be expressed in terms of spin-traced components of the electron
creation and annihilation operators

P}l> = (1tlmclil.;a+ ipjlSl,pmc)= (,pmcleijl,pmc)

pJl~k = '1;; Nmcli!k~ /"'j,,l,pmc)
=~. -

=Nmcl eijekl - Ojkeill,pmc)

= Nmcleij,kd,pmc) (3) -

where eij is taken to be a generator of the unitary group and eij,klthe generator
produet defined in Eq. (3). This approach is slightly different erom that of pre-
vious workers who maintained the difficulty of density matrix evaluation using
the unitary group formalism [11]. These density contributions are very easy to
calculate within the unitary group formalism; the density matrixelements in
the spin orbital basis, on the other band, at present require using either the
symmetric group formalism [13] or a transformation ofthe wavefunction to a
different basis such as that performed by the Grabenstetter procedure.

The generator matrix element evaluation between configurations Im) and
Im'), (m'leijlm), is performed by constructing valid loops within the Shavitt
graph [14]. These loops correspond to all possible differences in coIifigurations
that have nonzero contributions to the generator matrix elements. By using
mathematical induation, Shavitt demonstrated that these matrix elerilents are
the products of segment values of different levelswithin the loop. These segment
values depend only on the shape of the loop at the given level and on the B value
of one of the arcs at the given level(Shavitt used the arc of the ket line). Recently
using spin-recoupling algebra, Boyle and Paldus [15] have expressed the
(m'leij,kdm) matrix elements in a form which allows this same factorization.
Except for the summation over singlet and tripiet coupled intermediate states,
this form of the two-particle density matrix contribution is just as simple to
evaluate as for the simple generator matrix elements. Shavitt [16] bas expressed
these segment values within the graphical representation of the Gelfand- Tsetlin
basis. The expression for these (~'Ieij,kllm)

(m'leij,kdm) =
[

n W(Tp,bp)
] {

L r n WATp,bp)
]}pESl x= 0,1 L,ES2

(4)
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involves the produet of segment values (W) where the indices do not overlap the
summation of the products of segment values which correspond to the iwo spin
couplings (x =0,1) where the indices do ove.rlap.It should be mentioned that
severalloop types have nonzero contributions for only one of these spin couplings
in the overlap range. These segment values allow the evaluation of (m'leU.kdm)
to be performed just as the (m' IeuIm) evaluation is performed. Allloops are
constructed which caDcontribute to these density contributions and the product
of the segment values are accumulated appropriately. Since same loops require
the accumulation of iwo separate products, the twa-particIe density contributions
require at most lwice the effort ofthe simple generator matrix element evalua-
lian. Except for the use of the recoupling formalism, aur matrix element eval-
uation is similar to the "loop-driven"procedure of Brooks and Schaefer. Since
the matrix elements of the Hamiltonian in the Gelfand- Tsetlin basis involve
these matrix element s,

(m'lBIm) =2:: hu(m'jeulm) + l1z2:: Wlkl)(m'leij,kdm)
U . ~l

(5)

where the hUand Uj Iki) are the one- and two-electron integrals within the orbital
basis, they may be used directly in both the CI matrix element construction and
later jn the density matrix element construction.

We naw discuss brief1y the types of configuration required for MCSCF

wavefunctions. Although ibis subject bas been previously discussed, [17] we
wish to emphasize that configurations required for large-scale CI calculations
are not typicallythe sameas thoserequiredfor MCSCF calculations.Configu-
rations for large-sca1eCIca1culationsare usually chosento givethe lowest energy,
at a particular geometry, given a set of molecular orbitais and a rew dominant
configurations. The molecular orbitais used are usuallYSCForbitais for one of
the dominant configurations. Since the Hamiltonian operator involvesonly orie-
and twa-particIe excitation operators, the configurationsin the CI calculation
are usually chosento incIude the single and double excitations from the dominant
configurations. Single excitations are said to be for "orbital relaxation" effects
and double excitations are said to be for the "electron correlation." At various
geometries, as the dominant configurations change, the configurations inc1uded
in the CI ca1culation are also changed to obtain the lowest possible energy for
the number of configurations inc1uded. This is important because the effort
involved is dependent on the dimension of the CI secular problem. The config-
urations required for MCSCFca1culations, on the other band, are usually chosen
to describe both equilibrium molecular geometries and molecular distortions
far'!lwayfrom equilibrium geometries. The nature ofthe electronic states ofthese
systems far from equilibrium is such that not only single and double excitations
(relative to the dominant configurations near equilibrium) may be required but
also sometimes higher-order excitations. This is particularly true if the rnolecular
distortions involve the breaking of several bonds or the breaking of a multiple
hond. Since "orbital relaxation" is accounted for in the orbita l optimization
process, single excitations sometimes lose their importance compared to these
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igher excitations.Fortuna:tely, the higher excitations that are required usually
only involve a limited number of molecular orbitals. In order to obtain a con-
sistent level of approximation over the molecular potential surface, the
MCSCF configuration list typica11y includes moce varied types of
configuration but involves fewer orbitais than the configuration list of a CI
calculation. The configurations required for MCSCFcalculations then are usually
chosen to be f1exibleenough~todescribe consistently the desired electronic stale
over a large range of molecular distortions, whereas configurations chosen for
CI calculations are chosen to give the best possible energy over a limited range
of molecular distortions.

These configuration lists for MCSCFcalculations are relatively easy to con-
struci within the graphical unitary group method since they are described we11
in terms of only occupation restrictions. This is in contrast to the HF interacting
space limitations (which involvenot only occupation restrictions but alsospin-
coupling restrictions) that are needed with larger CI calculations to limit the
num ber of configurations. Cumulative orbital occupation restric~ions are
achieved simply by deleting vertices from the Shavitt graph which are in violation
of th~se imposed restrictions. Examples of the restrictions which are used. in
typical MCSCF calculations are (1) specifying certain orbitais to
remain doubly occupied in all configurations, (2) specifying certain orbitals to
rema in at least singly occupied in all configurations, (3) specifying a set of or-
bitais to be at most singly occupied in any configuration, and (4) specifying a
set of orbitals in which to make all possible excitations with a given number of
electrons. This lagi case will be referred to as a "full-valence CI" calculation
because it shares several properties with full-CIcalculations.There are; of COllege,
many other occupation restrictions that can easily be applied when required by
a particular molecular system.

The choice of orbitals and configurations which should be included in MCSCF

calculations is usually achieved by performing several CI calculations at yariq,us~' ,

geometries in order to determine the basic configurations. Then the orbitais are "

optimized for these configurations, new ci calculations are performed willi these
orbitais, new configurations are selected, and the process is repeated until'~
sufficient levelof precision is obtained with the MCSCFwavefunction. Because
these steps are often repeated many limes, it is necessaryto construct DRTseasily
for the MCSCFwavefunction evaluation and the corresponding DRTs for the
larger CI calculations which include the configurations in the MCSCFspace and
the most important excitations from ibis space. For ibis configuration selection
procedure, we have found that ORTsare most easily constructed if the orbitais
are ordered within the ORTsuch that orbitais with similar occupation restrictions
are grouped together. Within ibis occupation grouping, orbitals of lhe, same
symmetry should be adjacent in the ORTin order to keep the number of distinct
rows as smalI as possible. For example, a11the orbitals that are restricted to be
doubly occupied might be placed at the bottom of the ORT,followedby the group
oLorbitals in which a full-valenceCI with theremainingeledrons is to be allowed,
followed by the group of orbit aIs which may share at most iwo electrons,and
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finally followed by the group of orbitais which share at most one electron. The
construction of these types of limited DRTs requires only the point group sym-
metry information,a limited aIilount of occupation restriction information, and
the ordering information of the orbitais included in the DRT.

3. Reviewof ElL Wavefunction Optimization Method

The exponential-i-lambda (ElL) wavefunction optimization [1] is achieved
by expres~ing a trial MC wavefunction in terms of a given MC wavefunction
as

I~me') = eiAeiSI~me>

A =2:: K(rs)i(rts- str) = 2:: K(rs)Trs.
;>s. r>s

S= 2:: Ani(l~n)<~mel-l~me)Nn\)=2::AnPn
n #1<me n

(6)

and optimizingthe k and A parameters suchthat theyextremizethe energyof
the MCwavefunction. The eiS operator -allowsfor modification of the current
MC wavefunction within the MC<:onfigurationspace; the eiAoperator allows
for mixing of the orbital!> used in the configuration construction within the
molecular orbital basis. The commutator expansion for the energy expectation
is truncated to include overall second-order terms in the Aand S operators

E(K,A) =(~meIH + [H,iA] + lfz[[H,iA],U\.] + [H,iS] + 112[[H,iS],iS]

. + UH,iA],i.S'1+ . . . I~me) (7)

The ne<:essary(but not sufficient)condition for energy minimization is that the
first derivatives with respect to the K-andA parameters are all zero when eval-
uated with the current wavefunction.

0= oEjoKrs = (~mel [H,iTrsl + lfz([[H,iTrs],iA] + [[H,iA],iTrsD

+ [[H,iTrs],iS] I~me)

0= oEjoAn = (~meITH,iPn] + lfz([[H,iPn],iS] + [[}f.i.~],iPnD

+ [[H,iA],iPnll~me) (8)

Thisleadsto a set of linearequationswhichmaybeexpressedin matrixnotation
as

(~t ~) (:) =-(:,)
1 -- - ---

Bpqrs = 12( aH,iTpq],iTrs] + [[H,iTrs],iTpq]»)
t - - -

Cpq,n = Cn,pq = ([[H,iTpq],iPn])

Mn'" = lfz( [[H,iP.,],iPn,] + [[H,iPn,],iPn])

W;q = ([H,iTpq])

=( [H,iPn] (9)
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If the orthogonal states used.in the construction of the S operator are the
eigenstates ofthe Hamiltonian operator within the MCconfiguration srace, the
W' vector is zero and the M matrix is diagonal. If the mixing coefficients are
fully optimized on every iteration, the A parameters need not be expIicitly cal-
cuIated. This allows the Kparameters to be calcuIated from the partitioned form
of Eq. (9):

nIK= (B - C M-l Ct)K = -W (lO)

The effect of the eiA operator on an MC wavefunction is to express the MC
wavefunction in a new molecular orbital basis where the new molecuIar orbitais
are obtained from

4J1= 4J(e-K) . (lI)

where Krs = K(rs) and Ksr = - K(rs)'Since the orbital transformation is calcuIated
from a truncated expression ofthe energy, these transformations musi be re-
peateduntil convergence is reached. At convergence the W vector [the gener-
aIized Brillouin theorem (GBT) terms] is zero, the K matrix is zero, and the or-
bital transformation matrix is a unit matrix. Since derivatives of the second-order
terms in the energy are included in the solution of the Kparameters, the wave-
function and the energy should display second-order convergence. In practice,
it bas been shown that ibis methbd dispIays true second-order Iocal convergence
in both the wavefunction and the energy. However, the method does not show
adequate global convergence when the initial orbitals are far from correct [18].
This requires that same care be taken with the initialorbital preparation to en-
sure that the (B - CM-ICt) matrix'(the Hessian matrix) bas all positive ei-
genvalues. The B matrix is the hessian matrix with frozen mixingcoefficients.
The (CM-ICt) matrix whichis subtractedfr9m the B matrix accounts for the
coupling between the change of the orbitais and the change of the mixing coef-
ficients with every iteration. The (CM-Ict) rnatrix may be regarded as the
second-order Rayleigh~Schr6dinger perturbation theory correction to the B
matrix to account for thiscoupling. " "

If the spin orbital basis is assumed t()consist af the Cartesian produet 'of an
orthonormal spatial orbita l basis and the electron spin basis (a,{3), the single
excitation operators ofthe.Aoperator may be expressed as the generators ofthe
unitary group of the previous section:

Trs = i(ers - esr)

The elements of the B matrix, C matrix, and W vector may then be expressed
in terms of the eij and eij.kl.

Bpq.rs= 2hqs(epr) + 2hpr(eqs) - 2hqr(eps) - 2hps(eqr)

+
(
f + f

)
Óqr +

(
f: + f

)
óps -

(
f + f

)
Óqs -

(
t + t

)
Ópr

~ ~ ~V ry p ~"~

-2 L (ijlqr)(eps.ij)-2 L (qjlir)(epj.iS)
ij ij
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+22: (qjl is) (epj,ir) +22: Wlqs) (epr,ij)
ij ij

+22: (pjl ir) (eqj,is) +22: Wlpr) (eqs,ij)
ij ij

-2 2:Wlps) (eqr,ij)- 2 2: (Pjlis)(eqj,i~)
ij ij

+22: (ip Ijr) (eiq,jS) - 22: (is!jp)(eir,jq)
ij ij

-22: (ir!jq) (eis,jp) +22: (iq !js) (eip,jr)
ij ij

-
(
t + t

)
Opr ~.

(
t + t

)
OSq +

(
t + t

)
Orq +

(
t + t

)
Osp

~ ~ ~ p a ~ ~ ~
H H Y Y

Wrs==22:-22:-22:+22:
rs sr sr rs

H
2: = 2:his (eri)
rs i

y

2: = 2: (si!jk)(eri,jk)
rs ijk

C(rs),n = -2(1/'mcl [H,iTrs] l1/'n)

= 2 2:hir (1/'mc Ieis +esd1/'n)
i

-2 2:hisNmcleri + eirl1/'n)
i

+22: (ir!jk) (1/'mcIeis,jk+ ekj,sd1/'n)
ijk

-22: (iklsj) (1/'mclerj,ik+ eki,jrl1/'n)
ijk

Mnn' = 2(En - Emc)onn' (12)

The elements of the B matrix and W vector are expressed in terms of the one-
and two-electron integrals of the current molecular orbital basis and in terms
of the one-and twa-particIereduceddensity matrix elementsof the current MC
wavefunction. However, the C matrix requires the eij and eij,kl matrix elements
in the MC configuration basis along with the mixing coefficients for the excited
states in the MC basis. The C matrix may be constructed using the partial
sum

Crs.n= -2 ~ (~Ub,me (bl I{i;,iTrs] la) )Ua,n
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= - 2 L C~s,a Ua,n ..
a

(13)

where the U matrix contains the eigenvectors of the CI problem in the MCspace.
This avoids same difficulties in the C matrix.construction but the individual eij
and eij,kl matrix elements in the MC (Gelfand~ Tsetlin) basis are still re-
quired.

4. Comments on the ImplementationoCthe Unitary Group-EILMethod

From the above discussion, the B matrix and W vector could thus be conc
structed either from the density matrices of the current MCwavefunctionOl'from
the individual eij and eij,klcontributions just as required in the C matrix con-
struction. Our approach to the B matrix and -Wvector construction is a com-
promise between these twa extremes. Instead of completely calculating the one-
and twa-particIe density matrices, we calculate al! the contributions to a par-
ticular density matrix element that result from a single 10op.This makes the B
matrix and W vector construction much more efficient than if constructed from
individual density contributions arising from a configuration palI', while avoiding
the computational problems of the twa-particIe density matrix construction.
The twa-particIe density matrix for a typical MCSCFwavefunction is a sparse
matrix, the size of which is the fourth power of the number of moleculal' orbitaIs,
and its construction is usual!y performed using methods similal' to the two-
electron integral transformation. For CI wavefunctions calculated from a large
num ber of configurations, these sorting methods will be more efficient for the
B matrix and W vectorthan the approach we have taken. We have chosen this
siinpler approach because the C matrix evaulatiqn step cannot make use of these
more efficient methods and its construction becomes the dominant time factor
with larger configuration spaces. In fact, even for same smaller problems (30-100
configurations) the C matrix construction becomes mOre significant than the
B matrix Ol'W vector construction because the former step cannot even mak~
use of the efficiency of the density contributions calculated from a single loop.
The C matrix construction algo requires all eigenvectors and eigenvalues of the
CI problem in the MCconfiguratión space and thus it appears that this method
is limited, for practical reasons, to relatively smalI dimensions of the MCspace
« 200). -

For these larger problems then, a reasonable approach might be to neglect
completely the coupling between the orbita l changes and the mixing coefficient
changes and to construct the one- and twe-particIe densitY'matrix elements
needed for the B matrix and W vector using these sorting procedures. The con-
vergence of this approximation bas been shown to be inferior to the complete
second-order procedure, which includes the perturbation corrections calculated
from the C matrix, and to be unsuitable for wavefunction calculation [1,18].
It would be a viable approach, however, for energy optimization since the energy
converges to chemical significance (10-4-10-6 hartree) in a reasonable number
of iterations with this approximationeven though the errors of the wavefunction
are still significant (GBTterms are algo 10-4-10-6).
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Since both the CI calculation within the MC configuration space and the
matrix elements required for the ElL wavefunction optimization require the eij
and eij.k/matrix elements for every MCSCFiteration, we use the same indexing
tape (or formula tape) lwice during each iteration. This indexing tape contains,
for .eachloop, the value of the eij or eij,k/matrix element and its indices, the loop
head, the loop tail, the sum of the segment weights of the bra arcs of the loop,
and the sum of the segment weights of the ket arcs of the loop. This information,
along with the reverse lexical index array and the reverse lexical offsets inthe
ORT,allows the efficient calculation of all pairs of configuration indices which
share the loop. These configuration indices are used in the CI part of each iter-
ation in the construction of the CI matrix (or of matrix limes vector whenthe
diagonalization is performed directly) and later for the contribution of that IObp
to the one- and two-particIe density matrix elements needed for the B' matrix
and W vector construction..

The eij and eij.k/indices determine uniquely the required integrals during the
CI part of each iteration. For smaller CI calculations and for the CIcalculation
within each MCSCFiteration, the CI matrix is explicitly constructed anddi-
agonalized usiog standard procedures. For larger CI calculations the desired
eigenvalues and eigenvectors are calculated using Liu's modification [19] of
Davidson's procedure [20]. The required matrix limes vector operations a-re
performed directly erom the indexing tapes without the explicit HamiItonian
matrix element construction. This aspect of the c,alculationbas been considered
by previous workers.

Because a single eij or eij.k/may be combined with maDYdifferent integrals
to form contributions to several B and C matrix and W vector elements, we
currently construct the B and C matrices and W vector with a single reading of
the integral file and with muItiple passes of the indexing file. In most cases it
is possible to determine very early if all required integrals for a particular density
contribution are not available in core and proceed to the next contribution. When
the indexing file bas been processed for the currently available integrals, new
integrals are marle available and the indexing file is again processed. When alI
integrals have been processed, the final transformation for the C matrix is per-
formed using the eigenvectors of the excited states of the CI calculation in the
MCconfiguration space. The perturbation corrections are then added to the B
matrix and the Kparameters are evaluated by solving the required linear equa-
tions.

Since the B' matrix is symmetric, only the lawet triangle needs to be calcu-
lated. Efficient procedures exist for solving the required linear equations which
require no space beyond the storage of the lower triangle of the B' matrix itself.
It is also useful to determinethe inertia (the numberofpositive, zero, and neg-
ative eigenvalues) of the B' matrix to ensure that the desired solution (all positive
eigenvalues) bas been found. The inertia caDbe determined with little extra effort
during the solution of the linear equations. This is clonewithout diagonalizing
the B' matrix and withotit evaluating the eigenvalues explicitly [21]. Since the
square of the skew-symmetric K matrix is a negative semidefinite Hermitian
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matrix, the orbita l transformation may be evaluated without approximation
by using the cosh::-sinhexpansionof Dalgaard and J~rgensen [1]:

e-K =V(eos d)Vt - KV(sin d)d-IVt

where

(KK) = V d2vt d2diagonal

d ==Sqrt(-d2) (14)

This requires the diagonalization of the Hermitian matrix (KK) instead of the
skew-symmetrie matrix K.

Inspeetion of the two-e1eetron integrals required for the CI matrix in the MC
spaee, the B matrix, C matrix, and W veetoi reveal that only integrals with at
most iwo indiees whieh belong to moleeular orbitais that are unoeeupied in all
eonfigurations need to be ealculated. Elbert [22] bas reeently improved the
standard transformation method by arranging the steps sueh that a partial sum
is used moce effieient1y.A minor rearrangement of the Elbert proeedure whieh
plaees al1 DO loops involving moleeular indiees outside of the innermost DO
loopswhieh involve atomie orbital indiees al1owsnot only the effieient use of
tlie partial sum but algo effieient oeeupation eheeking to be performed during
the integral transformation. If oniy the required integrals are transformed for
eaeh iteration, the integral transformation time may be redueed by approxi-
mate1Y half that required for the eomplete integral transformation. This is
partial1y the result of the faet that the eonfigurations required for MCSCF
wavefunetions involve the oeeupation of only relatively rew moleeular orbitaIs.
The. integnll transformation time is usual1y the most signifieant part ofeaeh
iteration (50-90%) even for same of the larger eonfiguration spaees. The effi-
ciency of the integral transformation step is thus an important faetor in the ef-
fieieney of the wavefunetion optimization proeedure.

5. Discussion and ResuIts

We have applied the ElL wavefunetion optimization proeedure using the
unitary group method as outlined in the previous seetions to the ground state
and fiest exeited lS stateof the Be atom. The atomie integrals of the 5s-4p
eontraeted Gaussian basis of Table I wece ealculated using the MOLECULE
integral program [23]within the D2hsubgroup. If a eomplex atomie orbital basis
bad been used, these results eould have been duplieated with fewer configurations
than are required in these reported ealculations. We ehose the Be atom as a test
ease for aur wavefunetion optimization procedurebeeause the fulI-CIealculation
with ibis orbital basis (1148 eonfigurations) is within the eapabilities of aur CI
program and beeause Be is a very eorrelated system whieh requires several
eonfigurations to describe adequately both the ground and exeited states. We
ean determine in a systematie manner the effeet of the eonfigurations included
in the MCspaee on the eorre1ation energy of the e1eetronie states and eompare
ibis direetly to the total eorrelation energy within ourorbital basis. The goal of
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Ba5i5 Fn Ex.e.onent

T ABLE I. Atomie Gaussian basis for Be.

Contraction Coefficient

15 1264.5857
189.9368
43.1590
12.0987

3.8063
1.2729

0.747825

35 0.2200

0.082345

55 0.0300

3.1965
0.7478
0.2200

lp

2p

3p

0.0500

0.0125

4p

E(SC'F)

0.0031

E(Full CI-9round 5tate)

E(Full CI-'S excited 5tate)

0.001945
0.014835
0.072090
0.237154
0.469199
0.356520

1.0

1.0

1.0

1.0

0.055980
0.261551
0.793972

1.0

1.0

1.0

= -14.56681165 au

= -14.61758566 au

= -14.35451305 au

the MCSCFwavefunction optimization procedure for ibis system is to optimize
the orbitais for a given configuration list and produce the best approximation
possible to the corresponding exact energy with ibis orbital basis obtained from
the fulI-CI calculation. For most molecular systems it is possible to produce very
good approximations to not only ground states but algo excited states with only
a rew configurations. In fact, the MCSCFapproach bas been advocated for ibis
reagan since the chemical interpretation of wavefunctionsconsisting of relatively
rew configurations is more straightforward than the corresponding interpretation
of wavefunctions consisting of large numbers of configurations. Although ibis
is a valid point in favor of the MCSCFapproach, aur emphasis is on obtaining
a MCwavefunction for which the GBTis satisfied.

In Table II we report the results of several ground- and excited-state calcu-
lations at different levels of approximation. These different levels of approxi-
mation consist of including different configurations and different numbers of
configurations in the MCspace. The final entry in Table II is the fulI-CI resuit
within the orbital basis. The first row of Table II contains the results for the
single-configuration ls22s2. When the eigenvectors ofthe one-electron Ham-
iltonian matrix (the kinetic and nuclear attraction terms within the atomie orbital
basis) used directly in the ElL procedure as starting orbitais, the B' matrix bad
iwo negative eigenvalues and these orbitais were thus unsatisfactory for the
orbital optimization procedure. Using these same orbitais, a natural orbita l it-
eration was then performed using the ls22s2 configuration and alI ofitssingle
excitations as the CI reference space. The single excitations alIowfor the orbital
relaxation effects in ibis CI wavefunction. The eigenvectors of the one-particIe
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density matrix of ibis CI wavefunetion were used to obtain a new set of orbitais.
In ibis ease, ibis orbital improvement proeedure is equivalent to one step of the
iterative natural orbita l SCFoptimization procedure. These orbitais were thep
used in the ElL optimization and wite found to produee a positive definite B'
matrix. The eonvergenee eriterion for these ealculations was that the sum of the
squares ofthe GBTterms should beless than lO-3°. This ensuresthat thelargest

. errat in the wavefunetion is less than 10-15. The energy eonverges to ehemieaL
significance. when ~'W;s is much larger (10-5_10-6) than ibis mate stringent
wavefunction convergence eriterion. Since true geronci-order convergenee is
displayed by the ElL orbital optimization procedure, three or four fewer iterations
are required for energy eonvergenee than are required for wavefunetion eon-
vergence. For ibis single-configuration calculation, energy convergence was

. achieved in three iterations and the wavefunction converged in six iterations of
the ElL method. Since the unitary group procedure is not restricted with regard
to spin or the number of open shells, ibis approach cciuldbe generally used for
closed or open-shell single-configuration wavefunction optimization. If there
are linearly independent spin functions, either a choice of spin coupling eould
be used for single-configuration orbital optimization or all of the spin functions
which have identical orbital occupancies could be included. This latter type of
limited MCSCFwavefunction is equivalent to a generalized valence hond (GVB)
wavefunction where the optimum spin function is calculated. For the single-

. configuration calculations, no coupling of the orbital changes with mixing
coefficient changes needs to be calculated (i.e., no C matrix is required) and t~e
method displays true second-order convergence. It could algo be mentionedat
ibis point that no numerical difficulties are encountered until machine precision
(10-17-10-19 in onr case) in the convergence of the wavefunction is reached.
This implies that the matrix element evaluation and solution of the resulting
linear equations is, in general, numerically stable. .

The second row ofTable II gives the results for a four-configuration MCSCF

TABLE II. Energies Ja. u.) of1owest two IS states oCBe.
Raw 1/ canf. Grnd. State Excfted State

1 1 -14.566811
2 4 -14.608494
3 6 -14.609877 -14.344191
4 13 -14.609932 -14.344411
5 15 -14.609928 -14.346596
6 24 -14.609928 -14.346609
7 15 -14.615178 -14.344466
8 . 24 -14.615897 -14.344522

.9 27 -14.615902 -14.344528
10 37 -14.616480 . -14.348719

11 36 -14.615533 -14.346576
12 69 -14.616270 -14.346656
13 106 -14.617567 -14.354009
14 1148 -14.617586 -14.354513
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ealculation. These eonfigurations are the SCF eonfiguration mentioned in the
preceding paragraph along with the ls21p~. ls21p~, and Is21p; eonfigurations.
AU three of these eonfigurations are required to obtain the eorrect 18 combi-
nation. If a complex atomie orbital basis bad been used, these results could have
been duplicated with only twa configurations. For ibis calculation, the SCFor-
bitais ealculated erom the single ls22s2 configuration were used as starting or-
bitais. The B' matrix with these initial orbitais bad three negative eigenvalues.
A first-order CI calculation was performed which inc1uded these four configu-
rations and aU single excitations erom these four configurations. The orbitais
which diagonalized the resulting one-particIe density matrix were then used as
starting orbitals for the ElL procedure. With these orbitals, the B' matrix bad

- one negative ei.genvalue.The iterative natural orbital proeedure was repeated
with these orbitais and the new set of orbitais was used in theEIL procedure.
These orbitais weresufficient to produce a positive d~finite B' matrix. Energy

'convergence (10-4 hartree) was then reached on the third ElL iteration and the
wavefunction eonverged on the seventh ElL iteration.

The third row in Table II giv~ the results for the ground and first excited staLe
for a six-configuration MCspaee. This space included the four eonfigurations
erom row 2 and the single and double excitations erom the 2s orbital into the 3s
orbital. The dominant componentof the exeited staLeis the 1s2183sconfiguration
and these configurations appear to give a good description of ibis excited staLe.
Thestarting orbitaiswerethe four MC orbitaisobtainederomthe previouscal-
eulation reported on row 2. Two iterations were required for the energy to con-
v~rge to 10-6 and a total of six ElL iterations were required for the wavefunction
to reach convergence for the ground staLe.For the excited staLe,again only twa
iterations were required for energy convergenceand atotal of five iterations were
required for the GBTterms to be less than 10-15. Although the individual staLe
energies are in erraT by 0.01 hartree, the energy difference of the twa states is
only 0.002 hartree in erraTwhen eompared to the fulI-cI results of row 14. This
indieates that the limited MCSCFmethod applied to different states bas the.
eapability of giving consistent descriptions ,tothe different states. The DRTfor
ibis configuration list bas the.restriction that the ls orbital is doubly occupied
in aUeonfigurations. .

The results of further exploratory CI calculations indicated through natura l
orbital occupation numbers that the remaining sorbitais were the next most
important orbitals to includein eonfigurations within a MCspace. Row 4 of Table
II shows the results ofincluding the 4s and Ss orbitais, stm with the restriction
that the ls orbital remain doubly occupied. This 13-eonfiguration ealculation
shows only a mode.stimprovement in the energies over the re.sultsof row 3. The.
occupation numbers of the MCSCForbitals indicated that only one of these or-
bitals-,the 4s-had aDYsignifieant occupation after the orbital optimization
procedure.

,Row 5 shows the results of including a second p orbita l in the configurations
in the MCspaee. The 4s orbital was also kepi in order to determine the relative
importance of the 4s and 2p orbitais. ,For ibis 15-configuration caleulation, the'I
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2p orbitais wece found to be unim~rtant fa; 'ihe groun'Cistate.:ln fact the Ss

orbital in the previouscalculation wasmoce imPortaIltto the groulld-state energy
than was the 2p orbital. However, the 2p orbitais are seen to be important for
the excited-state description. Row 6 is the result of including the 3p orbital along
with the 4s and 2p orbitais into the valence space. These'results are very close
to the results in rew Sindicating that the 3p orbitais are not important for either
the gro\!-nd-stateor the excited-state description. The IS-MC.calculation of rew
S then includes all the important correlation effects for the electrons in the 2s
orbital for both the ground and excited states. The energy difference of the twe
states is seen to be only 0.00026 hartree in erraTwhen compared with the energy
difference of the fuIl-CIresults. The starting orbitais for' these calculations wece
obtained erom one iteration of the natural orbita l method. The first-()rder

wavefunctionswececalculatederomthe appropriate MC configurationspace
. and all singleexcitationseromtheseconfigurations:The initialorbitaisfor these
CI calculations wece the 6-MCorbitais erom the results'of rew 3. It sbould be
pointed out that these calculations have redundant varia bIes (orbital pairs for
which the GBTis always satisfied and which produce zero eigenvalue~ of the B'
matrix) that have been removed fromthe orbital optirnization step.

Since all of the 2s correiation energy bas been obtained with tl1einClusloI1of
the 4s aad 2p orbitais in the valence space, the remaining correlation energy
involvesthe electrons that have been constrained to the ls orbital. Row 7 ofTable
II shows the results of allowing all single and doubleexcitations erom the SCF
configuration into the 3s and lp orbitais. Ihe DRTfor these configurations was

constructed with the constraint that the 3s and lp orbitais share,at mosttbnly
twa electrons. The energy ofthe ground state was lowered by'0.006 hartreefrom
the 6-MC result ofrow 3. The energy of the fiest excited state, however, was
lowered onIy 0.0003hartree. The 24-MClist of rew 8 was'óbtained by con-
straining the lp orbitais to share at most only twa electrons:This 24-MC space
mayaiso be described as a full-valence CI with folie eleci:h)Ilsin the ls, 2s ,and
3s orbitais, and then all double excitations erom these configurations into the
lp orbitals. Row 8 shows that these addedconfigurationsagain preferentially .

laweT the ground.:state energy. Row 9 gives' the resultsof thefouf electron
full-valence CI calculation in all six valence orbitais. The three configunitions
included in this calculation that wece not included in the calculation of rew 8
are the configurations which have onlyporbitais occupied. These coi1figu.rations
contributed so little to the energy that all further ~cscFcalculations wece
constrained to have at least twa s electrons in every configuration.

The inclusion of the 4s and Ss orbitais was again investigated with the results
given in rew 10.This 37-MCspace includedaIl single anddouble excitations erom
the SCFconfiguration into the 3s, 4s, Ss, and lp orbitais. Compared to rew 7,
it appears that the 4s and Ss orbitals are naw important for the excitedstate as
well as the ground state.

Row 11 shows the results of including the .ts correlation aad of including the
2p orbitais into the valence. Thisconfiguration list includes all single and double
excitations eromthe SCFconfiguration ini:othe 3s, Jp, and 2p orbitais. Cónsistent
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with OUt earlier observation, the. 2p orbitais are not as important to the
ground-state description as the 4s and 5s orbitals. Row 12gives the results for
the fulI-valence CI with the ls, 2s, and 3s orbitais along with alI double excita-
tions Eromthese orbitais into the rp and 2p orbitals. This 69-MC calculation
shows that the ground state is still preferentialIy stabilized by the inclusion of
these configurations in the MC space. .

The results of the final McScFcalculation performed in tbis study are reported
in row 13of Table II. This MCconfiguration space included the fulI-valence CI
configurationspaceofthe ls, 15, and 3s orbitals along with alI single and double
excitations into the4s, 5s, lp and 2p orbitais. The energy of the ground state
for ibis MCspace isonly in errat by 1.9 X 10-5 hartree and the errat ofthe ex-
cited state is 5.0 X.I0-4 hartree when compared to the fulI-Clresult. .

These calculationsshow that the unitary group method may be used effectively
in the construction of configuration lists for multiconfiguration reference spaces.
The configuration li§ts usedin thisstudyrangefrom 1(thesCF configuration)
to slightly over 100 at which time the fulI-CI results are reproduced to within
0.3 kcal/mole. Of colirse ibis level ofprecision is not possiblefor larger systems;
butthe energies of the ground state and first excited state were systematicallly
improvect using various configuration listsproduced Eromoccupation restrictions. .

These occupation restrictions are readily employed using the distinct row table
representation. In the calculations reported here, the generalized Brillouin
theorem is satisfied to less than 1.0 X 10-15 for alI orbita l pairs. The calculation
of the MCSCFwavefunction was performed using a wavefunction optimization
.method that displayed localsecond-order convergence for alI the reported cal-
culations. .

Several calculations were attempted, however, that did not result in conver-
gence to the correct solution. In several instances, negative eigenvalues persisted
after several first-order wavefunction and natural orbitalcalculations. A study
of these global convergence problems of the ElL method bas been performed
elsewhere [18]. It should be emphasized that in alI cases where initial orbitais
produced a positive definite Hessian matrix, second-order convergence to the
energy minimum was observed. In the results reported here, initial orbitals were
obtained Erom an appropriate first-order wavefunction using orbitais Erom
previous converged results. As noted, ibis process sometimes bad to be repeated
several times before suitable starting orbitais were found.

6. Summaryand Conclusions

MCSCFcalculations have been performed for the ground and first excited IS
states of Be atom using several configuration lists. These configuration lists were
constructed using the graphical unitary group formalism. This formalism is
f1exibleenough to alIow wavefunction optimization for several smalI MCspaces
of 1..-30configurations which were shown to describe the groundand excited
states, and for larger MCspaces of30-1 06 configurations.The 106-configuration
calculation reproduces the fulI-CI result tochemical accuracy; Although we
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report that several calculations bad convergence,difficulties because ofthe global
convergence problems of the ElL method, initial prbitals obtained from the it-
erative natural orbita l method were found sufficient to result in convergence
for the cases studied in this report. Local second-order convergence was observed
for these cases and the final wavefunctions obtained were accurate to 1.0 (10-15).
The required matrix elements for CI calculations and the MCSCFwavefunction
optimization were calculated efficiently using the unitary group me,thod.
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