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Abstracts

The quantum chemical methods employed by us to investigate the stabilities, charge densities, and
bonding characteristics of atomic and molecular anions are briefly reviewed. The results of our work on
chemically interesting species are surveyed, as are our initial results on the treatment of solvation
effects in anionic systems. Finally, a simple-minded approach to the problem of finding shape
resonances for electron—atom scattering processes is outlined.

Nous présentons une revue des méthodes quanto-chimiques que nous avons utilisées pour étudier
les stabilités, les densités de charge et les caractéristiques des liaisons d’anions atomiques et
moléculaires. Les résultats pour des cas d'intérét chimique et les premiers résultats sur le traitement
des effets de solvation sont donnés. Une esquisse est présentée d’un procédé pour trouver des
“résonances de forme”™ pour des processus de diffusion électron-atome.

Die von uns verwendeten quantenchemischen Methoden fur die Untersuchungen von Stabilitéiten,
Ladungsdichten und Bindungskennzeichen von atomaren und molekularen Anionen werden kurz
besprochen. Die Resultate fiir Fille von chemischem Interesse und die ersten Resultate iiber
~ Losungseffekte in Anionsystemen werden angegeben. Ein einfaches Verfahren fiir die Beschreibung
von “Formresonanzen” in Elektron-Atom-Streuungsprozessen wird skizziert.

1. Introduction

In surveying the research on negative ions carried out in our research group at
~Utah, I have decided to attempt to give an overview of several projects, rather
_than to cover one of them in great detail. In this way, I hope to give the reader a

good understanding of how thése projects fit together as a single unit whose
ultimate goal is the understanding of the physical properties and chemical
behavior of stable and metastable anions both in the gas phase and in solution. To
provide the reader with access to more detailed treatments of the topics covered, I
have given references to the recent literature.

In Section 2, I review the electron propagator theory used to compute elec-
tron affinities, which include orbital relaxation and electron correlation effects,
and I demonstrate the accuracy of our approach by comparing several of our
results to those of accurate experimental determination. Section 3 contains an
overview of both our recent work on the binding of electrons to highly polar
closed-shell molecules and our model studies of electron-molecule and anion—
solvent interactions. In Section 4 I describe an easily implemented procedure for
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‘identifying electron-atom shape resonances within a conventional square-
integrable basis calculation. Section 5 contains my concluding remarks.

2. Propagator Calculation of Molecular Electron Affinities

The electron propagator [1]1 G(E) is defined in terms of the set of spin- -orbital
creation operators {C;}, the superoperator Hamiltonian H (HA [A, H]), and
the reference state |g) as follows:

GE)=(C'|E1-A)'Cc" (1)

where 1 is the identity superoperator (1A= A) and the scalar product [2] is
defined by '
(A|B)=(g|A'B+BAlg) (2)

The poles of G(E) yield the (vertical) electron affinities and ionization potentials
of the parent. By first making an inner-projection [3] representation to the
superoperator resolvent (E1—H)™' =|h)(h|E1— H|h) (|, with the projection
operator space |h) chosen to consist of the C" operator plus higher order fermion
operators represented by q", and then partitioning [3] the result of substituting
this into Eq. (1), one can easily obtain

G'(E)=(C'|E1-H|C"- (C"'IE1 Hig"(q'|[E1- qu*)
q'IE1-HA|C" )

To make use of the propagator given by Eq. (3), one must truncate the inner
projection space |q") and one must choose some approximation to the reference
state |g). We have chosen [4] to represent |g), for closed-shell parent molecules,*
in terms of the Hartree-Fock wave function plus all first and second order
Rayleigh-Schrédinger corrections. We truncate the lgt) operators at the follow-
ing level:

q'={CICiLC + Ci.<g|CiClg > - Cl <g|CiCllg >} (4)

where the second and third terms serve to make g7 strictly orthogonal to the Ct.
Equations for the elements of G™* in terms of Hartree—Fock orbital energies
and two-electron integrals are given in Ref. [4]. We have shown [4] that the above
choices of g and |g) are sufficient to guarantee that the G™'(E) obtained through
Eq. (3) will be correct through third order in the electron interaction. From our
experience [5-13] and that of others [14-16], we know that electron affinities
which contain correlation corrections through second order are not sufficiently
accurate to be useful in studies of negative ions. Because electron affinities are
often less than 1eV in magnitude, any successful procedure must have an
accuracy of +0.2 eV. We have found that the third order electron propagator
approach seems to possess this required accuracy. The result shown in Table I
support this statement. As can be seen from this data, the effects of orbital

* At present our appreach is limited to systems for which either the neutral or the anion is
closed-shell.
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TaBLE I. Computed and experimental electron affinities (eV).

Anion Calculated E.A.
OH 1.76 (vertical)
-0.20 (Koopmans' theorem)
BeH ™ 0.77 (adiabatic)
0.40 (Koopmans')
CcN™ 3.70 (adiabatic)
BO~ 2.79 (adiabatic)
Li;(ziu) 0.90 (adiabatic)
\ LiH ™ 0.30 (vertical)
0.20 (Koopmans)
LiF~ 0.46 (vertical)
0.42 (Koopmans)
NaH 0.36 (vertical)
0.29 (Koopmans)
BeO 1.76 (vertical
1.41 (Kcopmans)
NH; 0.42 (adiabatic)
No; 2.60 (adiabatic)
Be; 0.38 (vertical)

Experimental E.A

1.82%

0.74°

2.4-3.1

*H. Hotop, T. A. Patterson, and W. C. Lineberger, J. Chem. Phys. 60, 1806,

(1974).

® D. Feldman, private communication.
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Farber, Trans. Faraday Soc. 67, 2491 (1971).
°K. C. Smyth and J. I. Brauman, J. Chem. Phys. 56, 4620 (1972); R. J. Celotta,
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318 (1974).

relaxation and electron correlation are often of the same size as the magnitude of
the molecular electron affinity. In the next section, examples are considered for
which these effects are especially small and for which Koopmans’ theorem or

A(scF) calculations suffice.
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3. Binding of Electrons to Highly Polar Molecules

The question of binding an electron to the potential energy field of either a
point dipole or a fixed finite dipole consisting of two charges (+q and —gq)
separated by a fixed distance (R) has been studied by many people [17]. It is well
known that an electron will bind to either of the above potentials if the dipole
moment (D) is greater than 1.625 debyes. Jordan [18] and the author [10, 11]
have carried out several ab initio third order correlated calculations on systems in
which an electron has been added to a neutral molecule whose dipole moment is
greater than 1.625 debyes. In Table I a summary of some of our results on LiH ™,
LiF~, NaH", and BeO™ is given. We find that the electron binds to the polar
molecule in a region of space which lies primarily on the electropositive atom, the
charge density being polarized away from the more electronegative atom.
- Moreover, we found that inclusion of the effects of electron correlation and
relaxation on the electron’s binding energy was not essential to obtain accurate
estimates of these properties. This result is consistent with a description of the
electron attachment as addition of the electron to a previously unoccupied region
of space (orbital) whose primary amplitude is spatially well separated from the
parent’s electrons. Thus, one can adequately describe the binding of an electron to
such highly polar closed shell molecules at the Koopmans’ theorem or A(scF)
level.

The above observation led us to consider the possibility of modeling this kind
of electron-highly polar molecule interaction by a simple effective potential. A
point dipole approximation is improper because it gives an infinite binding energy
[17]. By examining the binding of an electron to a fixed finite dipole, with R
chosen equal to the bond length of the species under study and the charge
magnitude (¢) chosen such that gR gave the experimental dipole moment, we are
able to conclude [11] that neither the ground state (which correlates [18] with the
1s state of the +q charge as R - 00) nor the lowest excited state (which correlates
[18] with the 2s state) gave reasonable predictions for the electron binding
energies. However, a model which replaces the electronegative atom by a —g
point charge and the electro-positive atom by a Z, +q charge plus Z, electrons in
the lowest Z./2 Hartree-Fock orbitals, where Z, equals the number of “core”
electrons (2 for Li, 10 for Na), did yield reasonably accurate (+0.2 eV) binding
energies [19] and charge densities. Clearly, the inclusion of the core electrons of
the electropositive atoms seems to be an important ingredient in a successful
model potential. We feel that a fixed finite dipole with the core of the electroposi-
tive atom presents a reasonably effective potential which merits further investiga-
ton.

Having achieved some degree of success with the above model potential for
the case of an electron binding to a polar molecule, we decided to look into the use
of such models for describing anion-solvent interactions and the hydration energy
of solvated electrons. We have been able to demonstrate [20], by actual quantum
chemical calculations within Gaussian basis sets, that the use of point dipoles to
simulate solvent H,O molecules (with D >1.625 debyes) is, as expected, entirely
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hopeless. The fact that the point dipole potential has an infinite binding energy in
this case allows one to achieve any hydration energy (for anions, cations, and
electrons) desired by simply modifying the orbital basis.

We have also begun to consider the fixed finite dipole model to describe the
solvent effects. In these studies, 2+ ¢ charges replace the two hydrogen atoms
of H,0 and one —2q charge replaces the oxygen. Again q is chosen to duplicate
the experimental dipole moment of water. Our initial results [20] indicate that
such a model is not really capable of giving a quantitatively accurate description of
the properties (hydration energy, cage size, spectral absorptions) of the hydrated
electron. We are now considering other electron—solvent potentials which include
Coulomb, exchange, and polarization effects as candidates for our studies of
solvated electrons. We are also performing ab initio calculations which are
designed to yield the hydration energies of molecular anions. In these studies we
are presently considering the use of the fixed finite dipole model for the solvent
H,O molecules. Noell and Morokuma's success [21] in employing this model for
solvation effects is encouraging, although their results on F (aq) and ours® on
OH ™ (aq) lead us to be quite cautious about concluding that the model is capable of
adequately describing hydration effects for anions. We must perform considerably
more numerical calculations before the accuracy of the model can be objectively
assessed. Such calculations are now in progress at Utah.

4. Searching for Shape Resonance in Electron-Atom Collisions

The radial Schrodinger equation for an electron moving in a spherically
symmetrical potential can be written (in atomic units) as

celedf g d Yo+l 2 :
oyl dr(r dr )+ 272 'J’I‘FV(r):p_Eq, )

If, as is the case for an electron interacting with a spherically symmetric atom, V(r)
has a long range attractive part, such as the charge-induced dipole potential, plus a
shorter range repulsive part, then the “effective potential” V;(r)=
[(1+1)/2r*+ V(r) can have bound, resonance, and scattering states. Resonances
which are caused by tunneling through the repulsive centrifugal barrier (I(I+
1)/2r?) are called shape resonances. The bound states have E < V;(r > ). The
resonance states, which are not square integrable states, have large amplitude for
regions of r where V/(r) is attractive and smaller amplitude for “large” r (where
Vi(r) becomes small). Scattering states have small amplitude in regions where
Vi(r) is attractive; their major amplitudes are for large values of r. Although
resonance states belong to the continuum, they are somewhat localized because
they have large amplitude for small values of r. '

By exploiting this localization characteristic of the resonance states, we have
developed an easily implemented procedure for finding shape resonances in an
atomic system within the framework of conventional Slater or Gaussian basis (L>
functions) set calculations. We simply add to the effective potential another term
of the form Ar® with A small (~1077) and § large (e.g., 6, 8, 10). The values of A
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and S are chosen so that this term is negligible for values of r where V.g(r) is
attractive and so that it is large (compared to the low-lying positive eigenenergies
of Vea(r)) when r is large. The effect of the added potential on the energles of
scattering states, which have large (r®) even as described within the L? basis, is to
greatly increase their eigenenergies. On the other hand the extra potential has
little eﬁcct on the bound and resonance states for which A(r®) is small. Then by
adding Y., Ar? to the one electron part of the Hamiltonian of an atom, one
removes the (unwanted) scattering states from the low energy (E > 0) eigenvalue
spectrum of H which now contains only bound and resonance states. That is, the
potential function Ar® has the effect of enclosing the system in a “box.”

We have successfully applied this procedure [23] to the resonance states of
one-dimensional model potentials of the form (V(x)= 20( —-x)+
[3x? exp (—Ax?)—J exp (—Ax?)+J10(x), where J and A are parameters and 6(x)
is the Heaviside step function. We found that, for choices of the potential
parameters A and S which yielded significant changes (+2%) in the bound and

‘resonance state eigenenergies, the scattering states had indeed been removed
from the low energy spectrum of H. Moreover, we found that the effect of the
added potential on the desired resonance (and bound) state eigenvalues can be
removed using first order perturbation theory. We simply subtract A (r®) from the

~ eigenenergy obtained with the external potential added, the average value (r°) -
being taken over the resonance state wave function computed with Ar° in the

Hamiltonian.

Recently we have also employed [24] this procedure to look for shape
resonances in Li"(15%2S 2p), Be™(15% 25 2p), and Mg~ (152 252 2p® 352 3p).
These calculations are being carried out both at the scrF level (by adding Zi L Ar
to the Fock operator) and at the correlated level (by adding Ar® as a one electron
part of the self-energy or optical potential in the Dyson equation [1]). As
expected, our scr-level results do not give accurate positions (eigenenergies) of
the resonances because of the total absence of the long-range polarization
potential. On the other hand, our initial calculations including polarization and
electron correlation effects do seem to yield reasonable values for the atomic
resonance positions. We are still in the process of performing these calculations,
so it would be premature to give an evaluation of the overall accuracy of our
method. Questions concerning lifetimes of the resonance states have not yet been
considered in our studies. Even if the positions of resonance states are not
obtained more accurately by this approach than by other methods (e.g., the widely
used stabilization technique [25]), our method may serve as a useful tool for
removing unwanted scattering states from the low-energy spectrum, thereby
allowing the researcher to more easily identify those roots of the secular problem
which are true resonance states. As stated above, our research in the area has only
recently begun; we plan to devote considerably more effort to this problem in the
future.

5. Concluding Remarks

In this brief survey of some of our past and current contributions to the field of
negative ion chemistry, I have attempted to demonstrate how modern quantum
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chemical tools, when combined with some simple physical models, can be used to
study gas-phase anions, solvation effects, and metastable anions. By no means did
I intend this survey to be an extensive review of work in each of these areas. For
reasons of time and space I chose to limit my perspective to discussing in very little
detail a few of our projects on atomic and molecular anions. I have recently
written two more extensive reviews of the status of quantum chemical methods for
studying anions [26] and of the results [27] obtained using these methods. These
reviews, combined with a careful reading of the references given in the present
paper should provide the interested reader with the detail which is lacking
here.

In concluding, I would like to thank the organizers of the Symposmm in Honor
of Per-Olov Léwdin both for inviting me to discuss our work at Dalseter and for
inviting me to summarize that discussion in the form of this paper.
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