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A theoretical formalism is developed for analyzing the spectra of excess electrons in pure molecular solids
and liquids. A perturbation decomposition of the Hamiltonian allows the expression for the band shape
I(w) to be written as a sum of a zeroth order part, proportional to dipole transition matrix elements and
corresponding Franck—Condon factors, and perturbation terms containing effects of electron hopping and
their fluctuations. By using several physically motivated approximations (e.g., the temporally localized
nature of electronic transitions which allows a short-time expansion of the time dependence of operators),
the expression for I(w) can be expressed in terms of solvent structure information and the
electron-solvent interaction potential. From the general expressions for I(w) a simplified model was
developed in the special case of systems for which bound-to-bound transitions are dominant. This model
has been successfully applied to the spectra of excess electrons in ethanol and anthracene glass, thereby
providing some optimism for the potential use of the general formalism derived here.

I. INTRODUCTION

Two of the most important and frequently investigated
physical properties of excess electrons® in atomic and
molecular liquids and solids are optical absorption spec-
tra? and electron mobilities.> These two processes
probe, respectively, the short- and long-time charac-
teristics of the excess electrons. In Ref. 4 (hereafter
referred to as I) a formalism was developed to analyze
the mobility of one component solutions of excess elec-
trons in terms of the electron—solvent interactions and
solvent structure information. In the present work we
shall develop, based upon fundamental quantum and sta-
tistical mechanical principles, a general formalism for
understanding the optical spectrum of excess electrons
in molecular solutions for which the electronic states
are primarily localized in nature.

Theoretical models®=!* developed thus far are adequate
to treat, in a semiquantitative fashion, the spectra of
polar fluids in which the electron is assumed to be lo-
calized in a cavity about some point in space and to have
an electronic wavefunction which decreases exponentially
with distance away from this point. The potential ener-
gy of the cavity is assumed to be due to the orientation
of the polar solvent molecules inward toward the trapped
electron. The cavity is characterized by a radius R and
depth E,. Within this class of cavity models the simple
cluster type models®® treat only the first solvation layer
around the cavity and therefore include only the short-
range interactions. Continuum models,”® on the other
hand, assume a cavity surrounded by a continuum di-
electric medium with any one of several forms for the
polarization P(r) of the medium. For example, a com-
monly used form due to Jortner® is

P(r)=0, <R,

(1)
(1 1\ e
"(ew es)4 z, 7R,

where ¢, and ¢, are the optical and static dielectric
constants of the medium, respectively.
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In the semicontinuum models®* the above two ex-
tremes are modified somewhat by allowing the cluster
(cavity surrounded by first solvation layer) to be em-
bedded in a polarizable dielectric continuum. The first
solvation layer is then simulated by point dipoles or by
ab initio self-consistent-field approximations to the sol-
vent species. Calculations of Copeland, Kestner, and
Jortner!® and also of Newton!® are some examples of ap-
plications of these models. It should be kept in mind
that the cluster, continuum, and semicontinuum models
are aimed at addressing only one aspect of the solvated
electron: its electronic energy levels and transition
probabilities. Any consideration of solvent vibrational
motion is simply added on at the end of the calculation.
The electronic and vibrational motion is not treated in
a unified manner.

The optical spectrum of a solvated electron is char-
acterized by the position of the band maximum, the
width of the band, and the band shape. Experimentally,
almost all solvated electron optical spectra are skewed

.to the high energy side and display little or no vibra-
tional structure.?® More subtle features, at least from
the theoretical point of view, which are seen experi-
mentally are the dependence on temperature, pressure,
and density of the absorption line shape., Clearly, any
successful theory should be able to explain all of these
characteristics of the line shape.

Many electron ab initio calculations using cluster
models have been performed by Neleway ef ¢l.® and by
Newton® and have also been extended to the semicontinu-
um model by Newton'® and Moskowitz et el.** using em-
pirical parameters to simulate the dielectric continuum,
thus accounting for both long- and short-range interac-
tions. Unfortunately, the results of such model calcu-
lations do not account properly for the width and skewed-
ness of the spectrum. Using a semicontinuum model,
and ascribing the width of the absorption to inhomoge-
neous broadening of a single bound-to-bound electronic
transition, Gaathon and Jortner!! calculate a width which
is only ~ 50% of the experimental value for solvated elec-
trons both in ammonia and water. Equally important is
the fact that their calculations failed to describe the
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skewed nature of the absorption. The most sophisticated
among the semicontinuum model studies is the calcula-
tion of Newton,13 where parameters such as cavity size,
etc. were determined by ab initio calculations. The
positions of band maxima for ez, and e, were calculated
to lie at only ~ 70% and ~ 60% of the experimentally ob-
served values. Moreover, the computed (on the basis
of inhomogeneous broadening) widths and shapes were
far from correct. Recent experimental evidence pro-
vided by Renzepis and Jortner!® has shown that inhomo-
geneous broadening cannot account for the very large
line widths in e, and e;,,.

Kajiwara et al.!® proposed a modified cluster model
in which (i) one neglects long-range interactions (elec-
tron-molecule and molecule-molecule), thereby treat-
ing the bound electron as a particle in a box (with R and
E, as parameters), and (ii) one chooses the cavity such
that it has only one bound state. The observed optical
spectrum is then assigned to a bound-to-continuum tran-
sition. Although these authors had some success in
fitting experimental line shapes, a model built on these
assumptions can only be justifiable in very specific
cases. In particular, it cannot be used to treat transi-
tions which are known to be bound-bound transitions
{which are also usually quite broad and skewed). In all
of the above models which include only a single cavity
the effects of the coupling of the electronic states of one
site to those of its neighbors are not accounted for, ex-
cept to the extent that bound-continuum transitions can
be thoughtof as including neighbors. This kind of cou-
pling is, as we shall see in our development, very im-
portant in providing skewedness to the line shape.
Therefore, its absence in all previous theories should
be viewed as a potentially serious weakness of these
theories.

Tsubomura and Sunakawa!? analyzed the spectra of
solvated electrons in aromatic hydrocarbons where
many sharp bands are observed at energies above the
photodetachment energy of the anion. They emphasize
that the excess electron-molecule potential is much
more localized than a Coulomb potential. Hence, a sim-
ple short-range square-well type cavity model is em-
ployed. In addition, they assume that the solvation ef-
fect has little influence on the electronic spectra. Thus,
the energy levels of the cavity alone, especially in the
region E> Ej where they find resonance states to exist,
are sufficient to describe the spectra. The lifetime of
the resonance states, which they fit to the experimental
data, is used to explain the width of the absorption band.

Recently, Bush and Funabashi'® have proposed a
small-polaron model for solvated electrons in alcohols.
They assume that only continuum excited states of the
anion exist and therefore allow only for electric dipole
transitions between a bound ground anion state and a
continuum of band states whose near-neighbor ampli-
tudes dominate the electronic transition probability.
The width in their line shape then arises from a com-
bination of a vibronic progression (Franck—Condon fac-
tor) between the ground (polaron) and excited (band)
anion states and electronic broadening due to the depen-
dence of the dipole matrix element on the energy of the

excited continuum state. However, their model, which
still neglects coupling of the electronic states of the
neighboring sites, is unable to account for proper
skewedness of the absorption band.

In developing a more unified and potentially powerful
model for solvated electron spectra the approach we fol-
low involves writing the absorption band shape function
I(w) as the Fourier transform of the time-correlation
function®® of the electronic dipole moment operator
(F(t)F (),

He) =5 f "t et (FOF(O)) . )

The time dependence appearing in the dipole correlation
function is described in terms of both {excess) elec-
tronic motion and solvent molecule motion. In this way
we simultaneously treat the electronic aspect of the
problem (to which all earlier cavity models are direct-
ed) as well as the vibrational contribution to I{w).

The advantages of this approach are clear. The re-
sulting formulas for I(w) are quite general in the sense
that they minimize the dependence of calculated results
upon the details of any particular model or character-
istics of the solvent medium. Even though it is rather
difficult to calculate the correlation function exactly, we
at least have general expressions which can serve as a
convenient and rigorous starting point for the introduc-
tion of specific models for the excess electrons’ energy
levels and the solvent molecules’ properties. To make
progress toward developing such a systematic frame-
work for approximating I(w) let us first turn to a discus-
sion of the Hamiltonian which is to be employed in de-
scribing the time dependence appearing in (F()F(0)).

. THE HAMILTONIAN AND THE CANONICAL
TRANSFORMATION

We are interesied in describing the spectroscopy of a
solvated excess electron which is already in equilibrium
with the solvent. The processes of thermalization and
trapping of a nascent free electron are not within the
scope of the present work. In this work we consider
dilute solutions of excess electrons for which the (ex-
cess) electron—electron interactions can be ignored.
Because the details of the construction of a proper
Hamiltonian and the canonical transformation of this
Hamiltonian are given in I, we shall merely quote the
final formulas here. The total Hamiltonian H=Hy + H,
consists of a part Hy describing the motion of solvent
molecules

H, - );[51;} UQ)+3 ; v<xi,x,>] , @)

where X, represents collectively the center of mass
positions of the ith molecule R; and the corresponding
internal orientations &, and vibrational displacements
Q;. P, is the total (translational, rotation, vibrational)
momentum of the ith molecule, U(Q,;) is the internal vi-
brational potential energy function, and V(X,, X,) is the
intermolecular potential energy. The electronic Hamil-
tonian H, describes the motion of a single excess elec-
tron in the presence of N solvent molecules, and is writ-
ten in second quantized notation?® as
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N

H,= “’(r)[% vi+ 2 ulr, x‘)] p(r)dr , 4)

where r represents the position of the electron and

u(r, X,) is the interaction potential between the electron
and the jth solvent molecule.?! The field creation oper-
ator ¥'(r) is expressed in terms of the molecular orbit-
als of the jth solvent molecule (or cavity) ¢ _(r,X;) and

a set of continuum orbitals® ¢ (r):

PO =Y 650, X)aj, + [ dK sg@a . 5)
Sra

For instance, cavity orbitals would be more appropriate
for studying e, or e,,, whereas molecular orbitals
would apply better to studies of anthracene solutions of
excess electrons,?3!

The cavity or molecule orbitals ¢, may include both
bound and localized resonance-state orbitals such as
Tsubomura and Sunakawa tested. The aj, and ax are
fermion creation operators which create an excess

electron in the orbitals ¢ (r, X;) and ¢k(r), respectively.

For notational convenience the sets {a},, ak} and {6, (r,
X,), ¢x()} will be denoted by {a;,} and {¢,(r, X,)=¢,.},
respectively. All of the resulting formulas must then
be interpreted by remembering that both localized and
delocalized continuum orbitals are included. It should
also be noted that in writing Eq. (5) we have assumed
that {d)a(r, Xj)} is an orthonormal complete set.

The electronic Hamiltonian H, given in Eq. (4) de-
scribes an electron in the presence of N solvent mole-
cules. Because the electron-solvent interaction is a
strong effect, it is convenient and physically important
to treat the major portion of this interaction in an exact
manner, then treating the remainder as a perturbation.
Toward this end we introduced in I a canonical transfor-
mation of the Hamiltonian

H=exp(S)Hexp(-S) , (6)
where
N
S :Z a;laamu Zi [xi (ma) - x(i)] : in ’ (7

which has the effect of modifying the center-of-mass
coordinates and internal geometries of all solvent mole-
cules to their new “dressed” values X'(ma):

X;(ma)=X,+X;(ma)-X}. ®)

Here X,(ma) designates the coordinates of molecule j
which yield minimum potential energy (U + V+ u) for the
solvent in the presence of a single excess electron in
Pmer and X(,’ is the value of the coordinates of minimum
potential energy in the absence of the excess electron.
X, is the instantaneous value of the coordinates of the
jth molecule which is eventually involved in the equilib-
rium average appearing in the dipole correlation func-
tion.

- As shown in detail in I the transformed Hamiltonian
H has the form

ﬁ:,,,zu (x‘l;,aAma‘l- l—ne)

P} , 1~ g '
X2 m_i+ U[Qi(ma)]+§ - VIXi(ma), X{(ma)]

+ Z: <¢ma|he[xi,(ma)]l ¢nB>X' (ma)A;aAnBEﬁN+ge

mo,nB
)
where the dressed electron’s Hamiltonian is
N

ulr, X (ma)] (10)
=1

ho[Xi(ma)]=~3 Vi+
and the number-of-excess-electrons operator is

n,= ZN:A;,AM . (11)

The operator which creates a dressed electron in ¢,, is

N
A=, exp{Z[Xi(ma)—X?]- Vx{}. (12)

The results of carrying out the above canonical trans-
formation are clear, The transformed coordinates
X;(ma) introduce into ﬁN characteristics appropriate to
a solvent anion, e.g., the mth molecule (or cavity)
possesses anion geometries and vibrational frequencies.
Also, in V[X(ma), X (ma)] one has anion—solvent inter-
actions whereas V[X|(ma), X;(ma)] describes molecule—
molecule interactions. Thus, the total Hamiltonian has
been expressed in terms of the modified molecular co-
ordinates X' (ma) thereby allowing it to simulate the
ground state anion in equilibrium in solution. As time
evolves and the solvated electron (perhaps) migrates,
via the off-diagonal electronic matrix elements (reso-
nance integrals) (G, |1, | Gpa)As, A, from one site to
another the solvent molecules’ Hamiltonian adjusts
(through the A}, A, .+ 1 -#,) to follow the moving elec-
tron, thereby causing the geometrical characteristics
of one solvent molecule (or cavity) to change from those
of an anion to those of a neutral or vice versa. Thus,
the concept of a dressed electron, in which the solvent
follows the migrating electron, is a useful device in the
present work.,

Now that the total solvent-plus-electron Hamiltonian
has been expressed in a convenient form let us now move
on toward developing a physically clear and rigorous
treatment of the dipole correlation function of Eq. (2).

11l. ELECTRONIC SPECTRAL BAND SHAPE

In this section we derive a general expression for the
band shape via a calculation of the electronic dipole cor-
relation function. Our aim is to express the correlation
function (or band shape) in terms of the properties of an
isolated solvent anion, the anion-solvent interactions,
solvent structure information, and electron-solvent in-
teraction data.

A. Calculation of the correlation function

It has been shown, for example by Gordon,'® that the
absorption line shape can be expressed as the Fourier
transform of the time correlation function of the transi-
tion dipole operator of the system. In the present case
this operator is for a single excess electron initially

J. Chem. Phys., Vol. 68, No. 2, 15 January 1978

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



418 A. Banerjee and J. Simons: Excess electrons in condensed media

localized in the Oth orbital of the Oth solvent molecule
(or cavity) which defines the laboratory coordinate ori-
gin. The electric dipole transition operator, in the

Heisenberg representation,? is

F(f)=exp(iHt) f¢’(r)£ - r(r) dr exp(- iH¢t)

=exp(HP) uZ (uu| € T|D)as,a,,exp(-iH, (13)
v

where € is the electric vector of the incident photon.
Letting { )y designate the equilibrium average over the
initial coordinates X; and momenta P; of the N solvent
molecules according to the equilibrium distribution func-
tion Z"'exp[- BH (X, P)] the desired correlation function
is

(FOF Oy =27 [ dXdP (g|exp[- BH, PF(OIFO g,
(14)
with

Z:J’dXdPexp[— BHX, P)]. (15)
As in I, |g) is equal to a product of the ground electronic
state of the N solvent molecules represented by [0(X))
and that electronic state which has the excess electron
at the origin in the lowest empty orbital a,|vac):

|&)=ag, (16)

In writing Eq. (16) we assume that excited electronic
states of the solvent are not populated at the tempera-

tures of interest. Using Eq. (13) the correlation func-
tion can be written more explicitly as follows:

=l

FHF0)= 2" dedP {0]a,,exp[-BH(X, P)]

xexp@Ht) Z (Opu | € T] by 0a5,.a,, exp(~iHY)

R, v

X Z (Bp | € r\¢qa)a;,aqﬁa;o| 0. am

#,ab
To re-express this correlation function in terms of
the dressed electron operators we first insert to the left
of the a,, in Eq. (17) the identity exp(-S) exp(S) with S
given in Eq. (6). Then, using the cyclic invariance of
the trace, and noting the fact that |0) is a zero-excess-
electron state for which S10)=0:

FOFO)w=2"D, _dedeLdﬂ PIEDIRG]
vy

ki, W P, b

X (D | € T D)1y | € T Dy0)A 0 expGHNASLA L, exp(— iHY) | VXV | A},

where the subscripts on the vibrational states |V,,) and
|V,,) refer to the molecule (or cavity) and the orbital
which is assumed to contain the electron for that spe-
cific vibrational state. The function |¥,,) satisfies

2

Py
Z{ZM + U[Q;(m)]}lv,,,) AN (23)

(O|exp(S)= (0], (18)

Eq. (17) becomes

0)>:Z‘1JdXdP 53 04,

ku,lv pY,qb

FWOF

x exp[— Bil(x)](‘bku | €-r | ¢w>t<¢’pr ’ € r | LGPy
xexpH1A;, A, exp(-iH1)ALA A,,|00, (19)

where as in 1

(Ppu| € Tl O = (Oulr, Xiku, O] €- r{o,[r, X[y, ).
(20)
In anticipation of the fact that the electronic transition
is a temporally localized phenomenon perhaps accom-
panied by some vibrational excitation the (excess) elec-
tronic and vibrational coordinates will be distinguished
as “high frequency” (see, for example, Ref. 24) coor-
dinates and the rotational and translational motions of
the solvent species, which are essentially free motions
within the time scale of the electronic transition, will
be distinguished as “low frequency” coordinates. As-
suming that only a small coupling exists between the
high- and the low-frequency coordinates the equilibrium
averaging involving these coordinates, which occurs in
Eq. (19), will be performed, respectively, quantum
mechanically and classically. To facilitate this separa-

tion we recognize the decomposition of Hy as
Hy=H,+H,, (21a)

with

Hz[

(21b)
which implies corresponding expressions for HN _H
+ H

To introduce explicitly the dependence on vibrational
function overlap (Franck—Condon factors) we insert a
complete set of vibrational states of the solvent for the
situation in which the excess electron is on the yth or-
bital of the pth molecule 371V,,){(V,, | to the left of A}, in
Eq. (19). This leads, after introducing explicitly the
initial vibrational |V,,) states and translation—-rotation
coordinates and momenta R, §, P, and L as was dis-
cussed in the preceding paragraph, to

V| expl—BH,,+ H,+ €)]

(22)

Aqu;a Voa>| O> )

and is thus a composite vibrational state for the entire
N solvent molecule system.

Now we have constructed an expression for the corre-
lation function which incorporates all relevant physical
aspects of the problem. The rest of this section will be
devoted to simplifying this expression toward the stated
objective of expressing it in terms of various interac-
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tions of the constituents of the system. To facilitate
this we first decompose the Hamiltonian into a zeroth
order part A and a perturbation V:

A-H+7V, (24)

where H® contains ﬁN_ plus the equilibrium average of
the diagonal part of H,:

A=, + A
:I}N + <Z <¢ma x (ma) | (pmu X’ (ma )Ama Ama>N

‘HN + Z E * ma > (25)
with
E?na = <<¢ma l he[x; (ma)” ¢ma>X' {ma )>N s (26)

which represents the average energy of an excess elec-
tron residing in orbital ¢,,. Clearly, E}, has a tem-
perature dependence because of the temperature depen-
dence of exp(- BH). This temperature dependence is
largely responsible for the red shift in the absorption
maximum with increasing temperature. It should be
kept in mind that Ema can correspond to a bound (Eg,a
<0) or an unbound orbital (E?,,a >0) and that for the un-
bound case E,o,,u can be complex with the imaginary part
corresponding to the width of this resonance state. Be-
cause h, contains the interaction of the excess electron
with all N of the solvent molecules, E), consists of the
average energy of an electron in the isolated molecule

1

{or cavity) orbital ¢, plus the solvation energy of the
electron-molecule (or electron—cavity species). The
perturbation V consists of the off-diagonal component of
I-;'e plus the deviation of the diagonal component away
from its equilibrium average

f}: maz¢n.5 <¢’mo¢ ‘ he[x; (ma)]‘ ¢nﬂ>X',~ (ma )A:na AnB

+Z{<¢m\h [X;m)]| O ma) = Erat AnaAmg - (27

The off-diagonal terms occurring in V will be referred
to as “hopping” integrals and operators (A, A,s) be-
cause they involve transfer of the dressed (excess) elec-
tron from orbital ¢,4 to orbital ¢,,,, which, if m #n,
gives rise to a transfer of the excess electron from one
molecule to another.

With the decomposition of Hamiltonian given in Eqgs.
(24)-(27) the exp(iH{) appearing in Eq. (22) can be writ-
ten as

t
exp GH{) = exp GH't) exp [z J; V(‘r)dr] , (28a)

where

V(r) = exp(~ A7) V exp GH'T) . (28b)

To consider the effects of these operators let us first
rewrite the correlation function of Eq. (22) using Eqgs.
(24)-(28) as

(F(t)F(O))N.:Z'lE_ dedeLdn 3. Z(o{(vw|exp [-BH,,+ €+ H,)]
vV ku, v pr,qr

- t
Xy | € T| D10 (bp | €0 1] 0)A,, exp A exp[i L vir) d'r] ALA,

XeXp[—iLt v(r) dr] exp(=iH"1)| V,,) (V| Apy Ags Al

Then it is relatively straightforward to show that

Vo) |0 (29)

ex0 (= 1) | V) (Vpp | A3y Ao Al| V)| 0= expl i (B, + )] exp (= i) | Ty XTp0| 435 | V)| 0086, (30)
and
0](V,,| exp[-BEH,+ €+ H) dpu | € T] 01,) (0 | €+ 7| Do), expGHY)

= (0] (Voo| expl- BH, s + €° + E) Kb | €+ 1] 0,010, € T| D004, exD(H, 1) exp[i (S, + €57)1] . (31)

To further simplify the expression in Eq. (22) the first serious (but well-established) physical approximation is

introduced.

It is assumed that the time variation of the solvent vibrational coordinates Q| compared to the elec-

tronic coordinate r is slow. Thus, electronic processes may be assumed to take place at some average (fixed) vi-

brational coordinate.
this approximation along with Eqs. (30) and (31), Eq.

This, of course, is nothing but the well-known Franck-Condon (FC) approximation.?® Using
(29) becomes

(F(OF(0)y) = Z-! f QRAP DL 20 (] € T duelon| € £] 020 (V| T )

VV ka, v, py

% (0| exp[~BH,,+ €A, exp GH ,tt)exp[ J- V('r)dr] AkuA,yexp[ ij: V(-r)d-r]

X exp (- ifI,,t)A;, | 0) expli (BY, + €%° -

-] (32)
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In writing Eq. (32) we have used a shorthand notation in
which dRdPdQ dL is written as dRdP, and the fact that
H,, and V() depend on these translational and rotational
coordinates R and £ has been suppressed for conve-
nience. Moreover, exp(-8E,,) has been set equal to
unity by choosing E,, as our reference point of electronic
energy (i.e., E,,=0).

Now we can express the overlaps of the vibrational
functions of the solvent-plus-electron system in terms
of individual molecular (or cavity) and anion (or cavity
anion) vibrational function overlaps. We approximate
| Voo» and H_/,,,,) as products of individual molecular func-
tions for each vibrational mode as follows:

[Var= TT [o2o00 [00n 0" [ - [00on)
o (33a)

and

Zwr= IL 13000 [ [

! (33b)

Here, |V?"x,)" designates the vibrational state corre-
sponding to the A;th mode of the molecule on the jth site
with excess electron on orbital ¢,,. In writing Eq. (33)
we have assumed that during the electronic transition
.0~ ¢, the vibrational states of the molecule at the
origin (where the electron is initially) and the anion on
site p (where the electron exists after the photon ab-
sorption) undergo a change, while the rest of the solvent
molecules (or cavities) undergo no appreciable change.
Using the orthonormality of the vibrational functions of
different normal modes, and

Hoon, |7 =1

for j+#o or p, we have

A —
<Voa I Vm’> = AH? <vtlmx0 ‘ E€7K0>M u (vé"’x, | U{rhp)A

=[] Fi " @, '171)FI{;A*

s p

('Uz, 52) . (34)

]

Ru, pY

= fdédép(é, 0)o(S, O)Z 6., R)9, (r, é)dede[Am,Agy,ﬁ(R', sl

where f represents the remaining terms in Eq. (32) which depend upon the molecular coordinates R,,, R,.

f dRdP ¢, (r, R)o, @, R) Ad Ap AR, ...), ... ]

Note that for the special case of the totally localized
transitions ¢,,~ ¢, one has

<Vool )= H @ 7‘0 WA = H Ffo'A* (47) .

A0

(35)

Within the approx1mat10n of Eq. (33) for the molecular

vibrational functions the corresponding energies will be
sums of individual molecular energies. Thus, the dif-

ference which occurs in Eq. (32) can be reduced to

Y
< - 6?/0:)‘21 (€3, = Copn, + €hry = €opag)= AE,
0r2p
(36)
Again for the totally localized transition ¢,,—~ ¢,
- €Y= Z €021’*p - 55‘1’;)‘0 AEO (37

Having made progress in reducing the FC factors and
vibrational energy differences the next step is to per-
form the equilibrium averaging over the initial (rota-
tional and translational) coordinates appearing in Eq.
(32) for the correlation function. One immediately notes
some difficulties. For example, one needs to know ex-
plicitly the form for the integral {(¢,,|€-r| ¢, )t in terms
of initial coordinates R, R} as well as its time depen-
dence. Similar problems arise for other terms in Eq.
(32) involving initial coordinates. Furthermore, for
any nontrivial forms for the dependence of such inte-
grals upon initial coordinates (which will inevitably be
the case for a theory which realistically mimics the in-
tricacies of the interactions in liquids) it may be pro-
hibitively difficult to perform this equilibrium averaging.
However, because the time scale for the electronic
transition is very short (<107 sec) compared to the
time scale on which the molecular coordinates R}, @]
change, we can simply ignore the time dependence of all
terms which arise from time variation of the center-of-
mass and orientational coordinates. To proceed toward
a more useful finial result we follow the ideal developed
in I in which we replace the instantaneous “pointwise”
liquid structure information by average liquid structure
data. In particular, the following types of replacements
are made:

(38)

Here

p(R, 0) gives the number of solvent molecule (cavity) centers (i.e., R,’s) per unit volume at point R, given that there
is amolecule (or cavity) at the origin (where the excess electronwas initiated). The purpose of carryingoutthe above re-
placement is to render all of the terms in Eq. (32) except V(7) independent of the actual initial values of the molecules (or
cavity coordinates Rj, thereby permitting the equilibrium average over these coordinates to be performed on the
V(7)-containing terms. A more complete appreciation for the motivations behind this step should develop shortly.

Let us rewrite the expression {32) for the correlation function using Eqs. (34), (36), and (38):

(FOF )y =23 f dRdR’' dSp®, 0p®R’, 00,0, II exp[_ 8. (ggg;foﬂggzb]
BVY vy, v, D102 ApAg 23
X [Ffy vy, BFSS A 0, ) [0 | € 7] 0,003 € 1] 6000 = Z;10| Ay, [ dRAP exp(- p,0) exp (i, d)
X exp[i J-t V(‘r)d'r] A, Ape exp [— i J-t V('r)d'r] exp(~ ifI,,t) Az |0) expl-i(aE, + AE)¢], (39)
0 0
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where

AE,=E} -E),, (40a)
and for the totally localized transition

AE'=E} - E°, . (40b)

In Eq. (39) Z, and Z,, are the vibrational and rotational -
translational partition functions of the solvent, respec-
tively. As pointed out in Eqs. (35) and (37) there are
slightly different expressions for the special case of a
totally localized transition.

To actually carry out the desired equilibrium average
we now use Kubo’s cumulant expansion technique,®®
which allows us to express the equilibrium average of

|

an exponential function (or operator) in terms of the ex-
ponential of the equilibrium average of the function,
plus its fluctuation away from the average, plus higher
order fluctuations. Symbolically,

(exp (F w = exp[{fox + 5 f= (PP + ... ]

Eexp(gK,) . (41)

In implementing this cumulant approximation that part
of the expression in Eq. (39) which depends upon initial
coordinates and time is extracted from Eq. (39) after
which the time invariance of the equilibrium average and
the commutation relations [H,, #]=0, [#,,, H]=0, and
[H,, V]=0 are used together with Eq. (40) to write

- t t _ )
[Z;i(o |AODdeP exp (- BH,,;) expGH,,t) exp [z f V() d‘r] A Ape,exp [— i J V(r) dT] exp(— iH”t)A;.,] 0)
0 0

- t . =
= IZ;}(O |A,,dRdP exp (- BH,,) {exp [z f V() d‘r] A,%“A;z'v} AL |0)= (vac |Aoo{exp [ Z K,(t)] Ay Ap ,,} Ay |vae)
0 =1

=~ (vac| A lexp[(&,(1) + Ky (D] Ak, Ag } A [ vac)

where the cumulant expansion has been approximated by
its first two terms. Here

V*(7) =[exp (- if,,7) exp(- A7) V(R]) exp GH7) exp(H,,7), ]

(43)
and the cumulant operators are
t -
K= [ ar@ @y, (44)
0
t T - -
Ky)=~ [ ar, [ a6V )67, (45)
0 0
where
sV*(r)=VE(r) = (V) . (46)

Note that { ) here represents the equilibrium average
over rotational and translational coordinates of the sol-
vent molecules. The justification for terminating the
cumulant expansion at K, is based on the assumption that
the equilibrium average dynamics is the dominant con-
tributor to (F()F(0))y, and that fluctuations away from
the average die away quickly with the order of the fluc-
tuation.?” Following I these expressions for K,(¢) and
K,(t) can be recast in terms of various solvent interac-
tions as

Kl(t) = m;nﬂ <hma. nB>Ama,7|B(t)[A;"°‘v"B’ ] ?

(47a)
where
Ay, = lim {exp[i(E% — E},) + 8]t~ 1}/(ED, — Eds+ 5) .
6-0*
(4'b)

The (rotational and translational) equilibrium average
of the hopping integral is represented by

;Lma,nﬂ = <<¢ma l hel ¢nB>> (48)

and

(42)

Kyt)=- Y,

ma,n8
A, SO

14
J[ s expliEta - Eba + Bl - B8]

[ expl 188, = BT O )
0

éhrl,.so(O»[A;laAnB’ [A;).Asm ] ]- (49)

Further simplifications of K,(f) and K,(#) can be accom-
plished once a specific model has been found for the
various equilibrium averaged terms [appearing in Egs.
{47)-(49)] which depend upon properties of solvent mole-
cules or ions, their interactions, and the time evolution
of these properties.

As a next step the expression
explK (8) + Ky (D] A5, Az, = gRu, R'v, ) (50)

needs to be cast in a more computationally tractable
form, One approach, that is presently under study in
this laboratory in connection with the problem of the
mobility of the electron in liquids (Ref. 1), is to con-
struct an equation that g(Ru, R'v, 1) obeys and to solve
this equation as exactly as possible. Such an approach
seems to be necessary for the mobility problem since it
is a “long-time” phenomenon in which the electron mi-
grates over many molecular distances, which clearly
can not be described in terms of low powers of K, and
K,. In our particular case one can get around this prob-
lem by invoking the temporally localized nature of the
electronic transition. This allows a short-time expan-
sion of g(Ru,R'v, ) to be employed. As we shall see
momentarily this approach allows us to further simplify
the expression for I(w) without having to yet settle for
any specific model for the hopping and “fluctuation” in-
tegrals and their time variations.

After performing a Taylor’s expansion of K,(f) and
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Kq(#) in Egs. (47) and (49), respectively, around /=0
and keeping the first nonzero term in each case one ob-
tains

ma#nf
=Kt (51)
and
Ky =~ m;ﬂﬁ (e, 8 (0) 6y, o OV Ay Ars [Ay Ay, 1]
X, 86
=K,t? . (52)

Note that X, and I‘{z are still operators, In Ez there are
the off-diagonal terms (mo ##8, ¥\ #s0) which correlate
the fluctuations of the electron transfer integral terms,
as well as the diagonal terms which correlate the fluc-

tuations of the energy of an excess electron (¢, |2, Opmak

To clearly distinguish these separate phenomena we
shall separate these terms

I? :I?gd+f_{.g . (53)
To understand the meaning of the diagonal term K% we
look at its effect on the operator Aj, Az , (which is one
of the terms in g(Ru,R'v, t)]. Making use of the com-
mutation relations for the excess-electron operators
A,, we obtain

- (<6h§€u,Ru>+ <6hzﬁ'v,R'u>
- 2<6hﬁu,ﬁu6h§' v, R u>)A}+'€uAﬁ'v .

KAy, Ag, =
(54)
The first two terms of the type (Oh%u',su) represent the

average over rotational and translational coordinates of
|

exp(I—{—1t+I—€'gdt2)A;3“A§:, = (1 +I?1t+I_{gdtz)A}%uAﬁ'v:AkuAﬁ'v_‘_ itz (ﬁma.ﬁu Ama
mo

- tz Z ((5}3&8, mo 6hma,1§'u>A:1BA§'v + <§kma,n55h/§' v, ma>A;3u

ma, nB

Then using Eqgs. (53), (55),

the instantaneous fluctuation of the (electronic) energy
of an excess electron in orbital ¢z, (or ¢5 ,), whereas
the thirdterm correlates the instantaneous fluctuations in
energy of the two electronic energies corresponding to
¢z, and ¢z, which is probably smaller than the direct
correlation, except for the case of Ru :ﬁ'v, for which

KAy, Az ,=0. (55)

For a molecule (or cavity) at R the terms given in Eq.
(54) give rise to broadening of each electronic level u
due to fluctuations in the instantaneous center-of-mass
positions and orientations of the solvent species. This
broadening is usually referred to as inhomogenecus
broadening. Clearly, these effects depend upon the mag-
nitude of the fluctuation <6hRuRu> which in turn depends
strongly on temperature. As will be seen shortly this
broadening has the effect of providing a “width” to each
line in a series of vibrational absorption lines. This
broadening has the effect of smearing out the vibrational
structure as has been universally observed in the ex-~
perimental spectra®® of solvated electrons in liquids.
We note here how the well-known smearing effect arises
naturally in the course of the present development of the
theory.

Keeping in mind the above interpretation, and antici-
pating the fact that we will ultimately perform a Fourier
transformation of the correlation function to obtain the
line shape, we shall treat the two terms exp @gtz) and
exp (K,7+ K3¥t%) in a slightly inequivalent fashion. Using
again the characteristics of the time-localized electronic
transitions the second term becomes, in the short-time
approximation,

Aﬁ' v hﬁ‘ v, me AﬁuAma)

AnB - <§h§' v, nﬁékmot ,§u>A;a AnB - <6hnB,'R u 6h§' v, ma >A;8Ama ) -

(56)

(56), and (50) the final terms in Eg. (42) become

(vac ‘Aoog(}%“’ R'V: t)A;r |vac) :{ 6§u.w6§’ [ 14 + it«hoo,ﬁuaﬁ’v. s = ﬁﬁ’ v.svﬁoo.ﬁu»

2 2
= tz [Z ((Ghoa,mthma, §u>613' v, 8 + <6h’mm,'§76h§' u,mm)éaa,iu) - 2<6hoa,§u 5h§'v,gy>] } exp[— t2(<6hf2'u,§u> + <5h§’ v, R’ v>

mo

- 2(0hi,, 5u0h7e v N =g @1, Ry, 5y, 1) exp[- t2(0h5,, 2,) + (O, 7,) = 2(6hz0, £u0Riw, 5 )] -

Using Eqgs. (42) and (57) the expression for the correlation function in Eq.

(57)

(40) can be written as

FOF Oy =2 diai' dSp@, 0@, 006,0Y, 3 TT expl-peagtv, v7)]

LYy viv3BiDe xpry

X [FA ¥ @y, TOFI A" 0y, ) g | € 1] 000050, € v 03,08 R 1, R'v, Sy, 1) exp[- i(AE, + AE )t~ 3o*t?],

where
0F = 2((0hE,, £,) + Ohry, &) — 20hRn, 2ubhis,i0s)),  (69)
€20 35 V1, U3) = M{'; (€20f +esd) (60a)
and for totally loacalized transitions

5;.0 (v)= Z €f,;;>,0 (60b)

(58)

]

Substituting terms for g&u, R'v, §v, t) from Eq. (57) into
(58), simplifying further by removing the 6 functions,
and collecting terms with common powers of ¢ [which
arise from the zeroth order approximation and the K,(¢)
and K,(#) terms, respectively] we get

(FOF )y = FOFON + FEOFONY + (FOFO)E,

(61a)
where
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(FOFO) = Z;! jdsp(s 0> 2, II exl- BESD 251, va) [IF ¥ 0y, DFSSA

Y v{ v2v1vg Aory

423

(vz, 62)]21%0,;., exp[—- i(AE,+ AE )t - %tz] ,
(61b)

FOFON = Z"dedsp(R 03,03 Z 11 exol- BE 1, (01, v2)]

HY V{U9D1T9 Ry Ry

2
- — ~A¥ — - » . . g
x [F% " (vy, Ui)FA{; 4 (vy, Uz)]z ¥ 00, % (Tﬁu,i'v Boo,Bu = Voo ki u M u.i’v)ltexp [_ i(AE,+ AE )t - Etz] ’

and

(FOFONE =2z, dedR dSpR,0)p®R’,0

(61c)

pG, 0)2 Z H exp[~ Bﬁxo,x,(vb Uz)][Ffo (vt,v,)F“ﬂ (Uzy 7))

[11%4 v102v102 )Lo,).~

2
. [
Xyoa,ir(rﬁu.b(éhoa,ﬁ' véhﬁ"u,ﬁu> + Taa.§u<6hﬁu,§' véhﬁ'v,Q'r)_ zyﬁu,ﬁ' v<6hoo.§u6hﬁ' 9.57» (_ 1)t2 exP[_ z(L\‘Ee + AEv)t - —tz] ’

where
rﬁu,ﬁ‘v: <¢§u \ € rl ¢§’v> .

Equation (61) is the final form for the desired correla-
tion function. The equilibrium averaging over initial
vibrational states can be performed given a specific
functional dependence of FC factors and the vibrational
energies (in AE,) of these initial vibrational states. Be-
cause this step introduces a specific model (for example,
a harmonic oscillator model) within the general theoreti-~
cal framework, discussion of these topics along with
possible models for the hopping and fluctuation integrals
is deferred to Sec. IV where implementation of the theo-
ry is undertaken.

(62)

Following the operational development of the correla-
tion function (F(£{)F(0))y up to Eq. (61) one notices that
the dipole transition term 7,, 3 arises from the electric
dipole operator F(0) corresponding to t=0, The other
terms, inside the parentheses in Eqs. (61lc) and (61d)
arise from the perturbation expansion around £=0.
Thus, various terms in Egs. (61b)-(61d) can be sym-
bolically thought of as resulting from an expansion of
the form (FO)[F'O @)+ FV @)+ F¥()])y. The first
product gives the term 2, ;, in Eq. (61b) and the other
two products give the terms appearing in Egs. (61c) and
(61d) involving rotation—~translation averages of various
hopping and fluctuations of the excess electron to neigh-
boring molecules (or cavities) followed by an electric
dipole transition. Except for charge-transfer spectra
it is true that among the transition moment integrals
V00,3 arising from F(0), the “localized” transition
¥40,or 1S probably more important than the “delocalized”
transition integral for which § #0, Obviously, for
charge-transfer transitions?® exactly the opposite is the
case. For now we will restrict our attention to optical
absorption for which the ¢,,~ ¢,, “transition” is the
dominant component; the charge-transfer case will be
treated in a future publication devoted entirely to this
important topic. With this emphasis on localized tran-
sitions having been introduced we shall in the next sub-
section decompose each term arising from the dipole-
hopping and dipole-fluctuation pathways into the two
cases §=0 and §#0, respectively, We shall see that
such a separation greatly enhances the physical inter-
pretation of our equation as well as facilitating compari-

2
(614)

—

sons with other theories in the literature. We now turn
our attention to a treatment of the spectral band shape.

B. Calculation of band shape

Here we proceed to perform the Fourier transforma-
tion, according to Eq. (2), of the correlation function
given in Eqs. (61). The time dependences occurring in
Eqs. (61) have the form
F ™) = Gt)"exp[~-i(aE, + AE )t - 30%t%], n=0,1,2. (63)
Thus, the Fourier transform required by Eq. (2) can be
written in terms of the transforms of the terms shown
in Eq. (63) which are

1 d" (°
f‘"’(w)=§dwnj dtexp{- [$0*t’+ (AE,+ AE, - w)it]}

n

dw"

G[w’ (AEe+ AEv)’ 0] ’ (64)

where G[w, w’, o] is a normalized Gaussian®® centered at
w’ and of width o:

e-(w-w' )2/202 .

Glw, v, a]= (65)

1
oV2r
Carrying out the differentiations in Eq. (64) one obtains
for each of the three terms in Eq. (61) (having different
t dependence)

Fw)=Glw, (AE,+ AE,), 0], (662)

FPw) = '—o}[w - (AE, + AE,)|G[w, (AE, + AE,), 0], (66b)

and

fm(w):{ glxlw - (AE, + AE)J - El_,}c[w, (AE, + AE,), 0].

(66¢)
I Egs. (66) are combined with a separation of each
term in the correlation function of Eq. (61) into the spe-
cial cases s =0 and s+ 0 {which correspond to the direct
and indirect terms of F(0) and localized and delocalized
terms of F(f), respectively], the band shape function of
Eq. (2) can be written as

I(w):I(O)(w)+I(“(w)+I(2)(w) s

where

(67a)
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1w =233 2 TT expl- pe2w)llFi 4% @1, TP 72, o Gloo, (AES+ AEY), 0]

Y v{,0] A

+2; faspls, 0 3 TT expl-gets, (on, )] FL 44512, Gl (AE,+ aE,), o],
Y vivRU{09 Agadg

[‘“(w):Z;l—" dRp(R, 0) Z Z H €Xp - B[egg(vl)](Ffo‘A*)zroa,or(VRu,ovﬁoa,Ru = V0,Ru ;lRu,o‘)')

Uy¥ vy, V1 Ag

(67b)

X(—:;l—) [w - (AEY+ AEY)IG[w, (AEX+ AEY), o]+ Z;lf dR dSp(R, 0)p(S, 0) Z Z H

ByY vIv2T1D9 Agshg

- -1
~ Vo0, R4 hR”'”)(_or)[w - (aE,+ AE)|G[w, (AE,+ AE,), 0],

(67c)

-~

A~M gl =~ A%NE
Xexp[— Bi)?g,xs(vh UZ)](FAO F'l‘s ) roo,sr(/rR u,srhoo,Ru

and

1‘2’(w):z;‘dedR'p(R, 0p®’,0) 2 D TT expl- B W) EL "7 00, 01k o7 Oltno, 5 B Br 1, 1)

LYY vivy Mg

1 1
+ 'roo,Ru<6h'R'v,or GhRu,R' v> - zyRu,R’ v<5hoo,Ru5hR'v,ov>){;[[w - (AES + AE?))]Z - EZ}G[Q)) (AES + AEg): 0]

+ Z;lde dR’ dsp(R, O)I)(R'; 0)p(s, 0) Z Z H exP[— BEgg,xs(vlvz)](Ffo’MF’hJ;A*)Z'roo.s‘/(TRu..sv<6hoo,R'uéhR’v,Ru>

LY vivet{Ty XpAg

1 1
+ 7oa,Ru<6h'R' v,erh'Ru,R' v> - ZTRu,R’ v<5h'oo.R uOhR’ v..ﬂ»{;‘f [w - (AEe + AEv)]Z - C_YZ} G[w, (AEe + AEv)? 0] . (67d)
I
Note that in writing the localized terms for each order higher w values than the totally localized terms. Such

of I(w) we have used the appropriate expressions for the
FC factors, the energies AE? and AES, and the equilib-
rium distribution function exponent €§g(v1) from Eqs.
(35), (37), (40b), and (60b), respectively. As a further
aid toward distinguishing these terms the localized part
of Eq. (67b) for I'”(w) where the transition is solely
localized on the Oth site will be referred to as a “totally
localized” transition. Of course, this term is probably
the most important term in determining the line shape;
as discussed in Sec. I it has been extensively used in the
literature, with small variations (such as, for example,
including the effect of the solvent as a polarizable di-
electric continuum or treating the case of a continuum
orbital y, etc.) to calculate line shapes. After analyz-
ing the full content our Eqs. (67) one immediately begins
to notice sources of potentially serious discrepancies in
theories which only treat such totally localized transi-
tions. For example, the delocalized transition term in-
volving 7,, ¢, for s #0, whose amplitude depends on the
ratio

X2= Toa.ar/roo,ow 0<x,<1,

may become relatively important for systems whose ex-
cited states extend significantly over neighboring mole-
cules., Clearly, the ratio y, depends upon the nature of
the anion-molecule interactions involving sites o and s,
the relative position of these sites, the nature of their
electronic states ¢,,, ¢,y, @4, and the depths of the
wells at sites o and s.

Furthermore, since the nonlocalized excitation energy

(AE, + AE,) is greater than the localized energy (AE!
+ AE}) approximately by an amount €57 ~ €224 > 0 [ac-

cording to Eqs. (36) and (37)], the nonlocalized terms
give contributions to I(w) which contribute to relatively

delocalization components are therefore potential
sources of high-w skewedness of the absorption spec-
trum.

A clarifying remark is appropriate at this stage of the
development. In following our derivation of the first
general result for I(w) given in Eq. (67) one might won-
der whether the treatment and all resulting equations
might not be equally applicable to the optical spectros-
copy of neutral molecules in solution. The answer is
yes. Of course, the electronic energy levels {E?m} and
orbitals {¢,.4 of a neutral molecule are qualitatively dif-
ferent from those of a solvated anion molecule (or cavi-
ty). These differences are reflected in the experimen-
tally observed facts that molecular ionization potentials
are usually larger than negative-ion binding energies
and that charge densities of anions are more diffuse than
those of neutral molecules. It is our feeling that, be-
cause the excess electrons are held less tightly to their
binding sites than are the electrons of a neutral mole-
cule, the treatment of intermolecular electronic coupling
(through Byy, 6?00, 7, AN (Blime, nadlyr, i) iS quite essen-
tial in developing a quantitative model for the optical
spectra of excess electrons in solution.

Before delving further into the remaining terms of
Eq. (67) we shall introduce a simple diagrammatic aid
to the interpretation of these terms. In each of the dia-
grams displayed in Fig. 1 we represent the hopping, the
fluctuation, and the electric dipole transition integrals
by the following symbols:

(@) hRu,.s'r Sk

(b) Shgu,or = gz =035 5

(C) rRu.sYERu v )
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Oy Sy
[t E + /
00 00~ -s0

(@) (b)
Oy Oy
1Y Rl‘< - R#<
RO— ™00 RO~ 00
() (d)
Sy Sy
RO RO

— 200—Ss0 — *00—S0
(e) (f)

Oy 7Oy ~Or
Ve ) 7
@) .. R'y-v:\\'& Ry—<___ _o Ry
1" (w) \ - + ~rRp 2 "M:’_R#

Ry

RO~ 00 —RO
Q) (h) (i)

—Sy

Sy _=Sr -
Ry~s— _‘/r Ry=zl_ —o Ry—=Z,
NNk T TR 2 %R*‘
N A — __ — I —
00—RO —SO RO 00Tzp ™SO RO 00 7z5'S0
(j) (k) (1)

FIG. 1. Diagrammatic representation of the terms for the in-
tensity I{w) in Eqs. (67).

RO™

(d) for each occurrence of 3, [ dRp(R, 0) we assign a
vertex Ru—, where the line represents one of the three
elements given in (a), (b), or (c).

For a given term in Eqs. (67) the associations of proper
FC factors and the line shape Gaussian function are
made according to the following rules:

(e) For a given diagram of order n (=0, 1, 2):

(i) for a localized diagram associate

z;' 2 IT expl- B llFf 4% 0y, 7)) 5%;

v A

XGlw, (AES+ AED), 0];

(ii) for a nonlocalized diagram associate
z;' 2. I1 exvl-peg,, (w1, 09)]

V12015 Ageds

- — - — d"
X [F;‘;O M(Ub vl)Ff, A*(UZ’ 'UZ)]Z E(:;;G[w: (AEe + AEU)’ 0'] ’

where

4

o Glw,w,0)=- ;12- (w=-w)Gw, w', o)

and

d2 ? 1 n2 1 ’
EZEG(w,w,O)= ;(w—w) -2 Glw,w',0);

(f) Attach a multiplicative factor of 7,, oy OF 7,,,, for
localized and nonlocalized transitions, respectively.

Figure 1 shows all of the diagrams corresponding to
Egs. (67). Each of these diagrams shows a possible

arrangement of the energy levels u and v relative to the
initial and final levels o0 and v, and also a possible ar-
rangement of the sites 0, R, R’, and S. Discussions
regarding the physical importance of various arrange-
ments of energy levels and sites shall be dealt with
shortly. To give an example of how to construct the
analytical expression corresponding to a specific dia-
gram we consider the diagram shown in Fig. 1(d). We
see it is a first order localized diagram, leading to the
localized FC factors and line shape Gaussian function
from (i) of rule (¢). Then using rules (a)-(d) and (f) one
has

Z;’dep(R,O)Z 2 IT expl-Bev)]

Y vi¥; Mg

(1)

A= A* =12 7
X[Fxo,o (vl’ vi)] ’roa,or hao,RurRu,or ?

Xlw - (AE] + AEDIG[w, (AE}+ AE}), 0].

The diagrams of Fig. 1 {or the corresponding terms
of Eqs. (67)] represent possible “configurations” of the
solvent-plus-electron system which is able to absorb
(via dipole transitions) photons of particular frequencies.
By configuration we mean the instantaneous vibrational~
electronic state of the system which has been fluctuating
in character because of the couplings among the ¢,
caused by the resonance or hopping integrals as well as
fluctuations in the E?,,a and in the coupling interaction
caused by fluctuations in the solvent molecules’ orienta-
tions and positions, before the photon hits the system,
Of course, these diagrams only represent our descrip-
tion of the “reality” of the electronic transition process
in terms of a set of zeroth order states ¢,, and various
couplings (% and (45h)) among these functions. It is our
belief that the choice of zeroth order states made here
is particularly appropriate. It seems natural to attempt
to describe the spectral properties of molecular anions
in solution in terms of the energy levels and orbitals
{d),,,,,} of the gas-phase anions which can, for example,
be probed via electron transmission and photodetach-
ment spectroscopies. The coupling factors s, melrslme
are then to be viewed as those terms which map the
zeroth order states into the proper eigenstates of the
solution-phase problem.

Armed with the compact representation of the individ-
val terms of Eq. (67) provided by the diagrams intro-
duced above let us now examine the physical significance
of each term in Eq. (67). It should be kept in mind in
viewing these terms that the time scale for the elec-
tronic transition is so short that no motion of the solvent
molecules’ nuclei takes place. The transition which is
caused by the incident photon occurs between vibration-
al-electronic states of the system whose energy (as
determined by E?,,a, the resonance integrals %, and the
fluctuations (5h5k)) happen to be resonant with the pho-
ton. This is the essential content of the Eqs. (67).

With this in mind let us consider the localized terms
first. For given values of the final electronic level v
the vibrational levels v, and 7, of the ground and yth
electronic levels, and the vibrational mode »,, the lo-
calized term of /°°’(w) gives rise to an absorption line a
frequency w; = AEE + AE? with a Gaussian line shape of
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FIG. 2. Special cases of some localized diagrams correspond-
ing to absorption frequencies at and on either side of w;=(AE]

+AE‘3)_

width 0. The intensity of absorption for such a transi-
tion ¢,,~ ¢,, is then the product of the corresponding
dipole transition moments and the FC factors 72,,,[Fi~4"
X (y, 7)) . The localized term in I'V(w), on the other
hand, involves one hopping integral. Accordingly, the
intensity is modified by a corresponding hopping ampli-
tude. For energy values of the electronic state p and

y such that E%,>E?, one has a diagram of Fig. 2 leading
to an absorption at a frequency w>w;. Similarly, the
situation shown in diagram (d) of Fig. 1 leads to an ab-
sorption frequency w<w,;. There is no contribution of
I'"(w) to the absorption at the frequency w,. This latter
fact is described in the formalism of Eq. (67¢c) by the
fact that the localized first order line shape component
—~ (@~ w,)G(w, w;, 0) has a node at w= w, and a maximum

and a minimum at w=w; -0 and w=w;+ 0, respectively.

The negative value of the line shape component at w=w;
+ o corresponds to the situation above in which E%u
>Eqgy.

Turning now to the localized term of 1 2) () involving
the fluctuation integrals one sees that there now exists
the possibility of an absorption contribution at w,. This
corresponds to the situations depicted by diagrams (b)
and (c) of Fig. 2. On the other hand, the situations
shown in diagrams {(d) and (e) of Fig. 2 correspond, re-
spectively, to absorptions at w>w; and w<w,;. In the
formalism of Eq. (67d) the three situations discussed
above are described in the line shape component [(1/
oV w — w,)? - (1/69)]6(w, w;, 0) which has extremum val-
ues at w=w,; and w,+V20.

Having covered the localized components of I{w) we
now deal with the nonlocalized terms of Eq. (67). In-
terpretations similar to those given for the correspond-
ing localized terms can easily be extended to these
cases. The only points of difference to be noticed are
(i) that the FC factors now correspond to a product of
vibrational overlaps of the initial and final vibrational
states {(of the corresponding electronic states) of the
molecule (or cavity) at site 0 (where the excess elec-

tron was initiated) as well as at site S, where it is lo-
cated after the absorption, and (ii) that the character-
istic frequencies w,;= aE,+ AE are blue shifted rela-
tive to the w,’s approximately by an amount e%’l:fo - 61’,‘2’;;‘8
and, as indicated earlier, these nonlocalized terms con-
tribute therefore at relatively higher ¢ values leading

to a high-w skewedness of the absorption spectrum. Ex-
cept for these two modifications the interpretations of
the nonlocalized components of Eq. (67) can be made in

direct analogy to those given above in the localized case.

With the above introduction to the significance of the
terms of Eqs. (67) accomplished we shall, in the follow-
ing section, try to demonstrate how this theory can be
implemented for specific cases. For example, it will
be noted that for systems in which bound-to-bound tran-
sitions are dominent the band shape is determined both
by the FC factors (via a vibrational progression) and
the electric dipole transition amplitudes. On the other
hand, in systems for which bound-to-(resonance)-free
transitions are dominant (see Appendix A) the band
shape will largely be determined by the decay rates of
such states when the lifetime of the state is short. For
intermediate lifetimes (1074-10""® sec) both the width of
the resonance state and the vibrational structure can
contribute to the overall electronic transition band shape.

V. IMPLEMENTATION OF THE THEORY

The final expression of Eq. (67) for the electronic
band spectrum gives a closed theory only in the follow-
ing sense: If information is available on the solvent’s
molecule (cavity) distribution function, and if reasonable
models are introduced for the FC factors, the corre-
sponding vibrational energy differences, the hopping in-
tegrals (), the fluctuation ((5%54)), and the dipole tran-
sition integrals », the expression in Eq. (67) could be
used to compute the spectral band shape I{w). Present-
ly, this is, within the experimental data resources
available to us, still a rather difficult task, especially
with respect to formulating reasonable models for the
spatial and temperature dependences of ;L, (6h6h), and
the 7 integrals. However, it is important and useful to
enquire as to whether the functional form of I(w) given
in Eq. (67) has the power to describe (fit), for physically
reasonable values of the parameters (EY, i, (5h5h), 7),
experimental band shapes for various solvents (at given
temperatures). If so, then one would have some initial
indication that the present formal theory may prove to
be useful for gaining insights into the nature of electric
dipole transition amplitudes, electron transfer integrals,
and the effects of fluctuations in condensed-phase spec-
tra.

To address this question concerning the potentials of
the resultant functional form for I{w) we now introduce
some physically motivated approximations which serve
to reducd Eq. (67) to a more tractable form. Of course,
these approximations also reduce the generality of Eq.
(67). Therefore, if this less general equation can be
shown to be suitable for describing the experimentally
observed optical band shape, we shall have encouraging
evidence in support of our model, since the more gener-
al equation could only give better agreement. The ap-
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proximations (or restrictions) to be made, together with
some justifying remarks, are as follows:

(1) We assume that the temperatures of interest are
low enough so that only the ground vibrational states of
the solvent species are initially occupied. This implies
that only »;=0 and v,= 0 contribute.

(2) We assume that the transition to be studied is a
bound-to-bound transition and we assume that only one
bound excited state of the anion is involved. Of course,
we will have to return to the consideration of bound-to-
resonance transitions for systems where definite evi-
dence of such transitions is present. For the ethanol
and anthracene systems studied here there is evidence
in favor of a bound-to-bound transition,?*°! at least in
the low frequency component of 7{w).

(3) We assume that the integrals v,, ., and ;Lo,,'s-, are
dominated by localized (s =0) and nearest-neighbor (s
=neighbor) terms. We further assume that the excited
states (y) on neighboring molecules interact more
strongly than do ground states (because the excited
states are more loosely bound and hence overlap and in-
teract more). This allows us to say that k,,, , is small
compared to 710,.3,5 h

-~

hoo,sO:X1h, 0<X1<1! (68)

and that interaction integrals in which the (zeroth order)
electronic energy is not conserved are negligible:
Rou, e =0 if p#v.

(4) We assume that the largest dipole transition ampli-
tude corresponds to transitions between electronic states
of the same sites 7, ,,=7ro,ry =7, and that transitions
between the ground state of one site and excited states
of neighboring sites have transition integrals whose mag-
nitudes are a fraction y4 of 7:

0<y;<1. (69)

Yoo, sr =X27 >
(5) The fluctuation integrals (bhg,, s,0kg:,,s+y+), Which
correlate fluctuations in hge e, 50y to fluctuations in
hgru, sy, are assumed to be important only if Ru=R'p’
and Sy=S"y’, or Ru=S'y" and Sy=R’y’, and the largest
among such terms are thos involving the excited-state
orbital (52, r,)= (6h%), with

07,

' () :rZZ [F“‘A*(O, 71) 'Glw, (AE + AEY), o]+ vinyd
7y

427

(6h%,, g0y = X3(ORY),  0<x3<1. (70)

This approximation is based upon the assumption that the
vibrations and rotations of one molecule are not strongly
correlated with those of different molecules and the as-
sumption that the excited (zeroth order) states of neigh-
boring molecules interact more strongly than do the
ground states.

(6) In treating the FC factors we assume that the fre-
quencies in the ground and excited electronic states of
the anion are the same, but that the excited state poten-
tial surface is displaced relative to the ground state sur-
face. Furthermore, we assume that only one vibration-
al mode is modified in the absorption process. Certain-
ly, these assumptions are quite restrictive and there is
no evidence for their general validity. However, Funa-
bashi'® has shown that they are not far from valid for the
specific alcohol system which we are treating here.
Moreover, the electron transmission spec’crum32 of an-
thracene gives evidence that it is primarily one carbon-—
carbon stretching mode which is distorted in forming
the anion.

(7) The FC factors and corresponding vibrational en-
ergy differences are assumed to be well approximated
within a harmonic-oscillator model, and are therefore
given ag®

FA4%(0, 0) = exp (= X4 4 /2) (0! )" Y20, o )"? (71)
with similar expressions for FA*¥ and F¥~4%  containing
appropriate geometrical displacement parameters®
Xa*, X4y, and Xy 4+, respectively, and

AE, =, (5, +5) (122)

AE )= wy(7y), (72b)

with w, the vibrational frequency of the one participating
mode.

Once these approximations are made Egs. (67) can be
recast into the following form:

IV () = rinxgh(1 ~ xq) 2, (FA~4%)2 glz[w - (AEJ+ AED)G[w, (AE]+ AEY), 0]
5

+ ’V‘szh(l - XI)[n+ Xan(n ~ 1)] Z (FA"”FM"A* )2

Iy

and

1% (@) = rnlo ) (1+ xg) 2 (44" )2{;‘;[w - (AEg+ AE)] - ;lz} Glo, (AEg + AES), 0]
01 &

+ rixd3on® (1 + xn? Z (FA-4 =47 )2{;11[w - (AE,+ AE) P - %} Glw, (AE, + AE,), o].

5%

Hw) =1 (w(+ IV (W) + IV (W), (732)
where
J
2 [F4=¥(0, 7, )F¥4* (0, 2,) ’G[w, (AE, + AE,), 0], (73b)
vyvo
gz[w - (AE,+ AE))[G|w, (AE, + AE,), 0], (73c)
('73d)
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Here, #n is the number of near-neighbor solvent mole-
cules (or cavities) surrounding the molecule (or cavity)
at the coordinate origin. In writing Eqs. (73) we have
also used the fact that transition probabilities depend
upon the relative positions of the sites and that the FC
factors and energy differences in the near-neighbor ap-
proximation are independent of the positions of the sol-
vent species.

This simplified model still contains the essential fea-
tures of the general expression for the band shape given
in Eq. (67) and as discussed earlier is still more so-

- phisticated than most other models in literature. In
carrying out the practical application of Egs. (73) to the
two given spectra discussed below we proceed in the
following manner: First, we calculate intensities at w
values which are multiples of the fundamental frequency
wy [see Eq. (72)], i.e., w=Fkw;, k=0,1,2,.... For
these w values, as was pointed out in earlier discussion
of Sec. III. B, the band shape (envelope) is dominated by
the zeroth order term I'”’(kw,) given in Eq. (73a). This
step allows us to adjust® the parameters », X .+, Xy,
and y, which appear in I’(w) to generate an optimum fit
at these special w values. For both of the systems
studied here the number of nearest neighbors (n) was
taken {(for lack of further evidence) to be six. The value
of 7 is chosen to match the overall intensity of the ab-
sorption while X 4y, Xy4*, and x, give the proper high-w
skew to the band. The value of X ,,* is chosen to re-
produce the width of the low-w part of the absorption
(or equivalently the position of the maximum of I(w)],
and AEg gives the frequency at which the absorption just
begins. Once the parameters within I‘”(w) are deter-
mined by fitting to the observed intensity of absorption
at w=kwy, the parameters o, {6k, and k which appear
in I'"(y) and I'?(w) can be extracted by fitting to the ob-
served spectrum at values of w which lie between the
above frequencies. The question of uniqueness of the
values of the parameters which are determined by such
a fitting process can best be answered through the appli-
cation of our procedure to a large number of systems.
Some initial indications concerning the sensitivity of the
fitting process are given below in our discussion of the
two examples considered here.

In the case of excess electrons in pure anthracene the
observed spectrum corresponds to electronic transitions
between two bound levels as discussed by Aulich et al.?®
The experimental information regarding the ethanol
glass system is not yet entirely resolved. According to
Perkey ef al. ,31 who monitored the appearance of mobile
electrons upon optical absorption, the low-frequency
portion of I{w) corresponds to a bound-to-bound transi-
tion, whereas the high frequency component of I{(w) may
include contributions from bound-to-continuum transi-
tions as well. The latter case is rather complicated be-
cause the observation of mobile electrons caused by ab-
sorption of light with frequency in the high-w part of the
absorption band can be interpreted in several ways. The
excited state could lie below the continuum for low vi-
brational quantum numbers (7) and cross into the con-
tinuum for higher vibrational levels. This interpreta-
tion would be consistent with the observed absence of
mobile electrons for irradiation at low w {absorption to

low 7 values in the excited state) and the presence of
mobile electrons for higher w excitation (absorption to
higher ¥ values which lie in the continuum). Of course,
it is also possible that the excited electronic state of the
alcohol system is bound and that the appearance of mo-
bile electrons upon irradiation can be ascribed to the
photon-induced transition of an electron from one cavity
to its neighbor. In the language used in this paper such
transitions would correspond to the charge-transfer
component of I‘O)(w), which contains the x§ factor to ac-
count for the electric dipole transition integral 7, g,.

In the absence of more definitive experimental evidence
concerning the nature of the excited state for the elec-
tron—-ethanol system we proceed under the assumption
that this state is bound, at least for its lower vibrational
states.

In carrying out the parameter fitting procedure de-
scribed above the values w;=0.16 eV, X, 4+ =T, and
AEgz 1.2 eV for the ethanol system were taken directly
from Bush and Funabashi,!® who argue that these values
correspond to geometrical distortions involving pri-
marily the C-O~H bending vibration. As it turned out
this was a good choice in that no noticeable improve-
ment in the fit to the experimental data could be made by
further adjustment. For anthracene the values of w,
=0.059 eV, X, 4+ =5, and AEY=1.39 eV were obtained
by fitting the experimental spectrum of Shida and Iwata’®
according to the procedure discussed above. The value
of the line shape width ¢, which describes the inhomo-
geneous broadening, was taken to be 0.026 eV for both
systems.37

In Figs. 3 and 4 we compare the experimental and the
resulting calculated (fitted) spectra for the ethyl alcohol
and anthracene systems, within various approximations.
The curves (a) corresponding to the localized component
of I'(w) give too small a width and do not show proper
skewedness, On the other hand, the spectra generated
by including the addition of the nonlocalized contributions
to I'” (w), which are shown in Figs, 3(b) and 4(b), give
the width and the skewedness quite accurately. The op-~
timum values of the geometrical displacement param-
eters X, and X, 4+ and the dipole transition ratio y,,
which essentially determine the contribution due to non-
localized (dipole) electronic transitions, were found to
be X,y =3 and y;=0.294 for ethanol and X,,, =3 and x;
=0, 367 for anthracene.”® Figure 3(c) is presented to
demonstrate the sensitivity of the calculated band shape
on the parameter y, [ys= 0. 365 for Fig. 3(c)].

After generating spectra for the two systems of inter-
est at the special frequencies (w=kw,) we next use the
full Eqs. (73) to fit the experimental spectrum at “in
between” frequencies. For ethanol the values h=0.01
eV and (54%) = 0. 0000965 eV? (which corresponds to a
fluctuation integral of ~ 80 cm™!) were found to be opti-
mum.?’ The corresponding curve for the band shape is
not greatly discernable from the I'“(w) curve of Fig.
3(b); it is not shown. The fact that the predicted spec-
tral shape is extremely sensitive to (54%) raises prob-
lems for applications in which the theory is used as pre-
dictive tool, since rather accurate modeling of BHY)
sould be required. However, from the point of view of
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using known experimental spectra to determine the val- ethanol., This observation could be used to infer that

ues of Ej, hpy, na(0hlq, s €tc., which give important
insights into the behavior of excess electrons in solvents,
one can realistically expect to extract values for these
parameters rather accurately using fitting procedures.
As can be seen from Figs. 3 and 4 the functional form
for I{w) given in Eqs. (73) is capable of fitting the two
observed spectra for reasonable choices of the param-
eters. The fact that X ,* is larger for ethanol than for
anthracene implies that the geometrical distortions
caused by the presence of the excess electron is larger
in the alcohol system. The charge transfer contribu-
tion to /{w), as contained in the transition dipole ratio
X2, seems to be larger for anthracene glass than for
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mobile electrons should be formed (via photon-induced
charge transfer) in anthracene at least as easily as in
ethanol (recall that in Ref. 31 mobile electrons were ob-
served for irradiation in the high-w part of the band),
even though the ground-to-excited state transition in an-
thracene is known?®? to be bound to bound. An experi-
mental investigation of this question for anthracene now
seems to be in order.

For comparison sake the band shape obtained by Bush
and Funabashi'® for ethanol is shown in Fig. 3(d) (after
deleting their vibrational structure). The width of their
spectra is slightly greater than that obtained by using

FIG. 4, Absorption spectral
band shapes for excess elec-
tron in anthracene glass, cal-
culated from Eqs. {73). The
dotted line (d) shows the ex-
perimental spectrum (Ref, 36),
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the localized term of I°’(w), due to their explicit con-
siderations of (assumed) bound-to-continuum transitions.
However, their line shape does not have proper skewed-
ness. In addition to comparing to the results of Ref. 18
it should be mentioned here that the use cluster or semi-
continuum models (such as the CKJ model!®) would es-
sentially involve finding only the band maximum wp,,

and [{wpy,,) and then assigning a band shape (usually a
Gaussian) whose width is ascribed to the effects of sym-
metric mode (cavity size variations) and dipole orienta-
tion fluctuations®® on the energies of the ground and ex-
cited electronic states., In our model this inhomogeneous
broadening, which is of the order of o, is assumed to
broaden each of the vibrational transition lines in the
total electronic transition band. Electronic band shapes
whose entire width is obtained from such inhomogenous
broadening mechanisms have been found to be rather
inadequate primarily because of the physically unreal-
istic value of ¢ needed to fit the observed data.

V. SUMMARY AND CONCLUSION

The basic result of this paper for the absorption spec-
trum of solvated electrons in condensed media is con-
tained in Eqs. (67). The band shape I{w) is expressed
as a sum of three contributions, each of which has a lo-
calized part corresponding to a dipole transition of the
type ¢,,~ ¢o» and a nonlocalized part involving ¢,,~ ¢,
transitions. In the first contribution to I{w) the intensity
is expressed as a product of dipole transition matrix
elements and corresponding Franck-Condon factors.
The intermolecular solvent interactions affect this com-
ponent only through their influence on the electric dipole
matrix elements and the inhomogeneous broadening of
each vibronic line. The other two contributions to I{w)
contain explicitly the effects of rotational-translational
motions of the solvent molecules as perturbations giving
rise to combinations of electron hopping and fluctuation
integrals in the resultant components of the absorption
line shape.

Operationally, the expression for the absorption spec-
trum resulted from a Fourier transformation of the
(time) dipole correlation function. By performing a
cumulant expansion of the time evolution operators,
making a short-time expansion, and assuming a separa-
tion of the electronic, vibrational, and rotational-trans-
lational motions it was possible to express the correla-
tion function (and, hence, the spectral band shape) in
terms of solvent structure information and the electron-
solvent interaction potential (through E?,,a and hm,,.,,ﬁ).

In this paper application of the theory was restricted
to the analysis of low-temperature experiments in which
bound-to-bound transitions are assumed to dominate and
the treatment of solvent interactions was confined to
near-neighbor gites, This rather simplified model was
applied to the two separate cases of solvated electrons
in ethyl alcohol and in anthracene glass. The results
described in Sec. IV clearly demonstrate that even this
simplified model is quite capable to describing (fitting)
the solvated electron spectrum, thereby providing op-
timism concerning the potential of the general formalism
to provide quantitative information about the behavior of

A. Banerjee and J. Simons: Excess electrons in condensed media

solutions of excess elecirons in molecular solvenis as
expressed through the electronic energy levels E?m and

interaction matrix elements ki, .

One of the highlights of the present development, in
comparison with other treatments which are currently
in the literature, has been its generality and its adher-
ence to fundamental principles as opposed to phenom-
enological developments based on specific models which
treat only one aspect of the problem. Specific important
points of differences between our theory and others are
(i) the introduction of nonlocalized terms which were
shown to be responsible for at least part of the high-w
skewedness of I{w), {ii) inclusion of the effects of rota-
tional-translational perturbations on the absorption line
shape, and (iii) ab initio inclusion of inhomogeneous
broadening effects which arise naturally due to fluctua-
tions in the instantaneous center-of-mass positions and
orientations of the solvent species, as well as broaden-
ing due to finite lifetimes of localized resonance states.

As is apparent from our description of the applica-
tions given in Sec, IV many important challenging prob-
lems still remain before the theory is proven satisfac-
tory. One immediate problem, whose solution may en-
able one to use the present theory both for quantitative
analysis of spectra and as a reliable predictive tool, has
to do with developing accurate and physically sound
models for the transition dipole, hopping, and fluctua-
tion integrals. It is our Jpinion that the accumulation
of data for a wide range of specific cases and the inter-
pretation of such data in terms of models based on as-
sumptions such as (3), (4), and (5) of Sec. 1V will prove
to be a very valuable step in learning the strengths,
weaknesses, and sensitivities (to parameters) of the
present model as well as in testing proposed models for
the above integrals. Some ideas regarding possible
models for the spatial dependences of these integrals
have been put forth in I; the reader is referred to this
earlier work for further discussions. One possibility
with regard to modeling the temperature dependence of
the hopping and fluctuation integrals can be expressed as

Z’Ou,lu =A +Bexp(— E/KT)
and
(6ho,,1,6R1,,0,) =B exp(~ E/KT) ,

where the “activation energy” E is related to the poten-
tial energy barrier between the anion and the neutral
geometries, A is a measure of the electron tunneling
probability, and B and B’ are functions of the spatial ex-
tents (and hence overlaps and interactions) of the orbit-
als at neighboring sites. Clearly, the magnitudes of B
and B’ are dependent upon the size of the coupling be-
tween electronic and nuclear (geometrical) motions.
Also, A depends upon the depth (EJ,) and width (inter-
molecular spacing) of the electron—molecule potential
wells. Even though the above model expressions for A
and (5486k) may prove to be useful in fitting experimental
data, the modeling process is not complete until more
direct connections are made between the parameters E,
A, B, and B’ and the electron-solvent interaction poten-
tial (x) and solvent structure information [ p(R, 0)].

In addition to the above mentioned problems having to
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do with developing reasonable models there are other
areas in which further development seems especially
promising. One application of immediate interest con-
cerns the case of transitions involving localized reso-
nance states in which, as is seen in Appendix A, a main
source of linewidth arises from the decay of such states.
The application of the present model to cases involving
aromatic hydrocarbon solvents which possess resonance
states is presently under consideration.

Another problem of major chemical importance is the
extension of the basic results presented here to mixed
solvents. Here, considerations of interactions among
constituent solvent molecules and the numbers of differ-
ent species in a solvation layer are probably quite im-
portant. Such quantities will depend upon both inter-
and intramolecular interactions. An especially relevant
candidate for spectral line shape studies in mixed sol-
vents is the case of charge-transfer spectra, for which
the dominant zeroth order transition corresponds to a
nonlocalized event between two unlike molecules ¢,,

= $py.

As is clear much important research remains to be
done before this preliminary investigation can be put on
a more defensible ground and can be straightforwardly
and routinely applied to the spectroscopic study of pure
and mixed solvents.
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APPENDIX A

In systems for which the bound-to-(resonance) free
transitions are also important the resonance state ener-
gy is a complex number representing a state which is
decaying as exp(-I't). For the general case the line
shape function of Eq. (64) has the form

a" o 02
o j dtexp{- [Et2+ (AE - w)it+ T | t|] dt
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7 )(w):27r d

=L ) . (&1)

For this case f(w) has the following form after integra-
tion:

f(w)—zﬂ exp(b )erf(b/Z\/_)

+Texp< )erf(b/z va), (a2)

where a= 02/2 b_i(AE—w)+1", ;=—i(AE—w)+1",

and erf(z)= [ exp(-x%)dx. Further simplification of
the expressxon in Eq. (A2) gives

F@) = exp{[T? - (AE - )?/20%)

%2 Re{exp[%;—_—w—)] erf[ﬂw—;ﬁz—l-‘-—r]}. (A3)

This line shape expression is neither simply a Gaussian
nor a Lorentzian but is a convolution of both. The limit-
ing values of this expression for the cases of bound-to-
bound and bound-to-free transitions are given as follows:

Case 1: In the limit '~ 0 we have from Eq. (A2)

2
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which is a Gaussian function of width o, as calculated
earlier in this paper for bound-to-bound transitions.

(A4)

Case 2: In the limit o~ 0 we have from Eq. (A2)

1 1 1
Llronf(w) 211[F+’L(AE w)+]_"—i(AE—(A))]
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which is a Lorentzian function of width I" corresponding
to the bound-to-free transition.

(A5)

The derivatives required for the calculation of higher
order line shape can be obtained by using

dm»l

az71 erf (2)= (- (A6)

1)t 727 H,(2)exp(-2?),

where H,(Z) are Hermite polynomials.
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