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Abstract

We have successfully used graphical unitary group methods to implement efficiently both mul-
ticonfigurational self-consistent field and configuration interaction ab initio quantum chemical
computer programs. We indicate how these group theoretic methods improve efficiency and we
demonstrate their utility on the ground and excited states of a model problem for which a full-
configuration interaction calculation can be performed.

I. Introduction

Using the exponential-i-lambda (EIL) method [1] for wavefunction optimi-
zation and the graphical unitary group method [2] for the calculation of one-
and two-particle density matrix elements, we have performed multiconfiguration
self-consistent field (MCSCF) calculations on the ground and excited states of.
the Be atom at several levels of sophistication as a model calculation. We show
how the global convergence problems of the EIL method may be overcome in
these cases. We further show that although completely flexible configuration
selection is not easily achieved within the unitary group formalism which we
have implemented, limited distinct row tables based only on occupation re-
strictions are easily constructed. The resulting configuration lists are neither
so large that chemical insights are lost nor are they so restrictive that chemical
accuracy is sacrificed. We show how the graphical unitary group method may
be used to construct efficiently the matrix elements required in the EIL
MCSCF method without explicitly performing the two-particle density matrix
construction. Because the EIL method possesses very good local convergence
properties, not only accurate energy expectation values but also very accurate
MCSCF wavefunctions are reported.

The MCSCF wavefunction is a multiconfiguration wavefunction:

[yme) =¥CK1K) ' (1

where both the configuration mixing coefficients Cx and the orbitals are opti-
mized to give the lowest energy expectation value. A property of the MCSCF
wavefunction is that it satisfies the generalized Brillouin theorem [3] (GBT):
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for all electron creation and annihilation operator pairs it and j. Not only have
accurate potential surfaces been reported using the MCSCF approach, but several
procedures including the one-particle Green function [4], two-particle Green
function [5], the time-dependent Hartree-Fock (HF) approach to linear response
theory [6], gradient techniques for molecular geometry optimization [7], and
the coupled cluster method [8] are being extended to allow for MCSCF reference
states. Some of these procedures allow for a much simpler implementation if
the GBT is assumed to be valid. Thus, it is important to have a procedure which
allows the calculation of very accurate wavefunctions (within the orbital basis
and configuration basis chosen) to be obtained efficiently and as general as
possible a configuration space.

We first give a short review of the unitary group method and of the EIL orbital
optimization procedure. We discuss our implementation of these two methods
and finally discuss the results of applying these methods to the Be atom.

2. Review of the Graphical Unitary Group Method

We first review the unitary group method as we have implemented it for our
EIL MCSCF program and for our CI program. In particular, we refer to the
graphical unitary group approach as developed by Shavitt. With this method,
the orbital occupation and spin-coupling information needed for the specification
of a configuration is represented by a particular walk between the head and tail
of Shavitt graph. A limited configuration list is specified by placing restrictions
on the Shavitt graph which corresponds to the full-configuration list. These
restrictions correspond to deleting certain vertices within the graph or to deleting
certain arcs between the vertices within the graph. The vertices of the Shavitt
graph are labeled with three integers which correspond to the level in the graph
and the 4 and B values of a Paldus array [9]. A vertex of a Shavitt graph cor-
responds to a distinct row. The tabular listing of all distinct rows along with the
forward and backward chaining indices and various other information is called
a distinct row table. If a slight generalization is made to the Shavitt graph which
allows multiple vertices with identical 4 and B values but with different arcs
connecting to these multiple vertices, then a completely arbitrary configuration
list may be specified. Extensions of this type have previously been used for the
purpose of limiting the configuration list to correspond to single irreducible
representation of the point group of the molecule [10] and to restrict the con-
figuration list to correspond to the HF interacting space [11]. Since the effort
involved in the construction and use of the one- and two-particle density matrix
contributions increases as the size of the distinct row table (DRT) and also as
the number of configurations specified by the DRT, there is a trade-off of effi-
ciency between increasing the complexity of the DRT and reducing the number
of configurations with this approach.

The N-particle basis of configurations specified in the unitary group method
is called the Gelfand-Tsetlin basis. These configurations are equivalent, within
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a phase factor, to configurations constructed using the geneological procedure.
Grabenstetter [12] has developed a very efficient projection procedure.for cal-
culating the coefficients of primitive spin functions which span the space of the
geneological spin functions. If desired, the configurations specified by the unitary
group method could be expressed in terms of Slater determinants using this
procedure. This is useful for calculating the reduced density matrices of the spin
orbital basis which, in turn, are needed for properties which depend explicitly
on the spin (e.g., spin density). The one- and two-particle reduced density matrix
elements required for spin-free operators, on the other hand, may be calculated
directly using the unitary group formalism because the generators of the unitary
group may be expressed in terms of spin-traced components of the electron
creation and annihilation operators

PIP = (Yl + ibjslme) = CYmeley|¥me)
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where e;; is taken to be a generator of the unitary group and e;; x; the generator
product defined in Eq. (3). This approach is slightly different from that of pre-
vious workers who maintained the difficulty of density matrix evaluation using
the unitary group formalism [11]. These density contributions are very easy to
calculate within the unitary group formalism; the density matrix elements in
the spin orbital basis, on the other hand, at present require using either the
symmetric group formalism [13] or a transformation of the wavefunction to a
different basis such as that performed by the Grabenstetter procedure.

The generator matrix element evaluation between configurations |m) and
|m’), {m’|e;;|m), is performed by constructing valid loops within the Shavitt
graph [14]. These loops correspond to all possible differences in configurations
that have nonzero contributions to the generator matrix elements. By using
mathematical induction, Shavitt demonstrated that these matrix elements are
the products of segment values of different levels within the loop. These segment
values depend only on the shape of the loop at the given level and on the B value
of one of the arcs at the given level (Shavitt used the arc of the ket line). Recently
using spin-recoupling algebra, Boyle and Paldus [15] have expressed the
(m’leg;kd m} matrix elements in a form which allows this same factorization.
Except for the summation over singlet and triplet coupled intermediate states,
this form of the two-particle density matrix contribution is just as simple to
evaluate as for the simple generator matrix elements. Shavitt [16] has expressed
these segment values within the graphical representation of the Gelfand-Tsetlin
basis. The expression for these (m’|e;; x|m)

(m’|egu|lm) =] TI W(T, bp)H -%1 LHS Wx(Tp,bp)} (4)
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involves the product of segment values (W) where the indices do not overlap the
summation of the products of segment values which correspond to the two spin
couplings (x = 0,1) where the indices do overlap. It should be mentioned that
several loop types have nonzero contributions for only one of these spin couplings
in the overlap range. These segment values allow the evaluation of (m’|e;x/|m)
to be performed just as the (m’|e;;|m) evaluation is performed. All loops are
constructed which can contribute to these density contributions and the product
of the segment values are accumulated appropriately. Since some loops require
the accumulation of two separate products, the two-particle density contributions
require at most twice the effort of the simple generator matrix element evalua-
tion. Except for the use of the recoupling formalism, our matrix element eval-
uation is similar to the “loop-driven” procedure of Brooks and Schaefer. Since
the matrix elements of the Hamiltonian in the Gelfand-Tsetlin basis involve
these matrix elements,

(m’|ﬁ|m) = Z h;j(m’|€,j|M> + 1A "Zk:f (fj|kf)(m’|e,‘j,k;|m) (5)
ij i
where the A;; and (ij| k/) are the one- and two-electron integrals within the orbital
basis, they may be used directly in both the CI matrix element construction and
later in the density matrix element construction.

We now discuss briefly the types of configuration required for MCSCF
wavefunctions. Although this subject has been previously discussed, [17] we
wish to emphasize that configurations required for large-scale CI calculations
are not typically the same as those required for MCSCF calculations. Configu-
rations for large-scale CI calculations are usually chosen to give the lowest energy,
at a particular geometry, given a set of molecular orbitals and a few dominant
configurations. The molecular orbitals used are usually SCF orbitals for one of
the dominant configurations. Since the Hamiltonian operator involves only orie-
and two-particle excitation operators, the configurations in the CI calculation
are usually chosen to include the single and double excitations from the dominant
configurations. Single excitations are said to be for “orbital relaxation™ effects
and double excitations are said to be for the “electron correlation.” At various
geometries, as the dominant configurations change, the configurations included
in the CI calculation are also changed to obtain the lowest possible energy for
the number of configurations included. This is important because the effort
involved is dependent on the dimension of the CI secular problem. The config-
urations required for MCSCF calculations, on the other hand, are usually chosen
to describe both equilibrium molecular geometries and molecular distortions
far away from equilibrium geometries. The nature of the electronic states of these
systems far from equilibrium is such that not only single and double excitations
(relative to the dominant configurations near equilibrium) may be required but
also sometimes higher-order excitations. This is particularly true if the moleciilar
distortions involve the breaking of several bonds or the breaking of a multiple
bond. Since “orbital relaxation” is accounted for in the orbital optimization
process, single excitations sometimes lose their importance compared to these
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higher excitations. Fortunately, the higher excitations that are required usually
only involve a limited number of molecular orbitals. In order to obtain a con-
sistent level of approximation over the molecular potential surface, the
MCSCF configuration list typically includes more varied types of
configuration but involves fewer orbitals than the configuration list of a CI
calculation. The configurations required for MCSCF calculations then are usually
chosen to be flexible enough to describe consistently the desired electronic state
over a large range of molecular distortions, whereas configurations chosen for
cI calculations are chosen to give the best possible energy over a limited range
of molecular distortions.

These configuration lists for MCSCF calculations are relatively easy to con-
struct within the graphical unitary group method since they are described well
in terms of only occupation restrictions. This is in contrast to the HF interacting
space limitations (which involve not only occupation restrictions but also spin-
coupling restrictions) that are needed with larger CI calculations to limit the
number of configurations. Cumulative orbital occupation restrictions are
achieved simply by deleting vertices from the Shavitt graph which are in violation
of these imposed restrictions. Examples of the restrictions which are used in
typical MCSCF calculations are (1) specifying certain orbitals to
remain doubly occupied in all configurations, (2) specifying certain orbitals to
remain at least singly occupied in all configurations, (3) specifying a set of or-
bitals to be at most singly occupied in any configuration, and (4) specifying a
set of orbitals in which to make all possible excitations with a given number of
electrons. This last case will be referred to as a “full-valence CI” calculation
because it shares several properties with full-CI calculations. There are, of course,
many other occupation restrictions that can easily be applied when required by
a particular molecular system.

The choice of orbitals and configurations which should be included in MCSCF
calculations is usually achieved by performing several CI calculations at various
geometries in order to determine the basic configurations. Then the orbitals are
optimized for these configurations, new CI calculations are performed with these
orbitals, new configurations are selected, and the process is repeated until a
sufficient level of precision is obtained with the MCSCF wavefunction. Because
these steps are often repeated many times, it is necessary to construct DRTs easily
for the MCSCF wavefunction evaluation and the corresponding DRTs for the
larger CI calculations which include the configurations in the MCSCF space and
the most important excitations from this space. For this configuration selection
procedure, we have found that DRTs are most easily constructed if the orbitals
are ordered within the DRT such that orbitals with similar occupation restrictions
are grouped together. Within this occupation grouping, orbitals of the same
symmetry should be adjacent in the DRT in order to keep the number of distinct
rows as small as possible. For example, all the orbitals that are restricted to be
doubly occupied might be placed at the bottom of the DRT, followed by the group
of orbitals in which a full-valence CI with the remaining electrons is to be allowed,
followed by the group of orbitals which may share at most two electrons, and
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finally followed by the group of orbitals which share at most one electron. The
construction of these types of limited DRTs requires only the point group sym-
metry information, a limited amount of occupation restricfion information, and
the ordering information of the orbitals included in the DRT.

3. Review of EIL Wavefunction Optimization Method

The exponential-i-lambda (EIL) wavefunction optimization [1] is achieved
by expressing a trial MC wavefunction in terms of a given MC wavefunction
as

|yme’) = gileiS|yme)

A=Y keoilrts =5t = T keaT.,

£> 5. r>s

S= ¥ Ay (Y] = [yme)(Yr]) = T A,P, (6)
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and optimizing the x and A parameters such that they extremize the energy of
the MC wavefunction. The ¢S operator allows for modification of the current
MC wavefunction within the MC configuration space; the ¢4 operator allows
for mixing of the orbitals used in the configuration construction within the
molecular orbital basis. The commutator expansion for the energy expectation
is truncated to include overall second-order terms in the A and S operators

E(k,A) = (ym| A + [HiA] + {[AiR], iA] + [A,iS] + 'A[[A,iS],iS]
+{AIALST A= o W (@)

The necessary (but not sufficient) condition for energy minimization is that the
first derivatives with respect to the x and 4 parameters are all zero when eval-
uated with the current wavefunction.

0 = dE/dkys = (Ym|[A,iT ] + V([[A,iT)s),iA] + [[A,iA),iT])
+ [[H.iT,],iS]|yme)

0 = JE/dAn = (™| [H,iPa) + h([[H.iPa]i8] + [[H,iS1,iP,))
+ [[ALiA)iP,] [Y™)  (8)

This leads to a set of linear equations which may be expressed in matrix notation

as
Hinket
CtMJ/ \A .
Bpgrs = YW({IAiT pgliTrs] + [[AAT 10T 501))

Cogin= Chpg =L [[BiTpg i) 2

Mo = Vol [[ALiP,)iPy) + [[H,iPy],iP,])
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If the orthogonal states used.in the construction of the S operator are the
eigenstates of the Hamiltonian operator within the McC configuration space, the
W’ vector is zero and the M matrix is diagonal. If the mixing coefficients are
fully optimized on every iteration, the 4 parameters need not be explicitly cal-
culated. This allows the k parameters to be calculated from the partitioned form
of Eq. (9),

Bx=(B—-CM!Chk=-W (10)

The effect of the eiA operator on an MC wavefunction is to express the MC
wavefunction in a new molecular orbital basis where the new molecular orbitals
are obtained from

¢ =¢(e¥) ' an

where K5 = k(s and K, = —K,s). Since the orbital transformation is calculated
from a truncated expression of the energy, these transformations must be re-
peated until convergence is reached. At convergence the W vector [the gener-
alized Brillouin theorem (GBT) terms] is zero, the K matrix is zero, and the or-
bital transformation matrix is a unit matrix. Since derivatives of the second-order
terms in the energy are included in the solution of the x parameters, the wave-
function and the energy should display second-order convergence. In practice,
it has been shown that this method displays true second-order local convergence
in both the wavefunction and the energy. However, the method does not show
adequate global convergence when the initial orbitals are far from correct [18].
This requires that some care be taken with the initial orbital preparation to en-
sure that the (B — CM~!CY) matrix (the Hessian matrix) has all positive ei-
“genvalues, The B matrix is the hessian matrix with frozen mixing coefficients.
The (CM~!Ct) matrix which is subtracted from the B matrix accounts for the
coupling between the change of the orbitals and the change of the mixing coef-
ficients with every iteration. The (CM~!Ct) matrix may be regarded as the
second-order Rayleigh-Schrédinger perturbation theory correction to the B
matrix to account for this coupling.

If the spin orbital basis is assumed to consist of the Cartes1an product of an
orthonormal spatial orbital basis and the electron spin basis (c,3), the single
excitation operators of the A operator may be expressed as the generators of the
unitary group of the previous section:

Trs = i(ers — €5r)

The elements of the B matrix, C matrix, and W vector may then be expressed
in terms of the e;; and e;; x;.

qu,rs = ths (epr> + thr (eqs Jo thr (ep.s) o zhps (eqr)
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The elements of the B matrix and W vector are expressed in terms of the one-
and two-electron integrals of the current molecular orbital basis and in terms
of the one- and two-particle reduced density matrix elements of the current MC
wavefunction. However, the C matrix requires the e;; and e;; x; matrix elements
in the MC configuration basis along with the mixing coefficients for the excited
states in the MC basis. The C matrix may be constructed using the partial
sum

Cosn==22 % Ub.mc(bl [ﬁ,ff}_g]la) Uan
a
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=] z C;s.a Ua.n (13)
a 5

where the U matrix contains the eigenvectors of the CI problem in the MC space.
This avoids some difficulties in the C matrix construction but the individual e;;
and e matrix elements in the MC (Gelfand-Tsetlin) basis are still re-
quired.

4. Comments on the Implementation of the Unitary Group-EIL Method

From the above discussion, the B matrix and W vector could thus be con-
structed either from the density matrices of the current MC wavefunction or from
the individual e;; and e;; x; contributions just as required in the C matrix con-
struction. Our approach to the B matrix and W vector construction is a com-
promise between these two extremes. Instead of completely calculating the one-
and two-particle density matrices, we calculate all the contributions to a par-
ticular density matrix element that result from a single loop. This makes the B
matrix and W vector construction much more efficient than if constructed from
individual density contributions arising from a configuration pair, while avoiding
the computational problems of the two-particle density matrix construction.
The two-particle density matrix for a typical MCSCF wavefunction is a sparse
matrix, the size of which is the fourth power of the number of molecular orbitals,
and its construction is usually performed using methods similar to the two-
electron integral transformation. For CI wavefunctions calculated from a large
number of configurations, these sorting methods will be more efficient for the
B matrix and W vector than the approach we have taken. We have chosen this
simpler approach because the C matrix evaulation step cannot make use of these
more efficient methods and its construction becomes the dominant time factor .
with larger configuration spaces. In fact, even for some smaller problems (30-100
configurations) the C matrix construction becomes more significant than the
B matrix or W vector construction because the former step cannot even make
use of the efficiency of the density contributions calculated from a single loop.
The C matrix construction also requires all eigenvectors and eigenvalues of the
CI problem in the MC configuration space and thus it appears that this method
is limited, for practical reasons, to relatively small dimensions of the MC space
(< 200).

For these larger problems then, a reasonable approach might be to neglect
completely the coupling between the orbital changes and the mixing coefficient
changes and to construct the one- and two-particle density matrix elements
needed for the B matrix and W vector using these sorting procedures. The con-
vergence of this approximation has been shown to be inferior to the complete
second-order procedure, which includes the perturbation corrections calculated
from the C matrix, and to be unsuitable for wavefunction calculation [1,18].
It would be a viable approach, however, for energy optimization since the energy
converges to chemical significance (1074-107¢ hartree) in a reasonable number
of iterations with this approximation even though the errors of the wavefunction
are still significant (GBT terms are also 10~4-10-6). :
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Since both the CI calculation within the MC configuration space and the
matrix elements required for the EIL wavefunction optimization require the e;;
and e;; x; matrix elements for every MCSCF iteration, we use the same indexing
tape (or formula tape) twice during each iteration. This indexing tape contains,
for each loop, the value of the e;; or e;j x; matrix element and its indices, the loop
head, the loop tail, the sum of the segment weights of the bra arcs of the loop,
and the sum of the segment weights of the ket arcs of the loop. This information,
along with the reverse lexical index array and the reverse lexical offsets in the
DRT, allows the efficient calculation of all pairs of configuration indices which
share the loop. These configuration indices are used in the CI part of each iter-
ation in the construction of the CI matrix (or of matrix times vector when the
diagonalization is performed directly) and later for the contribution of that loop
to the one- and two-particle density matrix elements needed for the B’ matrix
and W vector construction. .

The e;; and e;; x; indices determine uniquely the required integrals during the
CI part of each iteration. For smaller CI calculations and for the CI calculation
within each MCSCF iteration, the CI matrix is explicitly constructed and di-
agonalized using standard procedures. For larger CI calculations the desired
eigenvalues and eigenvectors are calculated using Liu’s modification [19] of
Davidson’s procedure [20]. The required matrix times vector operations are
performed directly from the indexing tapes without the explicit Hamiltonian
matrix element construction. This aspect of the calculation has been considered
by previous workers.

Because a single e;; or e;; x; may be combined with many different integrals
to form contributions to several B and C matrix and W vector elements, we
currently construct the B and C matrices and W vector with a single reading of
the integral file and with multiple passes of the indexing file. In most cases it
is possible to determine very early if all required integrals for a particular density
contribution are not available in core and proceed to the next contribution. When
the indexing file has been processed for the currently available integrals, new
integrals are made available and the indexing file is again processed. When all
integrals have been processed, the final transformation for the C matrix is per-
formed using the eigenvectors of the excited states of the C1 calculation in the
MC configuration space. The perturbation corrections are then added to the B
matrix and the xk parameters are evaluated by solving the required linear equa-
tions.

Since the B’ matrix is symmetric, only the lower triangle needs to be calcu-
lated. Efficient procedures exist for solving the required linear equations which
require no space beyond the storage of the lower triangle of the B’ matrix itself.
It is also useful to determine the inertia (the number of positive, zero, and neg-
ative eigenvalues) of the B’ matrix to ensure that the desired solution (all positive
eigenvalues) has been found. The inertia can be determined with little extra effort
during the solution of the linear equations. This is done without diagonalizing
the B’ matrix and without evaluating the eigenvalues explicitly [21]. Since the
square of the skew-symmetric K matrix is a negative semidefinite Hermitian
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matrix, the orbital transformation may be evaluated without approximation
by using the cosh-sinh expansion of Dalgaard and Jgrgensen [1]:

e K =V(cos d)Vt — KV(sin d)d~ 1Vt
where
(KK) = Va2 vt d2 diagonal
d = Sqrt(—d?) (14)

This requires the diagonalization of the Hermitian matrix (KK) instead of the
skew-symmetric matrix K.

Inspection of the two-electron integrals required for the CI matrix in the MC
space, the B matrix, C matrix, and W vector reveal that only integrals with at
most two indices which belong to molecular orbitals that are unoccupied in all
configurations need to be calculated. Elbert [22] has recently improved the
standard transformation method by arranging the steps such that a partial sum
is used more efficiently. A minor rearrangement of the Elbert procedure which
places all DO loops involving molecular indices outside of the innermost DO
loops: which involve atomic orbital indices allows not only the efficient use of
the partial sum but also efficient occupation checking to be performed during
the integral transformation. If only the required integrals are transformed for
each iteration, the integral transformation time may be reduced by approxi-
mately half that required for the complete integral transformation. This is
partially the result of the fact that the configurations required for MCSCF
wavefunctions involve the occupation of only relatively few molecular orbitals.
The integral transformation time is usually the most significant part of each
iteration (50-90%) even for some of the larger configuration spaces. The effi-
ciency of the integral transformation step is thus an important factor in the ef-
ficiency of the wavefunction optimization procedure.

5. Discussion and Results

We have applied the EIL wavefunction optimization procedure using the
unitary group method as outlined in the previous sections to the ground state
and first excited 'S state of the Be atom. The atomic integrals of the 5s-4p
contracted Gaussian basis of Table I were calculated using the MOLECULE
integral program [23] within the D, subgroup. If a complex atomic orbital basis
had been used, these results could have been duplicated with fewer configurations
than are required in these reported calculations. We chose the Be atom as a test
case for our wavefunction optimization procedure because the full-CI calculation
with this orbital basis (1148 configurations) is within the capabilities of our CI
program and because Be is a very correlated system which requires several
configurations to describe adequately both the ground and excited states. We
can determine in a systematic manner the effect of the configurations included
in the MC space on the correlation energy of the electronic states and compare
this directly to the total correlation energy within our orbital basis. The goal of
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TABLE 1. Atomic Gaussian basis for Be.’

Basis Fn Exponent Contraction Coefficient
1s 1264.5857 0.001945
189.9368 0.014835
43,1590 0.072090
12.0987 0.237154
3.8063 0.469199
1.2729 0.356520
2s 0.7478 1.0
3s 0.2200 1.0
4s 0.0823 1.0
5 0.0300 1.0
1p 3.1965 0.055986
. 0.7478 0.2€155]
0.2260 0.793972
2p 0.0500 1.0
3p 0.0125 1.0
ap ©0.0031 1.0
E(5CF) : : = -14.56681165 au
E(Full CI-ground state) = -14.61758566 au
E(Full CI-'S excited state) = -14.35451305 au

the MCSCF wavefunction optimization procedure for this system is to optimize
the orbitals for a given configuration list and produce the best approximation
possible to the corresponding exact energy with this orbital basis obtained from
the full-CI calculation. For most molecular systems it is possible to produce very
good approximations to not only ground states but also excited states with only
a few configurations. In fact, the MCSCF approach has been advocated for this
reason since the chemical interpretation of wavefunctions consisting of relatively
few configurations is more straightforward than the corresponding interpretation
of wavefunctions consisting of large numbers of configurations. Although this
is a valid point in favor of the MCSCF approach, our emphasis is on obtaining
a MC wavefunction for which the GBT is satisfied.

In Table 1T we report the results of several ground- and excited-state calcu-
lations at different levels of approximation. These different levels of approxi-
mation consist of including different configurations and different numbers of
configurations in the MC space. The final entry in Table II is the full-CI result
within the orbital basis. The first row of Table II contains the results for the
single-configuration 1522s2. When the eigenvectors of the one-electron Ham-
iltonian matrix (the kinetic and nuclear attraction terms within the atomic orbital
basis) used directly in the EIL procedure as starting orbitals, the B’ matrix had
two negative eigenvalues and these orbitals were thus unsatisfactory for the
orbital optimization procedure. Using these same orbitals, a natural orbital it--
eration was then performed using the 152252 configuration and all of its single
excitations as the CI reference space. The single excitations allow for the orbital
relaxation effects in this CI wavefunction. The eigenvectors of the one-particle
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TABLE II. Energies (a.u.) of lowest two 1S states of Be.

Row # conf. Grnd. State Excited State

1 1 -14.566811

2 4 -14.608494

3 6 -14.609877 -14.344191
4 13 -14.609932 -14.344411
5 15 -14.609928 -14.346596
6 24 -14.609928 -14.346609
7 15 -14.615178 -14.344466
8 24 -14.615897 -14.344522
9 27 -14.615902 -14.344528
10 37 -14.616480 - -14.348719
n 36 -14.615533 -14.346576
12 69 -14.616270 -14,346656
13 106 -14.617567 -14.354009
14 1148 -14.617586 -14.354513

density matrix of this CI wavefunction were used to obtain a new set of orbitals.
In this case, this orbital improvement procedure is equivalent to one step of the
iterative natural orbital SCF optimization procedure. These orbitals were then
used in the EIL optimization and were found to produce a positive definite B’
matrix. The convergence criterion for these calculations was that the sum of the
squares of the GBT terms should be less than 107320, This ensures that the largest
error in the wavefunction is less than 1013, The energy converges to chemical
significance when ZW7 is much larger (10~5-1079) than this more stringent
wavefunction convergence criterion. Since true second-order convergence is
displayed by the EIL orbital optimization procedure, three or four fewer iterations
are required for energy convergence than are required for wavefunction con-
vergence. For this single-configuration calculation, energy convergence was
achieved in three iterations and the wavefunction converged in six iterations of
the EIL method. Since the unitary group procedure is not restricted with regard
to spin or the number of open shells, this approach could be generally used for
closed or open-shell single-configuration wavefunction optimization. If there
are linearly independent spin functions, either a choice of spin coupling could
be used for single-configuration orbital optimization or all of the spin functions
which have identical orbital occupancies could be included. This latter type of
limited MCSCF wavefunction is equivalent to a generalized valence bond (GVB)
wavefunction where the optimum spin function is calculated. For the single-
configuration calculations, no coupling of the orbital changes with mixing
coefficient changes needs to be calculated (i.e., no C matrix is required) and the
method displays true second-order convergence. It could also be mentioned at
this point that no numerical difficulties are encountered until machine precision
(10~17-1019 in our case) in the convergence of the wavefunction is reached.
This implies that the matrix element evaluation and solution of the resulting
linear equations is, in general, numerically stable.

The second row of Table II gives the results for a four-configuration MCSCF
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calculation. These configurations are the SCF configuration mentioned in the
preceding paragraph along with the 1521p2, 1521 pf., and 1521p? configurations.
All three of these configurations are required to obtain the correct 'S combi-
nation. If a complex atomic orbital basis had been used, these results could have
been duplicated with only two configurations. For this calculation, the SCF or-
bitals calculated from the single 152252 configuration were used as starting or-
bitals. The B’ matrix with these initial orbitals had three negative eigenvalues.
A first-order CI calculation was performed which included these four configu-
rations and all single excitations from these four configurations. The orbitals
which diagonalized the resulting one-particle density matrix were then used as
starting orbitals for the EIL procedure. With these orbitals, the B’ matrix had
one negative eigenvalue. The iterative natural orbital procedure was repeated
with these orbitals and the new set of orbitals was used in the EIL procedure.
These orbitals were sufficient to produce a positive definite B’ matrix. Energy
convergence (104 hartree) was then reached on the third EIL iteration and the
wavefunction converged on the seventh EIL iteration.

The third row in Table II gives the results for the ground and first excited state
for a six-configuration MC space. This space included the four configurations
from row 2 and the single and double excitations from the 2s orbital into the 3s
orbital. The dominant component of the excited state is the 1522535 configuration
and these configurations appear to give a good description of this excited state.
The starting orbitals were the four MC orbitals obtained from the previous cal-
culation reported on row 2. Two iterations were required for the energy to con-
verge to 1076 and a total of six EIL iterations were required for the wavefunction
to reach convergence for the ground state. For the excited state, again only two
iterations were required for energy convergence and a total of five iterations were
required for the GBT terms to be less than 10~15. Although the individual state
energies are in error by 0.01 hartree, the energy difference of the two states is
only 0.002 hartree in error when compared to the full-CI results of row 14. This
indicates that the limited MCSCF method applied to different states has the
capability of giving consistent descriptions to the different states. The DRT for
this configuration list has the restriction that the 1s orbital i8 doubly occupied
in all configurations.

The results of further exploratory CI calculations indicated through natural
orbital occupation numbers that the remaining s orbitals were the next most
important orbitals to include in configurations within a MC space. Row 4 of Table
IT shows the results of including the 4s and 55 orbitals, still with the restriction
that the 1s orbital remain doubly occupied. This 13-configuration calculation
shows only a modest improvement in the energies over the results of row 3. The
occupation numbers of the MCSCF orbitals indicated that only one of these or-
bitals—the 4s—had any significant occupation after the orbital optimization
procedure.

Row 5 shows the results of including a second p orbital in the configurations
in the MC space. The 4s orbital was also kept in order to determine the relative
importance of the 4s and 2p orbitals. For this 15-configuration calculation, the
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2p orbitals were found to be unimportant for the ground state. In fact the 5s
orbital in the previous calculation was more important to the ground-state energy
than was the 2p orbital. However, the 2p orbitals are seen to be important for
the excited-state description. Row 6 is the result of including the 3p orbital along
with the 45 and 2p orbitals into the valence space. These results are very close
to the results in row 5 indicating that the 3p orbitals are not important for either
the ground-state or the excited-state description. The 15-MCc calculation of row
5 then includes all the important correlation effects for the electrons in the 2s
orbital for both the ground and excited states. The energy difference of the two
states is seen to be only 0.00026 hartree in error when compared with the energy
difference of the full-Ci results. The starting orbitals for these calculations were
obtained from one iteration of the natural orbital method. The first-order
wavefunctions were calculated from the appropriate MC configuration space

-and all single excitations from these configurations. The initial orbitals for these
CI calculations were the 6-MC orbitals from the results of row 3. It should be
pointed out that these calculations have redundant variables (orbital pairs for
which the GBT is always satisfied and which produce zero eigenvalues of the B’
matrix) that have been removed from the orbital optimization step.

Since all of the 2s correlation energy has been obtained with the inclusion of
the 4s and 2p orbitals in the valence space, the remaining correlation energy
involves the electrons that have been constrained to the 1s orbital. Row 7 of Table
IT shows the results of allowing all single and double excitations from the SCF
configuration into the 3s and 1p orbitals. The DRT for these configurations was
constructed with the constraint that the 3s and 1p orbitals share, at most, only
two electrons. The energy of the ground state was lowered by 0.006 hartree from
the 6-MC result of row 3. The energy of the first excited state, however, was
lowered only 0.0003 hartree. The 24-Mc list of row 8 was obtained by con-
straining the 1p orbitals to share at most only two electrons. This 24-MC space
may also be described as a full-valence CI with four electrons in the 1s, 25, and
3s orbitals, and then all double excitations from these configurations into the
1p orbitals. Row 8 shows that these added configurations again preferentially
lower the ground-state energy. Row 9 gives the results of the four electron
full-valence C1 calculation in all six valence orbitals. The three configurations
included in this calculation that were not included in the calculation of row 8
are the configurations which have only p orbitals occupied. These configurations
contributed so little to the energy that all further MCSCF calculations were
constrained to have at least two s electrons in every configuration. :

The inclusion of the 4s and 5s orbitals was again investigated with the results
given in row 10. This 37-MC space included all single and double excitations from
the SCF configuration into the 3s, 4s, 55, and 1p orbitals. Compared to row 7,
it appears that the 4s and Ss orbitals are now important for the excited state as
well as the ground state.

Row 11 shows the results of including the 1s correlation and of including the
2p orbitals into the valence. This configuration list includes all single and double
excitations from the SCF configuration into the 3s, 1p, and 2p orbitals. Consistent
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with our earlier observation, the 2p orbitals are not as important to the
ground-state description as the 45 and 55 orbitals. Row 12 gives the results for
the full-valence CI with the 1s, 25, and 3s orbitals along with all double excita-
tions from these orbitals into the Ip and 2p orbitals. This 69-MC calculation
shows that the ground state is still preferentially stabilized by the inclusion of
these configurations in the MC space.

The results of the final MCSCF calculation performed in this study are reported
in row 13 of Table I1. This MC configuration space included the full-valence C1
configuration space of the 1s, 25, and 3s orbitals along with all single and double
excitations into the 4s, 55, 1p and 2p orbitals. The energy of the ground state
for this MC space is only in error by 1.9 X 10~3 hartree and the error of the ex-
cited state is 5.0 X 10~* hartree when compared to the full-CI result.

These calculations show that the unitary group method may be used effectively
in the construction of configuration lists for multiconfiguration reference spaces.
The configuration lists used in this study range from 1 (the SCF configuration)
to slightly over 100 at which time the full-C1 results are reproduced to within
0.3 kcal/mole. Of course this level of precision is not possible for larger systems,
but the energies of the ground state and first excited state were systematicallly
improved using various configuration lists produced from occupation restrictions.
These occupation restrictions are readily employed using the distinct row table
representation. In the calculations reported here, the generalized Brillouin
theorem is satisfied to less than 1.0 X 10~15 for all orbital pairs. The calculation
of the MCSCF wavefunction was performed using a wavefunction optimization
.method that displayed local second-order convergence for all the reported cal-
culations.

Several calculations were attempted, however, that did not result in conver-
gence to the correct solution. In several instances, negative eigenvalues persisted
after several first-order wavefunction and natural orbital calculations. A study
of these global convergence problems of the EIL method has been performed
elsewhere [18]. It should be emphasized that in all cases where initial orbitals
produced a positive definite Hessian matrix, second-order convergence to the
energy minimum was observed. In the results reported here, initial orbitals were
obtained from an appropriate first-order wavefunction using orbitals from
previous converged results. As noted, this process sometimes had to be repeated
several times before suitable starting orbitals were found.

6. Summary and Conclusions

MCSCF calculations have been performed for the ground and first excited 1S
states of Be atom using several configuration lists. These configuration lists were
constructed using the graphical unitary group formalism. This formalism is
flexible enough to allow wavefunction optimization for several small MC spaces
of 1-30 configurations which were shown to describe the ground and excited
states, and for larger MC spaces of 30-106 configurations. The 106-configuration
calculation reproduces the full-CI result to chemical accuracy. Although we
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report that several calculations had convergence difficulties because of the global
convergence problems of the EIL method, initial orbitals obtained from the it-
erative natural orbital method were found sufficient to result in convergence
for the cases studied in this report. Local second-order convergence was observed
for these cases and the final wavefunctions obtained were accurate to 1.0 (10~13).
The required matrix elements for CI calculations and the MCSCF wavefunction
optimization were calculated efficiently using the unitary group method.

.
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