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I. Introduction

In a recent review article on negative molecular ions (Simons, 1977).
coverage was concentrated on results of quantum chemical calculations on
specific anions; very little discussion was devoted to the methods used to
carry out these calculations. Because the present series is devoted to cover-
ing developments in theoretical chemistry, it is perhaps more appropriate to
direct the present review, toward explaining the quantum mechanical
techniques that are currently used to study molecular anions. A more com-
plete overview of the current status of theoretical research on negalwe ions
can be obtained by reading this article and the author’s other review (Simons.
1977).
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To understand why one needs rather sophisticated methods to study neg-
ative ions reliably, one need only to consider the results of our calculations
(Smith er al. 1974) on the vertical (R = 1.718 a.u.) electron detachment
energy (X'Z~ OH™ — X ?r,OH) of OH". Using an atomic orbital basis
consisting of twenty Slater-type orbitals (STO’s), we obtained a Koopmans’
theorem approximation to the electron detachment energy equal to 3.06 eV.
The energy difference between two separate self-consistent field (SCF) calcu-
lations (ASCF), one on OH™ and one on OH, carried out within the same
basis was equal to —0.20 eV; the difference between Koopmans' theorem
and ASCF represents the effects of allowing the orbitals to relax upon remo-
val of the z electron. Finally, our best-computed energy difference, which
contains effects of electron correlation through third .order, was 1.76 eV,
which is in good agreement with both Branscomb’s early experiments (Bran-
scomb, 1966) and Lineberger’s more recent laser detachment results (Hotop
et al., 1974). The difference between 1.76 eV and the ASCF value of —0.2 eV
represents the effects of electron correlation. These effects are indeed as large
as the entire electron affinity of OH; moreover, this result is not atypical.
~ Becausz.the treatment of both orbital relaxation and electron correlation

effects in a sufficiéntly rigorous manner is an absolute necessity in any
reliable scheme for computing properties of anions, theoretical progress
toward understanding negative ions has been made rather slowly. Quite
simply put, it is difficult to include correlation effects to a high enough order
to guarantee precision of +0.2 eV in computed ion-neutral energy differ-
ences. In Berry’s 1968 review article (Berry, 1969), his assessment of the state
of quantum chemical research on anions involved briefly mentioning the
works of Pekeris (1958) on H™; Weiss (1968) on Li~, Na~, and K~;
Clementi (1964), Clementi and McLean (1964), and Clementi et al. (1964) on
several atomic ions; Sinanoglu and Oksuz (1968) on C~, 0™, and F~; Taylor
and Harris (1963) on H; ; Wahl and Gilbert (1965) on halogen diatomics;
and Cade (1967ab) on OH~, CH™, SiH™, SH™, and PH™. Therefore, in
1968 it would have been fair to say that negative molecular ions were not
yet within the class of species that could conveniently be studied by existing
quantum chemical methods. On the other hand, the development of modern
laser technology was making available to the experimentalist new tools to use
in carrying out high precision photodetachment and photoelectron spectro-
scopy studies of gas-phase anions. Thus, even in 1968, a great deal of
experimental progress was beginning to be made. These experimental
developments made a parallel development of theoretical methods and
models aimed at better understanding negative ions a necessary and quite
natural step in the scientific progress in this area.

In 1972 Simons and Smith published an article in which they attempted to
use equations of motion (EOM) techniques to express the vertical electron
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affinity (EA) or detachment energy (DE) of a closed-shell species in a
manner that treated orbital relaxation and electron correlation through
third order in perturbation theory (the difference between the Coulombic
interaction and the Hartree-Fock interaction being the perturbation). This

. developmental paper was followed by other formal papers by Simons (1974).

]
]

Jorgensen (Jergensen and Simons, 1975), and Jordan (Jordan et al., 1976b).
in which small deficiencies in the original theory were corrected and connec-
tion was made with the recent Green's function developments of Cederbaum
(1973), Pickup and Goscinski (1973), Purvis and Ohrn (1974), and Freed
(Tsui and Freed. 1975). The result of these papers was a method that permits
the direct calculation of EA’s and DE’s of closed-shell species that are accur-
ate through third order. Because the work of Doll and Reinhardt (1972)
indicated that a second-order treatment of electron correlation effects was
inadequate, this extension to third order was quite important. With this
historical perspective in mind let us now turn our attention toward develop- ;
ing a unifying framework in whose terms we can understand the different

-techniques which are currently in use in this area of research.

far

-

" "II. The One-Electron Green’s Function

The electron propagator or the one-electron Green’s function has been
used for some time.(Cederbaum, 1973; Cederbaum et al,, 1971, 1973; Pickup
and Goscinski, 1973; Purvis and Ohrn, 1974, 1975; Tsui and Freed, 1975;
Griffing and Simons, 1975, 1976; Kenney and Simons, 1975; Andersen and
Simons, 1976, 1977a,b; Griffing et al., 1975; Jordan er al., 1976a; Linderberg
and Ohrn, 1967, 1973; Doll and Reinhardt, 1972; Schneider et al. 1970:
Yarlagadda et al., 1973)in the study of electron spectroscopy. The advantages
of using the electron propagator arise because the transition energies and the

.transition strengths are obtained directly as poles and residues of the propa-

gator. respectively. Several alternative procedures for decoupling the equa-

. tion of motion for the electron propagator have been developed. In this

review we use the superoperator formalism of Goscinski and Lukman (1970)
as the framework for our development.

The time-dependent Green’s function G,j(t) is defined in terms of the
spin-orbital annihilation (g;) and creation (a;*) operators as follows:

Gilt) = (Vi){<ai' (t)a;36(c) — <a;a (¢)36(—1)}, (1)
where 6(r) is the Heaviside step function and the bracket ¢ ) indicates an
average over some reference state. By introducing the identity

_exp(iHt)a™ exp —:Ht)—exp(—:Hr)a ,.where H is the superoperator

“Hamiltonian (Ha* = a~, H). and Fourier transforming Eq. (1), one obtains

G(E) = (a(El — A)"'a) @)
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where [ and H are the superoperator identity and Hamiltasian respectively,
and the a arz the set of annimliation operaters a = a4, which are arranged in

a super row vector. The superoperator sealar praguct is: defined in the
conyentional ‘ashzom{-i (HiBY=<4"(HB) + {HB)A*) The superopera-
tor resolve=t (£f — H)™ ' can he approximated via the inner projection
technique in which case ihe prepagator then takes ghe form

G(£) = (a}ijihi EL- H [n) ™ (h|a)-. (3)

wiere 'vis 2 projection smanifold which. if chosen.ta e complete and octhon-
creoal. makes £gs. (2) 2n@:t3) identical. The operator space

L’!:_]:.Ll‘l i

= LAl oy, Al a] dya gk k> bi>ieh>1>res - (4)s
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77a. bl af third:order caiculations seem to beivervireliable (402 eV). .
..... L TR mmzﬁﬁmm%
Lne CHATiIess- SOew | nF"\:ero*r'rﬁﬂmﬂ:‘ SEEREL IO ETNE e ST CRI BRSO
cquieet thesugh seconds order in the electronic meraction. Such seeond- . .
SyTred, TR EmeTEan: Mol o ol
L A W IR R IR :m-mm*wmm‘- :
of TATS 3.2 ot anifuandle roa o B etyieeen i wollaundensto
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bjapoic g b L 15 '&...""-a v..n..f.ﬁl. T ks
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1=-ms are introduced by the improved (higher order) reference state. Thus. if
o- = is careful to avoid the nonhermitian parts of H, one can show, as Tyner-
R=imon has, that the h, operators cannot contribute to G~ ' through third
o-3er. We therefore concentrate on using hy, h, as our projection manifold in
o.r search for a theory that is consistent through third order.

As the reference state in our analysis we use a correlated wave function
¢+2n by

|0> s N_l"z{I T ; (Kfa;ad) + Z (K;";a;a:a,a,)

m>n
o
+ E (K;’;’_;’a,,’,a,;‘a;a,aﬁa&)+---}|HF> (5)
m>n>p
1>p>4

where the a* are a set of HF creation operators and where indices m, n, p, ¢
(= B. 8, 7) refer to unoccupied (occupied) spin orbitals in the HF ground
s:ate and i, j. k. L r are unspecified spin orbitals. We then take the correlation
cxefficients from Rayleigh-Schrodinger perturbation theory

K? = E {<pz| ]m">5e;<Pﬁl ”"”’)‘5«3

m>n

>f

+ (| |5mdS,, — (Bx| |5n5 )

<] (28> + higher order terms
(36 o, 59)(82 +_3.ﬂ i e sm)
in the electronic interaction = K3(2, 3, ...) (6)
\
w = iRy + higher order terms in the
€+ & — Ey— &
electronic interaction = K77(1, 2, ...) (7)
K=Kl %, ) ®)

where the numbers in the bracket indicate the orders in the electronic inter-
z:tion contributing to K3, K7. and K7jf. The ¢; indicate HF orbital ener-
Zes and the two-electron integral {mn|4B) refers to the charge densities mx
zad nf and

Cmnl |aB) = {mn|xB) — {mn|Bx). (9)

1= the remainder of our analysis we employ the projection manifold {(h,. h;}
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where t=2 h; space for convenience has been redefined as

hy = {a aya, + <a apa, - <a:ak>ﬂf}' (10)
This choice of the subspace h, ensures the space is orthogonal to h,
(hy |hy) =0, (11)

even for a correlated reference state. We also have the following orthogona-
lity relations:

(hi|hy) =1,  (hs]h3)=5(0,2,3,...). (12)
Using Egs. (11) and (12). Eq. (3) can be partitioned into the form
G™'(E)= (h,|El - H|h,) = (b, A |h3)(hs | El — H|h3)"'(hs|H |b,)
=E1-A-BD"'C (13)
where the matrices ABC and D are defined as
A=(h1|glh1) B=(h1|glh3)
D=(h3|51_ﬁ|h3) C={h3|ﬁ|h1)- (14)

We are now prepared to make an order-by-order analysis of Eq. (13) in
which wz retain only those terms which are zeroth, first, second, or third
order in the electronic interaction. Since, as will be seen shortly, the Band C
matrices are at least of first order. we need to consider only that part of the D
matrix that is zeroth and first order. This constrains the indices in the
projection manifold h; to be of the form a.a,a,¢ > B or a]a,,a,m > nsince
operators such as a,, a, a, lead to matrix elements in the D matrix that are at
least of second order. The resulting subspace h; is thus identical to that used
in calculating the electron propagator through second order in the electron
repulsions (Doll and Reinhardt. 1972), although we now need to obtain the
B and C matrices through second order, the D matrix through first order,
and the A matrix through third order.

Previous attempts (Schneider et al., 1970; Yarlagadda er al, 1973) to
obtain the electron propagator correct through third order have used the
reference state

|0 = Ng ”2(1 + ¥ K;’,‘f’a;a:a,a,) |HF) (15)
e i

where the K77 are determined from first-order Rayleigh-Schrédinger pertur-

bation theory. In calculating the B, C, and D matrix elements correct

through second and first order. respectively, no changes are obtained from

considering the higher correlated ground state in Eq. (5). The matrix ele-
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ments of B, C, and D are given. zither for the reference state of Eq. (5) or for
t7e state shown in Eq. (15) as

r e 1 ;
amp = —<im 2B — 5 3 (im|pg>K

P9

+ _Z[ 17| pdKEE — iy | pBYKE? (16)

"™ b::r\

e

-
~

B, = Cix|mn) + = Z iz jdyyKor + 3 [Cip|yn)KTP — (ip|ym)KE)
z = (17)
C~ = B (through second ordert
ki Ly (18)
Doam. o8p = Ssgbsp0mplbat&s-—-5— E) = 8oumpB| | px) = 8,mCnp| | q2)
S + 6B |72 + 8,,Cmn | |pa) + 8,uCmP] g2y, (19)
D-!r:--a:tﬁ-= —{85rS i Ssptey — €52+ E)~ 8,58q | |ap) + 65{vq| | BP)
S = 5.48q] |50 + 8,(87| | Bx>~5,,Crq| |ap).  (20)

In the A matrix we need to imclude all terms up to third order. The A
matrix elements obtained by using Eq. (15) as a reference state need to be
modified by third-order terms taat result from the interaction between the
singly excited states of Eq. (5) 2nd the HF ground state. The triply excited
states of Eq.(5), which alsc result from a second-order Rayleigh-
Schrédinger perturbation calculztion. do not introduce third-order terms in
A. We thus have to add to the A matrix elements given by Simons (Simons
and Smith, 1973), which employed the reference state of Eq. (15), the terms
a4;;

_ < $p| i8)<8B]| |mny{mn| |pB>
5A“ 5 ; (86 = Ep)(sé i g —&m — 5»)
i3] [ipd><pB| |mn)<mn| |6

i ,z,: (25 — €, )(E5 + €5 — £ — £4)

Cir|ioX<én| | Bxd<aB] [pn>
28 (‘-J i EP)(S, + &g —Ep— t'n)
m
+ v $Elipd<pa| |onx<pn] |2 - 21)

o (s —gp)e, + g5 =€, —¢)
m
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Tae A matrix originally given by Simons (Simons and Smith. 1973) is

M;:r: Q VIR --:. — | e T i I\"_,J_..g..-'.‘_-—_"-“_ =
SRSRESIESE e F.LI == Y K hf‘é‘ Z K“ K!k (223)
:‘xﬁ P p‘-q % : /)

T=z2 resulis shown in Egs. (16-22a) constitute a superopcrator derivation of
=2 elzctron propagator through third order. With these general results in
kznd. let us now turn to the analysis of various approximations that have
Se2nointroduced for G(E). =

IIl. Approximations to G(E)

A. CEDERBAUM'S DIAGRAMMATIC METHOD

In a series of papers aimed at developing an accurate and tractable quan-
tum mechanical approach to principal and shake-up ionization energies and
p-otoclectron intensities, Cederbaum (1973) and Cederbaum et al. (1971,
1£73) has made use of Feynman diagram techniques to derive an approxi-
m.2tion to the self-energy Z(E) appearing in the Dyson equation

~!(E) = 65 '(E) - Z(E). (23)

A comparison of Egs. (13) and (23) shows that Z(E) can be written as
BD™!C + A®, where A® is the third-order part of A if G5 !(E) is identified
as (E —¢.6;;). In Figs. 1 and 2 are shown the diagrams that constitute the
sz;ond- and third-order components of Z(E), respectively. The reader should
ccasult the papers of Cederbaum for a review of the rules for writing, in
tecms of two-electron integrals and orbital energies, the values of Feynman
d:i:igrams. The (second-order) diagrams of Fig. I arise in our Eg. (13) for
G~ !(E) when the first-order components of B and C are combined with the
zzzoth order (diagonal) component of D™ *(—B"(D%)~C"). The explicit
exoressiocs for B, C, A, and D given in Egs. (16-22) allow these second-order
componects to be evaluated in a straightforward manner.

The third-order diagrams in Fig. 2 labeled A1-A6 arise in Eq. (13) from
tk2 third-order components of A. with diagrams Al and A2 coming from
m:trix elements involving the first-order Rayleigh-Schrodinger component
of the weve function |0) and diagrams A3-A6 resulting from ¢lements
irvolving the second-order component of |0). Diagrams C1-C6 and D1-D6
arse in Eq. (13) from three sources: (1) by combining the second-order parts
o’ C. the zzroth-order parts of D!, and the first-order parts of B: (2) by
ccabining the first-order parts of C, the zeroth-order parts of D™ . and the
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second-order parts of B; and (3) by combining the first-order parts of B and
C with the first-order parts of D~'. Because D contains zeroth- and first-
order components D° + D' [see Eqs (19) and (20)] D! can be approx-
imated, through first order, and (D°)~! — (D°)~'D*(D°)~*; the second term
in this expression is that referred to above as the first-order part of D™},

In solving the Dyson equation (23) for G(E), Cederbaum must evaluate
the contribution to )’ (E) made by each diagram in Figs. 1 and 2 for each

Fig. 1. The second-order self-energy diagrams of Cederbaum.
value of the variable E. The evaluation of the third-order diagrams Cl -Cé6
and D1-D6 involves the summation over five indices, e.g., :

Cl= 3 <pgl|lia)rs||pgd<jx||rs)

p<g.r<s
x(e,—¢€,—¢t,+E) (e, — & —¢&+E)". (24)

The computation time involved in calculating such terms clearly depends
upon the number of Hartree-Fock spin orbitals to the fifth power. This N*
dependence is obviously a severely limiting aspect of the Green’s function
method as implemented in the above manner. Nevertheless, Cederbaum
(1973) and his collaborators (1971, 1973) have carried out high precision

> PDALANAN

Al

009909
009909

Fig. 2. The third-order self-cnergy diagrams of Cederbaum.
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studies of reasonably large molecules using this complete third-order trea€
ment of Z(E).

B. SIMONS’ APPROACH AND THE TECHNIQUE OF PURVIS AND OHRN

To accomplish a reduction in the computational effort required to com-
pute Z(E) through third order, Simons and Smith (1973) introduced, in an ad
hoc manner, simplifications of Z(E) that have now been wisely used in their
studies of molecular anions (Smith et al., 1974; Griffing and Simons, 1975,
1976; Kenney and Simons, 1975; Andersen and Simons, 1976; Griffing et al.,
1975; Jordan er al., 1976a; Andersen and Simons, 1977a). These authors
approximated the D matrix appearing in Eq. (13) by its diagonal component
only; all off-diagonal components of D contribute to the third-order parts of
I(E) through terms of the form —B"Y(D°) !D}(D°)~!C', therefore this
approximation causes errors in Z(E) which are of third order. Purvis and
Ohrn (1974, 1975) and P. Jergensen and G. Purvis (private communication)
have been involved in attempting to develop more systematic approxima-
tions to D!, Their emphasis has been directed toward finding computa-
tionally tractable schemes that allow one to replace the full D matrix by a
smaller sub-block of D. Thus far there have not been many calculations
carried out using such block diagonalization techniques, although lhelr im-
plementation is certainly worth pursuing.

In the approaches of Simons et al. and of Purvis and Ohrn, the self-energy
I(E) contains, as it should, only simple poles; only D is E-dependent. Thus
the first- and second-order components of B and C, which are not E-
dependent, need be calculated only once. Only D™ ! has to be formed for
each value of E. If D is taken, as Simons has done, to be diagonal, this is 2.
trivial step. In contrast, as is shown in Eq. (24). the diagrammatic represen
tation of Z(E). although very closely related to the algebraic superoperator
approach given in Section II, requires each contribution to Z(E) to be cal-
culated for each value of E. Thus the more rigorous treatment of Cederbaum
involves carrying out fivefold summations for each value of E and for each
element ), (E) of the self energy [see Eq. (24), for example]. If D is taken to
be diagonal, the approach described in Section II involves doing a threefold
summation for each element of Z(E), once the E-independent quantities A, B,
and C are computed (once-and-for-all). The replacement of fivefold sums by
threefold sums represents an important savings.

C. CHONG’S THIRD-ORDER PERTURBATION THEORY APPROACH

In a recent series of formal and computational papers, Chong et al.
(1974a,b,c) has employed third-order Rayleigh-Schrodinger perturbation
theory with geometric approximations to higher order terms and double-
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zeta quality tasis sets to study the low-lying states of-molecular ions (pri-
marily catioas). This approach involves the separate calculation, via
third-ordzr perturbation theory, of the energies of both the neutral molecule
and the ion. Such perturbation calculations have yielded ionization poten-
tials that are precise to 0.5 eV. In studying anions, this level of accuracy is
not adequate. It is our feeling that much of the error resulting in Chong's
calculations i due to the quality of his basis sets. A critical evaluation of this
third-ordzr perturbation theory approach in which extended basis sets are
employed weuld be most welcome. Once the basis set question is resolved,
one can attexipt to evaluate the inherent limitations of the perturbation
theory mathod.

D. THE [oN1ZaTION ENERGY METHODS OF PARR AND OF SMITH

Parr (Morzell et al,, 1975) and Smith (Smith and Day, 1974; Day et al,
1975) have independently developed a technique for computing ionization
potentials that is closely related to the Green's function approach described
in Section II. The implementation of this theory involves construction of a
matrix V whese elements are given (for IP calculations) by

Vij=10]a/"[H, a;]] + [}, H]a;|0, (25)

where the reference state |0) is assumed to be a high quality (correlated)
approximatica to the ground electronic state of the system. The (approxi-
mate) ionization energies {¢,} are obtained by solving

Vg, =¢,5,, (26)
with
Si; = <0]a; a;]0). (27

This approach has been applied to a few atomic systems; the results are
sufficiently ercouraging to warrant further investigation of the idea. Ander-
sen (Andzrsez and Simons, 1976) has carried out an order-by-order analysis
of the elements of V by using a second-order Rayleigh-Schrédinger approxi-
mation to the reference state in Eq. (25). He finds that the (primary) ioniza-
tion energies generated by the method of Parr and Smith contain almost all
second- and third-order corrections to the Koopmans' theorem approxima-
tion. if the second-order reference state is used for |0) in Eq. (25). The
method thersiore seems to also have a good deal of formal justification.
However. it is not at all clear how well this approach will do when it is
applied to shke-up ionization processes. It is our feeling that formal and



