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Abstracts

The polarization Green 's-function formalism in the superoperator notation of Goscinski and
Lukman is re-derived using a multiconfiguration self-consistent-field (MC-SCF) reference stale to
establish the superoperator metric. The potential advantages of employing this maTe general reference
stale in Green's-function theories and certain inberent weaknesses associated witb tbe traditional
Hartree-Fock or Rayleigb-Schrodinger perturbation tbeory reference stale cboices are briefly
discussed. The Herrniticity of the superoperators is analyzed within tbe framework of the MC-SCF
reference stale. Using a concept of order appropriate for tbis reference stale choice, explicit forrnulas

. and computational procedures for the implementation of Ibis Green's-function tbeory are presented
and specialized to include terms consistent tbrougb second order.

Le formalisme des fonctions de Green de polarisation dans la notation utilisant les superoperateurs
de Goscinski et Lukman a ele reetabli avec un etat de reference MC-SCF pour obtenir le metrique des
superoperateurs. Les avantages potentiels de ret etat de reference plus general ainsi que certains
points faibIes inherents associes aux etats de reference utilises traditionnellement dans les tbeories de
perturbation Hartree-Fock ou Rayleigh-ScbrOdinger sonI discutes brievement. L'berrniticite des
superoperateurs est analysee dans le cadre des etats de reterence MC-SCF. Utilisant une notion d'ordre
propre IIcel etat de reterence on presente des forrnules explicites et des procedes de calcul pour la
realisation de cetle tbeorie des fonctions de Green, qui sonI specialises pour inclure des terrnes
consistants jusqu'au second ordre.

Der Forrnalismus fur Green'scbe Funktionen von Polarisierungstyp in der Superoperator-
bezeichnung von Goscinski und Lukman wird mittels eines MC-scF-Referenzzustands bergeleitet.
Die moglicben Vorteile mit diesem allgemeineren 'Referenzzustand und gewisse mit. den in den
traditionellen Hartree-Fock- oder Rayleigb-ScbrOdinger-Storungstbeorien verwendeten Referenz-
zustanden verbundene eigene. Schwacben werden kurz diskutiert. Die Herrnitizitiit der Supero-
peratoren wird im Rabmen des MC-scF-Referenzzustands analysiert. Mittels eines fur diesen .
Referenzzustand geeigneten Ordnungsbegrifis werden explizite Forrneln und Rechnungsvenabren
fur die Implementierung dieser Theorie von Green'scben Funktionen vorgelegt und spe~alisiert um
Glieder bis zur zweiten Ordnung einzuscbliessen.

I. Introduction

In the last decade, Green 's-function approaches to the direct ca1culation of
eiectronic excitation energies and other spectraI properties have been employed
with considerable success to maDYatomie and molecular systems [1.-18]. Electron
attachment and detachment processes (Le., ionization processes) algo have been

. studiedextensively with Green's-function metbods [9-11, 19-27]. This paper
focuses on the development of a new Green's-function appioach in which the
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polarization Green 's-funetion (Le., two-eleetron Green 's-funetion) equations
deseribing exeitation proeesses are re-derived with respeet to a MC-SCFreferenee
stale. Two of us (A.B. and l.S.) reeently eompleted an analogous development for
the one-eleetron Green's funetion, whieh deseribes ionization proeesses [28].

The numerous 'Green 's-funetion studies reported in the .reeent literature
employ either equations-of-motion [1-10,19,20] or propagator [11-18,21-28]
formulations of the eleetronie exeitation (or ionization) problem. Equations-of-
motion methods, originally applied to problems in nuclear theory [29] and
subsequently developed for atomie and moleeular excitation and ionization
eaIculations by MeKoy and eo-workers [5,6] and others [1-4, 7-10, 19, 20],
reeover the results of Green 's-funetion the .es by easting the excitation or
ionization problem in terms of equations of motio the itation or ionization
operators of the system. The ran dom phase approximation and the time depen-
dent Hartree-Foek theory are the lowest-orderformulations of the equations of
motion [6]. Higher random-phase approximations employing extended excitation
(or io~ization) operator represents and eorrelated referenees states are required
to aehieve aeeurate results in most moleeular applieations [5-8, 19, 2~]. Solutions
to the equations of motion are usually established by means of an operator matrix
eigenvalue problem [5-8, 19] or an operator perturbation theory [9,10]. Simons
[10, 30] and Harris [31] have diseussed ambiguities in equations-of-motion
formulations that take as their starting point a funetion-Ievel equation. These
ambiguities ean be avoided'either by deriving the equations-of-motion formalism
with respeet to an operator-Ievel equation, as shown by Simons and Dalgaard
[10], or by working direetly with the well-defined propagator equations deseribing
exeitation proeesses. .

In the works of Linderberg [11], Ohm [11, 24, 27], Purvis [24], lj1jrgensen [14,
16-18,21], Oddershede [14, 17, 18], Cederbaum [25], and others [12, 13, 15,
22, 23, 26], the Green's-funetion equations aredeeoupled by pertlirbation
methods, geometrical approximations, or LOwdin's teehnique of inner projeetion
and partitioning on an operator manifold [32]. When applied to the polarization
Green's funetion, these proee<!ures give excitation energies as poles and transition
amplitudes as residues. .

Green's-funetion method for exeitations owe their attraetiveness to their
ability to provide aeeess' to exeited stale propertiesby expressing lbem as
differenees trom ground stale properties, whieh are easily approximated. FormaI
and eomputational simplicity arising from cancellation of eorrelation terms
common to both the ground stale and the excited stale of interest [15, 33],
together with a relative insensitivity of the operator-Ievel equations to reference
stale approximations [15,29], have also been advanced as reasons for preferring
the Green's-function approach to the more-traditional methods for eaIculating
excited-state properties, configuration interaetion, and perturbation theory. In
addition, propagator decoupling procedures have the advantage of giving tran-
sition amplitudes directly as residues of the Green's function. .

However, re cent wark by Oddershede and Jj1jrgensen [17] and others [5-8,
12-16] bas emphasized the importance of extended operator manifolds and
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correlated reference stale choices in obtaining accurate excited stale properties
from Green's-function methods. Theoretical arguments supporting these
requirements, originally advanced by Simon s [34] for the one-electron Green's
function, ale equally applicable to approximations involving the polarization
Green's function. Simons shows that if a complete operator manifold is employed
within the inner projection, the use of an approximate reference stale affects only
the residues; the exa~t nature of the pole structure, which for the polarization
Green's function is characterized by poles at (z) the exact excitation energies, is
still preserved. However, operator manifold truncation, an inevitable practical
necessity in the computational implementation of a Green's-function theory, does
lead' to a dependence of the pole structure on the quality of the reference-state
approximation. Balanced descriptions of the polarization Green's function, in
which both the operator manifold and the reference stale ale well approximated,
ale therefore rfecessary to ensure accuracy; an extended-operator manifold
cannot fully compensate for a poDe reference stale choice and vice versa [17,34].

. Simons and Dalgaard [10] have also pointed out that caution most be exercised in
defining and interpreting the operator metrics used in these Green's-function
procedures, which bas prompted lbem to introduce a new metric form, well
defined mathematically, that recovers the results of the traditional metric forms

. soch as employed by Goscinski and Lukman [35].
While most of the errors associated with Green's-function methods arise from

approximations introduced to make the problem computationally tractable (e.g.,
operator manifold truncation), the necessity of choosing an approximate
reference stale in terms of which the operator metric is to be defined represents a
fundamental weakness in the method [28]. Even those reference states for which
correlation bas been introduced by augmenting a Hartree-Fock (HF) stale with
Rayleigh~Schrodinger perturbation theory (RSPT) double-excitation configura-
tions (first order) or both single- and double-excitation configurations (second
order), cannot describe well the situation where the zeroth-order HF stale poorly
represents the system. For example, soch a situation occurs in the lowest singlet
states of carbenes, where moce than one major configuration most be included to
yield an adequate stale description, even at a zeroth-order level of approximation
[36-38]. Ground states of numerous other systems (e.g., Be, F2, O2) [39-41] ale
not well represented by single-configuration approximations. Also', a molecule
severely distorted flam its equilibrium geometry often requires the ftexibility of
additional configurations to characterize correctly its electronic structure (e.g., H2
at large internuclear separations) [42]. ..

, In the interest of extending the polarization Green's-function formalismto the
chemically interesting class of systems with highly correlated ground states, we
re-derive the polarization Green 's-function equations through second order using
a multiconfiguration self-consistent-field (MC-SCF)reference stale [43,44] within
the Goscinski-Lukmansuperoperator metric [35]. Of course, adequate descrip-
tion of a ground-state correlation is not the only advantage to be gained with the
use of a MC-SCFreference stale. By admitting this reference stale, which dis-

sociates correctly, unlike HF OT.RSPT reference states, detailed in,vestigation of
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excited-state potential surfaces becomes possible within the Green's-function
framework. The main points of difference between using RSPT and MC-SCF
reference states occur in (i) assessing orders of magnitude of the various terms that
arise in the matrix elements of the Green's function; configuration coefficients in
the MC-SCFcase are determined by optimization of the MC-SCFreference function
for. minimum energy as opposed to or<~ering in the electron interaction strength
with an RSPTfl.lnction, and (ii) in the nature of the non-Hermitian components
induced in the matrix elements of the Green's function.

The development presented in the folIowing sections will draw uran OUT
recently completed MC-SCFderivation for the one-electron Green's function [28].
In particular, the concept of order introduced in this earlier study will be carried
over without modification to the polarization Green's function case. OUTnota-
tions and choice of operator manifold to be used with the MC-SCFreferencestate
are introduced in Sec, II. We also give explicit expressions for the polarization
Green~sfunction in this section and we introduce a concept of order to assess the

. relative importance of each term. In Sec. III, this ordering concept is used to
produce a consistent second-order approximation to the polariz~tion Green's-
function equations. We then discuss other possible approximations, as wen as
.coniputational procedures to be used in implementing Dur results.

II. Formai Development

A. Notation

The spectral representation of the polarization Green's function in the
superoperator notation is [17, 35]

P(E) = (bt !(EI- RT1lbt), (la)

where bt is a tensor product set of complete sets of fermion creation {a;} and
annihilation {aj} operators

bt = {aax{aj} = {a;aj}, (l b)

and l and fI are the superoperator identity and Hamiltonian, respectively. These
superoperators are defined' with respect to an arbitrary operator Xi' of the
projection manifold h as [35]

Ix; = Xi, (2a)

and'

fIxi = [H, Xi]_. (2b)

The electronic Hamiltonian in Eq. (2b) is assumed to be in thesecond-quantized,
form [45] .

. t 1 t t
H =L hijaiaj +-2 L Vijk/aiaja/ak,

ij ijk/
(2c)
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where hij and V;jkl are one- and two-e]ectron integra]s in the spin-orbita] basis {<Pi}
ot the chosen MC-SCF reterence stale 'l';

f * ( 1 2 Zk )hij= <Pi(1) -2VI-tlrl-Rkl <pj(1)d1,

V;jk! = f f <P r(1)<p j (Z)(,rl ~ r21) <Pk(1)<Pl(Z) dl dZ

(Zd)

(Ze)

For the subsequent deve]opment, we aIso find it convenient to define a two-
electron integral difference

Vijkl = Vijkl - V;jlk. (Zt)

The operators ot a particIe-conserving projection manitold h appropriate tor use
with the polarization Green's tunction support the tollowing binary commutator
produet average with respect to the MC-SCFreference stale [34]: o

(xI/Xj) =('l'I[x:,Xj]-I'l') VXi,Xjeh. (3)
,

Using LOwdin's technique of inner projection [3Z] on the operator manifold h,
o o .. .. 1
here assumed to be complete, the superoperator resolvent (El - H)- may be
reexpressed in the form

(EJ- nrl = Ih)(hIEJ- Hlh)-I(hl, (4)

which, opon substitutionin the polarization Green's-tunction expression given in <

Eq. (la) yields

~(E) = (bt Ih)(hIEJ - Hlh)-\hlb t), (5)

This equation provides the basic starting point for the introduction of various
approximations Ieading to practical methods Jor computing P(E). The twa
essential approximations consist of selecting a point at which to truncate the
operator manifold h and picking a reference function 'l'.

B. Operator Space and Multiconfiguration Reference State .

Dur choice of projection manifold h is based opon generalization ot a
completeness theorem for ionization operator manifolds, recently given by
Manne [46] and elaborated opon by Dalgaard [47], to the case ot a particIe-
conserving operator manifold. The theorem essentially states that given an '
N -electron independent-particIe stale <1>0=n:l a:.lvac) (Le., an N -electron
Slater determinant) and a manifold of operators o o

N

h = U h2n = {h2,h4, . . . , h2N},
n=1

(6)<

0-

whose submanifolds, the h2m are comprised of particIe-conserving excitation
and de-excitation operators ot particIe-hole Tank n with respect to the orbital
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occupation in <1>0,Le.,

h2 ==[qi, q2] = [{a:a,,}, {a:am}],

h4 ==[q:, q4] = [{a:a"a:ap}, {a:ama;an}], a <{3, m <n,

h6 ==[q~, q6] = [{a:a"a:apa;a,,}, {a:ama;ana~ap}], a <{3 < '}',m < n <p,

h2N ==[q;N, q2N] = [{i~l a:ia"i}' {i~l a:iami}]'

al < a2 <. . .< aN, mI < m2 <. . . < mN, (7)

then the manifold h is complete when operat ing on any reference stale 'l',
provided. that the condition «I>ol'l')?CO is satisfied. In Eq. (7), weemploy, the
commonly used convention that Greek indices a,{3, '}',.. . , CIJlabel the elements of
the set of spin orbitaIs {~"Ia = 1, 2,. . . , N} occupied in <1>0while the Roman
indices m, n, p,.. .., z label elements of the unoccupied spin orbital set {~mlm ='
N -tl"N +2,. .,.}with reference to <I>~.The Roman indices a, b, c, .'.., l are used
to label imspecifled spin orbitals'belonging to either set. The complete spin orbital
set {~i} is thus given by{~,,} U {~m}' Thisconvention will be used in thesubsequent
formaI developmen1. It is important to note that Manne's theorem places no
restrictions on the exact nature of the orbitaIs {~,,} occupied in <1>0.

, The reference stale 'l' chosen in ibis particular development is a MC-SCF
N -electron stale [43, 44]

'l'(C, ~) = L CK<I>K(q,),
K=O

(8)

where the <l>K(~)are N -electron self-consistent-field conf!gurations constructed
trom the MC-SCFspin-orbital set {~i}' The MC-SCFwave function given in Eq: (8) is
defined to be an expansion-type wave function for which the orbital set {~i} and
the configuration mixing coefficients {CK} have been optimized variationally to
minimize the reference (ground-) stale energy to f1rst order [43, 44]; , ,

8E(C, ~) = O,

E(C, ~) = ('l'(C, ~)IHI'l'(C, ~».
(9)

. ,c

An equivalent statement to Eq. (9) is,'the generallzed B~illouin theorem,
expressed as [48] , " " .

l At

1

At ,t. t .

('l' H(aiaj)'l')=(H(aiaj»=O ':Yaia}Eb. (10)

, Equation (10) is actually employed in OUTdevelopment to compute 'the MC-SCF
wave function. We henceforth assume that the optimal MC-SCForbitaIs {~i}and
mixing coefficients{Cd for 'l' satisfying the generalized Brillouin theorem have
already been obtained. '

The configurations <l>Kin Eq. (8) for K 2: 1 are various n-particIe n-hole
excitations of <1>0(Le., <I>~= Li AiKxi 4>0,xi Eq;n 31 :Sn :SN) needed to pro-
vide an adequate description of the particular reference stale of interest. The
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operator manitold h is defined with respect to the configuration <1>0,hence the
overlap criterion tor the completeness ot h, «I>olqr)= Co;c O is automatically
satisfied. Thus, inner projection ot the Green's tunction on a manitold h defined
with respect to the <1>0component ot a MC-SCFreterence stale qr is a torrDally
correct procedure, provided that h is not truncated. <1>0is typically chosen to be
one ot the dominant configurations ot the reterence stale at the given molecular
geometry. This stipulation on <1>0markedly simplifies the assignment ot orders ot
magnitude to the various Green 's-function matrix elements.

If we limit OUTconsiderations to a truncated projection manifold h(4)
comprised only ot the h2 and h4 submanifolds, then, as we shalllater show, all
terms through second order are incIuded in the polarization Green's function.
This is also true tor RSPTreterence states projected on h(4),although the concept of
"order" in this case reters to two-electron integral products, Le., orders in the
electron inteiaction strength [17]. Since the MC-SCFreference function moce
cIosely approaches a true eigenstate ot the HamiItonian than a HF- or evena
RsPT-Ievel function, it is reasonable to expect that on h(4),use of a MC-SCFfunction
caD lead to a new second-order theory that will recover at least all terms through

. second "order" in the sense of an RSPTelectron interaction [28]. In what follows,
we develop a new concept of order arising naturally from the MC-SCFreterence
stale choice, and we provide further justification f()I-employing the' truncated
manitold h(4). ' . .

C. Basic Working Equations .

Within the MC-SCFsuperoperator product given in Eq. (3), elements of the h2
and ~ submanifolds displayed in Eq. (7) are not orthogonal to one another. To
facilitate further progress, we now orthogonaIize the h2 and ~ submanifolds of
h(4). Since superoperator overlap matrices are explicitly evaluated, it is not
necessary to reorthogonaIize the new ~ operators to one another. Using the
Schmidt orthogonalization procedure, the submanifolds h2 and ~ listed in Eq. (7)
are t:edefined as

h~= [qr, q~]5h2 = [{a~a..}, {a~an}] (11a)

and

hf~[qft, qf]5h4 -h2(h2Ih4)

= [{ a:ajLa:a" - ~ (1- Ppq)a:a..(a.:a:ajLa,,)

- L (1- pjL,,)a~a,,(a:a:ajLam)}'m

{ a1asa:;.a,- L (1- PSI)a~a,(a1a!asal3)
13 . .

- ~ (1 ~ pl\(T)a:;.an(a~a1asa,)}1
(llb)
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In writing Eq. (11b), we have employed a hillary index exchange operator Pij'
When operating on a term to the right, it converts i to j and j to i. The iwo-particIe
density averages (Le., (aiaJakal» in Eq. (llb) are taken with respect to the
MCC-SCF reference stale 'l'. The usual index restrictions p < q, J.L< P, and A < a,
s < t apply to the elements [{(q!);IL4"}'{(q!)"S<TI)]ot h!. In what toJJows, we drop
the superscript S and assume that the symbols h2 = [q~,q2]and h4= [qt q4]ceter
to the orthogonaIized submanifolds given in Eqs. (lla) and (llb). For the
orthogonalized 'manitold h(4)=h2 U~ the superoperator overlap equations
become

(h2/h2)= S2.2,

(h2Ih4)= S2.4= O2.4,

(~lh2) = S4,2= 04,2,

(12a)

(12b)

(12e)

and

(~I~) = S4,4, . (12d)

t \
(q2nlq2n') ](q2nlq2n')

n, n' El, 2. (12e) .

. t I t
)

'

[(q2n Q2n'

S2n.2n: = (Q2nIQ~n')

Using Eqs. (12a)-(12e), fhe polarization Green's-tunction express!9n given in Eq. \
(5) ean be partitioned on the orthogonal inner projection manitold h(4)to yield*

P(E) = (btlh2)P(E)(h2Ib \ (l3a)
with

P-\E) = (h2IP-l(E)/h2)

= (h2lEi - Hlh2) - (h2Iffl~)(~IEi - HI~)-1(h4IHlh2)

=A(E)-BM-\E)C. . (l3b)

..The matriees A, B, M, and C in Eq. (l3b) are given as

A(E) = (h2lEi - Hlh2) = ES2,2 - A',

A' = (h2/H/h2),
" . 3/'

B = (h2IHlh4),
, .

C = (h4IHlh2),

M(E) = (h4lEi -Hlh4) = ES4,4 -M',

(l3e)

J (l3d)

(l3e)

(13f)

(l3g)
I .

* It is possible to show that for Eqs. (Ba) and (13b) to hold, it is sufficient to have (h2Ih;) =Ofor
i,:",4, 6, 8, . , . . With the superoperator resolution of the identity expressed as j f.,Ih)(hlh)-I(hl, the
representation of the inverse of a superoperator A becomes (hIA-1Ih) =(hlh)(hIAlh)-I(hlh). This
representation taken together with the condition (h2Ih;) =O ensured by OUTuse' of a Schmidt-
orthogonalized projection manifold [see Eqs. (12bH12c)] immediately gives Eqs. (Ba) and (13b)
from Eq. (5).
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and

M' ~ (h4IHlh4). (13h)

The expressions displayed in Eqs. (13a)-(13h) constitute OUTbasic working
equations when defined with respect to a MC-SCFreference stale. Like the overlap
matnces in Eqs. (12a)-(12e), each of the constituent Green's-function matrices in
Eqs. (13c)-(13h) breaks down joto tour blocks within [q;n, q2nJ representation of
the h2n;e.g., .

A(E) =[(q;IEI - Hlq;)
(q21EI-Hlq;)

(q;IEI -Hlq2)](q21EI - Hlq2) . \
(14a)

Consequently, the polarization Green's-function matrix shown in Eq. (13b)
breaks down 'into tour blocks as well '

5 P-\E) = [(q;I~-\E)lq;)
(q2!p-l(E)lq;)

(q;I~-:(E)lq2) ]:(q2Ip- (E)lq2)
(14b)

D. Hermiticityol H
1. Hermiticitycondition.The superoperator:HamiltonianH is Hermitian

, if and only if ' " .

(XiIHjXj)-(XiIIlIX;)*=o : . VX;,~Eh.- . (15)

It is relatively easy to show that the left-hand sideof Eq. (15) may be re-expressed
as .

l
A

I l
A

I *- A t
(X; H Xi)-(XjH X;) -(H[X;,XjJ-> (16)

for operators Xi,Xi belonging to a particle-conserving manifold. Ii the reference
.., stale ~ with respect to which Eq. (15) is averaged is an exact eigenstate of H, then

Eq. (15) is exactly satisfied and fi is Hermitian on h. Thus, with an exact 'l', the
'. . propagator separation theorem is 'vaIid for the poles of P(E), ev~ri if a truncated

"'., projection manifoId is employed. However, a fiest-order change in the reference
-, ground stale relative to the exact ground stale (Le., 'l' = 'l' cnel +'45'l' cxact) caD

induce non-H~rmitian oomponents in the matrix elements of P(E), which in tum
may give rise to artificial imaginary components in its polestructure. Since the
matrix elements of P(E) are superoperator expectation vaIues of Il or El - fi.

, extraneous non-Hermiti~m contnbutions to P(E) for OUTchosen MC~SCFreference
A t '

, stale 'l' caDbe determined by computing (H[X;, XJ-> for those operators X; and
Xi over which the A, B, C, and M matrices of P(E) are defined.

2. A matnx hermiticity.' (H[Xj, XJ-> [Eq. (16)]must be computedforX;, Xi
belonging to each of the tour blocks of A shown in Eq. (14a). For the block with
X; = a;,.a.., Xj = a~~~, E q; evaluatio~ of Eq. (16) using the' generalized Bnllouin
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theorem [Eq. (lO)] gives
A t A t t

(H[(a2)am, (a2 )n/3]-) = (H[aaam, anal3]_)
A t A t

= Onm(H(aaa/3» - O/3a(H(anam»

=0. (l7a)

Similar application of Eq. (lO) to Eq. (16) for the block of A with Xi = a:am,
Xi = a~anEq2 yields

A t A t t
(H[(a2)ma, (a2)/3n]-) = (H[amaa, a/3an]_)

A t A t
= Oal3(H(aman»-Onm(H(a/3aa»

=:'O. (17b)

The operat~rs xl and Xi commute in the iwo remaining blocks of A, where
t t t t ,t, t..

Xi = amaa E Q2, A = a/3an E q2, and Xi = aaam E q., A = anal3 E Q2. Thus, the A
, matrix is Hermitian within the MC-SCFreference stale choice used to estabIish the
. generalized Brillouin theorem.

3. Relationshipbetween B and e. B ~nd e ~re "nonsquare" ~atrices, so
considerations of Hermiticity do not apply directly. However, the.. matrix
pro duet BM-Ie appearing in p-leE) cannot be Hermitian for Hermitian M-l
unless B and e are adjoints of each other. To address the problem of non-
Hermiticity in BM-Ie, we caD consider B and e as a couple and investigate
deviations from the perfect adjoint relationship

B=Ct.

In ibis case, Eq. (16) becomes a tool to investigate the value ot

.:1= B - el.

(18a)

(l8b)

where

L\..= L\(X X ) =B. .-C*, = (H[Xt X ] )'./ "/ './].1 " /- (18c)

for X E h2 and A E h4. Equationo(18c)' follows directly from the defining Eqs.
(13e)-(13f) for B and C. For the block of4. with Xi Eqt A Eq:, we have '

. . ~,
A t ... ,.'

L\ma.plA4":;:(H[(a2)am, (a4)PlLq,,]-").. ., .
A,tt.. ",,',A',tt

= (1- Ppq)Omq(H(aaapalLa,,»+ (l- PIL,,)o.-a(H(apaqalLam» ..

. o' ". (18d)

and for the block charaeterized by Xi E q2, Xi E q4, Eq. (16) yields
.. A t

L\/3n.Asut= (H[(a2 )n/3,(a4hsut]-)
At t A t t

" = (1- Pst~Otn(H(aAauasa/3» + (1- !'.Au)O/3u(H(q.na Aasat». (18e)

Equations (18d) and (l8e) are evaluated expIicitly in Appendix A. In the other
iwo bloeks of 4., where X E qt Xi Eq4 and Xi E q2, A Eq:, it is easy to verify that
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[X:, Xj]- = O.From Eqs. (l8d) and (18e), it is seen that .:1~ O,hence B and C aTe
not adjoints of each another. However, if B and C are redefined as the sym-
metrized matrices

- J t' 1 t 1
B=2(B+C) =B-2.:1=C +2.:1 (18f)

and

'c=l(Bt +C)=Bt -l.:1t =c+l.:1t, (18g)

then obviously

B=Ct. (18h)

In the limit of an exact reference stale, .:1= O, and Eqs. (18f)-(18g) collapse to

B=B (18i)

and

C=C.
.,

. (18j)

The symmetrized matrices B andBt = C will be used in denving more explicit
representations for the Green's-function equations. With a high-quality MC-SCF
reference stale 'l', the matrix elements of .:1aTe smali and Eqs. (18f) and (18g) aTe
well approximated. '

4. Henniticity'of M. Analysis of the blocks of M by means of Eq. (16) and the
generalized Brillouin theorem [Eq. (10)] yields

~ t

{

~O , Xi,.XjEq:andX;,~Eq4(i~j),
(H[Xi,~]-) 't t

= O ~Xi E q4, Xj E q4 and Xi E q4, Xj E q4.
" (19)

Owing to the complexity of the matrix elements in Eq. (19), explicit expressions
for these non-Hermiticity factoTSare'not reproduced in the text, but aTe available .

'from the authors opon request. Except for the trivial case of the diagonal
elements, the noh-Henniticity factoTS in Eq. (19) do not vanish, hence M is
non-Hermitian. Since M, the matnx of largest dimension in p-l (E), most be
inverted many.limes during the P(E) pole search, a Hermitian diagonal approxi-
mation to its matnx elements becomes computationally attractive. Diagonal M
approximations have been used with success in computational implementations ot
other Green's-function theories employing correlated reference states [17-20,
24]. Since the non-Hermiticity of Mis an artifact that disappears in the limit of an

. exact reference stale, nondia~onal Hermitian approximations soch ~s averaging
off-diagonal matrix elements or defining M with respect to a symmetric com-
'mutator should also be viable. Given the high quality ot the MC-SCFretertmce stale
used to calculate M, the off-diagonal M matnx elements will be smali and
approxiraations involving truncation or modification ot these elements will pro-
vide reasonable descnptions ot M. We elaborate opon this point in Set. III.
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E. Explicit Expressions

1. Notation. In order to simplify OUTdiseussion, an indexed representation of
p-I (E), Eq. (13b), is reprodueed below:

-1 - -1 - t
[P (E)]ab,{g =[A(E) - BM (E)B ]ab,fg

- -1 -*
= Aab.{g- L Bab,AM AoBfg,O.

A,O
(20a)

The eombined indices A and fi in Eq. (20a) stand for groups of spin-orbital indiees
running over the elements of the h4 = [q;, q4] submanifold:

,~

The spin-orbital indiees ab and fg are restrieted to run over the elements of the
h2 =[qt q2] submanifold:

ab =
{

ma

am

t
Q2,

Q2,
(20e)

fg =
{

n{3Qi

{3n Q2.

By using these unspecified spin orbital labeIs (Le., ab and fg) to denote the
element of P-\E), explieit expressions applieable to eaeh of the tour bloeks of
P-\E) displayed in Eq. (14b) caD be derived. Using the generalized Brillouin,'
theorem of Eq. (10) to diseard 'null-valued terms, we are able to obtain the
following explicit representations for th6 'various matrix elements appearing in
Eq. (20a).

2. A matrix., Evaluation of Eqs. (13e) and (13d) yields

Aab,{g = «h2)abIEi - .B1(h2)fg) = ESab,fg - A~b,fg, (2la)

where

Sab,fg= 8af(a:ag)-8bg(a;aa) (2lb)

and

"A~b,fg = haf(a:ag)+,hgb(~;aa)- L {8bghif(aiaa)'+8athgi(~lai)}
, i ~

1 - tt "- tt

+2' t {~gaij(abafa1-ai)+ Vijfb(aiajagfla)

- t t" -t f -
+ 2 Vigjb(afaiajaa) + 2 Vaifj(aba iajag)}

1 - O'tt -.' tt
+- L {8afV';gjk(abaiakaj)+8bgVijkf(aiajakaa)}.

2 ijk "

(2le)

A ={ (P/-Lqv)

t
q4,

(/-Lpvq) q4,

(1 = {(SAtu)

t
(20b)

q4,
(Asut) q4. "



POLARIZATION GREEN'S FUNCfION 1221

3. ConjugateBand CMatrices. Using the explicit expressions given in Eq.
(11b) for the A = (pp.ap) component of h4, Eqs. (l3e) and (13f) for the noncon-
jugate B and C matrices become

A

l t
Bab,p""",,= «h2)abIH (a4)p"",,,,)

=B~b,p""",, - L (1- Ppq)(a:a;a"a,,)A~b,qa
a

- L (1- p"")(a:a:a,,am)A~b,m"
m

(22a)

and

Cp""",,,ab = «a:)p""",,IBI(h2)ab)

= C~""",,,ab - L( 1- Ppq)(a:a;a"a,,)* A~a,aba

- L (1- P"")(a;a:a,,am)*A:"",ab, ,

m .
(22b)

where L,

B~b.p""",,= (alabIBla;a"a:a,,), . (22c)

and

C't'

(
t t l

A

I t
p""",,,ab= apa"aqa" H aaab). (22d)

/

The elements of the Hermitian A' matrix appearing in the Schmidt components of
Eqs. (22a) and (22b) are written out with general indices in Eq. (21c). Substitution
of Eqs.(22a) and (22b) joto the expression for B, Eq. (18f), yields- . -, - t t . I

Bab,p""",,= Bab,p""",,- L (1- Ppq)(aaapa"a,,)Aab,qa
a

- L (1- p"")(a:a':a,,am)A~.m"= C:""",,,ab:
m

(22e) .

with

B-t !r B ' C t*
]ab,p""",,= 2l ab,p""",,+ p""",,,ab. c(22f)

In deriving Eq. (22e), we have used the obvious fact that Schmidt components of B
and C are conjugate to one another. Since the matrix elements of B' arequite. '
lengthy, they are not shown here, but are available upon request from the authors.'
Order-truncated expressions for D' are displayed in Appendix A however. The
ele men-ts Bab,"'pvqcaDbe obtained from the Bab,P,,",,"elements of Eq. (22e) by the
simple index transformation A(q: ~~) =(p ~ p.,p.~ p, p ~ a,q~ ,,).

A . .

4. M matnx. With the combined index labeIs for h4 defined inEq. (2Qb), the -
expressions given in Eqs. (13g) and (l3h) for the M matrix become

MAo = «h4)AIEi- BI(h4)o) = ESAo- M~o. , (23a)

Since it -is necessary to introduce a diagonal approximation to the M matrix to !
bring it joto a computationally manageable form, the complicated explicit
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expressions for its off-diagonal elements are not reproduced. For the diagonal
elements of the q~, q~ block of M with A = O = (PJLqll),we have

s PILqv,PILqv=( (q ~ )p,..avl(q ~ )p,..av) (23b)

and

, t I
A

I t
MpILqv,PILqV = ({q4)p,..avH (q4)p,..a,,). (23c)

M is evaluated by substituting joto Eqs. (23b) and (23c) the explicit form for
(q~)P...qVgiven in Eq, (llb) and employing the generalized Brillouin theorem [Eq.
(10)] to simplify the resulting expressions. Matrix elements for the q4, q4 block of
M caD be recovered from Eqs. (23b) and (23c) by the index transformation

t . t
A(q4 ~ q4) = O(q4 ~ q4) = (p ~ JL, JL ~ p, li ~ q, q ~ li). The complexity of Eqs.

(23b) and (23c) precIudes their explicit publication, except in an abridged
order-truncated form, as shown in Appendix A. Explicit expressions for the
complete diagonal and off-diagonal matrix elements of M are also available from
the authors upon request. '

F. Order Analysis

To caIculate the A, B, and M matrix elements presented in Sec. II E, it is
necessary to know the values of certain one- and two-etectron integrals(Le., hij,
Vijkl) and certain components of the one-, twej-, three-, and tour-particIe density
matrices [Le., (ill~=l ai)ill7=1 aj», n E 1, 2, 3,4], where both the integrals and
density-matrix components are defined with respect to the MC-SCForbital basis

, {<Pi}' It is important to keep in mind that for a specific choice of the MC-SCF
reference stale '1', maDY of the complicated terms appearing in A, B, and M
will be zero. In particular, only a few of the three- and tour-particIe density
matrices will contribute. By restricting the Green's-function theory to second
order, it is possible to eliminate maDY of the smaller high er-order terms as
well.

In ibis section, we assignorders to the various components of A, B, and M then
discard terms higher than second order. The order concept we employ was
developed earlier for theanalogous MC-SCl:'one-electron Green's-function
problem [28]. For completeness, we summarize ibis earlier development before
implementing it to simplify the various terms in A, B, and M. This new concept of
order is based upon the physically reasonable assumption that for most systems of
interest, the MC-SCFspin-orbital set {<Pi}caD be partitioned joto iwo disjoint
subsets L and S, whose elenients have either large (near unit) or'small (near zero)
occupation numbers with respect to the MC-SCFreference stale '1':, ,

{

l~iEL

(17;)= (a;ai)::><O~ i ES
(24a)
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(Le., we are assuming that cpjwilI either be occupied or unoccupied in most of the
dominant configurations of 'l'). * This assumption lets us assign orders of magni-
tude to the diagonal density matrix elements (Le., (aiai), (aiaJajai),
(aiaJatakajaj), (aiaJataia,akajaj». Using the Schwartz inequaJity, upper bounds
to the orders of the oft-diagonal density matrix elements can be found by reJating
lbem to products of diagonal elements, whose orders are known:

l(a;ajW s (a;ai)(aJaj),

l(aiaJaka/W s (a iaJajaj)(aia laka/).
(24b)

For example, in the case of the one-particie density matrix whose diagonal
elements are ordered as

{

O (O)
(aiai) = 0(2)

zeL

zeS'
(24c)

appJication of Eqs. (24a) and (24b) enables us to write

{

O(O)

(aiaj) = 0(1)

0(2)

z,jeL
zeS,jeL and zeL,jeS,
z,jeS. .

(24d)

SimiJar concepts are easiJy extended to the higher-order density matri~ elements.
The overa)) result is quite simple: to determine the order of a term containing an
n-particie density matrix element «TI7=tai)<TI7=taj», one counts the number of

\ spin-orbital indices belonging to S; the total count is equal to the order of this
element. Representative examples of this occupationnumber ordering concept
are presente~ in Table I. .

Before we can apply this concept of order to the terms of P-l(E), it is necessary
to develop rules for ordering products of density-matrix eJements with one- and
two-eJectron integrals and with other density-matrix elements. Since a one-
electron integral hjj can be quite large (e.g., hu is of the order of the orbital energy
Ei), we do.not truncate any terms of the type hij«TI~=t aj. )<TI;=t ar», even if the
densityelement by itself is higher than the desired order. With only a lew
exceptions, the magnitude of a two-electron integrallies between Oand 1, thus a

. For a MC-SCF wave function of the type given in Eq. (8), 'l' ~r;;-oCKcJ>K,this ass~ption
implies that the set of mixing coefficients {CK IK = O,M} caR be partitioned as {CLIL= O,m} and

{CsIS = m + l, M} such that ICLi2» iCsl2 for all L and S. This is generally true. for nonextended
systems; an example caR be scen in Ref. 44 where for b lr+ NH at R~ = 1.95 bohr, the CL set bas

valence configurations 30-21172 and 30-40-1172 with coefficients 0.92 and -0.37, respectively. In
contrast, the coefficient ot largest magnitude trom the Cs set is 0.09. WbiJe the assumption ot a distinct
LI S boundary may not be strictly valid tor delocalized systems such as metals, an LI S partition caDstm
be constructed by including in the L-orbital subset those orbitais with occupation number averages ot
intermediate magnitude. .
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TABLE L Examplesor the occupation number ordering concept. It is assumed
in these examples that L consists or all orbit aIs occupied in <1>0.the dominant
configuration ot the MC-SCF reference stale, and S consists ot those orbitaIs
unoccupied in <1>0.OrbitaIs belonging to L or S are thus denoted by Greek indices

or the Roman indices m. n, o, . . . , z, respectively.

Densit y '1atrix element L/S Classification Order (KS)

<ata>m"

<at at a a >
" p ~ v

<at at a a >
p " v m

<atatata a a.>
v~q~vl

<StL>

<LtS\L>

<StStLS>

<LtLtS\LL:-

<L\ tStLLS>

3

i EL

iES 2

<a ta t a:- a t a a a a.>
\I'~lqq~vJ

<L\tLtStSLLL> i,jEL

<L\~StStSLLL> hS,jEL

2

3

<LtLt[,tStSLLS> icl,jES

<L\tStStSLLS> i ,jES

3

f

lawet bound to the order of the product V;jk/«I1~=l ai)<I1;=l aj» will be given by
. the order ofits density-matrix component. An integral V;jijcan be greater than

unity if 4>;and 4>jare radiallycontracted orbitais whose electron densities 14>;12and
/4>jI2overlap significantly within a smali region of space. Typically there exist only
one or twa soch orbitais in a basis {4>Jthat can give a two-electron integral not
bounded by 000 unity. Thus, for almost every integral V;jkl. the order of
V;jk/((fe=l ai.)<I1;=l aj'» is either the same as or high er than the order of the
density-matrix element alone. For products of density matrix elements, each .

element in the product is ordered separately and product terms higher than the
desired order are then' truncated. More refined order approximations that
cQnsider the magnitudes of the individual one- and two-elec~ron integrals are also
possible. We use the occupation num ber concept of order in Sec. II to bring the
expression for A, B, and M and hence p-l (E) into a consistent, computationally ~

tractable second order form. U nlike RSPTordering in the electroó interaction, this
occupation number ordering scheme preserves itseIf even when applied to
systems with highly correlated reference states or severely distorted geometries.

III. OperationaI Considerations .

A. L/S Orbita! Partition

As discussed in Sec. II F, the occupation number ordering concept assumes a
partition of the MC-SCFspin-orbital set {4>;}into twa disjoint subsets {4>;!iEL} and
{4>j/jES} based opon orbital occupation number magnitude in the MC-SCF
reference stale '1'. Accordingly, we 'repartition onr occupied and unoccupied
spin-orbital subsets {4>a} and {4>m}, which are defin~d with respect to the <Po
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component ol 'l', joto L and S subsets:

{ePi} = {ePili E L} U {eP;/i E S} = {ePa}U {ePm},

{ePa}= {ePala E L} U{ePala 6 S},

{ePm}= {ePmlmEL}U{ePmlm E S},

{ePili~ L} = {ePala EL} U {ePmlmEL},

{ePAjES} = {ePala E S}U{ePmlmE S}.

(25a)

Since <1>0is chosen to be the dominant configuration in 'l', it caD be assumed
without loss ol generality that {ePala E S} = 0 and thus

lePili E L} = {ePa}U {ePmlm E L}, (25b)

and

{ePiVE S} = {ePmIm E S}. (25c)

Furthermore, in basis sets ol even moderate size, {ePmlmE S} will contain maDY
. moce elements than {ePmlmEL}.

B. Implementation ot the Occupation Number Ordering Concept

- I The LI S classification ol the MC-SCForbital set enables us to partition each ol
the tour main blocks ot p-l (E) shown in Eq. (14b) joto tour sub-blocks, giving a
total partition ot 16 blocks. For example, the (q~)ma; (q~)nIl block ot P-l(E) caD
be turther partitioned as .

P -l
ma,nll:

ma, n{3

1. LL, LL
2. LL, SL
3.SL,LL
4. SL, SLo (26a)

In deriving thispartition, we have assumed that Eq. (25c) holds; orbitais occupied
in the dominant MC-SCFconfiguration <1>0(Le., orbitais designated by Greek
indices) belong exclusively to L, wbiJe the unoccupied orbitals in <1>0(Le., orbitals
designated by Roman indices m, n, ' . . , z) caD belong to either L or S. The \

sub-blocks in Eq. (26a) ale listed in order ot increasing size. Since only a rew ot the
orbitais m, n, o, . . . ,z unoccupied in <1>0belong to L, sub-block 1 ot Eq. (26a)
contains tar tewer matrix elements than aDYot the other sub-blocks. Sub-blocks 2
~nd 3 contain the same number ol matrix elements, which is in tum less than the
number ot matrix elements tound in sub-block 4. Similar considerations allow us

to partition the other three main. blocks ol p-l (E);i Within each ot the 16
sub-blocks ot P-l(E), the order concept introduced in Sec. II F caD be applied

-to systematically truncate higher order terms. This brings abouta substantial
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reduction in computational effort while preserving the order consistency of the
approximation.

To carry out this truncation process, it is necessary to establish an LI S
partition of the A, i, and M matrices comprising P-\E). The A matrix consti-
tuent has the same indices and main blocks as p-l (E), so the LI S partition of Eq.
(26a) caDbe applied directly, giving with truncation the contribution of A to each
ofthe 16 sub-blocks of p-leE). Thus for the (qi)mo; (qi)n{:lblock of A, we have the
tour sub-blocks

Amo,n{:l:

ma, n{3

1. LL, LL
2. LL, SL
3. SL, LL
4. SL, SL (26b). .

The i and M matrices contribute to p-l (E) as the product iM-lit, With LIS
partitioning, each of the tour main blocks of D(and hence i t)breaks downinto .

eight sub-blocks. For example, in the (qi)mo, (q:)PlLa"block, we have

jj mo.plLa":

ma, pJ1.qv

~. LL,LLLL
2. LL, LLSL
3. LL, SLLL
4. LL, SLSL
5.. SL,LLLL
6. SL, LLSL
7. SL, SLLL
8. SL, SLSL. (26c)

Each of the two diagonal blocks of the M matrix caD be partitioned joto tour
sub-blocks. Within the (q:)PlLa";(q:)plLa"block, we get the partition

M PILa".PlLa" :

pJ1.qv, pJ1.qv

1. LLLL, LLLL
2. LLSL, LLSL
3. SLLL, SLLL
4. SLSL, SLSL. (26d)

The number of matrix elements in a given sub-block of i or M depends upon the
number of Roman indices belonging to L (Le., the more Roman indices belonging
to L the smaller the block). By truncating each of the sub-blocks'of i and M to
within a given order, DM-lit caD be approximated through that order. For
example, if all zeroth-, first-, and second-order terms in A, i, and M are retained,
then DM-lit contains all terms to second order plus certain terms of high er
order. We speak of DM-lit as be ing approximated through'second order. Since
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M appears in this produet as an inverse ot its diagonal elements; the concept ot an
approximation exact to second order is difficult to apply. Other Green's-tunction
methods have also employed approximations through a given order with good
success [18-20, 27, 28]. ,

As a specific example ot the ordering process, we investigate components ot A,
B, and M contributing through second order to sub-block 4 ot the (q; )",a; (q; )ntl
main block ot P-l(E).. Since A bas the same block structure as p-l (E), we will thus
order sub-block 4 ot Eq. (26b). WbiJe maDY ot the sub-blocks ot B and M
contribute to sub-block 4 ot P-l(E), we choose to order sub-block 8 ot Bin Eq.
(26c) and sub-block 4 ot M in Eq. (26d) so that aUot the Greek indices we consider
in this example will belong to L and aU ot the Roman indices m, n, o, . . . , z will
belong to S.* However, Roman summation indices in these matrix blocks caDstill
run over both L and S.

In carrying out the order truncations tor A, Band M, it is also necessary in
same cases to restrict summations over the general orbital indices i, j, k, l EL U S
that appear in these matrices (Le., without restrictions, terms higher than second
order would be inc1uded). To express these restrictions in a simple form, we
enc1ose the set ot summation indices in parentheses and denote with a subscript
the maximum number ot indices that caD belong to S. For example, the notation
Lwo implies that the i index cannot run over aDY S -type orbitais, hence this
summation is equivalent to the restricted summation LEL- A restricted double
summation L(ij)oimplies LiEL.jEL,but a moce modest restriction Lm, would permit
LiEL.j~L>LiEL,jES'and LES,jEL summations. Similar restrictions caDbe written out
for the three-index summations L(ijk)n'With this convention, a summation over m
indices L(ijk"')nis completely unrestricted it n = m, partially restricted it O< n < m,
and completely restricted it n =O.

In ordering through second order sub-block 4 ot the Ama.ntl main block (Le.,
ma,n{3 = SL,SL), we find that the overlap terms Sma.ntl shown in Eq. (21b) are
already ot second or lower order, but the general expression tor A:';".ntIgiven in
Eq. (21c) reduces with truncation ot terms higher than second order to

A:.l...ntI= hmn(a:atl) + hlJa(a~a",)
- - t ' ot
- L {8"'tlhin(aia",)+ 8",nhtli(a",ai)}

i o

"

1 - tt - tt -
+- L {VtI"'ij(aaanapi)+ Vijna(aiajatlam)}

2 (ijh o

- t t - t t'
+ L Vitlja(a na i aja",) + L V",inj(a",a;ajatl)

(ij)o ij

1 - -t t 1 -- t t
+28",n L V;tJjk(a",a;akaj)+28",tI L V;jkn(aiajakam).

- ~b ~h'

(26e)

* Note that we have chosen to' order the largest sub-blocks of A, B, and M since all Roman indices
in our example belong to the S-orbital subset. Sub-blocks of A, B, and M having some L-type Roman
indices will contain fewer matnx elements, since {<i>mlmE L} contains far fewer orbitais than {<i>mlmE
S} in'a high-quality basis set.
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Within sub-block 8 ot Bma,plLiI"(Le., ma, pp.,qv = SL, SLSL), ordering Eq. (22e)
through second order gives

Bma.plLiI"= B'",a,plJ.a"- L (1- Ppq)(a:,a;alJ.a")A',,,a,aa'
",'

- L (1--: PIJ.")(a;a:alJ.am,)A',,,a,m"" (26t)
(m')o

Since the density-matrix elements in the a' summation term are first order, only
the zeroth- and first-order terms ot A '...a,aa, need to be retained to give the a'
summation to second order:

A'...a,aa'= hma(a:aa') + ha'a(a:am)

- L {8a""hiq(aJ am) - 8maha'i(a:ai)}
i

1 - t t - t t
+2 L {V ""mij(a",aaajai)+ Vijaa(aiajaa,am)}

(ij)o

- t' t .
+L Vmiaj(a",aiaja",,)

(ijh

l . . - t t
+28ma L Via'jk (a",aiakaj)

(ijkh

1 - t t
+ 28a",, L Vijkq(aiajakam).

(ijk)o
(26g)

The (a;a:alJ.am,)matrix elements in the m' summation are already second order, ,
so only the zeroth-order component ot A'...a,m'"js needed:

A'",a,m'"= hmm,(a:a,,) + h"a(a~'am)

- L {8a"him,(aJam)-8mm,h"i(a:ai)}
i -

1 - t t
+2 L V ""mij(a",am,a/-Qi)

(ij)o

- t t
+ L Vmim'j(a",aiaja,,)

(ij)o

~
1 . - t t

+ 28mm, L Vi"jk(gaaiakaj).
(ijk)o

(26h)

The lengthy second-order expression tor B'""",plLiI"isdisplayed in Appendix A.
The order analysis ot block 4 ot M PILiI",PILiI"(Le., pp.,qv = SLSL) is algo presented in
Appendix A.

To assess quantitatively the extent to which P(E) is simplified by truncation ot
its matrix elements through seoond order, wecount betore and atter truncation
the number ot distinct density matrix elements that musi 'be summed over to
compute given elements ot the A', B', and M'" matrices (we choose to investigate
these matrices because they are the principal components ot A, B, and M).
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Keeping in mind that an unrestricted summation index runs over the N elements
of the MC-SCForbital basis {<Pi},wbiJe a restricted index runs over only the l
orbitais belonging to the large occupation num ber subset {<PiliEL}, we caD
determine exactly how maDYdensity matrix elements must be summed over to
produce an element of A', B', or M"'. For example, caIculation of the term

- t t
Sal3 L Vijkn(aiajakam)

ijk

appearing in the unordered A:.l...ntlmatrix requires summation over N3 density
matrix elements. In the second order A:.l...ntl matrix, however, the summation is
restricted to L(ijkh' Taking aU possible permutations of the index restrictions joto
account, we find that only e+ 312s density-matrix elements ale summed over (the
s parameteris used to denote the number of MC-SCForbitais belonging to the
smaU occupation num ber subset {<PiliE S}; recaU that N = l + s). To facilitate
comparison between ordered andunordered matrix elements, we find it con-
venient to define a parameter A = l/N, the fraction of Mc-sCForbitals belonging tp -
the large occupation number subset. The lange of A is O< A< 1. With the
appropriate substitutions in the ordered summation coun! of OUTchosen A'-
matrix eomponent, we find that 13+ l2s ==(3A2- 2A3)N3, 'which is less' than the
unordered count for N3 for O< A< 1. Summation counts before and artel
truncation for the complete A', B', and M'" matrix elements ale listed in Table II.

TABLE II. Number of terms containing dis!inct matrix elements that most be
summed over to produce single complete elements of the A', B', and M"
matrices. N is the total number of elements in the MC-SCForbital basis {.M and
A = l/N represents the fraction of MC-SCF orbitaIs belonging to thelarge

, occupation number subset {<f»iliEL}, where O< A< 1.

llatrb element' tenIs betore ordoring , tonns ottor ordering (2nd order)

Eq.(2Ie) > 2N+[I+4'-' 2]N2+[3'-' 3]N3 Eq. (Zfe

15N+[1+121-512]N2+[3>+1512_51 3]N3 EqiA4)

. " 2ON+[2+8'+512]N2+[61+3' 2~21 3]N3 '~q'<AI0i

I"

* Owing to their excessive length 'and complexity, explicit expressions for
'the complete B' and M" matrix elementsare not reproduced in the text.

However, they ale available from the authors opon request.

. ' .
It is easily seen tram the expressions in this labie that the simplification in P(E)
effected by truncation of its matm elements through second order is dramatic;-
This is especiaUy true for high-quality basissets where N is much larger than l,
making A much smaller than unity.

A.;,o,na
2N+4N2+2N3

B' 16N+14N2+14N3
""".p.q.

/
M"' 24N+3ON2+16"3

P.q.,p\>q.



1230 BANERJEE. KENNEY. AND SIMONS

C. Approximations to the M Matrix and Operator Manilold

Sofie justification is called for making a diagonal approximation to the M
matrix, since maDYof its off-diagonal elements contain zeroth-order terms. The
existence of such low order off-diagonal terms would seem to place severe limits
on the kinds of approximations that caD be justified. Fortunately, however, maDY
of the same off-diagonal terms appeal in the non-Hermiticity factors for M
displayed in Appendix A. For example, the zeroth-order term L h".;(a:aA,A;)
appearing in Eq. (AlO) for the diagonal M';p.qv.p,.qvmatrix caD be traced back to
several related zeroth-order terms of the moce general off-diagonal M';,.qV.SA/O"
matrix, such as the term op,(5asL; hu;(a:a AAa;). However, it caDbe shown that ibis
term is contained in the non-Hermiticity factor op,(5as(If(a:a ~aAaU»of M';".av.sA!u'
This indicates that such terms, artifacts of the reference-state approximation, will
tend to zero when a high-quality reference stale (e.g., the MC-SCFreference stale
'l') is employed.* We use these facts as a basis for making a Hermitian diagonal
approximation to M. As we have noted, other Green 's-function theories employ-
ing the moce tranditional RSPTreference states have utilized diagonal approxima-
tions to M with good computational success. Since the magnitude of the spurious
off-diagonal contributions to M diminishes as the quality of the re'ference stale
increases, using a MC-SCFreference stale will further enhance the viability of the
diagonal M approximation. Finally, it should be noted that the lower-order
off-diagonal terms of M cJuster around the diagonal elements (e.g., the lower-
order terms of M p,.qv.sA/O"contain delta functions of the types op" op"0".1.,°ILU'oa..
oa" OvA),which suggests the use of a near-diagonal approximation as a compu-
tationally accessible means of overcoming the inherent deficiencies of the
diagonal approximation.

OUTchoice of a truncated operator manifold h(4)=h2 Uh4 for MC-SCFGreen's-
function theories employing the occupation number ordering concept is based
upaD the success of similar manifold truncations in RSPT ordering schemes.
However, we have implicitly assumed that with OUTtruncated manifold h(4),all
contributions through second order to the A, B, and M matrices ale recovered.
The validity of ibis assumption caDbe demonstrated by showing that extension of
the operator manifold to incJude h6leads to self-energy corrections that ale higher
than second order. This is accomplished, in analogy with the order analysis for the
elements of M, by noting that (h6IHlh2) = 0(2) in the limit (H[h6, h2]-) -+O,where
M-t is diagonal with respect to zeroth-order terms. t Extension of the operator

* There also' exist some zeroth-order Hermitian terms in the ofI-diagonal matrix elements ot M
that cannot be traced to artificial non-Hermiticity (i.e., they make no contribution to (H[XT,Xj]-».
However, it can be reasonably argued that these are not truezeroth-order terms, since trom the Schwartz
inequality expressions given inEq. (24b), formaI justification is provided for the computationally verified
density matrix result that such ofI-diagonal terms are smaller in magnitude' than their diagonal
counterparts (e.g., !(aJaj>1< !(aTa;>!).In the interest ofsimplicity, OUTorder analysis scheme does not
discriminate between diagonal and ofI-diagonal density matrix elements containing equal numbers of
S-type orbitais. . ,

t Order analysis of the (h6IHlh2) matrix reveals that it bas no real zeroth-order terms, although it
does have same spurious zeroth-order non-Hermitian terms that vanish in the limit of an exact
referencestale. -
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manifold to include h6 is therefore not required to obtain all terms for P-l(E)
through second order within the MC-SCFreference stale choice.

D. Computational Aspects

Although the formaI expressions for A, B, and M look quite complicated and
unamenable to computation, only a rew terms survive for a specific MC-SCF
reference stale choice. For example, a tour-particIe den sity matrix element
(aiaJa:a~a"a,..aqap) is nonzero only if there exist configurations <l>Kand <l>Lin the
MC-SCFstale 'l'=LKCK<I>K such that I<I>K)=aiaJa:a~a.,a,..aqapl<l>L)(Le., the .t t t t .
operator aiajaqa.,a.,a,..aqap musi "connect" the twa configuratlons <l>Kand <l>d.
For a typical MC-SCFreference function (ca. 20 configurations), it is obvious that
only a rew nonzero tour-particIe density-matrix elements exist. There will be
proportionately higher num bers of nonzero three.,., twa-, and one-particIe
density-matrix elements, but these too musi connect elements of the configuration
set {<I>K}contained in the MC-SCFreference stale 'l'. These "connectivity restric-
tions" caD be utilized to simplify the calculation of P-1(E). Instead of calculating
al] density-matrix elements within the multiple summations and then, deciding
which ones aro nonzero, a time-consuming process owing to the lengthy decision
processes involved, we calculate all nonzero one-, iwo-, three-, and tour-particIe
density matrix elements' with respect to a given MC-SCF stale (e.g.,
(aiaJa:a~a"a,..aqap), (aiaJa:akapaq), (aiaJapaq),(aiap), etc.) and stare lbem
together with their associated two-electron integrals (e.g., Vijp,..,Vijkp>Vijpq).This
is easily accomplished by comparing each configuration <l>Kin 'l' to the other
configurations in 'l' and finding the one-, iwo-, three-, and tour-particIe connec-
ting operators between lbem. Only those density matrix elements that aro
expectation values of the connecting operators for the MC-SCFconfiguration set
{<I>K}will contribute to the summations comprising the A, B, and M matrix
elements.

Because the otf-diagonal elements of M contain first-order factors and Bbas
zer<;>th-order terms, neglecting aDYor all otf-diagonal terms of M destroys the
completeness of OUTsecond-order treatment. However, owing to the hugo
dimension of the M matrix, which needs to be inverted maDYlimes during a search
for the zeros of Det [P-1(E)], approximations such as neglecting aII or,most of the
~tf-dia:gonal terms of M aro necessary. Techniques for efficientJy evaluating P(E)
given a diagonal approximation to M foIIow directly from procedures discussed
for the,one-electron MC-SCFGreen's-function problem [28].

Since the calculation of a determinant Det [P-1(E)] requires maDYoperations,
it is desirable to find a reliable approximation to ibis step. Calculating a sequence
of determinants from successively larger submatrices of the P-1(E) matrix and
observing the convergence of ibis sequence may be a viable proceduro. After the
Det [P-1(E)] bas be en obtained, the search for its zeros caD be accomplished by
standard techniques such as bisection, accelerated false position, Newton-secant,
etc.

The poles and residues of P(E) caD alternatively be found following the
method suggested by Layzer [49] and employed by Purvis an,d Ohm [24] to the
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case of the one-particIe Green's function. The method is based upon the fact that
poles of P(E) correspond to values of E for which eigenvalues of L(E) ==
El - P-1(E); L4>n= Wn(E)4>n(E) obey E = Wn(E). The residues fn are given by
f n = (1- dWn/ dE) E~En'To implement this technique, one must find eigenvalues
Wn(E) for various values of E and then (graphical!y) locate that value of E for
which Wn(E) = E.

IV. Conclusion

In ibis paper we have obtained working equations that permit p-l (E) to be
expressed in term s of the A, H, and M matrices correct through second order
within the MC-SCFreference staLe choice. A new concept of order based upon
occupation number sile is employed to carry out the order analysis. Incorporating
the considerable advantages of a MC-SCFreference staLe in a polarization Green 's-
function gives rise to intricate formaI expressions, which, however, simplify
dramatical!y into a computational!y manageable form once a specific choice for
the MC-SCFstaLe is established.

Appendix A: Evaluation of H', 4., and M

From Eqs. (18b) and (22f) we have the definitions

4.=B-Ct,

H' = l[B' + C't].

(Al)

(A2)

Since B and C have Schmidt components that are adjoints of one another [seeEqs.
(22a) and (22b)], it is also correct to write

4.=B'-C,t. (A3)

,, Explicit expressions for 4. and H' can be found by evaluating the B'and C' matrices
defined in Eqs. (22c) and (22d), taking the adjoint of C', and substituting the
resulting expressions into Eqs. (A2) and (A3). In writing out the matrix elements
of:8', we employthe convention that only conjugate Hermitian terms common to B'
and C': appear outside of the double brackets [[ ]]. The corresponding 4. matrix
element is automatical!y recovered by removing al! Hermitian terms, changing the
sign of each term within the double brackets arising from C't (Le., each term with a
conjugated density-matrix element:

((~1a;)(~laj))~
and multiplying the final expression by 2. It is important to keep in mind that al!
density matrix elements are real; the conjugated density matrix eiements appear-
ing in the expressions for :8' and 4. 'serve only to identify which terms arise from

'. c,t. We evaluate :8' (and thus 4.) for theparticular choice of indices (qi)nu.",
(q:)PjLq".By assuming ma, PlLqv = SL, SLSL and truncating terms higher than.
second order according to the procedures developed in Sec. III, we recover the
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ordered expression for sub-block 8 or jj ma,plUl";

B_, -l
[B

' C'* ]ma,plUl" - 2 ma,plUl" + p,.q",ma

= (1- Ppq)hmq(a:a;a,.a,,) + (1- P,.")h,...(a;a:a,,am) + L Vmiqp(a:aia,.a,,)
;

1 - t t t - t t ,t
}+-

2 L {(1- Ppq)V;jq",(a;aj apa,.a"am) + (1- P,.,,) V,.m;j(aaapapa"aja;)
(ij)o -

- t t t
)+ L (1-Ppq)Vm;pj(aaa;aqa}-a,.a"

(;j>'

[[
1 t t

+ 2~ {(aaa;a,.a,,)(1- Ppq)Smqh;p

+(1- Ppq)(1- P,.")Sa,,h;p(aJa:a,.am)

+(a;a:a;am)(1- P,.,,)S,,;ha,.

+ (1- Ppq)(1- P,.,,)Smph,,;(a:a:a,.ai)

+ha;(I- Ppq)Smp(a;.a:aaa;)*+ him(1- P,.,,)Sa,,(aia:aaap)*}

1 -' t" t
+- L {V"v;j(l- Ppq)Smq(aaapapi)

4 (;j>.
- t t

+ V;jpq(1- P,.,,)Sa,,(a; aja,.am)}

-1(1- Ppq)Sqm L Vap;j(a~a:aja;)*
;j

-1(1-P,.,,)Sa,. oL V,jm,,(aiaJaqap)*
(;j)o

+1(1- Ppq)
{ Smp L V;jlcq(a:aiaJaka,.a,,)

(ijkh

! '

- ttt

}+ (1- P,.,,)Sb" L V;jlcq(a;ajapa,.akam)
, (ijk)o

+1(1- Ppq) L {Smp(1- P,.v) V;,.jk(a:a Ja:a"akal)
. -h . .

'. r t' t t '*
+Sqm V;ajk(a"a,.a;aqakaj)}

, +1(1- p,.,,)S~ . L v'jka(a;.a:aJaqakap)*J].'
(;jk)o ° .

(A4);

In order to express matrix elements compactly, we make use of a binary exchange'
operator P;j,which when operating on a term to the right-hand side; converts i to j
and j to i. '

Approximatióg Eq, (23a) for the diagonal M matrix to second order effects a
dramatic simplification of its matrix elements. In sub-block 4 of the M PIUl",PIUl"=
13SplUl"'PIUl"- M~IUl"'PIUl"main block, where Pf.Lqv= (SLSL), the ordered overlap
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matrix expression given in Eq. (23b) becomes

SPILq".p,..q" = «q~)PILq"l(q~)PILq,,)

= (a~a:aILa,,)+ (1 + Ppq)(a~a;a:aILa"ap)

+ 2 I (1 + Ppq)l(a;a:aILa"W
oe

+ I (1 + Ppq)(a~a:aqaoe)(a~a:aILa,,)(a:a/3)'
oe/3

(AS)

In approximating Eq. (23c) for M' to second order, it proves convenient to divide
the matrix up as

I . t I
A

I t
MpILq".PILq" = «q4)PILq" H (q4)PILq,,)

,= M;ILq",PILq" + M;ILq",p,..q", (A6)
where

M;ILq",PILq"= (a;aILa:a"IHI(q~)p,..q,,- a;a,.a:a,,)

+ «q~)p,.q"-a;a,.a:a,,IHI(q~)p,.q,,), (A7)

and

M ili,
(

t t IH
A

I t t
)p,.q".PILq"= apaILaqa" apa,.aqa". (AS)

Evaluation of the M" Schmidt matrix elements given in Eq. (A7) folIowed by
truncation of the resulting expressions to second order yields

M;,..q",p,..q"= I {(a:a:a,.a,,)(B poe,PILq"+ C~,..q",poc)oe

- (a:a;a,.a,,)(B qoe,p,.q"+ C~,..q",qoe)}

+ I {(a;a:a"am)(B mIL.p,..q"+ C~,..q",mIL)
(m)o

- (a;a :aILam)(Bm",p,..q" 4- C~,..q",m")} (A9)

- Since the density-matrix elements in the CI:'summation of Eq. (A9) are fir$t order,
only the zeroth- and first-order terms in the B and C' matrix elements are kepi. In
the m summation however, the density matrix elements are already second order;
only the zeroth-orrler components of its B and C' matrix elements need to be
retained. The most complicated component of M', the M'" matrix given in Eq.
(AS), is appreximated to second' order as

M ili
(

t t IH
A

I t t
)p,.q",p,.q"= apa,.aqa" apa,.aqa"

= (hpp + hqq)(a~a:a,.a,,)+ (hIL" + h",,)(a;a:aqap)

-I{(l + Ppq)hiP(aia:aqap) + (1 + P,.")h,.i(a:g~a,,ai)}
i

- (1 + Ppq)hpp(a~:a:aqa,.a,,)- (1 + P,.,,)h,.,.(a ~;a:aqapa,,)

+ (1+ Ppq)hpq(a~:a;aqa,.a,,)+ (1+ P,.,,)h,.,,(a:a;a:aqapa,,)
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ttt
)(

ttt
)}+ (1 + Ppq)L hip{(l + P"")(a.,aiaqaqa"a,, + a.,aia"a"a.,ap

i

+ (1 + P",,) L h"i{(l + Ppq)(a:a:.a;apa.,a;) + (a:a;a:apaqa;)}
;

1[ - t t - t t ' - t t
+2 2 V pqpq(a.,a"a"a,,) + L V;jpq(a;aja"aq) + LV ",,;j (a.,a "aja;)

(ijJo ;j

- t t t
+ 2 L (1 + Ppq){Vpiqp(a.,a"a;aqa"av)

;

- t t t
+ Vpq;p(a.,a"aqa"a"a;)}

- t t t
+ L {V""ij(1 + Ppq)(a"a.,apapaj-tli)

(ijJo
- ttt

}+ V;jpq(l+ P"")(a;aja"a,,aqap)
- t t t

+ (1+ P",,)(l- Ppq) L VlLPij(a"a"apa"aja;)
, (ijh

" ,
' t t t-.

+ 2 L (a.,a"a i a"a.,aj)(l + Ppq) V;pjp
;j

- t t t
+ (1+ P",,) L V;"jk(a .,a"a ia"akaj)

(ijkh

"' {
-

(
tttt

)+2(1+Ppq) t. Vpijpa.,a"aiaqaqa"a.,aj
(ij)o -

(
t t t t

)}
'

+ Vq;jp a"a.,aiaqapa"a.,aj

-
(

tttt
)+ L (l+Ppq)V;jkP a"aiaja"aka"a.,ap

(;jkh

'" - {(
tttt

)+(l+P",,) t. Vi"jk a"a.,a;aqaqa.,akaj
(;jk)o .

. +(a:.aia~:a"akaj-tlp)}]. (A10)

In actual computations where a specific MC-SCFreference stale is chosen, maDYo!
the terms appearing in Eqs. (A4)-(AlO), in particular, most of the t~rms contain-
ing three- and tour-particIe density matrix elements, will be zero. These compu-
tational simplifications are discussed further in Sec. III D.
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