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Abstract

The Green's function formalism in the superoperator notation is extended to admit a multicon-
figuration reference state. The advantages of this more general reference state over the Hartree- Fock
state are discussed. Hermiticity of the superoperators for the multiconfiguration reference state
is analyzed. Explicit formulas and calculation procedures for the implementation of this Green's
function theory are given and specialized Lo include terms consistent through second order.

1. Introduction

Since the carly works of Linderberg and Ohrn [1], and the ab initio devel-
opments of Doll and Reinhardt [2], Purvis and Ohrn [3], Simons and Smith [4],
Pickup and Goscinski [5], Cederbaum er al. [6], Schneider et al. |7], and others
[8, 9], Green's function calculations have become quite established methods
for calculating certain propertics of atomic and molecular systems. The tech-
nology for the calculation of ionization energies within the Green's function
formalism has become quite sophisticated duc to the use of correlated ground
~ states and extended operator manifolds to describe the corresponding ionic states
[4, 6-9]. In the approach employed here, one expresses the one-clectron Green's
function (G) in the superoperator form of Goscinski and Lukman [10]. This
technique allows the formulation of approximations in a coherent manner via
choices of the reference wave function and the operators which comprise the
inner projection [11] manifold. It has been shown by one of us [12] that, if one
cmploys a complete operator space within the inner projection, the use of an
approximate reference state affects only the residues of the Green's function
(the so-called Feynman-Dyson amplitudes (7] (W) '|a,| W),
(WN*aF| W) the exact nature of the pole structure is still preserved. The
poles of G are the ionization potentials and clectron affinities of the system. Of
course, truncation of the operator space, which is inevitable for most caleulations,
doces lead to a dependence of the poles of the Green's function on the choice of
the reference state. The choices of reference states have so far been restricted
to (i) the Hartree-Fock state [3] (1119), (i1) 11° plus doubly excited [4] config-
urations whose coclficients are determined by Rayleigh-Schrodinger pertur-
bation theory (RSPT), (iii) 11F plus doubly and singly excited configurations [,
9] with rsrr1 cocflicients. Though the second and third possibilities attempt 1o
introduce correlation, the ground-state description remains inadequate whenever
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the zeroth-order state of the perturbation exapnsion (HF) is a poor description
of the system. These conditions arise, for example, in circumstances where more
than one major configuration must be included to obtain a physically reasonable
description of the system. Such is the case in the description of F; (Ref. 13) and
for H, (Ref. 14) at large bond lengths. Another important example is provided
by the CO,, CO,~ system [ 15, 16] for which the equilibrium geometries of the
ncutral ground state (') and of the ion (24,) are significantly different (the
OCO angle is 180° for ' A, and 135° for 24,).

Of course, it is not only because of anion-ncutral gecometry differences that
one might wish to employ a multiconfiguration (MC) reference state. It is equally
important to have available a practical Green's function framework in terms
of which onc can compute molecular ionization energics given a MC function
which has been employed to accurately treat correlation effects in the reference
state.

In the present paper our aim is to extend the Green's function formalism to
include the use of multiconfiguration reference states. This development provides
a new tool which has the potential to adequately describe the propertics of
molecules which are represented by correlated reference states. Becausc of the
use of an extended operator space, this development includes sclf-energy cor-
rections to the ionization encrgies and has the advantage that the reference state
can be systematically improved in order to uniformly describe the system over
the enitre range of internuclear variables.

In Section 2 we introduce our notations and choice of operator manifold to
be used with the multiconfiguration reference state. We give explicit expression
for the Green's function and introduce the concept of order to rank the relative
importance of cach term. In Section 3 this ordering concept is used to simplify
the expressions for the Green’s function to yield results which are consistent
through second order. We then discuss potential further approximations as well
as computational procedures to be used in implementing our results.

2. Formal Development

A. Notation

The spectral representation of the one-particle Green’s function written in
the superoperator notation has the form [10]

G(E) = (a|(E] = [1)7'[a) (1
where a is a sct of electron annihilation operators a = {a;}, / and # are the su-
peroperator identity and Hamiltonian, defined as

AX;=[HX])-, IXi=X; i (2a)
where the electronic Hamiltonian is written in terms of the electron creation
and annihilation operators [17] as

H=3% hjata; + ) > Vijuala)aay (2b)
i 2 ikl
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where h;j and V4 arce the one- and two-clectron integrals in the spin orbital
basis {¢;] of the chosen MC reference state W:

hij= (¢i|h|o;): Viixr = ($i(1)¢;(2)

|
i e (De(2))  (20)

The above sct of creation and annihilation operators support the following binary
product, defined in terms of the expectation value of the anticommutator

(Xl X)) = (V| [XTX )4 | ) 3)

The superoperator resolvent (£7 — H)=' can be represented via the inner pro-
jection technique [11] which, for a complete set of operators h, allows G(£) to
be written as

G(E) = (alh)(h|(ET = £)|h)~'(h|a) (4)

This equation provides the basic starting point for the introduction of various
approximations which lcad to practical methods for computing G(E). The two
essential approximations consist of making a truncation of the operator space
h and of choosing a reference function .

B. Operator Space and Multiconfiguration Reference State

Qur choice of projection manifold h has been facilitated by a theorem recently
given by Manne [18]. This theorem essentially states that, given an N-electron
Slater determinant &g = [ .a}|vac), and a manifold of operators

0 ¢ i p

hy = lal, lan}
hy = layaq.asl lata,a,l, a<fB m<n
hs = layaraqaga,), lata}a,aaa,), a<p< -y; m<n<p
(5)

(a0, B, 7, ...label the set of spin orbitals |a} that arc occupied in &g, m1, m, p, . . .
label the set of spin orbitals {m] that are unoccupied in &g, and £, g, 1, J, &, [ label
a general spin orbital), the set h = {ly} is complete when operating on any ref-
erence state W provided that the overlap (| W) = 0. It is important to point
out that Manne’s proof does not place restrictions on the determinant < or the
orbitals ja} which arc occupied in by,

In this particular development we choose W to be a multiconfiguration V-
electron state

¥(C¢) = Eo Pk (¢)Ck . (6)

where the &4 (¢) are configurations constructed from the set of multiconfigu-
rational orbitals |¢;]). The configurations g, K = | are assumed to have been
obtained as excitations from ¢. The confliguration < is the determinant dis-
cussed above, which is chosen to define the operator manifold h. With this choice



4 : BANERJEE, SHEPARD, AND SIMONS

for &y the overlap criterion (bg| V) 5= 0 is automatically satisfied. Usually &
would be chosen to be the dominant configuration, or one of the dominant
configurations, for the given molecular geometry. As is seen later, this stipulation
simplifics accounting for the order of magnitudes of various terms appearing
in the calculation of the Green's function matrix elements. The specific MC wave
function used here is taken to be an expansion of the type shown in Eq. (6) lor
which the set of orbitals ¢} and mixing cocfTicients {Cy} are variationally op-
timized for minimum cnergy. The variational principle when applied to such
multiconfiguration self-consistent-ficld (MCSCF) wave functions leads to the
generalized Brillouin theorem [19] (GBT), which may be expressed as

(V|fi(ata)|¥) = (Alafa))) =0 (M
The expectation value is hereafter taken with respect to the MCSCF reference
state. It is this GBT which is actually employed to compute the MC wave function
[20, 21]. In what follows, we assume that the optimal orbitals and mixing
cocfficients have already been so obtained.

[t has been demonstrated that if a HF reference state is used with a truncated
projection manifold consisting of the hy and h, subspaces (defined with respect
to the HF determinant) then all “*second-order™ terms arc included [2, 3, 5]. The
term “‘second order” in the above context refers to the terms appearing in the
Green's function expressions containing products of two or fewer two-clectron
integrals in their numerators and are hence of second or lower order in RSPT.
Because of the fact that a MCSCF wave [unction is more general, and thus closer
to the true cigenstate of the Hamiltonian than the 1F wave function, we expect
that the usc of this same truncated manifold (consisting of hy, hj defined with
respect to d) includes at least the equivalent of the “second-order RSPT™ terms.
In what follows, we develop a different concept of order that arises naturally
for the MCSCF reference wave function and we provide further justification for
our use of the hy, hy subspace. To facilitate further progress we orthogonalize
the hy and h; subspaces. [t becomes obvious shortly that this is sufficient for our
case; it 1s not necessary to orthogonalize the hy operators to onc another. The
Schmidt procedure then gives
h; ={ana.a5 + (anag)a, — (ana.)agh

za;aman * (a:an)am S (R:ﬂm }aﬂl (8)
Thus we have
(hy|hy) =1, (h|hy) =0, and (h3|hy) =S %)
Using Eqgs. (9), Eq. (4) can be partitioned to express G~'(E) as follows*:
G~Y(E) = (W |ET = A|hy) = (h | 71| hy)(hy] ET
— H|hy)='(h3| /1| h)) = A(E) = BM(E)™'C, (10)
where the matrices A, B, C, and M are defined as

* It is possible to show that for Eq. (10) to htzld it is sulficient to have (hy]h)=0,i=13.5...

With the resolution of the ideatity expressed as 1 = [h)(h|h)='(h] the representation of the inverse

of a superoperator A becomes (h[A='|h) = (h|h)(h|A{h)=" (h|h). From this and (hi|h,) = 0,
one immediately has Eq. (10).
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A(E) = (h|ET = f1|h))

B = (h|F1|h;)
C = (hy| 1| h))
and
M(E) = (h3| ET = 1| h,) (11)

C. Hermiticity of H

The superoperator Hamiltonian #7 is Hermitian if and only if the following
relation is true for its matrix ¢lements:
(Xi|FLX) = (X AX)*=0 - (12)
If the reference state W is an exact cigenstate of H, Eq. (12) is satisfied identically
so that /1 is Hermitian. However, in calculations involving approximate reference
states, the matrix elements of /7 do not in gencral satisfy Eq. (12). This leads
to artificial complications such as having to work with non-Hermitian matrices
and having to stipulate the order of operations in the scalar product. This Her-
miticity problem must be addressed for our chosen MCSCF reference state be-
cause it can potentially Iead to extrancous non-Hermitian contributions to G(£).
[t is relatively straightforward to show that Eq. (12) can, in general, be rewritten
as (H[X},X;]+) = 0. This fact can now be exploited in our analysis of the ma-
trices which occur in Eq. (10). First we consider the A matrix for which X, X
€ hy. Then it immediately follows that

(Hlat.a;)+) =0 (13)

since [a].a;]+ = &;; which obviously commutes with 4. Hence A is Hermitian
for any choice of reference state. In considering the elements of B for which .X;
€ h;; X, € h, wefind

’ (H{a?'a;auaﬂ + (a:laﬂ)aﬂ s (a::au)ad}*‘) #
= = d,(H(atap)) + 84 (H(ata,)) =0 (l4a)

and

<H[a?-a:aman + {a:a,,)a,,, % (a:anl)an]'i-)
= —bim(H(aka,)) + 8in(H(a}a,)) =0 (14b)

The final equalitics of Egs. (14) are a result of the GBT given in Eq. (7).
Thus

(| A|h3) = (hy| | hy)* (15)
and hence g
Bt=C (16)

if one uses a MCSCF reference state obeying Eq. (7). A similar analysis of the
terms of M for which X}, X; € h; gives, using the GBT of Eq. (7):
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(Ff [{h;)mnd-{hB)rmu] + ) = amn {!} (G:G:GHG,))
+ 84, (H(afata,ay)) = 6..(f1(a}a}a,a,))
= gl flata,alan)) + by,(H(afa,atan))  (17a)
(ALY mag(h3)upg]+) =0 (17b)
and
(F{(hT)amns(N3)upg ] +)
= b (H(atataya,)) + 8,,(f(ata}a,a,))
= bpg(fl(atatapa,)) = b,p(H(ata,aha,))
+ bn(H(atapata,)) (17¢)
It is quite cvident that the terms in Egs. (17a) and (17c¢) do not in general vanish,
except for the trivial case of the diagonal elements. A diagonal approximation
to M is an especially relevant case because of the large dimension of the M.matrix
which nceds to be inverted many times during the scarch for the zeros of G=1/(E).
Thus it becomes computationally rather attractive to approximate M in diagonal
or near-diagonal form. Furthermore, since the non-Hermiticity is an artifact
of the choice of reference state, remedics such as averaging the off-diagonal terms
or defining a symmetric commutator should be viable alternatives. We return
to this aspect in a later discussion.

D. Explicit Expressions

To facilitate our discussion, the following more explicit representation of the
terms of the G™'(£) matrix arc reproduced:

(GY(E))je = (A — BM~'B*),
= Ajg = 2 BuMi By (18a)

The indices a, b are restricted by the hy manifold to be of the types (i) a = map,
b=nuv, (it)a=map, b= upgq, (iit) a = apq, b = nuv, and (iv) a = amn, b =
upq. With these restrictions we are able to obtain the following set of expressions
for the terms in the above Eq. (18a):

A= Edg+ hy+ 3 Vigrlata;)
ij
= Edpp + her+ A, (18b)
= Eﬁfg + A}g
Bﬂnmﬂ = (a:ﬂn)A}]} e’ (ﬂ:ﬂﬂ)A:ﬁ.

+ Z !T"m.;f(a?a:.anﬂﬂ F T/m.ﬁ(ﬂ:.auaraj) + l/l-l;lj,mf(a?'a:auad” (180)
ij

Bf,nmn = (a:am)A}’n = (G:GH)A},,, + Z: W;‘m.;f(afﬂzﬂnﬂﬁ
Uj
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* _Vr'n,ﬂ(a:ama?aj> + llzvfj...f(ﬂfafﬂmﬂn)i (18d)
Map = E(hy|hy)ap = (hy| f1]h3)ap = ESup = My (18c)

= {ntat +
Snmd.nyv k- <aﬁauauav) énm o (ﬂ:ﬂﬂ a,.a,, > 6«;4

- (ajaya,ay )b, — (ata,ata,)é,s+ (aya,ata,,)d,s
— (ajay)(aya;)é,.+ (ata,)(ayay)d,s — (ata,)(ata,)é,.s
+ {ara,){afan)é, (18f)
Sma.d,upq =0 (18g)
R B (18h)
Somnape T A0 038,0,)8,, + {a7a)8,6,) bup :
- (ataiapa,)omg — (a}a,a3a,)0,, + (alapara,) b,
+ (anaq)(a3a,) 8, — (ayay)(aya,) épom
—(aya,)agta,)é,, + (aya,)(ata,)d,, (18i)
M osmen = (aragag|Hlaja,a,) :
+ (aza, B mes — anag) Ag, + (ara ) Ayl
+ (ara )B) s — (anag) AL, + (ahas) A
F @ Y B i = (800 ¥ By - (18])
where
(ahaqag|fl\ata,a,) = h,,{atata,a,) — h,lakata,a,)
+ hyslara,ata,) + h,oajaya,a,) — hglaya,aza,)

* Z ihl’.ﬂ { (ajufa,a,,, ) 5“;1 o (a:a?apam ) 51‘!3
i

i <a?‘ava:am>‘5dg + (a?a“a:a,,,)é,;,) + hui((a;a:avar')énm
+ (a;a:al'anf)anv o (a:ata:aﬂl)éﬁv) G o hvi("(a;a:auai}amﬂ

— (a§a}aiam)ba, + (araiatan) s + 'h T (2Vin jalajalat a,a,a;)
ij

7% + o4+ 7 +,+ +
+ Vaj,an(adai a} a_uayam) F ij.ﬂj‘i{ai a;‘ a;(al'aﬂaﬂ!>
57 44 % + 4+
o Vm“.;j(ﬂﬁﬂ“ﬂ,ﬂ,ﬂj} 5 5 2]/1'3.1,0;'{“.';01 G,,H',.ﬂjﬂ,,,)
7 + +. o+ 7 + 4+
+ 2Vl'g.jﬁ(anac-ai ajanraﬂl> + VJ;;my(a;jauanauajai)
7 o 7 + .+ +
aE 2Vi’v.ja (aﬂauauai ajam) + 2Viv.ﬂj<a.i anauajaaam)
T § A o+
& i/Z Z Kj.ﬂk[(a,fai a; afsauam)aug A {aﬂar a, ayakan1>5¢uw
ijk
+ + + + o+ +
+ (ai a;’ arnf\auam)ﬁﬁy + (ai aj akapa:.am)adri
v .+ +od ot
T V-"y.}kt(a,iauar av”i“'j)‘sum * (a,,a,- an‘“\“';anr)écw
¥ _+ + e ¥y 0
25 (ﬂ',,ﬂ,' alajauam>6;i:ri + Vf:-.jk!(aﬁauapaa aAaj>6nm
+ 4 _+ +_+ -
o (aﬂanai akﬂ,-am)én.u * (ar a, aka;auam)‘s;j'ui “8]()
; = + ey
M unupe = (@raya,|Hlajapa,)
. g . - .
+ (aya ) |B,amn — (aja,) A, + (aja,) A,
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i <a:ap)|3:e.umm e <a:an}f!;lq+ (a,‘:a,,,)/l,.,,]

* (a:an)B»:_w)q e (a:am>8n.,upq (ISI)
where

+ 7] 4+ s + .+ E A,
(alana,|H|ajapay) = ho(aratama,) = hpmlayasa,a,
. ot 4+ +
+ hpnlagasanas) + hynlayatasa,) — hylataata,)

* ot +
+ Z “‘r'p“an a; aqau)amp o (anara.ﬂaﬂ)anu“
i
+ +
e (0'; aqa::au) 6::;1 + (“;’ ap“::“;:) 6ﬂql]

+ o+ + +

+ hpr'[<anamaqar)6up + (ﬂnﬂ:ﬂ,‘ﬂ“)a,,w e (”:aiamau-\aﬂq]
+ .+ +

=+ hq,-[-(a,, amapﬂi)arm =y a:aia.r)‘snm * (a:a,aj,a,.)é,,p]}

7 P P §72 + .+, 4+
+ 1/2 z !2 Vl'ﬂ,jlu (an a,a; ﬂpﬂqﬂj} + VJ'jJ}:y (auai‘ a_,- apaqau)
i
17 +a+ + T + .+ 4+
+ V:'j,pn (a; a; apaqraman) + V-\p‘l'j (ayaya, aqaaﬂj)
7 + o+, + 17 + + +
+ ZV.I'{!JH," (anaf auaqajau) +2 V.-'p.jn ({Ipaqai a}'amau)
i v ' oLt
+ Vijaglasanasiayaia;) + 2V, m{azasapalaa,
7, + .+ + v +.+ .+
+ 2Vi’q,nj(af apapajamau” -+ VZ Zﬁ Vij.uk{(anai aj a;‘-aqa“)ﬁ,,,p
ijk

+ (a:ara;apakau)émq + (a,-*a}aqa;,aﬁ,a“)é,.,, + (ﬂfﬂfﬂkﬂpﬂzﬂu)ﬁuqz
+ Vipjx[{ananata,aa;)d,, + (ayatalaiaa,)i,,
-+ (ajataiaiana,) 6uy] + Vigjal(atatapataca;) o,
+ <a:a:a:akajaa) 6mp + {arﬂ:ﬂkﬂ;ﬂ:ﬂu ) anp] (18m)
and
. S 7P
M napupq = (anagag|Hlalapa,)
+ (a:aq)iﬁpmuﬂ = <a.::a;'$)’tup s (ﬂ:,a“)/!m,}

= (ajaBymap >
C = (ahag) ALy + (ahaa) Al

+
+ (amaﬁ) B(t.HP‘J‘ s (a:Ial‘.l’) Bﬁ‘y.ﬂq
where
147 o + + 4
{a::aaaﬂ“”a:apaq) = }fmu {a;aaapaq) S hﬂ{l(“ifapaqam>
+ hpﬁ(a:aqa:am) + hqu (a;a:apam) = hqii(a:apa:am) _

+ 1/2 Z !2Viﬂl‘ju{a;a:a?apaqaj) ¥ Va‘j.uﬁﬂ;ﬂrﬂfﬂpﬂqﬂnﬁ
if :

i ‘F’fj.nﬁ(af—a;apaqa:arrf) 1 P};lp.ij<a;a:a:aqafaj)
+ Zl_f,:p_aj(a;afa:aqa,am) + 2V, jslata,ataata,,)
+ Viymglajatatapaa;) + 2V (ajataatlaa,,)
+ 2V p{ala,apaiata, )] (18n)
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In the above expressions, ¥k = Vijx = Vijx and Eq. (18b) defines the matrix
clements Ay, and A7, We note that the calculation of the matrix clements of
the A, B, and M matrices require the one- and two-clectron integrals (A;; and
Vijxt) in terms of the MCSCF orbital basis, as well as the clements of the one-,
two-, and three-particle density matrix clements ({afa;). (a/aaza;).
(alafaiajapa,)) calculated with respect to the MCSCF reference state.

E. Order Analysis

Qur next job is to assign orders of magnitude to the various terms appearing
in Eqgs. (18) with the intention of locating and deleting small (third-order and
higher) terms. We note, for example, that the clements of the A, B, and M ma-
trices contain terms of the type, ¥ (a*--a), where {(a*--a) contains a small
number of creation and annihilation operator pairs. The terms (a]a;).
(alataay), and (a}afafaamg) arc the clements of one- and two- and
three-particle reduced density matrices corresponding to our MCSCF reference
state. We assume that these elements are already available. We also assume that
for the systems of interest a distinct boundary exists between the set of spin or-
bitals with large (near-unit) occupation numbers {a;a;) and the sct of orbitals
with small (near-zcro) occupation numbers* (denoted L and §, respectively).
We note that since these diagonal terms (a;fa, ) are sums of squares of the mixing
cocfficients of the MCSCF wave function, this assumption is equivalent to a
similar partition among these cocfficients. With this assumption, we assign
zeroth order to the large occupation numbers and second order to the small oc-
cupation numbers:

(a}a;) = 0(0), ifiel

=0(2), ifies

where O(n) means a term of nth order. Furthermore, it is possiblc to assign an

upper bound to the magnitude of the off-diagonal density matrix elements ap-
pearing in Egs. (18) by using the Schwarz incquality

|(ata;)|? < (afa;)(afa;) (19b)

which, in a straightforward manner, results in the following order state-

ments:

(19a)

(afaj) =0(1), ifieS. je Lorie LjeS

yo = oo 4 19e)
(afa;j) =0(2), ifi,je S

* This assumption [or an MCSCE wave function of the type given in Eq. (6) implies that the set
of mixing coefficients can be separated as }Cp. L = Lmjand |Cs.S = m, | such that C7 5> (3 for
all L and 8. This is generally true for nonextended systems; an example can be seen in Ref. 20 (p.
1059) where for NH(b 'X*) at R, (= 1.95 bohr) the ¢ set has configurations 3e21 w2 and Jode | x?
with coefficients 0.91 and —=0.37, respectively, and the coclficient of largest magnitude from the
Cy setis 0.08. Another example can be seen in Ref. 24 where orbital occupation numbers for Purine
are calculated as 1.997, 1.990, 1.984, 1.966, 1.953,0.079,0.056, 0.55, 0.030. The assumption may
not strictly hold for delocalized systems such as metals.
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The analysis for the case of the two- and three-particle reduced density matrices,
which also occur in Eqgs. (18), can be carried through in analogous fashion. For
example,

|(ata}ara;)|? < (a}a}a;a;) (afataza)) (20a)
+ _ +
|(atajafaapm,)|? < (ala}afasa;a;) (a}afataam,) (20b)

the right-hand sides of these equations being products of diagonal terms of the
appropriate reduced density matrices. For these diagonal terms, the following
order assignments can be made:

(afafaja;) = 0(0), ifi,jelL
=0(2), ifieljeS orieS jel (20c)
=0(4), ifijesS :
from which follows the orders of the off-diagonal terms
(afafara;) = 0(0), ifi,j kle L
= 0(1), ifoncofthcorbitalsi,j, k, /e S
= 0(2), iftwooftheorbitals €S
= (0(3), ifthreeof theorbitals €S
=0(4), ifi.jkleS (20d)

It should be noted that for the special case when j = k is a ““core” orbital which
is occupied in all configurations, then (@ afaza;) = (a}a;) and the order as-
signments of Eq. (20d) are consistent with those of Eq. (19c¢).

The ordering of the diagonal and off-diagonal terms in the three-body density
matrix elements can be assigned in an analogous manner. Thus, to determine
the order of a term which consists of the average value of a product of an equal
number of creation and annihilation operators arranged so that all creation
operators arc to the left of all of the annihilation operators, one simply counts
the number of spin-orbital indices that belong to S. In the following, the word
“order” refers to the above-introduced occupation number “size.” We do not
usc the RSPT concept of order at all in the present work because the entire RSPT
concept fails under the physical conditions (e.g., distorted geometries) in which
we are interested.

3. Operational Considerations
A. Implementation of the Order Concept

To utilize this concept of ordering, one further partitions the scts of spin or-
bitals |a}, {m}, defined with respect to occupation in &by into disjoint subsets of
spin orbitals, {a; |, lag), Img}, jmgl, with large and small occupation numbers
defined with respect to the diagonal elements of the one-particle density matrix,
where
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ter) U lag) = {al,  Img} U jmg)

' =iml, o JUim =L, lagjUimg}=5§
As mentioned before, if ¢ is chosen as the dominant configuration at some
geometry then, without loss of generality, it-can be assumed that there are no
spin orbitals with small occupation numbers which are occupied in @y, i.c., lal
= {a}. Itis to be expected that in calculations involving small-to-medium-sized
molecules the set fmg| will contain many more spin orbitals than the set jmy |.
The spin orbitals can then be arranged within the sets {ad and {m} so that blocks
of the A, B, and M matrices, partitioned by the operator indices, can be further
partitioned by using the {my | and {mg/} classification. These observations allow
onc to calculate different blocks of the matrices that contribute to the G='(£)
matrix using different computational formulas and thus, while maintaining order
consistency, to substantially reduce the computational effort. This is achicved
simply by truncating the summation indices in such a way that terms contrib-
uting past a certain order (past second order in our case) are not included. For
example the B matrix can be blocked into ten partitions of the type

Brmap: (1) fim a BeL
(i) fa.Bel meS

Bfomn: (iil) fla,mne L
(v) ffanel, meS
(v) ffa€el, mneS
Brmag: (Vi) ma,Be L, feS

(vii) a,nel, ffmeS (21)

Branm: (Vi) a,mne L, fe S
(ix) aynel, fmeS
(x) e L, fmneS

where the blocks of largest dimension usually aré those labeled (ix) and (x) since
the number of spin orbitals in S will be considerably larger than the number of
spin orbitals in L for most calculations that exceed minimal-basis quality. Be-
cause the A matrix has, at most, sccond-order terms [sce Eqgs. (18b), (19a), and
(19¢)], no truncation of the summation indices is used in the calculation of its
elements. As is shown below, the B matrix contains terms which are zeroth, first,
and second order, and the M matrix has zeroth- and higher-order contributions. :
Thus, to obtain all second-order contributions to BM~'B*, onc needs to compute
B and M~! both through sccond order. Because the M matrix is to be further
approximated, its detailed discussion is deferred until the next section.

As particular examples of the application of the above ordering process, an
element of block (x) of B can be calculated to second order as [see Eq.
(18d)]:

Bf.anm = (a:f_"m >A;“n s (a:an )A;’m
+ l/2 Z Vi ',(J(a?a;aman) * 5 F&'m,.ff(a?a:anaj>
(o L]}

o X '_/mn‘}i(a:ar') e Z i;in‘fj(a:aramaj) (22‘1)
(O] (ih
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and a diagonal clement of the M’ matrix of the form :14:,,,,,,_,,,‘,, withm, n, p, q,
€ 5, «, p € L may be calculated to second order as
‘M‘;mm,unm =2 (G:Gn Yo onn = 2 (a:am 13 O
— (a3aa) 24,0 — ata, YA, % 2ata,) tata YA
= (B + hon){ata,) + hootatata,a,)
+ hymlarataa,) + hy{atatana,,) — 2h,,{atata,a,)

+ 2 hi{(azalaa,) + (ayata,a.))
(ilo

* Z {hf{t<a;’+au) = hml’(‘]:;a:aiaa) Exg hni(a:a:afann
th

+ Vﬂﬁi.fﬂﬂ(a:a(l) + z {‘?‘Vi‘ﬂ,!l’ﬂ!{a?a(‘:aﬂfaﬂ) + 2Vfﬂ!,mﬂ<a?a:aﬂa(l‘)!
. n

50 (Vim.m;"l' Vm,n;)(ﬂ:ﬂfﬂ;ﬂu
(igh2

i + 4+ 7 + o+ + ;
g 3 {yr'm,mj(anai au“ﬂ“j“n) + Vl’n,nj(amai aaama;aa)
(ij)o
i + +, + k7,
5 zVim._,r'n(auar' amanajaa) 3 l/anm_,'j(a:G:ﬂij)}

st '/z (2} II_/:'j,an(afﬂfﬂnﬂa) + -J?J‘j‘(tm(a?a;ama«)
yh

5 VZ (_%} V:j.ur.-{(a:a?ﬂfﬂkﬂnﬂ«) + (a:ﬂ?a;akamau”
yklo ;

+ 1/2 E “'/;'m.jk (a:ﬂ?‘?:ﬂkajﬂa) - Vf'n.jk {ﬂrar‘fjﬂkﬂjﬂ)!

(ijkn
+]/2 Z ?J'j.{!;\' ~>
C/r"”“_—_*_“—__*“____“"‘**-—*————————~—-___*ﬁhigigﬂpf,fJ
(alafara,) (22b)

The summation indices ({),, ({7),. (ijk), imply that of the group of indices in
parentheses, at most n arc allowed to be in § [e.g., (i), is cquivalent toij € L;
ie L je S;ie S, je L]. Thetotal number of terms to be computed in evalu-
ating By, via Eq. (18d) is ~3V2, whereas the total number of terms in the
example of Eq. (22a) is ~(4/N = [*?), where N is the number of spin orbitals in
{¢) and I is the number of orbitals in L. Since the A’ terms included in Eq. (22a)
contain some third-order lactors, order consistency has been somewhat com-
promiscd for computational efficiency in this expression. Direct calculation of
the particular A diagonal clement from Eq. (18) requires ~6V3 terms where
the second-order expressions in Eq. (22b) requires ~(3/N2 — 412N + 5/3) terms.
Further reduction of the number of terms in the A, B, and M matrix clements
can, of course, be cffected by considerations of symmetry and by considerations
of the types of configurations involved in the reference state.
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In considering the off-diagonal terms of the M matrix, whose clements are
not analyzed in Eq. (22b), one notes [see Egs. (18))-(18n)] that there are zer-
oth-order terms which occur. On [irst sight, this severely limits the kind of ap-
proximations which can be justified regarding such off-diagonal terms. However,
the same off-diagonal terms appear in the expressions for the non-Hermiticity
factors which arisc in the matrix elements of M given in Egs. (17). For example
S hinabata,ay )b, is included in the term 6, (H(afa}a,a,,)) of Eq. (17a).
Thus, with the use of better quality reference states, all zeroth-order terms in
the off-diagonal components of M will tend to zero. This fact may be used as
a basis for making Hermitian approximations to the M matrix. In the following
subscction we discuss some approximations which are consistent with the point
of view in which thesc artificial non-Hermitian off- dlagon.ll clements of M are
neglected.

Thus far in this section, we have demonstrated how the order idea introduced
earlier can be exploited to evaluate the A, B, and M matrix elements through
sccond order, thereby reducing the computational effort involved. However, we
have not yet lully justified our truncation of the h operator manifold at hy, h;.
It is possible to show that the extension of the operator manifold to include hs
leads to corrections to the sclf-cnergy which are higher than second order, This
is shown,* in analogous fashion to the order analysis for the elements of M. by
noting that (hs| /7|h;) = O(2) in the limit in which (7/[h¥th;]4) =0and M~!
is diagonal with respect to zeroth-order terms. Hence, in the present development
in which only h; and hjy are used, we have included all terms correct to second
order for G™Y(E).

B. Computational Aspects

Because of its huge dimension and because it must be inverted several times
during a search for the zeros of det(G='(£)), the M matrix must be drastically
approximated to make calculations computationally feasible. The simplest way
of approximating the M matrix so that its inverse may be casily calculated is
to neglect the off-diagonal clements. Other approximations may involve the
deletion of sclected off-diagonal blocks of the M matrix. This latter procedure
would result in the calculation of either the inverses of several smaller matrices
or an inverse of a nearly diagonal matrix. One systematic way of doing this is
to construct the diagonal blocks of M where in each block the spin-orbital indices
of the matrix elements differ by fewer than some small integer [37]. Because
the off-diagonal clements of M contain first-order factors and because B contains

“zeroth-order terms, any scheme which neglects any or all of the off-diagonal
M matrix destroys the completeness of our second-order treatment. However,
it is probable that such approximations will have to be made.

* Order analysis of the matrix clements of (he| #7[hy) reveals that it has no real zeroth-order terms,
although it does have terms, for example, _(;,\5. PINA{IM1 @ (i) as the clements of the expansion
for b F1|0y)gpnr.y With i, k, g, t € L which are of zeroth order, However, the same terms also appear
in the expressions for the non-Hermiticity factors (#1[h$ hy]+) which vanish in the limit of an exact
reference state, and are, therefore, neglected here.




b 4

14 B:\NERJEE.‘ SHEPARD, AND SIMONS

Assuming that a diagonal approximation to M is used, further cfficiency may
be realized by observing that the matrix multiplication (BM~!'B*) ., can be
written as Zy By By /My where B is assumed o be real. Then depending on the
dimension of the B matrix there are several computational procedures which
may be employed. If the dimension of B is small enough to permit storage of the
B matrix and the diagonal terms of the S and M’ matrices in primary memory
(core), then the straightforward calculation of the G='(£) matrix is possible.
In cases where the dimension of the B matrix is such that only a few rows can
be held in core at a time, then construction of blocks of the G™'(£) matrix can
be effected with one transfer from a secondary storage device (1/0 operation
from tape, disk, etc.) per block. When the dimension is so large that one or less
than one row of the B matrix can be held in core at any time, then some flexibility
can be gained by performing intermediate calculations to compute the results
of By = B;;@Bxk.fs g and storing the lists of By 1, Sk, and M in records
of an appropriate size to perform simultancous secondary storage transfer and
intermediate calculations of the terms. The relative efficiency of these and other
possible techniques depends on the dimensions of the matrices in the particular
calculation and on the particular 1/0 procedures available. Since the con-
struction of the G~!(£) matrix occurs many times during a calculation of the
ionization encrgies, the efficiency of this step becomes crucial to the overall ef-
ficiency of the entire calculation.

In carrying out a Green's function calculation using the above results, one
must first compute the elements of the G™'(£) matrix for a given value of £.
The next step is to calculate det(G~'(£)), or some approximation to it, and to
perform the search for its zeros as functions of £. Since the calculation of a
determinant requires ~V3/3 operations, it would be desirable to find a reliuble
approximation to this step. Possibilitics include monitoring the eigenvalue of
smallest magnitude of G='(£) as a function of £, or obscrving the convergence
of a sequence of determinants calculated from successively larger submatrices
of the G=1(£) matrix. The former possibility is subject to error [rom the singular
nature of the determinant when combined with iterative schemes for finding
the smallest cigenvalue of a matrix. The latter possibility has the advantage that
the construction of the submatrices may parallel the evaluation of the sequence
of determinants but may be subject to slow convergence becausc of the nature
of the MCSCF reference state as compared to other reference states where this

-mcthod has been applied. One indication of this is that the off-diagonal terms

of the A matrix will be larger with a MCSCF reference state than with a near-HF
reference state. This may result [22] in the calculation of many successive de-
terminants before an approximate value for det(G='(£)) can be obtained. After
cvaluating det(G~1(£)), the scarch for its zeros can then be accomplished by
standard techniques [23] such as bisection, aceelerated false position, New-
ton-secant, or any other analytic fitting-interpolation procedure such as [3]
interpolation of the function F(E) = a + b/(c — E) whose form is suggested by
the simple pole structure of G=I(£).

Purvis and Ohra 13] have made use of an alternative method for finding the
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poles and residues of G(£). Their method employs the fact that poles of G cor-
respond to values of £ for which cigenvalues of L(E) = E1 — G-(E); L&, =
W, (E)DP,(E) obey £ = W, (E). The residues I, are given by I', = [I —
dW,/dE);L .. To implement this technique, one must find the cigenvalues
W, (E) for various values of £ and then (graphically) locate that value of £ for
which W,(E) = E. ;

4. Discussion and Summary

In this paper we have obtained results which permit G='(E) to be expressed
in terms of the A matrix, the B matrix correct to second order, and some ap-
proximation to the M~! matrix. The resultant expression will be correct to second
order provided that M~!is correct to sccond order, as can be seen [rom our ex-
pression for BM~'B*. In actual practice, the calculated poles of G='(£) will
be correct to second order only in those cases where the number of spin-orbital
indices in the h operator manifold is small enough to permit the entire M matrix
to be inverted exactly (or at least to second order) at cach step in the iterative
search for the zeros of det(G='(£)). This will happen only for very small mol-
ecules or in situations where additional approximations have been made. These
additional approximations might include the usec of a pscudopotential for which
only the valence-orbital indices are included in the h operator manifold or the
introduction of a “frozen-core™ approximation for which only the valence orbitals
are variationally optimized in the MCSCF calculation and only certain valence
orbital indices arc included in the h operator space. The use of these types of
approximations may allow the calculation of chemically significant results which
cannot be obtained from formalisms restricted to HF-type reference states.

Another important aspect of the results presented here is that the non-Her-
miticity of the M matrix can be traced explicitly to certain terms. Because this
non-Hermiticity vanishes as the reference state approaches the true eigenstate
of the Hamiltonian, the magnitude of thesc terms allows an estimate to be made
of the quality of the reference state and thus an estimate of the accuracy of the
final results. Of course, only experience can establish the reliability and use-
fulness of these estimates.

In summary, the explicit expression for G™'(£) was given in Egs. (18) in terms
of A, B, and M matrices. To simplify the calculation of the expressions in Egs.
(18), a concept of order of magnitude was introduced. This order concept was
combined with certain assumptions about the relative sizes of terms in blocks
of the appropriate reduced matrices. The expressions in Egs. (18) were then
specialized to retain up to second-order terms in Egs. (18b), (22a), and (22b)
for representative blocks of the A, B, and M matrices, respectively. Yarious
procedures which simplify the computation of these expressions for ionization
cnergics were given in Sec. 3.




