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Abstract

Thc Grcen's funclion formalism in Ihe supcropcralor nolalion is exlcndcd 10 admil a mullicon-

liguralion rcfcrencc SlalC. Thc advanlaf!Cs of lhis morc gcneral rcfcrcnce slalC o\'cr the Harlrcc- Fock

stale are discussed. Hermilicity of lhc supcropcrators for the multiconfiguralion rcfcrencc state
is analYlcd. Explicil formulas and calculaiion procedurcs for thc il1lplcl1lcnlalion of this (jr~cn"s

funclion Ihcoryarc given and spccialilcd lo include tcrms consislent Ihrough sccond order.

I. Introduction

Since lhe early works of Linderbergand Ohm [l]. and the ah initio devel-
opments of 0011and Reinhardt [2). Purvis and Ohm [3), Simons and Smith [4).
Pickup and Goscinski [5]. Cederbaum el al. [6], Schneider el al. [7], and others

. [8. 9], Green's funclioncalculations have bccol1lequitc established mcthods
for calculating certain propertics ol' atomie and molecular systems. The tech-
nology for lhe calculation ol' ionizalion energies within lhe Green's funclion
formalisl11has become quile sophisticated due to the use of correlated ground

. stales and exlended operalor manifolds to describe the corresponding ionicslates
[4,6-9]. In the approach employed herc. one expresses the one-cleetron Grcen's
runclion (G) in the superoperator form orGoscinski and Lukl11an[lO]. This
tcchnique allows lhcrormulation ol' approxil1lations in a coherent manner via
choices or lhe referenee wave funetion and the operators which comprise the
inncr projeelion [l l] l1lanifold. It has been shown by one or us [l 2) lhat. ir one
employs a col1lp!cle operalor srace within the inner projeelion. the use of an
approximate reference slate affecls only the residues ol' lhe Grcerj's function

~ (the so-called Feynman-Dyson amplitudes [7J (\l/;~'-llaJI\j/;i).
(q,:~+'I at! \}/;i")); the exaet nature ol' the pole struclure is still prcscrved. Thc
poles or G are the ionization potcnlials and cJcclron affinilics of lhe system. or
coursc, lruncalion of lhc operator srace, which is incvitable ror most cakulations.
does !cad lo a dependence ol' lhe poles ol' lhe (j reen's runclion on lhe choice ol'
the rcference slale. Tlre choiecs of referenc.:cstates have so raf becH n:slrictcd
to (i) lhe lIarlrce-Fock slate [3) (111'),(ii) III' plusdoubly exeiled [41eonfig-
uralions whoseeocrficienls<tredelerrnined by Raykigh-Sdui>dingerpertur-
balion lhcory(RSPT).(iii) III:plusdoublyandsinglyexcilcdcont'iguralions[H,
9] wilh RSI'Tcocrfieienls.Though lhe sccondandlhird possihililicsattel11ptto
introdlIce corrclalion, lhe groulOd-stalcdescription rclIlains inadeyualc whenever
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the 7.eroth-order stale of the perturbation exapnsion (IIF) is a poor description
ol' lhe system. These condilions arise. for examplc, in circumslanccs whcre morc
than one major configurali~)Omusi be incllldcd lo obtain a physically rcasonablc
description ol' the system. Such is lhe case in lhe description ol' F2 (Ref. l 3) and
for H2 (Ref. 14) at largc band lengths./\nOlher importanl examplc is provided
by the CO2, CO2- syslem [l 5. 16) for which lhe cyuilibrium gcol11elricsol' lhe
neutral ground stale (lAd and ofthe jon eAd aresignificanllydifferent (the
OCOangleisI80oforIAlandI35°for2AI)' .

Of course, it is nol only because ol' anion~neulral geomelry differenccs lhal
one mighl wish to cmploy a multiconfiguralion (MC) rcfercnce stale. It isequally
important to have available a practical Grcen's function framework in terms
ofwhich one can compute molccular ioni7alion cnergies given a MC funclion
which lIas been employed to accurately treat correlalion cffects in the reference
stale.

In t~e prescnt paper aur aim is to cxtend the Grecn's function formalism to
includc the use ol' multiconfiguralion reference slales. This devclopmenl providcs
a new tool which has the potential to adequatcly describe the propertics of
mo!eculcs which are rcprcscnted by correlatcd refercnce states. Because ol' the
use ol' an extended operator srace. this dcvclopmcI11includcs sclf-cnergy cor-
rections lOthc ionization encrgies and lIas thc advantage thal the reference slate
can be systematically improved in order lOuniformly describe the system over
the enitre range ol' intcrnuclear variablCs.

In Section 2 wc introducc our notations and choice of opcrator manifold to
be used wilII the multiconfiguration reference stale. Wc give explicit cxpression
for the Green's function and introducethc concept of order to rank the relative
importance of each term. In Scction 3 lhis ordering conccpt is used to simplify
the cxpressions for the Green's function lOyicld rcsults which are consistcnt
through second order. We then discuss potenlial further approximalions as well
as computalional procedures lObe uscd in implementing aur rcsulls.

2. Format Devclopment

A. Notatioll

The spectra! represcntation of the one-particie Green's function wriUen in
the superoperator notalion lIas lhe form [10]

G(E) = (al (El - J/)-lla) (I)
where a is a set or elcctron annihilalion operators a = lail, l and fi arc the su-
peroperator identity and l-Iamiltonian, defincd as

flxi = [H,X;]-. Ixi =Xi (2a)

where the c\eclronic l-Iamiltonian is wriUen in terms of lhe cIectron creation

and annihilation operalors [17] a,s
I

H = L hijlltaj + - L Vij.k/ataja/ak
- ij 2 ij.kl

(2b)
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where h,} and Vii,'" are ,he one- and two-elcctron integrals in the spin orbita!
basis libiiol' the chosen MC rererence stale 'I':

h,} = (I/>;lhll/>}); Vi).",= (l/>i(I)I/>}(2)
I

J...
I

rJ1dl)4>,(2»
'12

(2c)

The above set ol' creation and annihilation operators support the rollowing binary
produet. defined in terms ofthe expectation value ol' the anticommutator

(XdX}) ==(\{I I[xl.x}J + I\{I) (3)

The superoperator resolvent (Ei - Fi)-1 can bereprcsentedvia the inner pro-
jectiontechnique [III which, for a complcte set ol' operators h, allows G(E) to
bc written as

G(E) = (alh)(hl(Ei - Fi)lh)-I(hla) (4)

This equation providcs the basic starting point rDr the introduction ol' various
approximations which lead to practical-D1ethods for computing G(E), Thectwo
esscntial approximations consist ol' making a truncation ol' the operator space
h and ol' choosing a refercnce function \{I. .

B. Operator Space alld MlI/ticollfigllratioll Referetlce State

aur choice ol' projection manifold h has becn facilitated by a theorem recently
given by Manne [18]. This theorem essentially states that. givcn an N-clectron
Slater determinant <1'0= IL..a;;lvac), and a manifold ol' opcrators

hl = lani, lam1

h3= la~lanal:lI.la~ama"l,

hs = la;'a~anaila"Yl,la~ajal/la"apl,

a < {j.ni < II

a < {j< "t. ni < II <P

(5)

(a, (3,"t,. . . labcl the set ol' spin orbitaIs lal that are occupied in <1>0,/1/.II:p. . . .
labcl ,he set ol'spin orbitals 1011that are unoccupied in <1>0,and/. g. i. j. k. / lubcI
a general spin orbita!), the set h = Ihil is complete when operating on any ref-
ercnce statc 'v providcd that the ovcrlap «1'01'v) ;:c O. It is important to point
out that Mannc's proGI'does not place restrictions on the determinant <I>()or the
orbita!s 10'\which are occupied in <1'0'

In this particular devclopment wc choose \{Ito be a multiconfiguration N-
e1ectron stale

. 'l'(C,(P} = r: 4'K«/»CK
K=O

where the <l>d</»are configurations constructed from the set ol' multiconfigu-
rational orbitais II/>;\.The configurations <1>".K ~ I are assumed to have becIl
obtained as excitations from <1'0'The configuration <1)0is the determinant dis-
cussed above. which is chosen to denne the operator manifold h. With this choice

(6)
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for <1>0the overlap crilerion ('1'01'1') ~ Ois automatically satisried. Usually 'I>n
would be chosen to be the dominant configuration, or one of the dominant
conligurations, for Ihe given molccular geomelry. As is scen 'aler. Ihis stipulalion
simplifies accounting for Ihe order of magniludes of various lerms appearing
in Ihe calcu'alion of lhc Green's funClionmalrix cIemenls. The spccilic MCwave
function uscd herc is takcn 10ÓCan expansjon of Ihe type shown in Eq. (6) for
which Ihc scl of orbilals I(/>i Iand mixing cocrricienls ICkIarc varialionally op-
timizcd for minimum cnergy. The variational principlc when applicd lo such
multiconriguralion sclf-consistenl-ficld (MCSCF) wave runctions Icads lOIhc
generalized Brillouin Iheorem [19] (GBT), whieh may be cxpressed as

(\f1lf/(ajaj)l\lt) ==(H(a;aj) = O (7)

Thc expeclation valuc is hereaflcr taken wilh rcspecI 10the MCSCFrcfcrence
stale. It is Ihis GBTwhichis actually cmployed lo computc thc MCwave rUBelion
[20, 21]. In what follows, wc assumc Ihal Ihe oplimai orbitais and mixing
coefficients have already becHso oblained. .

II hus becHdemonstralcd Ihal if a HFreferencc stale is uscd WilIIa truncalcd
projcclion manirold consisling of the hl and hJ subspaces (dcfined wilh rcspcel
to the IIFdCICrminanl) Ihcn all "sceond-order" terms are included [2,3,5]. The
term "second order" in thc abovc conlcxl rerers lo thc tcrms appearing in Ihe
Grecn 's function cxprcssions conlaining producls or twa or fcwer Iwo-cleclron
integrals in their numeralors and are hence or second or (ower order in Rsr~T.
Beeause of the fael Ihat a MCSCFwave runelion is morc general, and Ihus c1oscr
to the Iruc cigenslate or the Hamiltonian Ihan the HFwave ruBelion,'wc expecI
that the use or this same truneated manirold (consisting of h" h) defined wilh
respect lO<1>0)includes al leasl the cquivalcnlor the "second-order RSPT"lerms.
In what follows, wc devclop a dirferenl concepl or order Ihal arises nalurally
for {he MCSCFrererence wave function and we provide furlher juslilicalion for
our use of the hl, h) subspacc. To facililatc rurlher progrcss wc orthogonalize
thc hl and h) subspaccs. It becomcs obvious shorlly that Ihis is sufficicnt ror aur
casc; it is not ncccssary lOorlhogonalize the h) operalors to one anolhcr. The
Schmidt proecdurelhen gives

h) = 10:,0..0/:1+ (a:,ap)a" - (a:,a,,)apl.
. la~amall + (a~an)afll - (a~afll)alll (8)

Thus we have

(hdhl) =I, (hdh) =O, and (h)lh) =S (9)

Using Eqs. (9), Eq. (4) tan be partilioncd 10express C-I(E) as rollows*:

C-I(E) = (hdEi - 1/1 hl) - (hdfll h)(hJIEi
- HIh)-I(h)11I1hl) '" A(E) - BM(E)-IC, (10)

where the matricesA, B, C, and M are delincd as

. It is possiblc to show lhat ror El!. (10) 10hold it issurricicnl to havc (hdh;) =O. i =3.5.. . .
Wit h thc rcsollllion er Ihc idcnlily cxprcsscd "S i = Ih)(hlll)-I(h" thc rcprcscnlalion"r thc invcrsc
or" supcropcr"lorA bccomcs(hl/j-Ilh) = (1IIh)(III.-IIII)-1(hlh). rrom lhisand (hdh;) =O.

one immediatcly lIas Eq. (10).
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A(E) = (hdEl- IIIhl)
.8= (h1IillhJ)

C = (hJlill h,)
and

M(E) = (h)1El- 111h) (I I)

C. liermiticity oj JI

The superoperator Hamiltonian iI is Hcrmitian jf and onty if the following
relation is true for ils malrix c1cments:

(XiI/IXj) - (XjlllXi)* = O - ( 12)

Jf lhe reference stale 'I' isan exacl eigenslale of H, Eq. (12) is satisf1edidcnlically
so that li is Herrnilian. l-Iowcver.in calculations invotvingapproximalc reference
states, thc matrix clemenls of 11 do not in general sutisfy Eq. (12). This 1cads
to artif1cial complications such as having to work wilh non-Hcrmilian malriccs
and having to slipu lale lhc order of operalions in the scalar product. This Her-
miticity problem musi be addressed for aur chosen MCSCFreference stale be-
cause it tan polentially lead lOextrancous non-Hcrmitjan contribulions lo G(E).
It is rc1ativelystraightforward to show lhat Eq. (12) can, in general, be rewritten
as (1I[xt.Xj]+) =O.This facl can now be exptoitcd in our analysis of the ma-
lriccs which occur in Eq. ( 10). First we consider lhe A matrix for which Xi. Xj
E h,. Then it immcdiatcly follows lhal

A +
(H[ai.aj]+) =0 (13)

since [at.aj]+ = bij which obviously commules with fi. Hence Ais llermitian
for any choice of reference stale. In considering lhe elemenls of B for which Xi
E h.; Xj E h). we find

. {iI[at.a~laaajj + (a~lajj)an - (a~,an)ap]+)

= - óni{li(a~laiJ» + óiJi(J1(a~,aCt»= O (l4a)

and

(iI(at.a~aman + (a~an)am - (a~am)an]+)
= -óim(fl(a~an» + Óin(fJ(a~am»=O (14b)

The final equalities of Eqs. (14) are a resull of lhe GUT given in Eq. (7).
Thus

(hdl/l h) = (h31i11 hl)* ( 15)

and hence

8+=C (16)

if one usesa MCSCFreference stale obeying Eq. (7). A similar analysis of lhe
terms of 1\1for which Xi. Xj E h) gives. using thc GUTof Eq. (7):
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. + -. + +
(fI«hJ )""'/1,(hJ)II""]+) - 0","(lJ(0,10"0,,Ov)}- + + - + + .+ ó,," (H(a;ja"a"o",)} - ó""(J/(tlda"o"a,,,)}

. - ólj"(f/(a;avo~a,,,)} + Oilv(J/(a;o"o~all/)}
A + - -

(fI(hJ)m"p.(hJ)"pq]+) - O

( 17a)

( 17b)

and
A +

(fI(h) )"nrn,(hJ)"pq]+}- - + + A + +- ó""(f/(Ono,,,OpOq)} + Ó",p(J/(a"O"OqO,,)}
A + + A + +- Ómq(lJ(OnO"OpO,,)} - Óllp(lJ(O"Oqa",a,,)}- + +'+ Onq(Jl(o"opO"p,,)} (17c)

It is quilCcvidcnt thal lhe lerOlsin Eqs. (17a) and (17c) do not ingencral vanish.
cxccpt for the trivial ease of the diagonal elemenls. A diagonal approximalion
to Mis an especially rclevant case because of lhe large dimension of lhe !\1.malrix
which necds lObe inverled Olanylimes during lhe search for lhe zeros ol'G-I (E).
Thus it bccoOlescompulalionally rather attractivc to approximale i\1 in diagonal
or ncar-diagonal form. Furlhcrmore. since the non-HcrmiticilY is an artifacl
of the choice of referencc SlalC.remedies such a~averaging the orf-diagonal lerms
or defining a symmelric commulator should be viable alternatives. Wc rcturn
to this aspect in alater discussion.

D. Explicit Expressio1lS

To facilitate our discussion. lhe following more cxplicit representation of lhe
tcrms of the G-I (E) matrix are reproduced:

[G-I (E)]fg = (A - Bl\I-IB+)fc

=Afg - L Bfulvr;;hl B;h
u.b

(l8a)

Thc indices o, b arc reslricted by the hJ manifold to be ofthe types (i) o = met/J,
b = nJ.lv, (ii) a = 1/1('1{1,b = J.I.{lq,(iii) a = a{lq, b = IIJ.l.I',and (iv) a = al/III, b =
J.lpq. With these restrictions we are able to obtain the following set of expressions
for the tcrms in the above Eq. (18'1):

- - +
Afg -EÓfg + hgf+ L Vig.jf(Oj aj}

ij

E EÓfg + hgf+ Alg

E EÓfg + Ajg
. - + '- + '

Bj.nr"P - (oma,,) A lil (a ",oil) A I"

(18b)

~
,
- + + - + + - + +

+ '- Vj",jf(Oj an,ofjaj} + VjpJj(Onra"oiaj) + IhVij.mf(Oj aj o"op)\ (18c)
ij

B -
(

+
) '- + } ' "

1

- + +
J."mn- 0"0,,, Aln (o"on AJm+ '- Vj""jf(OjO"OnOj)

ij
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. +V;IIjj(a:a",ataj) + 'hV;j,n/(ataja",all)1

Mob = E(h3Ih3)ob - (h31 iii h3)CIb :; ES"b - !vI~h

(18d)

(l8c)

S",ad,IIjAv = (a;a:ajAav)l>/II" + (a;ja~a.,a"')ó"jA

- (a;a;ajAa",)ó"v - (a;ava~a",)t5jAfi+ (a~ajAa~a",)ó..jJ
- (a;o",) (a;aj)ójA" + (a;o.,) (a:a",)ojA/J - (a;ajA) (a:a",)ó..p

. + (a;ajA)(a;a",)ov" (18f)

s",ajJ,jApq= o (l8g)

S,.p",IIjAV= o (18h)

S"nlll,jAp"= (a;a:,apaq)ó"jA + (a;a;aqaa)o",p

- (a;a;apa")o,,,q - (a;a"a:,a,,)óllp + (a;apa:,a,,)ólI"

+ (a;,ao)(a;a")óp,,- (a;aa) (a;aq)óp",
- (a:,aa) (a;ap)oqll+ (a;a,,) (a;ap)oq", (18i)

, - + I
A

I + 'j

!vi",ad,njAv- (a",a"ap H anajAav)
+ )1 . + ) " +

)
" '+ (anav B,."""p - (a",a/J A",. + (ama" Ap,.

+
,
. +" +

)
" '+ (ana,.) Bv,"'"iJ- (a",ap)Aav + (amaa A,iv

+ (a;,ajJ)B",IIjAv- (a:,aa)B;J,IIjAv (18j)

where

(a;,aaajJllila;ajAa..)= h"",(a'ja~a,.al,) - h,."(a~a;ava,,,)
+ h"fj(a;ava:a",) + hv"(aja;a"a,,,) - h"/i(a;a"a~a",)

+ L Ih;n«ajatava",)ó""- (ajata"a",)Óav
i

- (atava~am)ÓjJ" + (aTa"a:a",)o/iv) + 1I,,;«a;a:a.,a;) O"",

+ (a~a;aia",) Oav- (a;a;a;a", )bjJv) + hv;( -(a~a:ajAa; )b",1I

- (a~a;aiam)OojA + (a;a;a:a",)óp,,)1 + 1/2L 12Vim,jn(a~ataTa"a..aj)
ij

- ++'+ - ++' +
+ Vij,an(a/Ja; al a"ava",) + Vij,n/i(ajaja"a.,a"a",)

- ++ - +++
+ V"""ij(a/Ja"a.,a;aj) + 2 V;jA,"j(ajJaj ana..aja",)

- + + + - +++
+ 2V;".jp(ana..a; aja"am) + Vjj""v(a,ia"ana"aja;)

-+ + + - + + +
+ 2V;v.j"(aiJa"a"aj ala",) + 2 V;v,/Jj(aj ana"aja"am)

+ 1/2L Vij,nd(a'ja1'ajal,ava",)óUjA + (a~a1'aja"aka",)b"v
ijk .

+ (ajajavaka:a",)Oj:l" + (ajajaka"a~a",)t5;J,,1
+ V;",jd(ata~aTavakaj)ó"IIl + (aja;a;tlktlja",)ó"v

+ (a;atakaja~a",)b/J.,I + V;."jd(a~a~a"atakaj)ó"",

+ (a'/ia;a;akalam)ó"jA + (a;a;akaja:a",)ójJ,,1
, - + I

A

I +
AI"mn".pa- (a"a",a" J/ lI,.apllq)

+
,
. +

)
" +

)
" '+ (a,.aq) BpCtl//Il- (a"an A "'p+ (a"lI", Anp

( 18k)

--~
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whcrc

+
)1 ' + ) ." + " '- (alla" BI{."lIIn- (a"a" Allil{+ (a"am)A"1{

+ (a~an)Bm.Il"1{ - (a~a",)Bn.Il"1{ ( 181)

(a~a",a"lhla~a"a,,) = h"ll(a~a~,a"a,,) - h"",(a~a~a4a,,)

+ hp"(a~a,,a~,a,,) + h"",Ul~a~af,(l,,) - h4"(a~a,,a~,an)

+ L Ih;Il[(a~ata"an)óm"- (a~ata"a,,)Ómqi

- (ata"(l~,a")ó,,,, + (at(l"a~,a")ó,,,,)
+ hpi[(a~a~,al{ai)Ó"1l+ (a~a;(l;a")Óm,, -'<a;a;a~,a"}ó,,q]

+ hq;[-(a~a;,a"a;)ó"ll - (a~a~a;a")Óm,, + (a;a;a~la")ó,,,,]1

+ 'h L !2Vin.)!'(a~a~,ata"aqaj) + v,).m!'(a~ataja"al{a,,)
;j
- ++ + - +++

+ V;j,!'n(a;aja"Gqama,,)+ V"",ij(a"amallal{a;aj)
+ 2V;P.mj(a:ata;al{ajan) + 2V;".)n«(l;a"ataja~,a,,)

- +++ - ++ +
+ Vij",q(a"(l,,Pllap(lja;)+ 2V;q,jm(a"all(l,,(l,alan)

+ 2V;q",j(ata;af,aja~la,,)1 + 112 L V;j,!'d(a~ataja"aqa")ó",,,
;j"

+ (a~ataja"a"a")ó,,,q + (atajaqa"a:,a")ón,, + (ataja"apa~/a")ó,,ql

+ V;".jd(a:a~ptal{a"aj)ó,,!, + (a~ata~a"aja,,)ómq

. + (a;ata"aja;,a")ó,,q] + Vicf.)d(a:a;,a"(lta,,aj)ó,,!,

+ (a~a;ata"ajaer)óm" + (ata;a"aja~,a,,)ón,,] (18m)
and

Ih l
a+a a ) +

) A~ I

I I
' = (a~,aerap Il " q .

( +a )A" + (ama" PI'

" "",I3.!,pq
( + ) !B' jj - a m;j "f'

+ allaq pm~--1,a~dIB~III(Y~~
)

A' + (a~,(ler)A~ql +
) B - (a~,a,,) Bp,!,pqC. - (a:,ap erq + (amafj ",!'{'a

c:::

where

(a~/a"pj:dlila;a"aq) = hm~(a~a~a"aq) -h""(a~a;aqa,,,)
+ hp{J(a;aqa~am)+ hq"(a~a;a,,am) - hqlj(a;apa~a",)

+ 1/2L 12Vim.)ll(ata~atai,aqaj) + Vij",!,(atatajapaqam)
ij
- ++ + - +++

+ Vij,!,P(a; aj a"aqa"a",) + V"'fl.ij(a,ja"allaqa;aj)
- + + + - + ++

+ 2 V;P,"j(ajja; alla"ajam) + 2 V;",J/J(allu.,(l; aja"a",)

+ Vij,mq (ata~(l;a;ajai) + 2Viq.i"(a~a;(l"atajam)
- + + I+ 2 Viq,fjj (a, a!,a"aja"a",) ( 180)
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In the abovecxprcssions.VU,kI ==VU.kl- V'j.lkand Eq. (18b)deftnesthe matrix
elements Aill and A;:~.Wc fiole that the calculalion of the matrix clementsof
the A, B, and 1\1matrices require the one- and two-elcctronintegrals (hu and
V;p;./)in terms of the MCSCForbita I basis, as well as the elemcnts of thc one-,
iwo-, and thrcc-particlc density matrix elcmenls «at aj). (ata!aka/).
(atafatalajGg) )calculated with respect lOthe MCSCFreferencc stale,

E, Order AnalJ's;s

aur next job is to assign orders of magnitude to the various terms appearing
in Eqs. (18) with thc inlenlionof localing and deleting smali (third-order and
higher) terms. Wc note, for example, that the clements ot' the A, O,and M ma-
trices contain terms of the type, V (a+...a), where (a+...a) containsa smali
number of creation and annihilation operator pairs. The terms (ataj),
(atafa/ak), and (atatata/ajOg) are the elements of one- and two- and
three-particle reduced density matriccs corrcsponding to our MCSCFreference
stale. Wc assume that these elements are alrearly available. Wc also assume that
for the systems of interest a distinct boundary exists betwecn the set of spin or-
bitaIs with larg-c(near-unit) occupation numbers (at a;) and the set of orbitais
with smali (near-zero) occupation numbcrs* (dcnoted L and S, respectivcly).
We nole that since these diagonal terms (at aj) are sums of squares of the mixing
coefficients of the MCSCFwave function, this assumption is equivalent to a
similar partition among these coefficients. With this assumption, wc assign
zeroth order lOthe large occupation numbersand second order to the smali oc-
cupation numbers:

(ata;) = 0(0),

= 0(2),

if; E L
if; E S

( 19a)

where O(n) means a lerm of 11thorder. Furthermore, il is possible to assign an
upper bound lOlhe magnilude of the orf-diagonal densily matrix elcments ap-
pearing in Eqs, (18) by using the Schwarz inequalily

l(ataj)12~ (ata;)(ataj)

which, in a straightforward manner, results in the following order stale-
ments:

(19b)

(ataj) = 0(1}, ifi E S.j EL. or; E L,j E S

(at aj} = 0(2), . if i.j E S
(19c)

.This assumplion for an MCSCF wavc funclion or Ihe lypc given in El!. (6) implie~ Ihallhc sel

of mixing cocrfieicnls c:ln be,scparalcu as IC".1. = 1./111and ICs.S = m.MI soch Ihal C7, » cl ror
all L and S. This is gencrally lruc ror noncJllcnued syslcms; an cJlal11rlc can bc scen in Rer. 20 (r.
1059) whcrc ror Nll(h I~+) al R, (= 1.95 bohr) IhcCL sel haseonliguralions3<1~11I'~and 3,,411111'~

wilh cocrrieicnls 0.91 and -0.37. rcspeclivcly. and Ihc eocrlieicnl ol' largcsl magnilude from Ihc
Cs sel is O.OK.Anolhcr cxample e:II1be seen in Rcr. 24 "herc orbilal occupalion numbcrs for Purine

are calcul:l\cd as 1.997. 1.990. 1.91\4, 1.966, 1.953,0.079,0.056,0.55,0.030. Thc assumplion may

nol slrie'tly hold for dclocalilcd syslcms soch as melals.
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The analysis for lhe case of lhe lwo- and lhree-parlicle reduced densily malriees.
which also oeeur in Eqs. (18). can be carricd lhrough in analogous fashion. For
example,

I(ataja"al) 12::; (atajaja;) (atata"a{) (20a)

I(atatatalajQg) 12::; (atajata"aja;) (aia}ata{ajQg) (20b)

lhe righl-hand sidcsof lhcscequalionsbeingproduClsof diagonallerms of lhe
appropriale reduceddcnsilymalriccs. For lhesediagonallcrms, lIte following
order assignmenlstan be madc:

(atajaja;) =0(0), ifi.j E L

=0(2), if i E L. j E S. or i E S. j E L

=0(4), ifi,jES

front whieh followslhe orders of lIteoff-diagonallerms

(atataka{) =0(0), ifi.j. ki E L
= O( l), if one of lhe orbilals i.j. k.I E S

= 0(2). if lwo of lhe orbilals E S

= 0(3), if lhrce of lhe orbilals ES

=0(4). ifi.j,k,/ES

(lOe)

(20d)

It should be noled lhal for lhe specjal case whcnj = k is a "corc" orbilal whieh
is oecupied in all configuralions, lhen (at aj a"o{) = (at a{) and lhc ordcr as-
signmcnls of Eq. (20d) arc consistenl with lhose of Eq. (19c).

The ordcring of lhe diagonal and off-diagonallcrrns in lhe lhrec-body densily
malrix elcmenls can be assigncd in an analogous manner. Thus. lo delermine
lhc order of a lerm whieh consisls of lhe average value of a producl of an equal
number of ercalion and annihilalion operalors arrangcd so lhal all crealion
operators arc lo the lcfl of all of lhe annihilation opera tors. one simply counls
lhe number of spin-orbita I indiees lhal bclong lo S. ln lhe following. lhe word
"ordcr" rcfers lOlhc abovc-introduccd oecupalion number "sile'" Wc do not
use the RSPTeoncepl of order at all in the prcsent work because the cntirc RSPT
conecpl fails under lhe physical condilions (e.g.. dislorled geomelries) in which
wc are interesled.

3. Operational Considerations

A. ImplemeJltatiol/ oj the Order Col/cept

To utilizc this conccpl of ordering. one furlher partitions thc sets of spin or-
bitals lal.lml. defined wilh rcspeel to occupalion in <l'ojolo disjoinl subscts of
spin orbitals.lat.l.lasl. \mt.l.lmsl. wilh large and smali occupation numbers
dclincd wilII rcspccl to lhe diagonal clcmcnts of the one-particIe densily malrix,
whcre
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lad U lasl = lal, !mLlU /msl
= 1011, lad U !n}L!= L, lasl U !ms!= S

As mcntioned before, if (j'o is chosen as the dominant configuration at some
geometry then, without lossof gencrality. itean beassumedthat there.are no ,

spin orbitais wit h smali oecupation numbers which are oecupied in (1)1).Le" lal
= laLI. 1t is to be expected that in calculations involving small-to-medium-sized
molcculcs the set Imsl will contain Olany more spin orbitais than the set Imi.!.
The spin orbitais ean then be arranged within the sets lal and Im! so that blocks
of the A, B, and t\I matrices, partitioned by the operator indices. can be furthcr
partitioned by using the Im/.1and Imsl classification, Thesc observations allow
one to calculate different blocks of the matrices that contribute to the G-'U--')
matrix using different computational rormulas and thus, while maintaining order
consistency, to substantially redlIce the cornputational effort. This is achieved
simply by truncating the summation indices in such a way that tcrms contrib-
uting past a certain order (past second order in our case) are not included. For
examplc the B matrix can be blockcd into ten partitions of the typc

BJ,mal~:(i) j. fil, a, fJE L
(ii) f. a.fJ E L. fil E S

BJ,amn:(iii) f. a. ni, fi E L
(iv) f. a, fi E L. ni E S
(v) f. a E L, ni, fi E S

BJ,ma{J:(vi) ni. a. fJ E L, f E S
(vii) a, fi E L, f. ni E S

Bj.an",: (viii) a, ni. fi E L. f E S
(ix) a, fi E L, f. fil E S
(x) a E L, f. m. fi E S

where the blocks of iargest d'iTllensionusually are those !abcled (ix) and (x) since
the number of spin orbitais in S will be considcrably larger than the number of
spin orbitais in L for most calculations that cxceed minimal-basis quality. Be-
cause the A matrix has,at most. sccond-order terms [seeEqs. (ISb), (19a), and
(19c)], no truncation of the summation indices is used in the calculation of its
elements. As is shown below. the B matrixcontains terms which are zeroth. lirst.

and secondorder, and the t\I matrix has zeroth- and higher-order contributions. .
Thus, to obtain all second-order contributions to BM-I B+,one needs to campute
B and M-I both through second order. Because the 1\1matrix is to be further
approximated, its detailcd discussion is deferred unii! the next section,

As particular examplcs ol' the application of the above ordering process. an
element of block (x) of B can be calculated to second order as [see Eq,
(I Sd)]:

(21 )

+
)

,
{

+ '
BJ,anrn= (anam Aln - a"an )Alnr

+ 112 2: Vij,a/{aiata",all) + 2:Vjm.jf(aia~anaj)
(ij)o (ij) I

- + - +++ 2: Vlllnji{a"aj)- 2: Villjj{a"a, ali/aj)
(i) I (ijJ I

(22a)
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and a diagonal element of the M' matrix of the form M;Y"If"I'f'q,wilh m, 1/.p. q,
E s; a. J.I.E L may be calculated to setond order as

, + +
A1"nm,""'n = 2(a"an)B"""",n - 2 (a"a",)fJ"."",n

- (a~a,,)2A~If"- (a~{l",)2A,:n+2(a~{lIl)(a~al1/)A~",
~ (h""" + h",,)(a~a,,) + h""(a~{l~la,,,a,,)

+ h"",,(a~a~anan) + h'll/(a~la~a"a",) - 2h/ll1l(a~a~,a/lan)

+ L: hi(Yl(a~a;a"an) + (a;,a;a",an)!
(i)o

+ L: Ihin(atan) - hf/li(a;,a~aian) - hni(a~a~a,an)1
(ih

- + - ++ - ++
+ Vnm.mn(a"a,,) + L: 12Vi".,,",(aj a"aman) + 2Vi",,",n(aj a"a"an)1
. (i)I

+ L (Vim.mj+ Vj".l/j)(a~atajan)
(i,))z

1

- + + + - + + +
)+ L: Vjm,mj(anaj a"a"ajan) + Vin",j(amai a"a",ajan

(ij)o
- +++ - ++

- 2Vim.jn(a"aj a",anajan) + IhV",n,ij(alla",ajai)!

II ,
- + + - + +- 2 L: Vij.n"(aiaja,,an) + V,j.n",(aiajaf/lan)

(ij)!

+ 112 L: jiij.nkl(a~a;ajaka"a(J + (at,a;ajakaf/la,,) I
(ijk)o .

+ IhL: !Vi",.jk(a~atat,akaja(.> + Vi"..;k(a~ata~akaja)1
(ijk) I

+ Ih L: Vij.nk ')
.

- (ijkJ2 --/L, , ---
- (atatakan) (22b)

The summation indices (i)", (ij)t/O(ijk)" imply that of the group of indices in
parentheses, at most 11are allowed to be in S [e.g., (ij) I is eguivalent to ij E L;
i E L,) E S; i e S,) E L]. The tolal nurnber of terms to be compllted in evalu-
ating Bf,n",/lvia Eg. (l Sd) is -3N2, whercas the lotal number of terms in Ihe
cxample of Eg. (22a) is -( 41N - 12),where Nis the nllrnber of spin orbitais in
11>1 and 1is the nurnbcr of orbitais in L. Since the At terrns inclllded in [q. (22a)
contain some third-order factors, order consistency has been somewhat com-
promised for cornputational efficiency in Ihis expression. Direct calculation of
the particular M' diagonal e\crnent from E'l. (l ~nre'lllires -6N3 terms where
the second-order expressions in El!. (22b) reqllires -(JIN2 - 4/2N + 513)terms.
Further reduction of the nllmber of terms in the A, B, and M rnatrix e\crnents
can, of course, be cffected by considerations of syrnmetry and by considerations
of the types of configurations involved in the referencc stale.\
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In eonsidering lhe off-diagonallerms of lhe M matrix. whose elements are
nol analyzed in Eq. (22b), one notes [sao EliS. (18j)-( 18n)] thallhere aro zer-
olh-order terms whieh occur. On rirst sight. lhis severely limilS the kind of ap-
proximations whieh can bejuslilicd regarding such off-diagonallerms. However.
lhe same off-diagonallerms appear in lhe expressions ror lhe non-Hermilicily
faetors which arise in the matrix elemenls of ~I given in EliS. (17). For example
::;j hin (a;at apanr >bul' is induded in lhe term Ó""(Ii (aja; a,.a,;,)} of Eq. (17a).
Thus, with the usa of beller qualily rererence Slales, all zerolh-order lerms in
the off-diagonal componenls ol' 1\1willlend to zero. This fael may be used as
a basis formaking Hermilian approximations lo the 1\1matrix. In lhe following
subsection wc discuss some approximalions which aro consislent wit h lhe point
ofview in which thase artilicial non-Hermitian orf-diagonal elements or M aro
neglected.

Thus far in this seclion, we have demonslraled how the order idea introduced

carlicr can be exploited to evaluate the A, 8, and 1\1matrix elemenls through
second o~der. thereby rcducing the computalional errorl involved. However, we
have not yet fully juslilied our truncalion of the h operator manirold at h" h).
It is possible to show thal the extension of the operator manifold lo inelude h;
Icads to corrections lO the self-energy which aro higher than secondorder. This
is shown. *, in analogous fashion to lhe orda analysis for the elements or M. by
noting that (h5I1ilh,) = 0(2) in the limit in which (J/[ht!hd+> = O and 1\'1-1

is diagonal wilh respect lo zerolh-order terms. Hence, in lhe prosem developmenl
in which only hl and h) aro used. we have included all terms correct to second
order for G-I(E).

B.CompulatiOlla/ A.fpecls

Because of its hugo dimension and beeause it musi be inverted several limes
during a search for lhe zeros or del(G-1 (E», lhe i\ l malrix musI be draslically
approximated to make calculalions eomputationally feasible. The simplest way
of approximating the M matrix so that its inversernay be easily calculated is
to neglect the orf.diagonal elemenls. Other approximations may involve lhe
dcletion of sclecled oCr-diagonal blocks ol' the 1\1malrix. This latter procedure
would result in the ealculation ol'either lhe inverses of several smaller matrices
or an inverse or a nearly diagonal malrix. One syslemalie way of doing lhis is
to construet the di;lgonal blocksof M where in cach block the spin-orbital indices
of the matrix elements dirfer by fewer lhan somo smali inleger [37]. Because
the oCr-diagonalc\ements ol'1\1conlain lirst-order faetors and because B colltains

. zerolh-order terms, any scheme which neglcets any or all ol' the orf-diagonal
1\1matrix dcstroyslhe eompletenessol' our second-orderlreatment. However,
it is probable lhal sueh approximalions will have to be mado.

.Order analysis of Ihe m:ltrix clcments onh,lIi Ih,) revcals Ihal il lIas no real zerolh.orderterms.

althoug.h il docs have lerms, for exal11ple. ~~)~,\\i.1lr:(i':~;r,:l}I} as lhe c!cl1\enlS of lhe cxpansion
for hsllllh,>,q~.x.~ wilII i. k. q. , € I. whieh are of zerulh order. lIowever. Ihe same lerms aIso app.:ar
in Ih~ expressions for Ihe non-llerlllilieily faelors (Iilht .hl) +) whieh vanish in Ihe limit of an exacl

referenee slalC, and arc, Iherefore. neglcelcd herc.

-..-- ~d~~
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. Assuming that a diagonal approximation to 1\1is uscd, furthcr cfliciency may
be rcalized by observillg that the matrix multiplication (BI\I-IB+)f~ can be
written as ~kBj1iBgk/Mu where fi is assumed to be real. Then dcpending on Ihe
dimension of the B matri.x there are scvcral computational procedures which
may be cmployed. I f the dimension ol' fi is smali enough lo permit storage ol' thc
8 matrix and thc diagonal tcrms ofthe S and 1\1'matriccs in primary memory
(core), then the straightrorward calcu\ation of the G-I (E) matrix is possibleo
In cases wherc the dimension ol' the B malrix is such that anty a few rows can
be held in core at alime, then construction ol' blocks ol' the G-I (E) matrix can
be effected with one Iransferfrom a secondary storage device (I/O operation

erom tapet disk, etc.) per blocko When the dimension is so large lhat one or less
than one row of the B matrix can be hcld in corc at any lime, then same Ilexibilily
can be gaincd by performing intermediate calculalions to compute the results

;f of BJgok = BJ~@BgkJ ~ g and storing the lists ol' B.fgokoSu. and M~k in records
of an appropriate size to perform sil11ultaneoussecondary storage transfer and
intermediatc calculations ol' the terms. The relative efficicncy or theseand olher
possible tcchniquesdepends on the dimensions ol' the matriccs in thc particular
calculation and on Ihe particular I/O procedures availablc. Since the con-
struction of the G-I(I::) matrixoccurs many limes during a calculation or the
ionization energies, the efficiency ol' Ibis step becomescrucial to thc ovcrall cf-

ftciency of the5ntire calculation.
In carrying out a Green's function cafculation using the above rcsults, one

musI first compute the clcments of the G-I(E) matrix for a given value of Eo
The next step is to calculate dct(G-I(E», or some approximation to it, and to
perform the search for its zeros as functions ol' E. Since the calculation or a
determinant requires N3/3 operalions, it would be desirable to lind a rcliable
approximation to this step. Possibilities inc\ude monitoring thc eigenvalue ol'
smallest magnitudc ol' G-I (E) as a function ol' E, or observing thc convergence
or a sequence ol' determinants calculated erom successivcly larger submatrices
of the G-I(E)matrix. The former possibility is subject to error from the singular
nature of thc determinant whcn combined wilh iterative schemes for finding

the smallcst eigenvalue ol'a matrix. The latter possibility bas the advanlage Ihal
the constructionof the submatrices may paralleI the evaluation ol' the sequence
ol' determinants but may be subject to slow convergencc becallse ol' thc nature
ol' the MCSCFreference state as compared to other referencc slates wherc this

'method has been applied. One indication ol' Ibis is that the off-diagonal terms
of the A matrix will be largcr with a MCSCF reference stale than with a near-HF
rcference statc. This may resull [22) in the calculalion ol' many successivcde-
tcrmimlntsbeforean approximatc vallle for del(G-I(I:'» can be obtaincd. After
cvaluating det(G-I(E»), the search for its zcros can then bc accomplisheu by
standard techniques (23] such as biscction, acccleratcd fabe posilion. New-
ton-sccant, or any olher analytic fitting-interpolation procedure such as [31
intcrpolation ol' the function F(E) = a + h/(c - E) whose form is suggestcd by
the simpIc pole structure ol'G-I (E).

Purvis andÓhrn [1) h:lvemadc'l1sel)f"n altern;lti,'c I11l~thodf.,r rindil1l',lhc
,~~~



ONE.PARTICLE GREEN'S FUi\CTION 15

poles and residues of G(E). Their melhod employs lhe racl thal poks of G cor-
rcspond lO values of I:: for which cigenvalucs ol' 1.(1::)==El - G-I(E); 1.<1)"=
~V,,(E)<I',,(E) obcy I:: = W"CI::). The residues 1'" are given by {'fI = [I -
dWII/dl::]i:~E.' To implemcnl lhis technique.one musI find the eigenvalues

W,,(E) for various values?f I:: and then (graphically) locate that value of I:: for
which W,,(I::)= E: .

4. Discussion and Summary

In this paper wchaveobtained resultswhichpermitG-l(l:') to beexpressed
in terms of lhe A matrix. the B matrix correct to secondorder. and someap-
proximalionto the M7""lmatrix.The resullantexpressionwill becorrecl lOsecond
order providedthat 1\1-1iscorrecllO secondorder, as ean besceneromour ex-
pression for B1\1-1B+. In actual practice. the calculated polesof G-I (1:.')will
becorrecl to secondorderonly in thosecascswherethe numberol'spin-orbituj
indicesin the hoperalor manlroldissmalienoughlo perl11itthe enlire1\1malrix
to be invertedexactly (or at least to secondorder) at each step in the iteralive
search ror the 7.erosol'dcl( G-I (1::». This will happen only for very smali 0101-
eculcsor in situationswhereadditionalapproximationshavebeenmarle.These
additional approxil11ationsmight include the use ol'a pseudopotential for which
only the valence-orbital indices are included in the h operator manirold or lhc
introductionofa "frolen-core"approximalionror whichonlythe valenceorbilals
are variationally optimi7.ed in the \KSCF c~llculationand only certajn valence
orbituJ indicesare includedin the h operatorsrace. The useol' these typesol'
approximations may allow the calculalion ol'chemically signilicant results which
cannot be obtained rrom rormalismsreslricled to HF-typereferenceslates.

Anothcr important aspcct ol' the results prescnled herc is that the non-Her-
miticity ol' the M malrix can be lraced explicitly to certain terms. Because this
non-Hcrmiticity vanishes as the reference slale approachcs lhe true eigenstate
ol' the Hamiltonian. the magnitude of these terms allowsan eslimale lo be marle
of the quality of the rererence stale and lhusan eslimateor the accuracyof the
final resulls. Of coursc.only expcrience can establish lhe reliability and use-
fulness or thesc estimates.

In summary.theexpJicitexpressionforG-I(E) wasgivcnin Eqs.(18) interms
of A, B,and l\1matrices.To simpliry thc calcuJationorthcexprcssionsin Eqs.
(18). a concept of order or magnitudc was inlroduccd. This order concept was
combined wilh certain assumplions about the rclative sizcs of terl1ls in blo<.:ks
of the appropriale reduced malriccs. The cxpressions in Eqs. (18) werc then
spccialized lo retain up to second-order tcrms in Eqs. ( I~b). (22a). and (22b)
for representative blocks ol' the A, B. and i\ll1lalrices, respcclivcly. Yarious
procedureswhichsimplifythe compulalionol'lhesecxpressionsfor ionil.ation
cncrgies wcre given in Scc. 3.

= ~~~~


