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We present a procedure for approximately determining the first- and second-order density matrices
of pure-state N-fermion systems. A higher random-phase approximation is used to derive a method in
which the resulting density matrices are approximated self-consistently in an iterative scheme. As test
calculations, the method is applied to the ground states of the helium, lithium, and beryllium
atoms. The possibility and importance of obtaining error bounds involving the density matrices are

discussed.

I. INTRODUCTION

It is well known that the second-order reduced
density matrix of the ground state is sufficient to de-
termine all ground-state expectation values of one- and
two-particle operators for systems composed of identical
pairwise-interacting particles. In addition, the second-
order density matrix is a function of only 12 continuous
variables, whereas the system wavefunction depends
on 3N continuous variables. These observations, to-
gether with the knowledge that accurate wavefunctions
become much more difficult to obtain as the number of
particles increases, lead us to investigate possible
methods for directly determining reduced density
matrices.

One cannot merely use trial second-order density
matrices in a variational calculation of the energy;
there is no variational principle for arbitrary density
matrices. One must restrict the class of trial density
matrices to those which can be expressed as

ra,2; 1, 2')=( )f¢(1 2 eee) V)

XYL, 2, - e, N)drge - (1.1)

where the normalized N-particle wavefunction (1,
2, -+, N) is antisymmetric in all of the space spin
variables represented by the integers 1, 2, ---, N,
Such density matrices are said to be NV representable.!
The problem of determining necessary and sufficient
conditions to guarantee that a proposed second-order
density matrix I' can be obtained from an antisym-
metric wavefunction as in Eq. (1.1) is known as the
pure state N-representability problem. The exact solu-
tion of this problem has not been found, but some
progress has been made®* toward obtaining nearly
N-representable density matrices which can be used
in variational calculations. Very few numerical appli-
cations® of these methods have been carried out.
Another more promising method which has been
successfully applied to atomic®® and molecular’ prob-
lems is the Green’s function technique. This is a
potentially exact scheme in which the first-order
(second-order) density matrix is obtained as a contour
integral involving the Fourier transform of the one-

~dry,

particle (two-particle) Green’s function. The evalua-
tion of the contour integral is done numerically on an
automatic computer, which is a distinct disadvantage
of the method.

In this paper we present a new method for ap-
proximating, in a self-consistent fashion, the first- and
second-order reduced density matrices for systems of
N pairwise-interacting fermions. Unlike the Green’s
function technique, this method requires no time-
consuming numerical integration.

Within this scheme, one can bound the errors in
expectation values obtained by using the resultant
density matrices which might not be N representable.
This test involves formally generating a special wave-
function whose reduced density matrices are then com-
pared to the density matrices obtained using the pro-
posed procedure.

Before developing the formalism of our method, we
briefly review in Sec. II the higher random-phase
approximation (HRPA) as presented by Rowe? In
Sec. I1I we discuss the occupation number representa-
tion of density matrices and their spin components. In
Sec. IV the HRPA is used to evaluate certain contri-
butions to the second-order density matrix. Section V
contains closed expressions for the spin components
of the first-order density matrix. In Sec. VI we discuss
a scheme which allows the self-consistent determina-
tion of the first- and second-order density matrices.
Section VII contains the results of applying the method
to the helium, lithium, and beryllium atoms. We discuss
possible error bounds involving the resultant density
matrices in Sec. VIII. Section IX contains our con-
cluding remarks,

II. THE HIGHER RANDOM-PHASE
APPROXIMATION

The equations-of-motion method was originally
developed by nuclear physicists® as a technique for
directly determining excitation energies and ground-
state? transition strengths for nuclei. It is expected
that these relative quantities will not be as sensitive
to correlations within the stationary-state wavefunc-
tions as, for example, the energies of the individual
states. Thus the results of such calculations often

1218

Downloaded 23 Mar 2004 to 155.101.19.17. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



DIRECT CALCULATION OF DENSITY MATRICES

imply a higher order of ground-state correlation than
would be expected by considering the approximations
made within the method. The HRPA occurs as a
special case of the equations-of-motion method.

The equations-of-motion technique, which is dis-
cussed extensively by Rowe is a method for ap-
proximating excitation operators which produce excited
states of the system when operating on the ground
state | ¢):

[ B)=0s"| ), (2.1)
where

H|¢)=E,|¢) (2.2)
and

H\|k)=E; | k). (2.3)

Starting with the fundamental equations defining exci-
tation operators

[H, Oyt )= AEO:, (2.4)

[H, Ox]=—AE:O;, (2.5)
where

AEk=wkEEk—-‘Ea, (26)

and the orthonormality statement for the states | %)
(¢ | 00 | @)y="bu1, (2.7)

and the condition that O annihilate the ground state

O | $)=0, (2.8)
(@] Ost=0, (2.9)
Rowe obtains the following (exact) equations for Oyt:
@ |[R [H, 01| 6)=AE:(¢ | [R, O] | ¢), (2.10)
¢ |[R,[H,0:1]| ¢)=—AE{$ | [R, O:]] ¢), (2.11)

where R is an arbitrary operator. Equation (2.7) is
also rewritten as

(6] [0k, O] ] d)="b1. (2.12)

To prepare for the possibility that | ¢) is not the
exact ground-state wavefunction, but rather some ap-
proximate function, Rowe then combines Egs. (2.10)
and (2.11) into the single generalized equation

where the double commutator symbol is defined by
ZERr H7 Ok+:|= [R) I:HJ Ok+]]+[ER) H:l; Ok+:| (214)

The solutions O+ of Eq. (2.13) are to be interpreted
as excitation operators which generate excited state
wavefunctions when operating on the ground state | ¢):

[ k)=0:"| $). (2.15)

The energy w; associated with Oy then represents the
excitation energy from the ground state |¢) to the
excited state | k). To derive the higher random-phase
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approximation we restrict the excitation operator to
be of the following form:

Oxt= 3" [gne(R) CotCe—lme(B)CHCyr ],  (2.16)

where the C;t and C; are fermion creation and annihila-
tion operators, respectively, and the g (k), #..(k) are
coefficients. The index m is summed over all single-
particle functions (spin-—orbitals) which are unoccupied
in the single-determinant approximation to the exact
ground-state function.! Similarly, e is summed over all
occupied spin-orbitals. Inserting Eq. (2.16) into Eq.
(2.13) and using the fact that Eq. (2.13) must hold
for any R within the space of operators spanned by
{CutCe, CHCy}, we arrive at a set of equations for
the coeficients gne(k), An.(k), which can be written
in matrix form:

4 B g U 0\/z
(0200 o
—Bt —A*/\k 0 U*/\h

with

Ams,nﬂz <¢ [ [C6+Cm; Ha Cn+C9] l ¢>)

Bme,n6= - <¢ I [C¢+Cm, H’ C9+Cn:| [ ¢>7

Unent= (@ | [CHCp, CitCo] | ). (2.18)
If we assume that the Hamiltonian can be written as

H= 3 fi,CHCi427 3 Vil CCiCy,
i ik
the expressions given in Eq. (2.18) can be evaluated
exactly. Because the results are somewhat lengthy, we
will not reproduce them here, but rather, we refer the
interested readers to p. 161 of Rowe’s article.
If we now assume that the Hartree-Fock single-

particle density is reasonably close to the true single-

particle density, the expressions given by Rowe reduce
tol?

Amen0=8mnbes(&n— &) (Yo— Ym)
+Vmten(VeFvo—Ym—va—1),

Bonent= Vet (YeF¥6—Ym—va—1),

(2.19)

where all subscripts refer to the Hartree-Fock spin—
orbitals. We have introduced the exact single-particle
density

Ume,n@ = anaeﬂ('Ye_ ")’m) »

Ym= <¢ ] Cm+Cm [ ¢>7
vo={¢ | Ci*Cq | ¢), (2.20)

the Hartree~-Fock eigenvalues &, and the two-particle
interaction including exchange

an,eﬂ = an,eo_' Vm'n.ﬂe-

(2.21)

Equations (2.17) and (2.19) are referred to as the
HRPA equations.
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When the spin of the particles (assumed to be
spin 1/2) is taken into consideration, the set of excita-
tion operators {O;*} can be separated into singlets
and triplets. By defining a basis of singlet and triplet
operators®®

Dmel+ = ( 2) -2 (Cma+Cea+Cmﬂ+Ceﬁ) y
Dm63'0+ = (2)—1/2(Cma+cea - mB+CeB) y
D, 3= Cma+ccﬁ:

D =Cg Coa, (2.22)

we can write the singlet and triplet excitation operators
as follows:

Ot = 2 [gue! (k) Dt —Iimc (k) D],
Ok3 Mot = Z I:gme3 (k) -Dmeﬂ Mot — hmea ( k) -Dmea ,M,:l,

Ms=1,0, —1.4 (2.23)

The HRPA Egs. (2.17) also separate into singlet and
triplet equations, with the matrix elements being given

by
Amendt® = (2) " Smndes
X (&n—0) (vo°—¥Yn®) + Vit en
K (¥ 70— Yn"—¥a"—2) () Ving,en
X (Vv —m’—va"—2) ],
Brend®=(2) [ Vyun.co
X (Ve + 70" ¥m® =¥’ 2) (£) Vi et
X (ye+v—vn"— 7= 2)],

Ume,n01(3)= (2)—15mn658<750—')’m0)- (224)

The diagonal elements of the charge density matrix
are defined as

750= <¢ ‘ Cea+Cea+Ce +C56 I ¢>;
’Ymo: <¢ l Cma+cma+cmﬂ+cmﬂ [ ¢>

To convert the HRPA equations to their final form
we premultiplv Eq. (2.17) by the (diagonal) matrix

U0
(o U—W)

which is well defined because the elements of the
{(diagonal) matrix U are positive. This leads to a set
of equations which can be written in matrix form as

follows:
A B g g
) =el ), (2.26)
—BtY —A*/\h h

gmel(a) (k) = (2)—1/2 (,Yso__ 'Ymo) 1/2gm61(3) (k)

(2.25)

with
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and
et ® (R) = (2) 72 (v —v) VoD (k). (2.27)

The matrix elements appearing in Eq. (2.26) are given
by15

44me ,nﬂl(g) - 5mn560(ém_ éﬂ)

+ (2)_1 ('Yeo_')’mo> 1/2(790—"{7;0) 12

X (Vmﬂ,m(:t) Vmﬂ,en)
and
Bme,n01(3)= (2)—1('Ye0_7m0) 1/2(,),60_7"0) 1/2
X (Vmet(2) Vonnoea) . (2.28)

This is the working form of the HRPA equations.’®

We have thus reduced the problem of finding the
approximate excitation operatorsO;* and their associ-
ated energies w; to a fairly simple matrix eigenvalue
equation. Given the Hartree-Fock orbitals and eigen-
values and the exact charge density matrix, we could
use Eqg. (2.28) to form the 4 and B matrices. Standard
numerical techniques would then yield the eigenvalues
and eigenvectors of the (unsymmetric) matrix

4 B
— Bt —A* )

We defer until Sec. VI the problem of obtaining the
exact charge density matrix. Orthogonality and normal-
ization of the eigenvectors of matrices such as the above
are discussed clearly in Rowe’s article, as are the con-
ditions which guarantee that the eigenvalues w; will
be real. We will not go into these details here.

Let us assume that the HRPA Eqgs. (2.26) have
been solved and that the exact charge density matrix
is known. The coefficients g,&/® (%), hn!® (k) which
appear in the expression (2.23) for O™ are given by
Eq. (2.27). The approximate “excited states” can then
be written as follows:

I k; 0; 0>:Ok1+ l ¢>7

[k, 1, Ms)=03Me+ | ¢), (2.29)

with obvious notation.”

Suppose now that we wish to evaluate the transition
value of some operator Q between the ground state | ¢)
and one of these approximate excited states, e.g.,

@ Q1% 0,0)=(¢| Q0 | ¢).

Using the fact that | ¢) is the ground state, we can
write Oyl | ¢)=018 to obtain the result

@101%0,0)=([[Q O] &)

Thus to calculate transition values of Q we need only
know the ground-siale expectation value of the com-
mutator of Q with the appropriate excitation operator.
This is the use which will be made of the HRPA in
Sec. IV.

(2.30)
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III. DENSITY MATRICES IN THE OCCUPATION
NUMBER REPRESENTATION

The first- and second-order density matrices corre-
spond to the wavefunction |¢) can be written as

follows?®:
v(1; 1) ={o [ ¢ (1) (1) | 6)

and

AN (1, 2;1,2) =@ ¥+ (1) (209 (2)¢(1) [¢), (3.1)
where the arguments 1, 2, 1/, 2" refer to space spin
coordinates, and the expectation value is taken with
respect to the occupation number representative of
| @). ¢t and ¢ are fermion field creation and annihila-
tion operators, respectively. By expanding the field
operators in a complete orthonormal set of spin-
orbitals {¢:(#)a, B}, we can decompose the above ex-
pressions for v and T into spin components, e.g.,

(15 1) = 3 [o*(n)¢i(r)a*als | Cia*Cia ! )
+é:* (1) i (n)8*8(d | CistCis 1 9)].  (3.2)

There is an analogous expression for T involving six
terms.? Tn writing Eq. (3.2) we have assumed that
the state | ¢) is an eigenstate of the operator .S.. This
allows us to write

<¢ I Cio'+Cja’ [ ¢>=5aa’ <¢ W Cz'a+cia l ¢>; (3'3)
where o and o’ represent either of the one-electron spin
functions «, 8.

As a matter of choice we will restrict the remainder
of the development to the most frequently used spin
components of T. This restriction is by no means
necessary to the treatment; the method can be applied
to any other spin components with minor modifications.

The one-electron charge- and spin-density matrices
are, respectively,

v(1; 1) = %: Vi’ *(n') éi(n),
¥ii°= {9 | Cio™CiatCig*Cis | $),%
v (1; 1) = % Vit (1) di(n),
vii'=($ | Cia*Cia—Cis*Cis | §). (3.4)

The analogous components of the second-order density
matrix are defined as follows:

2T41,i5°= (¢ | CiatCatCraCha
+CistCigtC1eC+Cia™CigTC15Cra
FCistCiatCraCrs | $)

and

and
2T1,i77={$ | Cia*CjatC1aCha
—CigtCigtCi1aCratCiatCigC15Cha
—CigtCia*C1aCrs | ).  (3.5)

These are the four components of v and T' with which
we will concern ourselves. They are chosen because
they are sufficient to determine the expectation values

1221

of all spin-free operators and the spin density of the
system.

To obtain forms for I'° and I'* which will allow us
to make use of the HRPA, we use anticommutation
relations to re-express the terms appearing in Eq. (3.5),
e.g.,

(61 Cia*Cis™CrsCra | )
= (D7 (| Cia™Cralis*Cis | &)
— (¢ ] CiatCrsCi5*Cia | ¢)
+o1(d | CiatCra [ 8)), (3.6)
and so forth. In addition, we insert a complete ortho-
normal set of N-particle functions between the pairs

of creation and annihilation operators in Eq. (3.6).
For example,

(¢ | CiatCraCistCrs | )
=(¢ | CiatCral )¢ | Cis™Cis | ¢)
+ 32 (o | CaatCre | 1) | Cig¥Cis | @), (3.7)
t

where the sum is over a complete orthonormal set of
functions which are orthogonal to | ¢). Eventually we
will identify these functions® with the approximate
excited states of the HRPA theory, and we will use
Eq. (2.30) to evaluate the quantities (¢ | CistCjor | 1).
By using relationships such as Egs. (3.6) and (3.7),
we can write the previous expressions for I'° and T'*
as follows:

Tar, i =4 v (281+v2°) — Onyyes®

— 5 (vt vty 14 i
and

T, =4y (28-Fv1°) — Ouy1s®
— 3 (vervetFveve®) I At (3.8)

Here A° and A* contain the contributions from the
sum over all states orthogonal to | ¢). In the next
section we will make use of the HRPA to evaluate
A° and A®. Because the above expressions for I'* and T'?
contain the exact charge- and spin-density matrices,
we must find an independent method to determine
these quantities. This will be discussed in Sec. V.

IvV. USE OF THE HRPA

The explicit form of Ay;,:° can be determined from
Eqgs. (3.5)-(3.7). It is given by

Apri?=4"13 ((@ | Cia*Cha
t

+CigtCrs | 1)t | Cia™Cra+Ci5tCis | $)
—{¢| Cia*Cia | 1){t | Cia*Cra | &)
—{¢ | Cig*Cig 1 1)t | Cis*Cirg | &)
—{p | Cia™Ci | )t | Ci5*Cra | &)
— (6| Cis™Cra | 1)t Cia¥Crg | 8)).  (4.1)

There is a similar expression for Az,:;* which we will not
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present here. Rather, we will carry through the evalua-
tion of A° and just quote the result for A% The tech-
niques employed to obtain A? are identical to those
described below, so the interested reader can verify
our result.

To approximate Ay.:;° we will identify the functions
| £y in Eq. (4.1) with the excited states of the HRPA
theory. This identification is not unique; any ortho-
normal set of states orthogonal to | ¢) is equally ac-
ceptable. The difficulty in finding such states is con-
tained in the restriction that they be orthogonal to
the unknown |¢). The HRPA method provides a
technique for determining the approximate excited
states without requiring knowledge of |¢). Because
the HRPA procedure was designed to accurately pre-
dict transition properties, it should provide reasonable
approximations to the quantities (¢ | C:,*Cj.- | £) which
occur in the expression for A°. Note that the functions
CjstCis | $) are single excitations from | ¢). Therefore,
we need only consider excited states |#) which are
single excitations of | ¢); the contributions from double
and higher excitations vanishes. Thus the form of the
excitation operator given in Eq. (2.16) is sufficient to
exhaust the sum over certain excited states. Also it
is shown in Rowe’s article that certain sum rules are
satisfied exactly by the HRPA excited states, even
when a truncated set of orbitals is used. This supports
our conviction that the HRPA method, carried out
in a finite basis, can yield reasonable approximations
to A’ and A®.

We recall from Sec. II that the excitation operators
O,t are of either singlet or triplet character. Thus, the
sum over excited states in Eq. (4.1) reduces to a sum
over singlet excitations and three sums over the triplet
excitations. It is therefore convenient to define six
new quantities in terms of which A° and A® are easily
expressed:

Sii?(s) = (¢ | Cia™Crat+CigtCrg | 5, 0, 0),
Sii2(s) = (¢ | Cia™Cra—CigtCis | 5, 0, 0),
To(2) = (¢ | CiatCratCigtCis | 1, 1, 0),
T (D) = (¢ | Cia*Cra—Cig™Cis | 1, 1, 0),
TP ()= (| CiaCra | 1, 1, — 1),
and
Twi () ={¢ | Cis™Cra | 1, 1, 1). (4.2)

We have used the notation of Eq. (2.29) for the excited
state wavefunctions. With these definitions Eq. (4.1)
can be written in the following form:

At =41 X [SeoSa™ =3 (SuSa*+SuSa™) ]
+471 Y [T Tpo*— 3 (TwoT ™+ T T 3™*) ]
t

— 471 3 (T DT T TRO*). (4.3)
t
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The corresponding result for A® is given by

Mgt =471 20 [ S22 Sn™ — 3 (Su°Si™ + S12Su*) ]
+471 2 [ 1o T i =5 (T T+ T T3 ]
¢

— 4L Y (TP T O* = T O T %)

£

(4.4)

In these equations the summation indices (s and #)
have been eliminated for notational convenience. Equa-
tions (4.3) and (4.4) are the final expressions for A°
and A?,

Let us now turn our attention to the evaluation of
the six quantities defined in Eq. (4.2). This can be
carried out in a relatively straightforward fashion by
using (2.30), identifying Q with C;,;+C;,». Knowing the
form of the excitation operator from Eq. (2.23), the
commutator [C;,7Cj,r, O3] can easily be evaluated
by using anticommutation relations. All that remains
then is to take the expectation value of the com-
mutator with respect to the exact ground state | ¢).
The results of performing these steps are given below:

Sjio(s) =271 Z Laid (s) Vet hid (5)v5e"]
- % Lgmit (8)Yim®+Fmi () Ymi® T} s
Sji*(s) =271 ? Leid (s) veir+hid (s)vse®]
- %} L&mi (8)Yim* - himit () ¥mi* 1},
Tuo(t)= 2~1/2{Z£ Lgid (O ver+hid (1) vie”]
- % Cons® (D) Yim*+hmi () ¥mi*]},
Ty(t) =27 Z [gid (1) veio+hid () vie]
— 2 [end(D¥in "+l () ymi* ]},
L@
X1 Z [gié (6) (ve"+vei®) +hi () (Vie'—v57) ]
— 2 [an(®) (Yim®—Yim®) -l (£) (¥mi+¥mi®) 1},
1o =20
X{ X [ (1) (veso—=vei®) Hha (1) (Vi +v5e7) ]
-2 [gmeﬁ(t) (Yim®F¥im®) s (1) (Ymi®—¥mi®) 1}
§ (4.5)

In evaluating these quantities, one must remember
that g,'® (k) and ki ® (k) are nonzero only if the
orbital ¢; is unoccupied and the orbital ¢; is occupied
in the single-determinant approximation to | ¢). Notice
that if the HRPA calculation has been carried out and
if the exact charge- and spin-density matrices are
known, A° and A® can be determined from Egs. (4.3)~
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(4.5). We have thus succeeded in approximately
evaluating A° and A? by using the HRPA method.

V. FIRST-ORDER DENSITY MATRIX

The components of the first-order density matrix are
related to those of the second-order density matrix
through the following identities:

Ye=2(N—=1)"13 Tr,a®
P

and

ykf=2(N—1)—1 Z sz,”z. (51)

l

Let us assume that a truncated basis of M orbitals
has been chosen and that we wish to evaluate the first-
and second-order density matrices within this basis.
If we substitute the expressions for I'* and I'? given
in Eq. (3.8) into Eq. (5.1), we obtain, after some re-
arrangement, the following closed expressions for +°
and v#:

’Y]“'O= 2—1(2M+1'—.7V)_1

M
X 2 vyt vey i —8Ak1,a°)
=1
and
yrif=2"12M 41—~ N)"1

M
X 2 (vetvu vy —84k,a),
-1

Bi=1,2, e, M. (5.2)

Because A° and A? are completely determined by ~°
and v*, the above equations are closed, and they can
be used to evaluate y° and v* The only approxima-
tions in Eq. (5.2) are the approximate A° and A?
which we obtain by doing a HRPA calculation. In
the next section we will describe an iterative procedure
which can be used to solve Eq. (3.2}.

VI. SELF-CONSISTENT DETERMINATION OF
I'e, T? ~° AND ~v*

In the preceding sections we have shown how the
HRPA method can be used to evaluate various com-
ponents of the first- and second-order density ma-
trices. Equation (5.2) provides us with a means of
directly determining y° and ¥* by using the HRPA
approximations to A° and A% Equations (3.8) and
{4.3)-(4.5) can be used to evaluate I'* and I'z, if y°
and v* are known. In this section we propose an itera-
tive, self-consistent procedure for determining ~°, v,
T, and I'%. The procedure is as follows:

(1) Set v° and v* equal to their single-determinant
approximations.

(2) Carry out the singlet and triplet HRPA calcu-
lations, using the present value of v°.

(3) InEq. (4.5) use the current v and v* to evaluate
S;:, etc.
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TapLE 1. Slater basis for helium.

n Exponent
1 1.4191
1 2.5722
2 4.2625
3 3.9979
3 5.4863

(4) Form A° and A? by using Egs. (4.3) and (4.4).

(5) Use the current v° and 7 on the right-hand side
of Eq. (5.2) to obtain #new values for v° and 2.

(6) In Eq. (3.8), use the new v° and v to evaluate
I'> and I'=

(7) Compare the new ¥° and ¥* to the v° and v*
obtained by reducing I'* and I'* [Eq. (5.1)]. If the
agreement is satisfactory and if the old v° and v* agree
well with the new +° and +# then the calculation is
complete. Otherwise return to step (2), using the new
~° and v*.

That this procedure is an iterative method is clear
from the above description. It is also called self-con-
sistent because half of the convergence criterion is that
the first-order density matrix calculation in step (3)
must agree with the first-order density matrix obtained
by reducing T' [step (7)]. That is, the first-order
density matrix must be consistent with the second-order
density matrix.

One disadvantage of the iterative method is that
matrix elements 7., connecting occupied and un-
occupied orbitals are difficult to calculate. If one begins
the iteration process with a charge density matrix
having ve.®=0, the procedure never produces any non-
Zero ven’. However, if exact Hartree—Fock orbitals are
being used, such matrix elements should be quite small
due to Brillouin’s theorem. That is, if the CI expansion
of the wavefunction |¢) contains no single excita-
tions, then the lowest order nonzero contributions to
(@ | CnatCeatCrmgtCes | ¢) will come from matrix ele-
ments of double excitations with triple excitations.
Because the CI expansion coefficients of triple excita-
tions are usually quite small, the elements v,,° will,
in general, also be very small. To obtain approximate
values for ve,°, which could then be used in the first
step of the iterative procedure, one can use first-order
perturbation theory. This only requires a knowledge
of the Hartree-Fock orbitals and energies.

There is no formal proof that an iterative procedure
such as we have proposed will converge to any meaning-
ful result. Therefore, we must test the convergence by
using the method to carry out numerical calculations
on systems of interest. In the next section we report
the results of such calculations on the helium, lithium,
and beryllium atoms.
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TasLe II. Expectation values for helium.

JACK SIMONS

TasLE IV. Diagonal overlaps.

(1) This worka 2{—3iv2—(2/r) )=—3.8822 a.u.

{1/r12)=-+40.98766 a.u,
{H)=-—2.8945 a.u.

(H)=-—2.8617 a.u.
(H)=—2.8790 a.u.
(H)=—2.8780 a.u.
(Ty=~2.9037 a.u.

(2) Hartree-FockP
(3) CIe
(4) Green’s functiond

(5) Exacte

# These expectation values were calculated using the second-order density
matrix of Eq. (3.8) and the first-order density matrix of Eq. (5.2) (after
convergence of the iterative procedure). I'0 and +9 were normalized to

N
and N,
2
respectively.

b C. C. J. Roothaan, L. M. Sachs, and A, W. Weiss, Rev. Mod. Phys.
32, 186 (1962).

¢ A complete configuration interaction calculation within the basis of
the same five Hartree-Fock functions which we used. This calculation was
carried out by us.

d J. Simons (unpublished results).

¢ C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

VII. APPLICATION TO HELIUM, LITHIUM,
AND BERYLLIUM

There are a number of reasons behind our decision
to choose the ground state of the helium atom as
our first test case. In the first place, helium js the
simplest atomic system to which our method is ap-
plicable. In addition the second-order density matrix
which we obtain can easily be tested for N-representa-
bility, because necessary and sufficient conditions are
known for the two-electron case. Finally, we want to
compare the results of the present method to results
which we have previously obtained for helium using
Green’s function techniques.

We have chosen as a basis five s-type Hartree~Fock
orbitals, each of which is given as a linear combina-
tion of the five Slater orbitals (normalized) described
in Table I. The convergence criterion used was that

M
> i vi°(new) —v.;°(old) ]2< 108,
i,5=1
Convergence was realized after two iterations, the com-
plete calculation taking 30 sec on a Univac 1108 com-
puter. Calculation of the necessary one- and two-

i (R—D.| Si)

1.00000
0.99817
0.99719
0.99901
0.99997

[ A N

electron integrals required 20 sec, so the HRPA cal-
culation only required 10 sec. This is to be compared
to our Green’s function calculation?® in which 4 min
were used in the numerical integration step. The con-
vergence was not found to be very sensitive to the
initial choice of y°. The expectation values of the one-
and two-electron operators which occur in the Hamil-
tonian, along with the results of other work, are given
in Table II. The fact that our energy is below the
energy of the complete CI immediately tells us that
the second-order density matrix which we have cal-
culated is not N representable. We will defer further
comments concerning this problem until the next
section.

The eigenvectors (natural orbitals) and eigenvalues
(occupation numbers) of the charge density matrix v°
are given in Table III. Of course, the spin-density
matrix is identically zero. Expansion coefficients refer
to the Hartree-Fock orbitals. In carrying out this
calculation we first approximate the charge density
matrix elements y® (see the end of Sec. VI) by using
first-order perturbation theory. These approximate
values were then used to begin the iterative procedure.
This was found to have negligible effect on our results.
The diagonal overlaps between our natural orbitals
(S;) and those of Reinhardt and Doll?® (R—D,) are
given in Table IV. The two sets are in fairly good
agreement. Although our natural orbitals seem to be
reasonably accurate, the expectation value of the one-
electron operators given in Table IT is too low.” This
is evidence that the occupation numbers of the second
through fifth natural orbitals are not large enough.

By imposing the additional constraint (necessary
for N representability) that the diagonal elements of
T'* be nonnegative, we obtain an energy of —3.8496+4
0.9877=—2.8619 a.u. for helium. In this case the
natural orbitals are essentially unchanged, but the

TasLE IIT. Natural orbitals and occupation numbers for helium.

Occupation Numbers

1.9974 1.0000 —0.0004 0.0001 0.0000 0.0000
2.5025x1073 0.0004 . 0.9286 —0.3688 —0.0419 —0.0007
4.96961078 0.0001 0.3612 0.8717 0.3311 0.0053
2.1833X10°8 0.0000 —0.0853 —0.3216 0.9386 0.0914
2.2919 1078 0.0000 0.0066 0.0246 —0.0880 0.9958
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occupation numbers are altered considerably. The new
occupation numbers are given in Table V. With this
v° the predicted expectation value of the one-electron
operators agrees very well with the correct result.?
The fact that the total energy is not very good when
compared to the CI result indicates that the second-
order density matrix I'® which our method yields is
probably not very accurate in this case.

In addition to the first- and second-order density
matrices of the ground state, the HRPA calculation
yields an approximate electronic excitation spectrum
of the system. The energy differences between the
ground state and excited states which are obtained by
doing the HRPA calculation are compared to the CI
results for singlet states in Table VI.

For the calculations on the ground states of lithium
and beryllium, we used bases of six s-type Hartree-
Fock orbitals?® (restricted HF) which are expressed in
terms of the (normalized) Slater orbitals described in
Table VII. Convergence was realized in each case
after four iterations. Both computations took 90 sec—

TasLe V. Occupation numbers with constraint.

1.9854

1.2441X10°2
2.1319X107®
6.7217X107%
2.5378X1077

60 sec for integral evaluation and 30 sec for the HRPA
iterations. Again the convergence was not found to be
sensitive to the initial choice of v, and for lithium the
calculation was quite insensitive to the initial spin-
density matrix v% The natural orbitals and occupation
numbers for lithium and beryllium which are obtained
by our method are given in Tables VIII and IX,
respectively. In both cases the constraint that the
diagonal elements of I'° be nonnegative was imposed.
These natural orbitals and occupation numbers are
similar to those obtained by other workers®-% using
somewhat different basis functions. Notice that the
block structure of the natural orbital expansion coeffi-
cients implies that the v..°, which are more difficult
to obtain by our iterative scheme, are, as we antici-
pated, quite small in the three cases considered here.
The ground state energies for lithium and beryllium
calculated by using our density matrices are presented
in Table X, For lithium our spin density at the nucleus
(2.8006) agrees fairly well with the correct value
(2.9096) .22 In both calculations the expectation values
of the one-electron operators agree very well with the
exact results. Almost all of the error in the calculated
energy is due to error in the two-electron energy. This
supports our earlier proposal that the T obtained by
our method can be inaccurate, whereas the resultant
v° is usually rather good. This is not surprising because

1225

TaBrE VI. Singlet excitation spectrum for helium.

HRPA CI
1.4243 a.u. 1.4068 a.u.
5.3068 5.3208

19.522 19.451
118.50 118.34

the detailed effects of particle correlation which enter
into I'* can not be adequately described by the limited
basis sets which we have chosen. On the other hand,
it is well known that correlation does not appreciably
alter the change density, and so the limited bases should
not prohibit us from obtaining accurate first-order
density matrices.

We have also studied the behavior of the resulting
density matrices for helium as the basis set is expanded.
It was observed that the natural orbitals and occupa-
tion numbers converged smoothly to the radial limit
results reported in Table III. Such calculations were
carried out with two, three, four, and five s-type basis
functions.

Although the results of these examples do not con-
stitute a proof that the proposed iteration scheme will
always converge, they do indicate that the method can
be a useful tool for determining first- and second-order
density matrices of atomic and molecular systems. Even
though the energy which our method predicts is not
accurate, the resulting natural orbitals can be used
in CI calculations to obtain better expectation values
of two-electron operators.

VIII. ERROR BOUNDS

We have seen from the results of the helium calcula-
tion that our method does not necessarily yield density
matrices which are exactly N representable. However,
this does not mean that these density matrices can not
be used for predicting the properties of atomic and
molecular systems. We learned from the calculations
reported that our method can yield first-order density
matrices which are reasonably accurate. However,
density matrices which are obtained by the HRPA
method, the Green’s function method, and other

TasrLe VII. Slater bases for lithium and beryllium.

Lithium Beryllium
n Exponent n Exponent
1 2.4803 1 3.4703
1 4.7071 1 6.3681
2 0.3500 2 0.7516
2 0.6600 2 0.9084
2 1.0000 2 1.4236
2 1.7350 2 2.7616
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TasrLe VIII. Natural orbitals and occupation numbers for lithium.

Occupation
numbers Expansion coefficients (rows)
1.9979 1.0000 —0.0002 0.0001 —0.0002 0.0003 —0.0001
0.9976 0.0002 0.9994 0.0282 —0.0186 0.0003 0.0000
2.9614 1073 —0.0001 —0.0088 0.6743 0.5608 0.3341 —0.3451
1.1524Xx 1073 0.0002 0.0319 —0.6121 0.7862 —0.0784 0.0047
3.0561 X107 —0.0003 0.0067 —0.3946 —0.2232 0.8264 —0.3338
8.5726X 1075 —0.0001 —0.0010 0.1184 0.1315 0.4463 0.8772

“direct calculation” techniques might not be .V repre-
sentable; therefore it is important to examine the con-

If we define the difference function E(1, 1') by

1Y = KT .1/
sequences of possible approximate N representability. h E(; 1) =v(1; 1) —vr(1; 1), (8.3)
In a recent paper,? we have shown that the errors in- then e
troduced in calculating expectation values with non-V- AF=Tr{ fE
representable density matrices can be bounded, and =Tr{ fy}—Tr{ fyr} (8.4)

that these errors decrease to zero as the density matrices
become more nearly N representable.

In the method which has been presented in this
paper, approximations to the first- and second-order
density matrices belonging to the unknown wavefunc-
tion | ¢) are obtained by an iterative procedure. Hope-
fully these approximate density matrices are quite close
to the true (N-representable) density matrices of | ¢).
Concentrating on the first-order density matrix v, we
can define a measure of deviation from the density
matrix belonging to | ¢) as follows:

p= [ 17v(1; 1) —vz(1; V') |Pdridry,

where v is our approximation to the true vyr

is the deviation of the calculated expectation value of
F from its value for the wavefunction | ¢). Notice that
Tr{ fyr} is not necessarily the expectation value of F
for an exact wavefunction. If v and vr are expanded
in some orthonormal (probably finite) basis, then the
quantity | AF | can be bounded as follows:

AM M
[AF < X 1fy 1P 2 1 Ey

4=1 4=1
where M is the dimension of the basis and f;; and E;;
are the representatives of f and E within this basis.
The bound on | AF | is thus written as a factor de-
pending on the operator F times a factor which de-
pends only on the difference function E. It is easy to

(8.3)

(8.1)

yr=N [¢(1,2, +++, N)¢*(1', 2, +++, N)drye - o dry.
(8.2)

It should be kept in mind that we are trying to bound
the differences in expectation values which are cal-

see from Eq. (8.1) that the second term in Eq. (8.5)
is identical to what we have defined as u:

M
2 | EyP=p.

7,5=1

(8.6)

The bound on | AF | can then be written in either of
the following forms,

culated using our v and the yr belonging to [¢).
Neither of these expectation values is necessarily exact.
Suppose now that we are interested in calculating the
expectation value of some one-particle operator

F= ﬁélff.

(8.7)

@, 0=

| AF P<p 21 | fis P<n é (D

where (f?).; is a matrix element of the operator f2
which is still a one-particle operator. The second in-

Tasre IX. Natural orbitals and occupation numbers for beryllium.

Occupation
numbers Expansion coefficients (rows)

1.9998 0.9339 0.3575 0.0000 0.0000 0.0000 0.0000
1.9968 —0.3575 0.9339 0.0000 0.0000 (.0000 0.0000
2.4175X 1073 0.0000 0.0000 0.7697 —0.6304 0.0986 —0.0205
2.7226 X107 0.0000 0.0000 0.5626 0.7327 0.2285 —0.3072
4,2424 1075 0.0000 0.0000 —0.2849 —0.2006 0.8675 —0.3551
7.8827X10°6 0.0000 0.0000 0.0991 0.1596 0.4308 0.8827
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equality in Eq. (8.7) follows from the fact that the
basis in which v and yr are expanded is probably not
complete. If we can find a means of evaluating the
parameter u, either form of Eq. (8.7) will allow us to
bound the quantity | AF |. We do not mean to imply
that the bounds given above are in any sense good
bounds; we only wish to show that knowledge of u
can lead to error bounds for expectation values.

In order to calculate the value of u corresponding to
a given v, we must somehow obtain vz, at least for-
mally. This can be done by using the following property
of the known excitation operators O;*:

Ok I ¢>=07

for all excited states | k). Equation (8.8) is a conse-
quence of the fact that | ¢) is the HRPA ground state
wavefunction which must be orthogonal to all of the
excited states Oxt | ¢). Because the O,t and, hence,
the Oy are known once the HRPA calculation has been
performed, the above equation can be used to de-
termine | ¢).

For what follows, we find it convenient to relate | ¢)
to its single determinant approximation |0) by the
unitary operator given below:

| ¢)=exp(—S5) | 0),

where § is an antihermitian operator which is to be
determined by using Eq. (8.8). The expression for an
element of the second-order density matrix,

Tii=3%(¢p | C:iFCHCCx | ¢),

(8.8)

(8.9)

can be rearranged to give
Ti1,ij=305{¢ | CFCi | ¢)—3 (0 | CHCICFCi 1 ). (8.10)

By using the definition of the first-order density matrix
and Egs. (5.1) and (8.10), we can write

M
L(N—Dyui=3Myi—3 2 (0 | CHFC,CHCr | ¢)
=1
or
M
(M+1—=N)vii= X (@ | CFCCHC | ). (8.11)
=1

In the HRPA method we approximate the right-hand

Tarre X. Ground state energy of lithium and beryllium.

Method Lithium Beryllium
This work —7.4419 a.u. —14.57% a.u.
Hartree-Fock —7.4327 a.u. —14.572 a.u.
Radial limit —7.4420 a.u. —14.592> a.u.

& A, Weiss, Phys. Rev. 122, 1826 (1961). This might not be the exact
radial limit.

b C. F. Bunge, Phys. Rev. 168, 92 (1968).
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side of Eq. (8.11) as follows:
(8] CHCLCHCr| )8 | CHCPCIChl ), (8.12)
where the projection operator P is given by
P=[¢)o|+ 2)\: Ozt ¢){¢ | O, (8.13)

and the Oyt are the known HRPA excitation operators.
Thus, the deviation of vz (HRPA) from the true
“(r) ki can be written formally as

(MA-1—N) Epi= (M+-1—N) (v2—7)#:

M
= 2. (o | CACQCHCr [ ¢), (8.14)
=1
with
Q=1-P, (8.15)
If the spin—orbital basis used in constructing O)* is
complete, the operators O,* and O, form a complete
set in terms of which any operator® of the form C7C;
can be expanded as follows:

CHCi=W"+ 2 [Wi(N) O +Wi (N0 ].  (8.16)
A

The Wi;(\), Wi/ (\), and W,/ are expansion coeffi-
cients. By using the orthogonality properties of the
states Oyt | ¢) and the expansion given in Eq. (8.16),
it is easily shown that each element FEj; vanishes.
Therefore, as the spin—orbital basis approaches com-
pleteness, it is expected that the Ei; will approach
zero and the approximate y will approach the true .

To make use of Eq. (8.9) in evaluating the param-
eter u, we recall the following identity for exponential
operators®:

Bexp(—A4)=exp(—4)

With Eq. (8.9) the expression for Fix; can be rewritten
in the form:

(M+1—N) E:

(8.17)

= )A;{. {{0 ] exp(S)CHC;iCi*Cy, exp(—S) | 0)

— (0] exp(S)Ci*C; exp(—S) | 0)
X (0 | exp(S)Ci Cy exp(—S) | 0)

— 2 (0] exp(S)[CHCj, O] exp(—S) 10)
A

X (0] exp(S)[Ox, C;i*Ci] exp(—=S) [ 0)}. (8.18)

Before this equation can be simplified by using Eq.
(8.17), we must investigate in more detail the form
of the operator .S.

In the nuclear literature® the wavefunction | 0)
is usually written as

l¢)=K exp(—S5) [ 0), (8.19)
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where K is a normalization constant and

S= Y SnamgCntCaCtCo.

mn,a,8

(8.20)

We are using the subscript convention of Sec. II.

This form of the wavefunction is not especially useful
because the operator .S is not anti-Hermitian. This
means that Eq. (8.18) can not be used to evaluate
Ey; if we insist on using the above wavefunction. To
avoid this problem we can express | ¢) as in Eq. (8.9)
with the anti-Hermitian operator S given by
S = Z ( Sma .nﬂcm+cacn+ Cﬁ

m,n.a.f

- ma.nB*Cﬁ+CﬂCa+Cm) . (8.21)

Once the coefficients Spe,.s have been determined,
Eqgs. (8.17) and (8.18) can be used to calculate Ey..
We will return to this calculation shortly.

To obtain an equation for the coefficients Spq,.s We
make use of Eqs. (8.9) and (8.17) to write Eq. (8.8)
in the form

Oy | ¢y=exp(—S) {O+[S, O]
+(1/20LS, LS, Oy ]]+---} | 0)=0.

By substituting the explicit expressions for Oy and S
given in Eqgs. (2.6) and (8.21), respectively, and carry-
out the commutations indicated above, we can equate
to zero the coefficients of the various independent
functions | 0), C+C; ] 0), CACHCC, | 0), etc. Thisleads
to the following equation involving Smq..s:

4 Zﬂ Sma.nﬂgnﬂ*()\) = _hma*(x)’

a=1,2,+-- N; m=N+1, --- M;
A=1,2,--«, N(M—N). (8.23)

In our HRPA calculations all of the %,.(A) turned
out to be quite small (~107%) as did most of the
gma(\). For each value of X there was one g,,(\) whose
value was near unity. These results are typical of RPA
calculations on atomic systems. Based on these observa-
tions Eq. (8.23) implies that the magnitude of the
Smang Will generally be at least as small as the A..()).

If we represent each of the (M —N)N pairs #8 by
a single Greek index g, the set of HRPA coefficients
gna(N) and knq(X\) can be thought of as forming square
N(M—XN) dimensional matrices, and so Eq. (7.23)
is a simple matrix equation which can be solved by
standard matrix inversion techniques to yield the coef-
ficients Sya.ng,

(8.22)

NN
Z hux*g“*—l-
k=1

It should be pointed out that Eq. (8.23) is identical

to the equation which would result if the wavefunction

given in Eq. (8.19) had been used. In other words,
no additional complications arise when we introduce

the antihermitian form for S given in Eq. (8.21).

4S0=— (8.24)

JACK SIMONS

With the coefficients Spa,»g given by Eq. (8.24), we
now return to the evaluation of the Ei;. By using the
identity given in Eq. (8.17) and carrying out the
indicated commutations, the right-hand side of Eq.
(8.18) can be written as a sum of terms involving
various powers of the coefficients Sy,..g. Because the
Snamp are generally quite small, the use of powers of
Sma.np for ordering purposes is justified. The sum of all
terms which do not contain any Spa.g is given by

(M+1—N)E,,©

== Z > hia(N) Bia™(N) if i, k>N
A a
=— 2 Y EniN h*(\),  if i, k<N
AN m
=0, otherwise. (8.25)

Notice that there are no contributions in the zeroth
order to ... This supports our earlier claim that the
quantities ym. should be quite small in general. In
addition, all terms which are first order in Spa,.s are
found to vanish identically. Thus the factors Sma.ns
contribute to E; only in the second and higher orders.
Because the Sy.a,ng are generally smaller in magnitude
than 107%, the second-order contributions to Ej; will
be of the order of 107® or smaller. This is a negligible
contribution for our purposes, and so we need not
obtain explicit expressions for these second-order terms.

Because the zeroth-order contributions E;©® given
in Eq. (8.25) are also quite small, it is not surprising
that the expectation values of the one-electron operators
which we have calculated are in good agreement with
the correct values. The fact that the magnitudes of all
the /4na(\) are 1073 or less implies that the value of u
given by Eq. (8.6) with Eq. (8.25) is of the order of
10—, Therefore, unless the quantity

M
> sl
i,7=1
which enters into Eq. (8.7) is quite large, the deviation
| AF | should be very small.

It is our opinion that error bounds such as have been
discussed in this section are necessary components of
any complete and workable method which attempts
the direct calculation of reduced quantities.

IX. CONCLUSIONS

In this paper we have shown how the HRPA method
can be used to approximately determine the first- and
second-order density matrices of atomic and molecular
systems. In our method there are no numerical inte-
grations, and the size of the arrays to be diagonalized
increases much less rapidly with the number of particles
than in the CI technique. Besides these computational
advantages there exists the possibility of obtaining error
bounds involving the resultant density matrices. These
bounds allow us to estimate the deviations in calculated
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expectation values caused by using density matrices
that might not be exactly N representable.

From the application of our method to the ground
states of the helium, lithium, and beryllium atoms, we
learned that the iterative procedure which we proposed
can converge to a meaningful result. In these cases
convergence was realized after a few iterations. We
also found that the results of the method are not very
sensitive to the initial approximations for the charge
density matrix. In the case of lithium the results were
also insensitive to the initial choice of v*. This indicates
that there are probably no inherent instabilities in the
iterative method.

We observed that by imposing the additional con-
straint that the diagonal elements of I'* be nonnegative,
the calculated natural orbitals were essentially un-
altered but the occupation numbers were significantly
changed.® With this constraint the resulting charge
density matrices gave nearly exact results for the ex-
pectation values of the one-electron operators occurring
in the Hamiltonian. From this observation we inferred
that nearly all of the error in the predicted energy is
caused by error in I', These results also indicate that
the occupation numbers which we obtain are probably
of reasonable accuracy.

Although our method might not yield accurate
second-order density matrices or ground state energies
which are competitive with the best results, it does
show promise as a method for obtaining first-order
density matrices and natural orbitals which can then
be used in a CI calculation. Let us recall that the
HRPA technique was developed to predict properties
which do not depend strongly on the complex cor-
relations within wavefunctions. Therefore, in our use
of the HRPA for evaluating certain contributions to
the first- and second-order density matrices, we should
not expect to be able to accurately describe detailed
particle correlation effects. Because such detailed effects
contribute significantly to the second-order density
matrix, it is not reasonable to think that our method
can consistently yield reasonable second-order density
matrices. On the other hand, it is well known that
particle correlations have relatively little effect on the
first-order density matrix. Thus, it is not surprising
to find that the HRPA method is capable of predicting
the small corrections to the Hartree-Fock first-order
density matrix.

In order to better assess the value of our method as
a tool for calculating first- and second-order density
matrices, many more numerical calculations are needed.
Hopefully, such results will become plentiful in the
future.
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the exact function in the sense that O | ¢ )=0 (see Eq. (8.8)].

13 The notation “singlet and triplet operators’ is based upon
the fact that D, !* operating on a singlet yields a singlet and
D,, &Ms* operating on a singlet yields a triplet.

14 We assume that there are no effects which split the degeneracy
of the triplet level.

15 We use the same notation (4 and B) here as in Eq. (2.24)
even through the elements of the 4 and B matrices are different.
This is done for notational ease.

16 Notice that the dimension of the matrix to be diagonalized
is given by 2No(M —N,), where Np is the number of occupied
orbitals and M is the number of basis functions which we use.
The size of this matrix does not increase nearly as rapidly with
the number of particles as, for example, the CI matrix. This is
an important computational advantage of the method.

17 The function |k, S, M, ) is not necessarily an eigenfunction
of §2 The notation only implies that | &1, S, M, ) is obtained by
Oy5-Ms+ operating on the ground state | ¢ ). The S? dependence
of | k, S, M, has no effect on our problem; we are just using the
{l|#, S, M,)} as a set of orthonormal functions which are also
orthogonal to | ¢ ).

18 One can use this equation and Eqgs. (2.26)—(2.28) to itera-
tively calculate | ¢ ) and the Ox*. That is, one guesses a starting
| ¢) whose charge density v° allows the formation of the 4 and
B matrices of Eq. (2.28). The solution of Eq. (2.26) then gives
the excitation energies and the Op* (of the first interation).
Ok | ¢ =0 can then be solved for a new | ¢ ) giving a new charge
density v° for use in the next interation. Because we are trying
to make progress without ever calculating |¢), we adopt the
following different iterative procedure. We guess a starting
charge density ° which allows us to obtain the Oyt from Egs.
(2.26)-(2.28). Knowing the O;*, Eq. (5.2) gives us a new charge
density which is used in the next dteration to form the 4 and B
matrices of Eq. (2.28). We have made the assumption that the
charge density calculated by Eq. (5.2) is a reasonable approxima-
tion to the correct charge density of |¢) {which can be cal-
culated by solving Ox] ¢ )=0), at each stage of the interation.
Thus, we bypass the problem of solving Oxz)=0 by using Eq.
(5.2) to calculate new charge densities in the interative procedure.
The consequences of this approximation should be investigated
further by comparing the charge densities calculated from the
solution of Ok | ¢ =0 with those given by Eq. (5.2).
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18 We use the following normalization:

N
Try=N, TrI‘=< >
2

2 St;e, for example, R. McWeeny, Rev. Mod. Phys. 32, 335
(1960).

2 We sometimes use v,® to represent a diagonal element of the
charge density matrix: 2=+ This is done for notational
convenience. :

2 The reader should be cautioned that these approximate
excited states are not generally going to form a complete set.
This is an approximation.

2 Because the form of O™ given in Eq. (2.16) does not contain
CntCy or CHCy excitations, this statement is not strictly true.
However, if the ground state | ¢) is well approximated by a
single Slater determinant, contributions from these terms will
be small.

2 We are grateful to Professor William Reinhardt for furnish-
ing us with the Hartree-Fock basis.
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Dynamics of Protons in Hydrogen-Bonded Systems: Propynoic and Acrylic Acid Dimers
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This paper is part of a study of the origin of the abnormal infrared spectra of the stretching vibrations
of protons in H-bonded species. An experimental ir study of the 2000-3000 ¢cm™ region of propynoic and
acrylic acid dimers and of their deuterated analogs is presented. These ir spectra have been recorded with
high resolution and intensity in order to be compared with a theoretical model which predicts positions
and intensities of the lines. This model is briefly recalled, and the fit between theory and experiment is
discussed. It is suggested that the theoretical model considered here, although in its first stage of develop-
ment, represents the basic features of the mechanism of oscillation of protons in weak and moderate H

bonds.
I. INTRODUCTION

The elucidation of the mechanism of vibration of the
proton in a H bond X~H---Y is one of the intriguing
problems set up by the existence of the hydrogen bond.
Most of the vibrations of nuclei in an ordinary molecule
may be considered as harmonic and thus correspond to
a simple narrow line in the infrared spectra of the mole-
cule. By contrast, the stretching vibration of the proton
in the H bond X-H-+.Y is strongly anharmonic,! and
its corresponding infrared spectrum is broad, with a well
defined structure; and when a D atom is substituted for
the H atom, a strong isotope effect appears.?

A qualitative explanation of these abnormal features
in the infrared spectrum has been previously proposed.!
Recently, a more quantitative model of the dynamics
of the proton in the H bond X-H--Y has been used
with apparent success® to simulate the infrared spec-
trum of the stretching vibrations of the protons in
acetic acid dimers in the gas phase. The carboxylic
acids, which form hydrogen-bonded cyclic dimers in the
gas phase, are ideal species for testing these theoretical
models.

Except for the spectrum of acetic acid,® the infrared
spectra of the stretching vibration of the H-bonded
proton in carboxylic acids which exist in the literature
are not precise enough (with regard to the intensities
of their lines) to be transformed to the optical absorp-
tion log(Zo/I). Consequently, they can hardly be com-
pared with a theoretical model which predicts positions
and intensities of the lines. We have thus been led to
record precise spectra of different carboxylic acids in
the gas phase, and the object of this paper is to report an
experimental study of the ir spectra of the proton
stretching vibrations in propynoic and acrylic acids,
together with a theoretical interpretation of these
spectra. This work is a part of a more general study of
the dynamics of protons in H bonds” with a view to
testing the validity of the previously cited model,3
where it was assumed that the originality of the motions
of the proton in a H bond X-H-.-Y is due to the cou-
pling of this latter motion with the “hydrogen-bond
vibration” X>-H»---Y". This mode! might further-
more give an idea of the effect of = electrons on the
hydrogen bond, which might be related later with an
electronic study of the H bond.
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