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Abstracts

The polarization Green's-function formalism in the superoperator notation of Goscinski and
Lukman is re-derived using a multiconfiguration self-consistent-field (MC-SCF) reference state to
establish the superoperator metric. The potential advantages of employing this more general reference
state in Green’s-function theories and certain inherent weaknesses associated with the traditional
Hartree-Fock or Rayleigh-Schriodinger perturbation theory reference state choices are briefly
discussed. The Hermiticity of the superoperators is analyzed within the framework of the MC-SCF
reference state. Using a concept of order appropriate for this reference state choice, explicit formulas
and computational procedures for the implementation of this Green’s-function theory are presented
and specialized to include terms consistent through second order. ’

Le formalisme des fonctions de Green de polarisation dans la notation utilisant les superopérateurs
de Goscinski et Lukman a été réétabli avec un état de référence MC-SCF pour obtenir le métrique des
superopérateurs. Les avantages potentiels de cet état de référence plus général ainsi que certains
points faibles inhérents associés aux états de référence utilisés traditionnellement dans les théories de
perturbation Hartree-Fock ou Rayleigh-Schrodinger sont discutés brievement. L’hermiticité des
superopérateurs est analysée dans le cadre des états de référence MC-SCF. Utilisant une notion d’ordre
propre a cet état de référence on présente des formules explicites et des procédés de calcul pour la
réalisation de cette théorie des fonctions de Green, qui sont spécialisés pour inclure des termes
consistants jusqu'au second ordre.

Der Formalismus fiir Green'sche Funktionen von Polarisierungstyp in der Superoperator-
bezeichnung von Goscinski und Lukman wird mittels eines MC-SCF-Referenzzustands hergeleitet.
Die moglichen Vorteile mit diesem allgemeineren Referenzzustand und gewisse mit den in den
traditionellen Hartree-Fock- oder Rayleigh-Schrodinger-Stérungstheorien verwendeten Referenz-
zustinden verbundene eigene Schwichen werden kurz diskutiert. Die Hermitizitit der Supero-
peratoren wird im Rahmen des McC-sCF-Referenzzustands analysiert. Mittels eines fiir diesen
Referenzzustand geeigneten Ordnungsbegriffs werden explizite Formeln und Rechnungsverfahren
fir die Implementierung dieser Theorie von Green'schen Funktionen vorgelegt und spenahsiert um
Glieder bis zur zweiten Ordnung cmzusch]lessen

I. Introduction

In the last decade, Green’s-function approaches to the direct calculation of
electronic excitation energies and other spectral properties have been employed
with considerable success to many atomic and molecular systems [1-18]. Electron
attachment and detachment processes (i.e., ionization processes) also have been
studied extensively with Green’s-function methods [9-11, 19-27]. This paper
focuses on the development of a new Green’s-function approach in which the
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polarization Green’s-function (i.e., two-electron Green’s-function) equations
describing excitation processes are re-derived with respect to a Mc-scF reference
state. Two of us (A.B. and J.S.) recently completed an analogous development for
the one-electron Green’s function, which describes ionization processes [28].

The numerous Green’s-function studies reported in the recent literature
employ either equations-of-motion [1-10, 19, 20] or propagator [11-18, 21-28]
formulations of the electronic excitation (or ionization) problem. Equations-of-
motion methods, originally applied to problems in nuclear theory [29] and
subsequently developed for atomic and molecular excitation and ionization
calculations by McKoy and co-workers [5, 6] and others [1-4, 7-10, 19, 20],
recover the results of Green’s-function thearies by casting the excitation or
ionization problem in terms of equations of mc?ééﬁa.&hgmitation or ionization
operators of the system. The random phase approximation and the time depen-
dent Hartree-Fock theory are the lowest-order.formulations of the equations of
motion [6]. Higher random-phase approximations employing extended excitation
(or ionization) operator represents and correlated references states are required
to achieve accurate results in most molecular applications [5-8, 19, 20] Solutions
to the equations of motion are usually established by means of an operator matrix
eigenvalue problem [5-8, 19] or an operator perturbation theory [9, 10]. Simons
[10, 30] and Harris [31] have discussed ambiguities in equations-of-motion
formulations that take as their starting point a function-level equation. These
ambiguities can be avoided either by deriving the equations-of-motion formalism
with respect to an operator-level equation, as shown by Simons and Dalgaard
[10], or by working directly with the well-defined propagator equations describing
excitation processes.

In the works of Linderberg [11], Ohrn [11, 24, 27], Purvis [24], J@rgensen [14,
16-18, 21], Oddershede [14, 17, 18], Cederbaum [25], and others [12, 13, 15,
22, 23, 26}, the Green’s-function equations are decoupled by perturbation
methods, geometrical approximations, or Léwdin’s technique of inner projection
and partitioning on an operator manifold [32]. When applied to the polarization
Green’s function, these procedures give excitation energies as poles and transition
amplitudes as residues.

Green’s-function method for excitations owe their attractiveness to their
ability to provide access to excited state properties by expressing them as
differences from ground state properties, which are easily approximated. Formal
and computational simplicity arising from cancellation of correlation terms
common to both the ground state and the excited state of interest [15, 33],
together with a relative insensitivity of the operator-level equations to reference
state approximations [15, 29], have also been advanced as reasons for preferring
the Green’s-function approach to the more-traditional methods for calculating
excited-state properties, configuration interaction, and perturbation theory. In
addition, propagator decoupling procedures have the advantage of giving tran-
sition amplitudes directly as residues of the Green’s function.

However, recent work by Oddershede and Jgrgensen [17] and others [5-8,
12-16] has emphasized the importance of extended operator manifolds and
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correlated reference state choices in obtaining accurate excited state properties
from Green’s-function methods. Theoretical arguments supporting these
requirements, originally advanced by Simons [34] for the one-electron Green’s
function, are equally applicable to approximations involving the polarization
Green’s function. Simons shows that if a complete operator manifold is employed
within the inner projection, the use of an approximate reference state affects only
the residues; the exact nature of the pole structure, which for the polarization
Green’s function is characterized by poles at (+) the exact excitation energies, is
still preserved. However, operator manifold truncation, an inevitable practical
necessity in the computational implementation of a Green’s-function theory, does
lead to a dependence of the pole structure on the quality of the reference-state
approximation. Balanced descriptions of the polarization Green’s function, in
which both the operator manifold and the reference state are well approximated,
are therefore necessary to ensure accuracy; an extended-operator manifold
cannot fully compensate for a poor reference state choice and vice versa [17, 34].
Simons and Dalgaard [10] have also pointed out that caution must be exercised in
defining and interpreting the operator metrics used in these Green’s-function
procedures, which has prompted them to introduce a new metric form, well
defined mathematically, that recovers the results of the traditional metric forms
such as employed by Goscinski and Lukman [35].

While most of the errors associated with Green’s-function methods arise from
approximations introduced to make the problem computationally tractable (e.g.,
operator manifold truncation), the necessity of choosing an approximate
reference state in terms of which the operator metric is to be defined represents a
fundamental weakness in the method [28]. Even those reference states for which
correlation has been introduced by augmenting a Hartree—Fock (HF) state with
Rayleigh-Schrodinger perturbation theory (RspT) double-excitation configura-
tions (first order) or both single- and double-excitation configurations (second
order), cannot describe well the situation where the zeroth-order HF state poorly
represents the system. For example, such a situation occurs in the lowest singlet
states of carbenes, where more than one major configuration must be included to
yield an adequate state description, even at a zeroth-order level of approximation
[36-38]. Ground states of numerous other systems (e.g., Be, F,, O,) [39-41] are
not well represented by single-configuration approximations. Also, a molecule
severely distorted from its equilibrium geometry often requires the flexibility of
additional configurations to characterize correctly its electronic structure (e.g., H,
at large internuclear separations) [42].

In the interest of extending the polarization Green’s-function formalism to the
chemically interesting class of systems with highly correlated ground states, we
re-derive the polarization Green’s-function equations through second order using
a multiconfiguration self-consistent-field (Mc-scF) reference state [43, 44] within
the Goscinski-Lukman superoperator metric [35]. Of course, adequate descrip-
tion of a ground-state correlation is not the only advantage to be gained with the
use of a MC-sCF reference state. By admitting this reference state, which dis-
sociates correctly, unlike HF or RSPT reference states, detailed investigation of
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excited-state potential surfaces becomes possible within the Green’s-function
framework. The main points of difference between using RSPT and McC-SCF
reference states occur in (i) assessing orders of magnitude of the various terms that
arise in the matrix elements of the Green’s function; configuration coefficients in
the MC-SCF case are determined by optimization of the Mc-scr reference function
for-minimum energy as opposed to ordering in the electron interaction strength
with an RsSPT function, and (ii) in the nature of the non-Hermitian components
induced in the matrix elements of the Green’s function.

The development presented in the following sections will draw upon our
recently completed Mc-scr derivation for the one-electron Green’s function [28].
In particular, the concept of order introduced in this earlier study will be carried
over without modification to the polarization Green’s function case. Our nota-
tions and choice of operator manifold to be used with the Mc-scF reference state
are introduced in Sec. II. We also give explicit expressions for the polarization
Green’s function in this section and we introduce a concept of order to assess the
relative importance of each term. In Sec. III, this ordering concept is used to
produce a consistent second-order approximation to the polarization Green’s-
function equations. We then discuss other possible approximations, as well as
computational procedures to be used in implementing our results.

II. Formal Development
A. Notation

The spectral representation of the polarization Green’s function in the
superoperator notation is [17, 35]

P(E)=m'|(Ef-H)']bY, (1a)

where b' is a tensor product set of complete sets of fermion creation {a}} and
annihilation {a;} operators '
'={ai}x{a;}= {a:af}’ _ (1b)

and I and A are the superoperator identity and Hamiltonian, respectively. These
superoperators are defined with respect to an arbitrary operator X; of the
projection manifold h as [35] :

Ix.=x, - (2a)
and
AX; = [H, X:)-. i (2b)

The electronic Hamiltonian in Eq. (2b) is assumed to be in the second-quantized
form [45]

1
H=Y haia;+= Y Vyaia aa, (2¢)
i ifkl
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where h;; and Vi, are one- and two-electron integrals in the spin-orbital basis {¢;}
of the chosen Mc-scF reference state ¥;
1 Zy
By = I *(1 (—~— v )
7 ¢' ( ) 2 1 ZI —Rkl qu(l]dl (Zd)

Vaa= [ [ o1 W0} (2)(|1 |)¢k(1)¢,(2}d1d2 (2¢)

For the subsequent development, we also find it convenient to define a two-
electron integral difference

pifkf = Vit~ Vijn. (2f)
The operators of a particle-conserving projection manifold h appropriate for use

with the polarization Green’s function support the following binary commutator
product average with respect to the Mc-sCF reference state [34]:

Xi|x) = (¥[[X, X;)-|¥) VX, X;eh 3)

Using Lowdin’s technique of inner projection [32] on the operator manifold h,
here assumed to be complete, the superoperator resolvent (Ef —H)™" may be
reexpressed in the form

(Ef —H) ™" = |h)(®|Ef — Ah) ™ (n], C(4)

which, upon substitution in the polarization Green’s-function expression given in
Eq. (1a) yields

P(E)=(b'|h)h|ET - H|h) '(hjb"), LS

This equation provides the basic starting point for the introduction of various
approximations leading to practical methods for computing P(E). The two
essential approximations consist of selecting a point at which to truncate the
operator manifold h and picking a reference function V.

B. Operator Space and Multiconfiguration Reference State

Our choice of projection manifold h is based upon generalization of a
completeness theorem for ionization operator manifolds, recently given by
Manne [46] and elaborated upon by Dalgaard [47], to the case of a particle-
conserving operator manifold. The theorem essentially states that given an
N-electron independent-particle state ®,=[] =, aL, |vac) (i.e., an N-electron
Slater determinant) and a manifold of operators

= :
h= U h;, = {hz. e h:w}. (6)

n=1

whose submanifolds, the h,,, are comprised of particle-conserving excitation
and de-excitation operators of particle-hole rank n with respect to the orbital
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occupation in @y, i.e.,
hl = [q;v ‘h] T~ [{a:naa}v {a;am}]’
hy=[qi, qi)=[{amaaarag), {atamaa.}l, a<p, m<n,

he=[q, 6] =[{ana.aragaja,}, {atamapaala,)), a<B<y,m<n<p,

t Nt T ot
hony =[q2n, @] = [{ Il a”‘fa‘"}’ { I a“‘am‘}]’
i=1 i=1

a1 <ay<--<an,m<mz<-::-<mp, (7

then the manifold h is complete when operating on any reference state ¥,
provided that the condition (®o|¥)# 0 is satisfied. In Eq. (7), we employ the
commonly used convention that Greek indices , 8, v, . . . , @ label the elements of
the set of spin orbitals {¢.|a@ =1,2,..., N} occupied in &, while the Roman
indices m, n, p, . . . ., z label elements of the unoccupied spin orbital set {¢,.|m =
N+1,N+2,.. .} with reference to ®,. The Roman indices a, b, c, .. . , [ are used
to label unspecified spin orbitals belonging to either set. The complete spin orbital
set {¢;} is thus given by {¢.} U {¢,.}. This convention will be used in the subsequent
formal development. It is important to note that Manne’s theorem places no
restrictions on the exact nature of the orbitals {¢,} occupied in ®,.

_ The reference state ¥ chosen in this particular developmenl is a MC-SCF

N -electron state [43, 44]

¥(C, d)= T Cx®x(d) (8)

where the @k (¢p) are N-electron self-consistent-field configurations constructed
from the Mc-scF spin-orbital set {¢,}. The Mc-sCF wave function given in Eq. (8) is
defined to be an expansion-type wave function for which the orbital set {¢,} and
the configuration mixing coefficients {Cx} have been optimized variationally to
minimize the reference (ground-) state energy to first order [43, 44];

8E(C, )=0,
E(C, $)=(¥(C, $)|H|¥(C, d)).

An equivalent statement to Eq. (9) is the generalized Brillouin .theorem,
expressed as [48]

(V|H(a]a)I¥)=(H(aa))=0 Valaeb'. (10)

Equation (10) is actually employed in our development to compute the MC-SCF
wave function. We henceforth assume that the optimal Mc-scF orbitals {¢;} and
mixing coefficients {C, } for ¥ satisfying the generalized Brillouin theorem have
already been obtained. -

The configurations ®x in Eq. (8) for K =1 are various n-particle n-hole
excitations of @, (i.e., Px =Y, AiX| Po, X, €q3.31=n=N) needed to pro-
vide an adequate description of the particular reference state of interest. The

9)
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operator manifold h is defined with respect to the configuration ®,, hence the
overlap criterion for the completeness of h, (®g|¥)= C,#0 is automatically
satisfied. Thus, inner projection of the Green’s function on a manifold h defined
with respect to the ®; component of a McC-sCF reference state ¥ is a formally
correct procedure, provided that h is not truncated. &, is typically chosen to be
one of the dominant configurations of the reference state at the given molecular
geometry. This stipulation on ®, markedly simplifies the assignment of orders of
magnitude to the various Green’s-function matrix elements.

If we limit our considerations to a truncated projection manifold h*
comprised only of the h, and h, submanifolds, then, as we shall later show, all
terms through second order are included in the polarization Green’s function.
This is also true for RsPT reference states projected on Y. although the concept of
‘“order” in this case refers to two-electron integral products, i.e., orders in the
electron interaction strength [17]. Since the Mc-scF reference function more
closely approaches a true eigenstate of the Hamiltonian than a HF- or even a
RspT-level function, it is reasonable to expect that on h“’, use of a Mc-scF function
can lead to a new second-order theory that will recover at least all terms through
second ‘“‘order” in the sense of an RSPT electron interaction [28]. In what follows,
we develop a new concept of order arising naturally from the Mc-scF reference
state choice, and we provide further justification for employing the truncated
manifold h.

C. Basic Working Equations

Within the Mc-scF superoperator product given in Eq. (3), elements of the h,
and hs submanifolds displayed in Eq. (7) are not orthogonal to one another. To
facilitate further progress, we now orthogonalize the h; and h, submanifolds of
h. Since superoperator overlap matrices are explicitly evaluated, it is not
necessary to reorthogonalize the new hy operators to one another. Using the
Schmidt orthogonalization procedure, the submanifolds h; and h, listed in Eq. (7)
are redefined as

h3=[q3", q31=h,=[{a}a.}, {a}a.}] (11a)

and
hi=[q:", qi]=hs—hy(h;/hs)

= [{a:,a,.a;a. -Y (1-P,)aia.la%a}a,a,)
A Z (1 _an)a:uav(a;a;auam)} L]
{aIa,aZa: -Y (1-Py)apalarasaas)
B

- (l—Pw)alan(alaIasa;)}]: (11b)
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In writing Eq. (11b), we have employed a binary index exchange operator P;.
When operating on a term to the right, it converts i to j and j to i. The two-particle
density averages (i.e., {(a/a| aka;)) in Eq. (11b) are taken with respect to the
MCC-SCF reference state ¥, The usual index restrictions p<gq, u <, and A <g,
s <t apply to the elements [{(g3) 5.0}, {(g5)re}] Of h4 In what follows, we drop
the superscript S and assume that the symbols h, = [q3, q.] and h, = [q}, q] refer
to the orthogonalized submanifolds given in Eqgs. (11a) and (11b). For the
orthogonalized manifold h’=h,Uh, the superoperator overlap equations
become

(halh2) =S, ., (12a)
(holhy)=8,.=0,,, (12b)
(halhz) =S4, =04, (12¢)
aﬁd
(halhe) =S4, _ (12d)
where . : s
' S
o[k aag] mwer2 am

Using Eqs. (12a)-(12e), the polarization Green’s-function expression givenin Eq. -
(5) can be partitioned on the orthogonal inner projection manifold h to yield*

 P(E) = (b'|ho)P(E)(hyb"), (13a)
with :
P (E) = (h| P\ (E)|hy)
= (h2|ET - A |h;) — (ho| H |hy)(ha| E — H |ha) ™ (ha[Fih,)
=A(E)-BM Y(E)C. ~ (13b)
The matrices A, B, M, and C in Eq. (13b) are given as
' A(E)=(h,|El - HAh;) = ES,,—A’, (13¢)
A'= (/A ny), | i (13d)
B = (h,|A|hy), ' (13¢)
C=(hJAhy), ' (130)
M(E) = (hy|Ef —H|hs) = ES s —M', (13g)

* It is possible to show that for Egs. (13a) and (13b) to hold, it is sufficient to have (h,}h;) = 0 for
i=4,6,8,.... With the superoperator resolution of the identity expressed as [ = |h)(h|h)~ '(h], the
rcpresentanon of the inverse of a superoperator A becomes (h|A ~!|h) = (h/h)(h|A|h) ' (h|h). This
representation taken together with the condition (h;|h;)=0 ensured by our use of a Schmidt-
orthogonalized projection manifold [see Eqgs. (12b)~(12c)] immediately gives Eqgs. (13a) and (13b)
from Eq. (5).
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and
M’ = (h|Hhy). (13h)

The expressions displayed in Egs. (13a)-(13h) constitute our basic working
equations when defined with respect to a MC-SCF reference state. Like the overlap
matrices in Egs. (12a)—(12e), each of the constituent Green’s-function matrices in
Eqgs. (13c)-(13h) breaks down into four blocks within [qa,,, q..] representation of
the ha,; e.g.,

(@:lEf-Hlq})  (q3lE[-A i‘lz)] (14a)

A(E} _— [ A - A -

(@lET-Hlq3)  (q|El - Hlqy)

Consequently, the polarization Green’s-function matrix shown in Eq. (13b)
breaks down into four blocks as well '

t1p-1 t 11 p-1

% P (E

PE)= [(ll2| A_l( )i‘lf) (‘Iz|f?_l(5)|‘12)]_ (14b)

(q2/P7(E)lq2) (q2|P(E)lq2)

D. Hermiticity of H

1. Hermiticity condition. The superoperator Hamiltonian H is Hermitian
_if and only if

XIAIX) - (XHIX)*=0 VX, Xeh. (15)

Itis relatively easy to show that the left-hand side of Eq. (15) may be re-expressed
as

(X|A)X) - (XA 1X)* = (H[X], X;1-) (16)

for operators X, X; belonging to a particle-conserving manifold. If the reference
state ¥ with respect to which Eq. (15) is averaged is an exact eigenstate of H, then
Eq. (15) is exactly satisfied and H is Hermitian on h. Thus, with an exact ¥, the
propagator separation theorem is valid for the poles of P(E), even if a truncated
~ projection manifold is employed. However, a first-order change in the reference
" ground state relative to the exact ground state (i.e., ¥ =V a0+ 6 Wexacr) Can
induce non-Hermitian components in the matrix elements of P(E), which in turn
may give rise to artificial imaginary components in its pole structure. Since the
matrix elements of P(E) are superoperator expectation values of H or Ef — H,
extraneous non-Hermitian contributions to P(E) for our chosen Mc-scFreference
state ¥ can be determined by computing (H[X], X;]-) for those operators X; and
X; over which the A, B, C, and M matrices of P(E) are defined.

2. A matrix hermiticity. (H[X], X;].) [Eq. (16)] must be computed for X, X
belonging to each of the four blocks of A shown in Eq. (14a). For the block with
X; = ana., X; = anag, €q; evaluation of Eq. (16) using the generalized Brillouin
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theorem [Eq. (10)] gives
(H1(q2)am: (42)np)-) = (H[asam, arag]-)
= 8um(H (a2p)) ~ 8pa(H (anasm))
=0. (17a)
Sxmllar application of Eq. (10) to Eq. (16) for the block of A with X;=ala,,
X; = apa, € q, yields
(H[(@2)ma> (@2)6n)-) = (Fl[amae, apa,)-)
= 8aa(H (a1n0,)) — 8,m(H (apa,))
=0, (17b)
The operators X! and X; commute in thc two remammg blocks of A, where
X = mﬂaGQ2. X; —aga,.eqz, and X;=alan €q,, X; —a,,ageqz Thus, the A

- matrix is Hermitian within the Mc-scF reference state choice used to establish the
generalized Brillouin theorem.

3. Relationship between B and C. B and C are “nonsquare” matrices, so
considerations of Hermiticity do not apply directly. However, the matrix
product BM™'C appearing in P™'(E) cannot be Hermitian for Hermitian M~
unless B and C are adjoints of each other. To address the problem of non-
Hermiticity in BM 'C, we can consider B and C as a couple and investigate
deviations from the perfect adjoint relationship

B=C". (18a)
In this case, Eq. (16) becomes a tool to investigate the value of . .
A=B-C', (18b)
where :
Ai;=A(X, X;)=B;;— C}; = (H[X], X;].) (18¢)

for X;eh, and X; € hy. Equation (18c) follows directly from the defining Eqgs.
(13e)—(13f) for B and C. For the block of A with X; e qz, Xje q4, we have '
; Ama:,puqv = (H[(ql)ams (‘14 )pmv]—)

=(1=Ppg)bmg(H (ala}a,a,))+(1 —Pu,)a,u(ﬁ(a:a;auam))
(18d)

and for the block characterized by X € q., X, € qs, Eq. (16) ylelds
Aﬂn Asot = (H[(QZ )"B’ q4)AWI] )
=(1-P.)8n(H(arasa,a5))+ (1 - Pro)ds.(H (araja.a)).  (18e)

Equations (18d) and (18e¢) are evaluated explicitly in Appendix A. In the other
two blocks of A, where X; € q}, X; € q4 and X; € qa, X € qu, it is easy to verify that
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X X;]- =0. From Egs.(18d) and (18e), it is seen that A # 0, hence B and C are
not adjoints of each another. However, if B and C are redefined as the sym-
metrized matrices

B=iB+C)=B-3A=C"+1A (18f)
and
C=iB'+C)=B'-1A" =C+1A", (18g)
then obviously
B=C". (18h)

In the limit of an exact reference state, A =0, and Egs. (18f)-(18g) collapse to
B=B (18i)
and
&=cC. - . (18))

The symmetrized matrices B and Bt = C will be used in deriving more explicit
representations for the Green’s-function equations. With a high-quality MC-SCF
reference state V¥, the matrix elements of A are small and Eqs. (18f) and (18g) are
well approximated.

4. Hermiticity of M. Analysis of the blocks of M by means of Eq. (16) and the
generalized Brillouin theorem [Eq. (10)] yields

2 #0 X, X eqiand X, X;€qq (i #J),
(H[XLX,-L){ i o : (19)
=0 Xi€¢l4,x}eﬂ4aﬂdxi‘5q‘hx’fe‘l4-

Owing to the complexity of the matrix elements in Eq. (19), explicit expressions
for these non-Hermiticity factors are not reproduced in the text, but are available
from the authors upon request. Except for the trivial case of the diagonal
elements, the non-Hermiticity factors in Eq. (19) do not vanish, hence M is
non-Hermitian. Since M, the matrix of largest dimension in P™'(E), must be
inverted many times during the P(E) pole search, a Hermitian diagonal approxi-
mation to its matrix elements becomes computationally attractive. Diagonal M
approximations have been used with success in computational implementations of
other Green’s-function theories employing correlated reference states [17-20,
24]. Since the non-Hermiticity of M is an artifact that disappears in the limit of an
" exact reference state, nondiagonal Hermitian approximations such as averaging
off-diagonal matrix elements or defining M with respect to a symmetric com-
mutator should also be viable. Given the high quality of the MC-sCF reference state
used to calculate M, the off-diagonal M matrix elements will be small and
approximations involving truncation or modification of these elements will pro-
vide reasonable descriptions of M. We elaborate upon this point in Sec. III.
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E. Explicit Expressions

1. Notation. In order to simplify our discussion, an indexed representation of
P'(E), Eq. (13b), is reproduced below:

[P (E)avse = [A(E)~BM (E)B'us s
=Awsn~ L BaraMioBlia. (20a)
A,
The combined indices A and () in Eq. (20a) stand for groups of spin-orbital indices
running over the elements of the h, = [q4, q4] submanifold:

A [(Prav) q,

" l(uprg)  qa
_[(ro)  qq
5 G e s

The spin-orbital indices ab and fg are restricted to run over the elements of the
h, =[q3, g] submanifold: ;

ab = a5 q;'
am %
5 (200)
_[nB qz
fg { ,Bn q2.

By using these unspecified spin orbital labels (i.e., ab and fg) to denote the
element of P~'(E), explicit expressions applicable to each of the four blocks of
P '(E) displayed in Eq. (14b) can be derived. Using the generalized Brillouin
theorem of Eq. (10) to discard null-valued terms, we are able to obtain the
following explicit representations for the various matrix elements appearing in
Eq. (20a).

2. A matrix. Evalﬁation of Egs. (13c) and (13d) yields
Aabse = (h2)as|ET = H|(h2)fg) = ESabfe — Aluofer (21a)

where . _ :
Sasfe = Sar{@tag) — Srglatas) (21b)

and
Alus e = har(@3ag) + her(a]aa) — T sehiaiaa) + Sathyi(ata}
1 = i
+5 Z {Viais (a;a;aﬂi) + Vip(a ‘a ;agaa>
ij
+2Vign(ajalaas)+2 Vaglasalaa,)}

1 = =
i+ E Y {8arVigix(a Ia ;raka;') + 8vg Viikr{a ;ra }ﬂkﬂa W (21¢)
ifle ! .
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3. Conjugate B and C Matrices. Using the explicit expressions given in Eq.
(11b) for the A =(puqgv) component of hy, Egs. (13e) and (13f) for the noncon-
jugate B and C matrices become

B as.puav = (h2)as| 1) puar)
i B::b.mn.qv e E (1 = qu)(a;a;auav>A:ab,qa

—3 (1= P )apa38,8m)Absmy (22a)
and 2
Couavas = (44) puar A 1(h2)as)
= Chuanas ~Z (1 — Ppo)(a2a5,8,)* A e ab
=X (1~P.Xa}ai8,0m) A, (22b)
where . : |
Blbpuar =(abas|Hla}a,ala,), (220
and : _
Chuav.as = (apa,a4a,|Hlaas). (22d)

The elements of the Hermitian A’ matrix appearing in the Schmidt components of
Eqs. (22a) and (22b) are written out with general indices in Eq. (21c). Substitution
of Eqgs. (22a) and (22b) into the expression for B, Eq. (18f), yields

B'ab,ppqv - ~:ib,pp.ql' _z (l _qu)(a:a;auav)A::b.qu
‘_): (1 _-Puvxa;a;apam)A:lb.mv Cpp.qp abs {226)

with

. é;bpmu =%[B:ab puqy +C:::.qvab]- (22f)
In deriving Eq. (22¢), we have used the obvious fact that Schmidt components of B
and C are conjugate to one another. Since the matrix elements of B’ are quite
lengthy, they are not shown here, but are available upon request from the authors.
Order-trullcated expressions for B’ are displaycd in Appendix A however. The
elements B, ;.4 can be obtained from the B, ... €lements of Eq. (22¢) by the
simple index transformation A(qi~> qs)=(p=> u, > p, v=>4, ¢ > v).

4. M matrix. With the combined index labels for h, defined in Eq. (20b), the
expressions given in Egs. (13g) and (13h) for the M matrix become

Mo = (ha)AlEI — H|(hs)a) = ESxa— M q. . (23a)

Since it is necessary to introduce a diagonal approximation to the M matrix to
bring it into a computationally manageable form, the complicated explicit
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expressions for its off-diagonal elements are not reproduced. For the diagonal
elements of the q3, qi block of M with A = Q) = (puqv), we have

Sp,uqv.mu?v T ( (Q: )pu.qvl (Q: )p.u.qv) (23b)
and

Mo =0 Vron TN Facis): (23c)

M is evaluated by substituting into Eqgs. (23b) and (23c) the explicit form for
(@4) puav given in Eq. (11b) and employing the generalized Brillouin theorem [Eq.
(10)] to simplify the resulting expressions. Matrix elements for the qq4, q4 block of
M can be recovered from Egs. (23b) and (23c) by the index transformation
A(ql >qq)= .Q(q} »>qs)=(p->u, u=>p, v->q, q->v). The complexity of Eqgs.
(23b) and (23c) precludes their explicit publication, except in an abridged
order-truncated form, as shown in Appendix A. Explicit expressions for the
complete diagonal and off-diagonal matrix elements of M are also available from
the authors upon request.

F. Order Analysis

To calculate the A, B, and M matrix elements presented in Sec. Il E, it is
necessary to know the values of certain one- and two-electron integrals (i.e., h;,
Vi) and certain components of the one-, two-, three-, and four-particle density
matrices [i.e., ({1}-; a!)T1}-, a,)), n€1,2,3,4], where both the integrals and
density-matrix components are defined with respect to the MC-sCF orbital basis
{¢:}. It is important to keep in mind that for a specific choice of the Mc-scF
reference state ¥, many of the complicated terms appearing in A, B, and M
will be zero. In particular, only a few of the three- and four-particle density
matrices will contribute. By restricting the Green’s-function theory to second
order, it is possible to eliminate many of the smaller higher-order terms as
well.

In this section, we assign orders to the various components of A, f’., and M then
discard terms higher than second order. The order concept we employ was
developed earlier for the analogous Mc-ScF one-electron Green’s-function
problem [28]. For completeness, we summarize this earlier development before
implementing it to simplify the various terms in A, B, and M. This new concept of
order is based upon the physically reasonable assumption that for most systems of
interest, the MC-SCF spin-orbital set {¢;} can be partitioned into two disjoint
subsets L and S, whose elements have either large (near unit) or small (near Zero)
occupation numbers with respect to the Mc-scF reference state ¥:

N e 1-iel
iy =(alay={ 7 < (242)
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(i.e., we are assuming that ¢; will either be occupied or unoccupied in most of the
dominant configurations of ¥).* This assumption lets us assign orders of magni-
tude to the diagonal density matrix elements (i.e., (a:a,-), (a:a}aja,-),
(ala}ajaiaa;), (a :aIaIaIa;aka,a,-)). Using the Schwartz inequality, upper bounds
to the orders of the off-diagonal density matrix elements can be found by relating
them to products of diagonal elements, whose orders are known:

Kala)=<(ala:Xa]a;),
t ot 2 t 4 Tt (24b)
Kaiajara)|* =(aiaja;a;Xaiaraa).

For example, in the case of the one-particle density matrix whose diagonal
elements are ordered as

+ +_[O(0) ieL
(aja;))= 02) ieS (24¢)
application of Egs. (24a) and (24b) enables us to write
o(0) i,jeL -
(alaj)={0(1) ieS,jeLandieL,j€S, (24d)
02) i,jes.

Similar concepts are easily extended to the higher-order density matrix elements.
The overall result is quite simple: to determine the order of a term containing an
n-particle density matrix element {((I];-,a;)(1;-, a;)), one counts the number of
spin-orbital indices belonging to §; the total count is equal to the order of this
element. Representative examples of this occupation number ordering concept
are presented in Table 1. ;

Before we can apply this concept of order to the terms of P~ (E), it is necessary
to develop rules for ordering products of density-matrix elements with one- and
two-electron integrals and with other density-matrix elements. Since a one-
electron integral h; can be quite large (e.g., h;; is of the order of the orbital energy
£:), we do not truncate any terms of the type h;{([];-, a:-)(l-[;-l a;)), even if the
density element by itself is higher than the desired order. With only a few
exceptions, the magnitude of a two-electron integral lies between 0 and 1, thus a

* For a MC-sCF wave function of the type given in Eq. (8), ‘P=Z::_n Cx Pk, this assumption
implies that the set of mixing coefficients {Cx|K =0, M} can be partitioned as {C;|L =0, m} and
{Cs|S = m+1, M} such that |C,|*»|Cs|? for all L and S. This is generally true for nonextended
systems; an example can be seen in Ref. 44 where for b 'Y NH at R, =1.95 bohr, the C; set has
valence configurations 30*172 and 304a17> with coefficients 0.92 and —0.37, respectively. In
contrast, the coefficient of largest magnitude from the Cs set is 0.09. While the assumption of a distinct
L/S boundary may not be strictly valid for delocalized systems such as metals, an L/S partition can still
be constructed by including in the L-orbital subset those orbitals with occupation number averages of
intermediate magnitude.
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TaBLE 1. Examples of the occupation number ordering concept. It is assumed
in these examples that L consists of all orbitals occupied in &, the dominant
configuration of the MC-SCF reference state, and S consists of those orbitals
unoccupied in $,. Orbitals belonging to L or § are thus denoted by Greek indices

or the Roman indices m, n, o, . . ., z, respectively.
Density Matrix element L/S Classification Order (#S)
<a;au> <stL> 1
<a‘ataa > atsies 1
a Py w
ok .+ ‘
capalla“an; <S'S'LS> 3
i $od : ;
<aa qauauaf - B B B iel 1
M sTLess  des 2
fatatata s a as Lt st s i.jel

%2200
ftststsiies  des, gel

affitstsiess  deL,jes

i ¥ststsiss i,jeS

W W M

lower bound to the order of the product Vi (1} -, ai)I1;-, a;)) will be given by
the order of its density-matrix component. An integral V;;; can be greater than
um!y if ¢; and @; are radially contracted orbitals whose electron densities |¢;|* and
|#,]? overlap significantly within a small region of space. Typically there exist only
one or two such orbitals in a basis {¢,} that can give a two-electron integral not
bounded by unity. Thus, for almost every integral Vi, the order of
Vid[T5 -, ai )([]f 1 @;)) is either the same as or higher than the order of the
density-matrix element alone. For products of density matrix elements, each .
element in the product is ordered separately and product terms higher than the
desired order are then truncated. More refined order approximations that
consider the magnitudes of the individual one- and two-electron integrals are also
possible. We use the occupation number concept of order in Sec. II to bring the
expression for A, B, and M and hence P~ '(E) into a consistent, computationally
tractable second order form. Unlike RSPT ordering in the electron interaction, this
occupation number ordering scheme preserves itself even when applied to
systems with highly correlated reference states or severely distorted geometries.

III. Operational Considerations

A. L_/S Orbital Partition

As discussed in Sec. II F, the occupation number ordering concept assumes a
partition of the Mc-SCF spin-orbital set {¢;} into two disjoint subsets {¢;i € L} and
{#;lj € S} based upon orbital occupation number magnitude in the McC-scF
reference state W. Accordingly, we repartition our occupied and unoccupied
spin-orbital subsets {¢.} and {¢,.}, which are defined with respect to the ®,
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component of ¥, into L and § subsets:
{¢i}={#ili e LYU{¢ili € S} ={a} U{dm},
{#a}={¢ala € L}U{¢a|a € S},
{$m} ={dmlm € L}U{@n|m € S}, (252)
{¢ilie L} ={@ala € L}U{pn|m € L},
{¢,li € S} ={Pala € S}U{dm|m € S}.

Since @, is chosen to be the dominant configuration in V¥, it can be assumed
without loss of generality that {¢.|a € S} = & and thus

WlleLicip) Ul imell 7  (@5b)
and :
{,lj € S} ={bm|m € S}. (25¢)

Furthermore, in basis sets of even moderate size, {¢,,|m € S} will contain many
more elements than {¢,,|m € L}. P

B. Implementation of the Occupation Number Ordering Concept

The L/S classification of the MC-SCF orbital set enables us to partition each of
the four main blocks of P~ (E) shown in Eq. (14b) into four sub-blocks, giving a
total partition of 16 blocks. For example, the (g3 )ma; (g5 ) block of P"'(E) can
be further partitioned as

-1

ma,ng -
ma, nf3
1. LL,LL
2. Ll-SL
3. 8L LL ‘
4. SL SL. (26a)

In deriving this partition, we have assumed that Eq. (25c¢) holds; orbitals occupied
in the dominant Mc-ScF configuration @, (i.e., orbitals designated by Greek
indices) belong exclusively to L, while the unoccupied orbitals in ®, (i.e., orbitals
designated by Roman indices m, n, ..., z) can belong to either L or S. The
sub-blocks in Eq. (26a) are listed in order of increasing size. Since only a few of the
orbitals m, n, o, . . ., z unoccupied in ®, belong to L, sub-block 1 of Eq. (26a)
contains far fewer matrix elements than any of the other sub-blocks. Sub-blocks 2
and 3 contain the same number of matrix elements, which is in turn less than the
number of matrix elements found in sub-block 4. Similar considerations allow us
to partition the other three main blocks of P '(E). Within each of the 16
sub-blocks of P"'(E), the order concept introduced in Sec. II F can be applied
to systematically truncate higher order terms. This brings about a substantial
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reduction in computational effort while preserving the order consistency of the
approximation.

To carry out this truncation process, it is necessary to establish an L/S
partition of the A, B, and M matrices comprising P"(E). The A matrix consti-
tuent has the same indices and main blocks as P~ (E), so the L/S partition of Eq.
(26a) can be applied directly, giving with truncation the contribution of A to each
of the 16 sub-blocks of P~"(E). Thus for the (g3 )ma; (43 )ns block of A, we have the

four sub-blocks
Apang:
ma, nf3

1. LL,EL

2. -LL,SL

3. SL,LL

4. SL,SL (26b)
The B and M matrices contribute to P~(E) as the product BM'B'. With L/S
partitioning, each of the four main blocks of B (and hence l.}*) breaks down into
eight sub-blocks. For example, in the (43 )ma, (4 )ouaqr block, we have

-

Bmu.PMl':
mao, puqv

LI LLEL
LL,LLSL
LL,SLLL
LL,SLSL
SL,LLLL
SL,LLSL
SL,SLLL
SL,SLSL. - (26¢)

Each of the two diagonal blocks of the M matrix can be partitioned into four
sub-blocks. Within the (g4) puav; (4)puqy block, we get the partition

Pl DL T b s

M pavpuar:
puqv, puqv
1. LLLL LLLL
2. LLSL,LLSL
3. SEEL. SLLIL :
4. SLSL,SLSL. (26d)

The number of matrix elements in a given sub-block of B or M depends upon the
number of Roman indices belonging to L (i.e., the more Roman indices belonging
to L the smaller the block). By truncating each of the sub-blocks of B and M to
within a given order, BM'B' can be approximated through that order. For
example, if all zeroth-, first-, and second-order terms in A, B, and M are retained,
then BM 'B" contains all terms to second order plus certain terms of higher
order. We speak of BM 'B' as being approximated throu gh'second order. Since
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M appears in this product as an inverse of its diagonal elements, the concept of an
approximation exact to second order is difficult to apply. Other Green’s-function
methods have also employed approximations through a given order with good
success [18-20, 27, 28].

As a specific example of the ordering process, we investigate components of A,
B,and M contributing through second order to sub-block 4 of the (q;)m; (q;),,s
main block of P"!(E). Since A has the same block structure as P™'(E), we will thus
order sub-block 4 of Eq. (26b). While many of the sub-blocks of ﬁq_and M
contribute to sub-block 4 of P™'(E), we choose to order sub-block 8 of B in Eq.
(26¢) and sub-block 4 of M in Eq. (26d) so that all of the Greek indices we consider
in this example will belong to L and all of the Roman indices m, n, o, . . ., z will
belong to S.* However, Roman summation indices in these matrix blocks can still
run over both L and §.

In carrying out the order truncations for A, B and M, it is also necessary in
some cases to restrict summations over the general orbital indices 4, j, k, le LU S
that appear in these matrices (i.e., without restrictions, terms higher than second
order would be included). To express these restrictions in a simple form, we
enclose the set of summation indices in parentheses and denote with a subscript’
the maximum number of indices that can belong to §. For example, the notation
Y, implies that the i index cannot run over any S-type orbitals, hence this
summation is equivalent to the restricted summation ) ;_;. A restricted double
summation Y (;, implies ¥ ;1 jer, but a more modest restriction ¥ ;, would permit
YieLjers LieLjes» and X, g c; Summations. Similar restrictions can be written out
for the three-index summations . ;. . With this convention, a summation over m
indices ¥ ;;; ..., is completely unrestricted if n = m, partially restricted if 0 <n <m,
and completely restricted if n = 0.

In ordering through second order sub-block 4 of the A ,....g main block (i.e.,
ma,nB = SL,SL), we find that the overlap terms §,,, .z shown in Eq. (21b) are
already of second or lower order, but the general expression for A, .g given in
Eq. (21c) reduces with truncation of terms higher than second order to

:nu,nﬂ = hmn(“l“ﬂ) * hﬂn‘(“ :am>
== Z {8.shinla :Gm> = 3»;1::}13:'(0 :-ai)}
1 2 £
b (; {Vemi{@aana;a;)+ Vinalaia] agan)}
i0h

+ E ﬁﬂh(ﬂ:a:aﬂM)*’Z vmin}(‘z:a:afaﬁ)
(ifdo if

= VI - + ¢
+%8mn z Viﬁ}‘k(aaaiaka}')-’-%aaﬂ z v’ijkn(aia_vjakam)-

(ijk )2 Gk :
(26€)

* Note that we have chosen to order the largest sub-blocks of A, B, and M since all Roman indices
in our example belong to the S-orbital subset. Sub-blocks of A, B, and M having some L-type Roman
indices will contain fewer matrix elements, since {¢,,|m € L} contains far fewer orbitals than {¢,,|m €
S} in a high-quality basis set. .
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Within sub-block 8 of B"m.pm,, (i.e., ma, puqv = SL, SLSL), ordering Eq. (22¢)
through second order gives

émd.pmv 72 B':'na.pu.qv _2 (1 qu )(0 apauav>A ma,qa’

. Z (1 uv)(apaqauam )Armx m'ye (26ﬂ
{m')o
Since the density-matrix elements in the @’ summation term are first order, only
the zeroth- and first-order terms of A, .- need to be retained to give the a’
summation to second order:

Ao = hmg{@aGa?) + hara(@ o@m)

—Z {Buahia{@iam) = Smahar{ata)}

- Toh
+3 2 (z {Va mij (aaaqajal') + V.I'jqct (ai ajaa'am)}
iNo

5 +(E) Vmiqj(aaaia;au)
it

+36mg T Vien (aaaiakaj)
(ifk)y

7, t t
+380a L Vike(aiajaiam). (26g)
(iik)o
The (ajalta,a,.) matrix elements in the m’ summation are already second order,
so only the zeroth-order component of A, .-, is needed:

A:na,m'v s hmm‘(a;ay) + hvn{a:n'am)

o z {aavhim'(a:am) = amm'hvi (a Lal>}

+ % z ‘-/a’mii (a;a :t'ajai)
(if)o ;

+ Y Veimilasal iaja,)

{if)o

+26mm E ‘,nqk (a o ak“}) (26h)
(ijk)o

The lengthy second-order expression for B/, ,.q. is displayed in Appendix A.
The order analysis of block 4 of M ;... puqr (i-€., puqv = SLSL) is also presented in
Appendix A.

To assess quantitatively the extent to which P(E) is sunphﬁed by truncation of
its matrix elements through second order, we count before and after truncation
the number of distinct density matrix elements that must ‘be summed over to
compute given elements of the A’, B’, and M"” matrices (we choose to investigate
these matrices because they are the principal components of A, B, and M).
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Keeping in mind that an unrestricted summation index runs over the N elements
of the Mc-scF orbital basis {¢;}, while a restricted index runs over only the /
orbitals belonging to the large occupation number subset {¢:|i € L}, we can
determine exactly how many density matrix elements must be summed over to
produce an element of A’, ﬁ', or M". For example, calculation of the term

= Tt
8ag 2. Vinaiajara,,)
ijk

appearing in the unordered A.,, .s matrix requires summation over N> density
matrix elements. In the second order A, . matrix, however, the summation is
restricted to th. Taking all possible permutations of the index restrictions into
account, we find that only P+30%s density-matrix elements are summed over (the
s parameter is used to denote the number of McC-scF orbitals belonging to the
small occupation number subset {¢;|i € S}; recall that N =[+5s). To facilitate
comparison between ordered and unordered matrix elements, we find it con-
venient to define a parameter A = I/ N, the fraction of Mc-scF orbitals belonging to
the large occupation number subset. The range of A is 0<A <1. With the
appropriate substitutions in the ordered summation count of our chosen A’-
matrix component, we find that P+1%s=3A%=2A%)N?, which is less than the
unordered count for N> for 0<A <1. Summation counts before and after
truncation for the complete A', ﬁ', and M" matrix elements are listed in Table II.

TABLE II. Number of terms containing distinct matrix elements that must be

summed over to produce single complete elements of the A', B’, and M"

matrices. N is the total number of elements in the MC-SCF orbital basis {¢;} and

A =I/N represents the fraction of MC-SCF orbitals belonging to the large
occupation number subset {¢;|i € L}, where 0<A <1.

matrix element # terms before ordering # terms after ordering (2nd order)
Ko ansanteon’ Eq.(21c) > 2We[1+aaaZInle[3a N Eq. 1264
i 16n+ 10241003 . > 15w [1+120-51 2 [ 415225033 Eq (AQ)
Mex , PuQu

."I;.Q s 24N+ 30NCHTBNS . > 20N+[2+8;+5121N2+[61+31.2&213]153 Eq.(A10)
T | v

* Owing to their excessive length and complexity, explicit expressions for
the complete B’ and M" matrix elements are not reproduced in the text.
However, they are available from the authors upon request.

It is easily seen from the expressions in this table that the simplification in P(E)
effected by truncation of its matrix elements through second order is dramatic.
This is especially true for high-quality basis sets where N is much larger than /,
making A much smaller than unity.
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C. Approximations to the M Matrix and Operator Manifold

Some justification is called for making a diagonal approximation to the M
matrix, since many of its off-diagonal elements contain zeroth-order terms. The
existence of such low order off-diagonal terms would seem to place severe limits
on the kinds of approximations that can be justified. Fortunately, however, many
of the same off-diagonal terms appear in the non-Hermiticity factors for M
displayed in Appendix A. For example, the zeroth-order term ) ; h,.;(a La ta.a;)
appearing in Eq. (A10) for the diagonal M}, 5., matrix can be traced back to
several related zeroth-order terms of the more general off-diagonal M., w0
matrix, such as the term 8,84, Y.i hoi(a *aLasa;). However, it can be shown that this
term is contained in the non-Hermiticity factor Sp,aq,(ﬁ(a tataya,)) of Mo o
This indicates that such terms, artifacts of the reference-state approximation, will
tend to zero when a high-quality reference state (e.g., the Mc-scF reference state
V) is employed.* We use these facts as a basis for making a Hermitian diagonal
approximation to M. As we have noted, other Green’s-function theories employ-
ing the more tranditional RsPT reference states have utilized diagonal approxima-
tions to M with good computational success. Since the magnitude of the spurious
off-diagonal contributions to M diminishes as the quality of the reference state
increases, using a MC-SCF reference state will further enhance the viability of the
diagonal M approximation. Finally, it should be noted that the lower-order
oft-diagonal terms of M cluster around the diagonal elements (e.g., the lower-
order terms of M .. 0 contain delta functions of the types 8, 8pi, 8,05 6o Oass
8q1, 8,1), Which suggests the use of a near-diagonal approximation as a compu-
tationally accessible means of overcoming the inherent deficiencies of the
diagonal approximation.

Our choice of a truncated operator manifold h’ = h, U h, for Mmc-scF Green’s-
function theories employing the occupation number ordering concept is based
upon the success of similar manifold truncations in RSPT ordering schemes.
However, we have implicitly assumed that with our truncated manifold h®, all
contributions through second order to the A, B, and M matrices are recovered.
The validity of this assumption can be demonstrated by showing that extension of
the operator manifold to include he leads to self-energy corrections that are higher
than second order. This is accomplished, in analogy with the order analysis for the
elements of M, by noting that (he|H |h2) = O(2) in the limit (H [he, h2]_) - 0, where
M is diagonal with respect to zeroth-order terms.t Extension of the operator

* There also exist some zeroth-order Hermitian terms in the off-diagonal matrix elements of M
that cannot be traced to artificial non-Hermiticity (i.e., they make no contribution to (H[X I-,X,-]_))A
However, itcan be reasonably argued that these are not true zeroth-order terms, since from the Schwartz
inequality expressions givenin Eq. (24b), formaljustification is provided for the computationally verified
density matrix result that such off-diagonal terms are smaller in magnitude than their diagonal
counterparts (e.g., |(afaj)| < |{a:a;)|). In the interest of simplicity, our order analysis scheme does not
discriminate between diagonal and off-diagonal density matrix elements containing equal numbers of
S-type orbitals. :

t Order analysis of the (hg/H |h,) matrix reveals that it has no real zeroth-order terms, although it
does have some spurious zeroth-order non-Hermitian terms that vanish in the limit of an exact
reference state. 7
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manifold to include hg is therefore not required to obtain all terms for P Y(E)
through second order within the Mc-scF reference state choice.

D. Computational Aspects

Although the formal expressions for A, B, and M look quite complicated and
unamenable to computation, only a few terms survive for a specific MC-SCF
reference state choice. For example, a four-particle density matrix element
(alajalala,a,aq.a,)is nonzero only if there exist conﬁgurations & and &, in the
MC-SCF state V=3, Cx®k such that |bx)=ala)alala,a.a.a,|®;) (i.e., the
operator a; tal a;a va,a,a,a, must “‘connect’ the two configurations ®x and ®.).
For a typical Mc-scF reference function (ca. 20 configurations), it is obvious that
only a few nonzero four-particle density-matrix elements exist. There will be
proportionately higher numbers of nonzero three-, two-, and one-particle
density-matrix elements, but these too must connect elements of the configuration
set {®x} contained in the Mc-scF reference state ¥, These “‘connectivity restric-
tions” can be utilized to simplify the calculation of P !(E). Instead of calculating
all density-matrix elements within the multiple summations and then deciding
which ones are nonzero, a time-consuming process owing to the lengthy decision
processes involved, we calculate all nonzero one-, two-, three-, and four-particle
density matrix eIements with reSpect to a given MC-SCF state (e.g.,
(ala fa;a :a,auaqa,), (ala] aqaka,,aq), (ala] apaq) (a! a,), etc.) and store them
together with their associated two-electron integrals (e.g., V. Viikps Viipa)- This
is easily accomplished by comparing each configuration ®x in ¥ to the other
configurations in ¥ and finding the one-, two-, three-, and four-particle connec-
ting operators between them. Only those density matrix elements that are
expectation values of the connecting operators for the Mc-SCF configuration set
{®x} will contribute to the summations comprising the A, B, and M matrix
elements.

Because the off-diagonal elements of M contain first-order factors and B has
zeroth-order terms, neglecting any or all off-diagonal terms of M destroys the
completeness of our second-order treatment. However, owing to the huge
dimension of the M matrix, which needs to be inverted many times during a search
for the zeros of Det [P™'(E)], approximations such as neglecting all or most of the
off-diagonal terms of M are necessary. Techniques for efficiently evaluating P(E)
given a diagonal approximation to M follow directly from procedures discussed
for the one-electron Mc-scF Green’s-function problem [28].

Since the calculation of a determinant Det [P~ '(E)] requires many operations,
it is desirable to find a reliable approximation to this step. Calculating a sequence
of determinants from successively larger submatrices of the P~'(E) matrix and
observing the convergence of this sequence may be a viable procedure. After the
Det [P™'(E)] has been obtained, the search for its zeros can be accomplished by
standard techniques such as bisection, accelerated false position, Newton-secant,
etc.

The poles and residues of P(E) can alternatively be found following the
method suggested by Layzer [49] and employed by Purvis and Ohrn [24] to the
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case of the one-particle Green'’s function. The method is based upon the fact that
poles of P(E) correspond to values of E for which eigenvalues of L(E)=
Ef - ”EﬁL@-HﬂEMJENMwE W, (E). The residues I',, are given by
r,=>1- dW,,,’dE)E-E To implement this technique, one must find eigenvalues
W, (E) for various values of E and then (graphically) locate that value of E for
which W,,(E)=E.

IV. Conclusion

In this paper we have obtained working equations that permit P™'(E) to be
expressed in terms of the A, B, and M matrices correct through second order
within the Mc-scF reference state choice. A new concept of order based upon
occupation number size is employed to carry out the order analysis. Incorporating
the considerable advantages of a Mc-scF reference state in a polarization Green'’s-
function gives rise to intricate formal expressions, which, however, simplify
dramatically into a computationally manageable form once a specific choice for
the Mc-scF state is established.

Appendix A: Evaluation of B', A, and M
From Egs. (18b) and (22f) we have the definitions
A=B-C', (A1)
B'=3B'+C"). (A2)

Since B and C have Schmidt components that are adjoints of one another [see Egs.
(22a) and (22b)], it is also correct to write

A=B-C". (A3)

Explicit expressions for A and B’ can be found by evaluating the B’ and C' matrices
defined in Eqgs. (22c) and (22d), taking the adjoint of C’, and substituting the
resulting expressions into Eqs. (A2) and (A3). In writing out the matrix elements
of B', we employ the convention thatonly conjugate Hermitian terms commonto B’
and C"" appear outside of the double brackets [[ 1. The corresponding A matrix
element is automatically recovered by removing all Hermitian terms, changing the
sign of each term within the double brackets arising from C" (i.e.,eachterm witha
conjugated density-matrix element

(1 o)1, @))°

and multiplying the final expression by 2. It is important to keep in mind that all
density matrix elements are real; the conjugated density matrix elements appear-
ing in the expressions for B’ and A serve only to identify which terms arise from
C''. We evaluate B’ (and thus A) for the particular choice of indices (g})mas
(94) puar- By assuming ma, puqv = SL, SLSL and truncating terms higher than
second order according to the procedures developed in Sec. III, we recover the
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ordered expression for sub-block 8 or B .o puqv;
5] =% *
B:na.p.u.qv et I[B:na,ppqv i C;pqv.ma ]

— (1 = Pm)hm(a;a;a,,a,) + (1 _va)hptl(a;a;avalﬂ) +2_: ‘_/miqp(ala:anav>

1 = Gl
+s {}_:) {(1—Ppy) Viigalaia;apa,a,am) + (1 — P,,) Vumi{awa,a a.a;a:)}
o 5

+ ¥ (1-P,)Vipiasalaaa,a,)
(i

+ [[% ¥ {(azaia,a,)(1—Ppg)dmehip

+ (1 _qu)(l —-an)‘snvhip(a:a;aﬂam>
+ (a;a;a;am)(l = P,...y)am'harp
+(1=Ppg)(1 = P,,)8mphi{atala,as)
+ hag(l _Pm)amp(a:alaan* 3 k,‘m (1 = P“,)aﬂ.,(a:a:.aqap)*}
1 e .
7 & Vi1~ Pra)8ma@aaasa:)
Hh

+ Vipa(1-P,.)8..(al a} a,am)}
1 7 Y *
—z(1 “qu)aqm E Vopij<ﬂ vana;'ai)
ij

—31-P.)ouu T Vimlaiajasa,)*

(ifo

+%(1—Pm){6mp Z} Vixelazaia)asa,a,)
(ijk )2

+(1=P. )b T fc,-hm:a:a;a,‘akam)}
(ifk)go

+3(1-P,,) Z {8m(1 - P)Viuplazalaza.aca;)
Hkh

by
+ 6qm Vic}'k (a wa ga:aqaka}')*}

H1-Pudbue T Vinlalalalaaa|]. a9
(ijk)o :
In order to express matrix elements compactly, we make use of a binary exchange
operator P;;, which when operating on a term to the right-hand side, converts i to j
and j to i.
Approximating Eq. (23a) for the diagonal M matrix to second order effects a
dramatic simplification of its matrix elements. In sub-block 4 of the M .40 puq. =
ES puav.onay — M pugv.puqr main block, where puqv = (SLSL), the ordered overlap
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matrix expression given in Eq. (23b) becomes
SPuQV-PMV = ((q: ).D.u-qvl(q: )p.uqv)
=(asaa.a,)+(1+Py)alajala,a,a,)

2 2 (1+P,,)a,ara,.a,)
+ z (1+ P, Xala a.a.Xapasa.a,Xatag). (A5)

In approximating Eq. (23¢c) for M" to second order, it proves convenient to divide
the matrix up as

M;uqvmsqv = ((QI )puqviﬁl(ql )ouar)

= M;MU.PMV + M::u.w.mr-qv’ (AG)
where
" t 1 3 T 1 +
Mpu-qa'.puqv =(a paud qaijE(q‘i )p.u,q- T apauaqav)
+(94) puar— 858,230, H (@3 ) puar)s (A7)
and
M apuar =(apa,aqa,|Hlaza.aza,). (A8)

Evaluation of the M” Schmidt matrix elements given in Eq. (A7) followed by
truncation of the resulting expressions to second order yields

M:M',PMN =i Z {(a:a;auav)(Bpa.pmu + C::nqy.m )
i (a a Pauav)(Bqa pugqy T C:’M-wa )}
=+ z {(apaqavam)(Bmu pugy . C;Ju.qv mu)

{m)o

T (d pa qa,u,am )(Bmv,pnqv + C;yqv,mv )} (AQ)

Since the density-matrix elements in the @ summation of Eq. (A9) are first order,
only the zeroth- and first-order terms in the B and C' matrix elements are kept. In
the m summation however, the density matrix elements are already second order;
only the zeroth-order components of its B and C' matrix elements need to be
retained. The most complicated component of M, the M"” matrix given in Eq.
(AB8), is approximated to second order as :

M v onav = (@p8,0,0,|Hlasa,aa,)
= (hop + hea)(@1a,,8,0,) + (hyy + b Xasaka,a,)
- ; {Q+P,)h,(alalaa,)+(1+ P..)h.{alala,.a;)}
—(1+Pp)hyplatanazaza.a,)—(1+ P, )h,,(alalatagaa,)

+(1+ Py)hplasa,apaza,a,)+(1+ Pk, (alalala.a,a,)
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+(1+Ppg) T hip{(1+ P, )a)alaga.a,a,) +(asala a,a,a,)}

+(1+P,) T hud(1+ Py )a,a a,a,a.0,)+(a,a,a5a,0.:))

+%[z Voura 011,00+ T Vipa(ala}a,0)+5 Vi (alalaa)
1o 1]

+2 Y (1+ Py i Viigpla Ja,ala.a,a,)

+ ?ml‘p(a Iala;a,.a,a,-)}
+(Z]: {Voii(1+ PyoXa .ala,a,a;a:)
o

+ Vipa(1+ P, Xala]a a,.0.a,)}

=+ (1 +Puv)(1 —qu) (Z vuplj(a:a:.a;aya;a;>

i
+2 E (a:a,"a.fa,‘a,a,-)(l +Po) Viio
ij

S ):) Viiclala,ala.aa;)
(ifk)2

+2(1+Pp) 3 {Viipa,a,alaza.a,.a.a;)

ifo
-~ t ottt
-+ tifp(anavaiaqapa#ava,i)}
= e
+ ¥ (14P,)Vixla,a;a;a,ara,a.a,)
(ifk )y

+(A+Pw) %o Vi{(ahalalalaga.aia;)
if

+(a1a3af,alauaka;ap)}]- (A10)

In actual computations where a specific MC-SCF reference state is chosen, many of
the terms appearing in Egs. (A4)-(A10), in particular, most of the terms contain-
ing three- and four-particle density matrix elements, will be zero. These compu-
tational simplifications are discussed further in Sec. III D.
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