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ABSTRACT: The myriad tools of quantum chemistry are now widely used by a diverse community of chemists, biologists,
physicists, and material scientists. The large number of methods (e.g., Hartree−Fock, density functional theory, configuration
interaction, perturbation theory, coupled-clusters, equations of motion, Green’s functions, and more) and the multitude of atomic
orbital basis sets often give rise to consternation and confusion. In this Perspective, I explain why quantum chemistry has so many
different methods and why researchers should understand their relative strengths and weaknesses. I explain how chemistry’s use of
orbitals and the need for wave functions to be antisymmetric causes computational-effort scaling proportional to the cube or higher
power of the number of orbitals. I also illustrate how the fact that the Schrödinger equation’s energies are extensive makes it difficult
to extract intensive properties such as bond and excitation energies, ionization potentials, and electron affinities.

1. INTRODUCTION
In this Perspective, I am not trying to explain things to quantum
chemistry (QC) experts. Instead, I am attempting to address
experimental colleagues who make use of QC to help interpret
their data but who often ask “Why are there so many acronyms,
different competing methods, all these different basis sets, and
such confusing jargon in your field?”, “Why do my calculations
take so long?”, and “What method should I use?” To answer, I
focus on three issues: (i) the extreme difficulties the Schrödinger
equation (SE) presents, (ii) numerical precision challenges in
connecting the SE’s extensive energies to intensive properties of
experimental interest, and (iii) how orbitals and antisymmetric
wave functions (i.e., Slater determinants) give rise to extreme
(third power and higher) scaling in computational effort as the
number of orbitals varies. I explain how the computational
efforts in various steps of a QC calculation scale, since this
knowledge is essential for designing appropriate and practical
QC calculations. Finally, I show how one can estimate how the
computer time involved in a calculation changes upon moving
from one basis set to another within various QC methods.
What is involved when a researcher wants to determine the

electronic energy at some specified geometry and in some
specified electronic state using QC? In principle, the researcher
seeks a solution to the electronic Schrödinger equation:
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Here, I use atomic units where the mass of the electron me, the
constant ℏ, and the unit of charge e are all of unit magnitude. In
such units, the energies occur in Hartrees, each being equivalent
to 27.21 eV, ri is the position of the ith electron, Za is the charge
of the ath nucleus located at Ra, N is the number of electrons in
the system, and NNuc is the number of nuclei.

Consider what this entails for an ethylene molecule with 6
nuclei and 16 electrons. This is a second-order differential
equation involving 3 ×N = 48 spatial coordinates. The kinetic
energy (first term) and electron−nuclear Coulomb interaction
(second term) involve sums, one for each electron. If they were
the only factors present, this would allow one to introduce an
orbital-product form for the wave function Ψ. However, the
electron−electron interaction potential (third term) depends on
the positions of pairs of electrons, so such a product form is not
entirely appropriate. Thus, one is faced with a non-separable
second-order partial dif ferential equation in 48 dimensions with
solutions Ψ that are odd under the interchange of any two electrons.
There is not just one solution to this SE; there are infinitely

many solutions. One relates to the ground electronic state,
others describe excited states (e.g., ππ*, σπ*, σσ* states, etc.),
while others relate to states of the ethylene cation plus a free
electron. There are also solutions for doubly, triple, etc. ionized
ethylene all the way up to states with the nuclei holding no
bound electrons but with 16 free electrons.
This illustrates how overwhelming and essentially impossible

the task would be if one were really trying to solve the SE for all
of its energies and wave functions, but that is not what is done in
practice. Instead, QC introduces tools that allow one to arrive at
reasonable approximations to a limited number of electronic
states. For example, one might want to focus on the ground
electronic state, a few excited electronic states, and the lowest-
energy state of the corresponding cation. It is by limiting the scope
and by living with limited but reasonable precision that QC provides
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useful results, but much of QC’s complexity is a result of how it goes
about doing so.

2. ORBITALS AND ANTISYMMETRY ARE INVOLVED IN
THE NUMERICAL COMPLEXITY

If the SE’s Hamiltonian were additive, as in
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then any solution {ΨK
0} and {EK0} (labeled with the index K to

identify the state and the superscript 0 to denote “approximate”)
could be written, respectively, as a Slater determinant of N spin-
orbitals (i.e., spatial orbitals multiplied by α or β spin functions),

= | |N(1) (2) (3) (4)... ( )K K K K K KN
0

1 2 3 4 (3)

and as a sum of orbital energies εj(K),

=
=

E K( )K
j

N

j
0

1 (4)

Two of QC’s most commonly employed methods, Hartree−
Fock (HF) and the Kohn−Sham (KS) version of density
functional theory (DFT), are of this form but differ in terms of
the particular potential V(ri) they employ. HF uses a Coulomb-
minus-exchange function for V, whereas DFT uses a Coulomb
potential plus a so-called exchange-correlation functional, as I
discuss later.
However, the SE also contains the two-electron Coulomb

repulsion terms. Themost common pathsQC uses to connect to
the trueN-electron wave functions and energies are perturbation
theory (PT), variational methods (VM), and the coupled-cluster
(CC) method. In PT and most VMs, the wave function is
expanded as a sum of Slater determinants {ΨK

0}:

=
=

C
K

N

K K
1

0
det

(5)

where Ndet is the number of determinants.
In variational approaches1 (e.g., configuration interaction

(CI) and multi-configuration self-consistent field (MCSCF)),
an expression for the energy E,

=
| |

E
C H C

C C
K K K K K K

K K K K K K

0 0

0 0
(6)

is minimized with respect to the parameters in the wave
function. In CI, the parameters are the {CK} coefficients, while in
MCSCF they include the linear-combination-of-atomic-orbi-
tals-to-form-molecular-orbital (LCAO-MO) coefficients {Ck,m}
that describe the MOs in terms of atomic basis functions (AOs)
{χμ}:

= [ ]
=

r C r( ) ( ) ork

M

k
1

,
(7)

In the MCSCF case, this minimization,

| | =
C

H 0
J (8)

| | =
C

H 0
j , (9)

leads to an eigenvalue equation of dimension Ndet×Ndet for the
{CK}:

| | =
=

H C EC
K

N

J K K J
1

0 0
det

(10)

as well as equations similar to (but more complicated than) the
HF equations for the LCAO-MO coefficients. These two types
of equations are coupled, meaning {CK} appears in the latter and
{Cj,ν} appears in the former, so they are solved iteratively. In the
CI case, only eq 10 is solved because the LCAO-MO coefficients
are assumed to have earlier been determined (e.g., in a HF
calculation).
In perturbation approaches,2 the difference W between the

electron−electron Coulomb repulsion and the one-electron
potential used to approximate it is scaled by an amount 0 ≤ λ ≤
1, and the wave function and total energy are expanded in
powers of this parameter λ to write the SE as

[ + ] { + + + } =

{ + + + } { + + + }

H W C C C

E E E C C C

...

... ...

K
K K K K

K
K K K K

0 0 1 2 2 0

0 1 2 2 0 1 2 2 0

(11)

Collecting terms of equal power in λ on the left- and right-hand
sides of this equation results in a series of equations, one for each
order. These equations are solved order-by-order to produce the
various-order contributions to the energy and to the wave
function’s {CK} coefficients. For example,

| | =H EJ J
0 0 0 0

(12)

| | =W EJ J
0 0 1

(13)

and

| | =W EJ J
0 1 2

(14)

are the equations for the zeroth- through second-order energies,
and

=
| |

C
W

E EJ
J K

J K

1
0 0

0 0
(15)

gives the first-order coefficients, as a result of which

=
| | | |

E
W

E EJ
K J

J K

J K

2
0 0 2

0 0
(16)

A primary issue is whether the perturbation expansion
converges, and there are cases in which it does not3 (e.g.,
when a bond length is elongated toward homolytic cleavage).
The particular form of PT where the perturbation is the
difference between the true electron−electron interaction and
the HF Coulomb-minus-exchange terms is referred to as
Møller−Plesset PT (MPPT) or many-body PT (MBPT). In
this variant of PT, the starting-point (zeroth-order) wave
function is a single Slater determinant. Notice that the PT
coefficient and energy expressions involve Hamiltonian matrix
elements between pairs of Slater determinants, a feature that is
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common to CI, PT, MCSCF, and CC, and one that gives rise to
much computational complexity.
In CC theory,4 the wave function is written not as a linear

combination of Slater determinants but in terms of the
exponential of an operator T that is itself a sum of terms,

= + + + +T T T T1 ...1 2 3 (17)

that act on a reference wave function ΨJ
0 (taken to be a single

Slater determinant in most CC theory) to generate single (T1),
double (T2), triple (T3), etc. promotions (often called
excitations) in which one, two, three, etc. spin-orbitals occupied
in ΨJ

0 are removed and replaced by spin-orbitals that were not
occupied in ΨJ

0.
The CC wave function is written as

= Texp( ) J
0

(18)

and CC theory expresses the SE as

=T H T Eexp( ) exp( ) J J
0 0

(19)

and expands the exponentials to obtain a rewritten SE,

{ + [ ] + [[ ] ] + [[[ ] ] ]

+ [[[[ ] ] ] ]} =

H H T H T T H T T T

H T T T T E

,
1
2

, ,
1
6

, , ,

1
24

, , , , J J
0 0

(20)

where the termination at the fourth-power terms is exact. These
CC equations involve products of T operators up through the
fourth power, and each Tn operator is written as a product of
amplitudes that are the primary variables of this theory and
(second-quantized5) operators that generate the n-fold orbital
excitations.
CC theory multiplies the above SE on the left by ⟨ΨJ

0| to
generate an equation for determining E and on the left by singly,
doubly, etc. excited determinants (⟨SΨJ

0|, ⟨DΨJ
0|, etc.) to

generate the equations for determining the amplitudes
appearing in the T1, T2, etc. factors. This gives rise to
Hamiltonian (and more complicated since they involve both
H and T) matrix elements between pairs of Slater determinants
(i.e., |ΨJ

0⟩ on the right and ⟨ΨJ
0|, ⟨SΨJ

0|, ⟨DΨJ
0|, etc. on the left).

Thus the CC equations are fourth-order algebraic equations
whose solutions give the amplitudes as well as the energy E of the
particular state of interest having been specified by the reference
wave function ΨJ

0.
The matrix elements between Slater determinants, which also

appear in PT and VT methods, are expressed in terms of one-
and two-electron integrals involving the MOs occupied in the
two determinants, such as ⟨ϕj(r)| − 1

2
2 − | |a

Z
r R

a

a
|ϕk(r)⟩ and

⟨ϕj(r)ϕj′(r′)| | |r r
1 |ϕk(r)ϕk′(r′)⟩. Three of the more constraining

bottlenecks of QC involve (i) evaluating the integrals in the AO
basis, (ii) transforming these integrals into the MO basis, and (iii)
expressing the matrix elements between pairs of Slater determinants
in terms of these MO-based integrals. Later, I give concrete examples
to illustrate these dif f iculties.

3. ATOMIC ORBITAL BASIS SETS
The QC computer codes compute6 one- and two- electron
integrals ⟨χμ(r)| − 1

2
2 − | |a

Z
r R

a

a
|χν(r)⟩ and ⟨χμ(r)χλ(r′)| | |r r

1

|χν(r)ϕγ(r′)⟩, where {χμ(r)} are the AO basis functions. The
most commonly used AOs are of Gaussian form Dxaybzc e−αrd

2

,

where D is a normalization constant and the integers a, b, and c
define the orbital’s spatial orientation (e.g., a,b,c = 0,0,0 for
spherical; 1,0,0, 0,1,0, and 0,0,1 for x-, y-, and z-directed; 1,1,0,
0,1,1, and 1,0,1 for xy-, yz-, and xz-directed, etc.). The exponent
α regulates the radial extent/size of the orbital, and r is the
distance to the electron occupying this orbital from the center on
which the orbital resides.
3.1. The Cusp Problem. These primitive Gaussian-type

orbitals (PGTOs) are used primarily because the one- and two-
electron integrals can efficiently be evaluated1 for them.
However, they don’t have the proper “cusp” that quantum
mechanics demands. The true wave function must have a slope
that is non-zero and given by

=
r

Z
(21)

as r approaches a nucleus of charge Z. PGTOs don’t obey this
cusp condition because e−αrd

2

causes
r
to vanish at r→0.

QC attempts to address the improper behavior of PGTOs
near nuclei by combining several PGTOs of varying radial extent
to form a contracted GTO function that is “peaked” near the
nucleus:

=
=

r( ) d
M

1
, prim,

prim

(22)

Although this contraction step is especially important for
describing the core orbitals that are strongly peaked at nuclear
centers, it is also used to describe some valence-level GTOs.
3.2. Core and Valence Gaussian-Type Orbitals (GTOs).

I will use a carbon atom to illustrate how the contraction
coefficients {dμ,μ′} are determined. In one approach, a HF
calculation on the ground state of the C-atom is carried out using
a basis consisting of PGTOs, and the LCAO-MO coefficients of
the 1s HFMO are used as the core 1s GTO’s {dμ,μ′}. Often, just
one contracted GTO is employed for treating the core 1s GTO.
In this same approach, a valence 2s and a set of three (x,y,z) 2p

contracted GTOs would be formed by using the HF LCAO-MO
coefficients of the HF 2s and 2p orbitals as their {dμ,μ′}.
However, unlike the core 1sGTO, more than one 2s and one set
of 2p GTOs are created. For the first GTOs, one (double-zeta),
two (triple-zeta), or more sets of 2s and 2p(x,y,z) GTOs are
created, with these additional functions usually being more
radially diffuse than in the first GTO. These additional GTOs
might consist of single PGTOs, or they might be contractions of
a few PGTOs (the basis set library7 will contain such
information). The net result of such a GTO basis formation
would be one contracted 1s GTO and two (double-zeta), three
(triple-zeta), or more sets of additional s and p(x,y,z) valence
orbitals.
For example, in a 6-31G basis, the core 1s GTO involves a

contraction of six PGTOs (to mimic the cusp behavior of the 1s
orbital) as well as two sets of valence GTOs. In the valence
space, one s and one set of p(x,y,z) functions are each a
contraction of three PGTOs, while the other valenceGTOs have
one s and one set of p(x,y,z) functions each consisting of one
PGTO. I refer the reader to ref 7 and the YouTube video8 I
created that more fully explain such matters as well as for an
explanation of the notations used to label various basis sets.
The bottom line in this example is that the original PGTO

basis contains 6 + 3 + 1 = 10 s-symmetry PGTOs and three sets
of 3 + 1 = 4 p-symmetry PGTO functions, for a total of 22
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PGTOs. The number of contracted GTOs is 1 + 2 = 3 for the s
functions and two sets of p(x,y,z) functions, or 9 GTOs in total.
The dif ference between 22 PGTOs and 9 GTOs might not seem like
a big deal but it is because much of QC’s computational cost scales as
a high power of the number of f inal GTO basis functions.
There is another commonly used path for constructing

contracted GTO basis sets; it is labeled cc (standing for
correlation-consistent) and uses a correlated rather than a HF
level calculation for determining the {dμ,μ′}. Again, I refer the
reader to ref 7 and my YouTube video8 for more details on the
nomenclature used in such cases and for information about
where one can find various basis sets listed in a form that can be
used as input to a QC program.
These basis functions’ primary purpose is to describe the

spatial distributions of the electrons that occupy the molecule’s
core and valence orbitals. The purpose of using multiple valence
GTOs is to allow for theMOs to adopt different radial extents in
various chemical environments. For example, the bonding πMO
of ethylene will certainly involve a linear combination of p-
symmetry π GTOs on the two carbon atoms with LCAO-MO
coefficients of the same sign on the two atoms. But, in 1,1-
dichloro-ethylene, the πMOwill likely bemore radially compact
near the carbon atom holding the two chlorine atoms than near
the other carbon atom. This can be accomplished by forming the
bonding π MO,

= +C C
j

j j
j

j j
left left right right

(23)

using different LCAO-MO coefficients Cjleft on the left carbon’s
GTOs {χjleft} than on the right GTOs {χjright}. By more heavily
weighting the GTOs with larger α-values, the LCAO-MO
process can make the MOmore compact on the carbon holding
the two chlorine atoms.
In addition to the core and valence bases, some basis sets for

heavier elements include effective core potentials (ECPs). In
these cases, the core electrons (e.g., 1s and 2s and 2p for a Cl-
atom) are not even treated; their presence is described by the
ECP, and the remainder of the basis is used to treat the other
electrons (e.g., 3s and 3p for Cl). Many ECPs also take into
consideration the effect of relativistic contraction of inner-shell
orbitals on the valence-shell orbitals.
3.3. Polarization and Diffuse GTOs. In addition to core

and valence GTOs, the basis often also includes two other kinds
of functions�polarization functions and diffuse functions. I will
first explain what a polarization function is and what it is used
for, again using the π bond in ethylene as an example. If the AO
basis set contained only p-symmetry AOs on the two C-atoms,
this bonding MO would be limited to be of the character shown
in Figure 1 (a). However, if the basis also included on each C-
atom a d-symmetry GTO that had a similar radial size as the p
basis function, the p and d functions could be combined in the
LCAO-MO process as shown in Figure 1 (b) to produce a π
bond as shown in Figure 1 (c). In this case, the polarization
functions allow the conventional p functions to bend (i.e., be
polarized) to the left or to the right. One can also add p-
symmetry polarization functions (e.g., to ethylene’s four H-atom
1s valence AOs) to allow s-symmetry AOs to polarize as shown
in Figure 1 (d).
It is important to emphasize that these polarization functions

are of similar radial size to the valence AOs they are polarizing.
So, the C-atom d polarization function shown in Figure 1 (b) is not
appropriate for describing a 3d excited orbital of the C-atom; it is,
instead, similar in size to the C-atom’s 2p orbital. Likewise, the p

polarization function shown in Figure 1 (d) would be of similar
radial size to theH-atom’s 1s orbital if it were used to polarize the
H-atom’s valence 1s orbital; it would not be appropriate for
describing a 2p excited state of the H-atom.
GTO basis sets often also include so-called diffuse GTOs.

These functions have smaller orbital exponents α than in core or
valence GTOs and are especially crucial to include when
studying anions having very small electron binding energies. For
studying dipole-bound anions or Rydberg states, even more
diffuse basis functions are needed, and they usually need to be
manually added to a standard basis set.
I should note that the polarization and diffuse functions serve

additional roles. The former are certainly important for
describing the polarization of a molecule’s electron cloud
induced either by the presence of another molecule or by an
external electric field. The latter are crucial when treating
polarization and dispersion (i.e., van der Waals) interactions.
3.4. Why So Many Different GTO Basis Sets? The fact

that the number (M) of contracted GTOs usually far exceeds the
number of electrons causes the high-power scaling of the computer
time needed (e.g., M3 to M5 or worse) to be a major dif f iculty. This
strongly encourages workers designing optimal GTOs to keepM
as small as possible. This means that the contractions used to
form the core and valence GTOs from PGTOs have to be
carefully designed and the number of valence, polarization, and
diffuse functions kept to a minimum for the task at hand. Also,
different tasks require different basis sets. For example, if one is
not studying a molecule in which a very diffuse MO is expected
to occur, there likely is no need to include diffuse basis functions
unless one is also studying the molecule’s dispersion interaction
with another or its physical polarization by an outside influence.
If one is studying hydrocarbons having a variety of substituents,
a valence basis with enough flexibility to characterize differences
in local electronegativity is necessary. Moreover, if one is seeking
high accuracy in, for example, a CC calculation, one would not
want to use a basis containing few valence-type GTOs and no
polarization functions; more GTOs offer more flexibility in
allowing the wave function to become optimal. To gain
appreciation for how calculated molecular geometries and
energies (i.e., bond energies, ionization energies, etc.) vary when
using different basis sets and different methods, I refer you to

Figure 1. Illustration of how polarization functions can allow π (in (a),
(b), and (c)) and σ (in d) orbitals to distort.
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Figures 15.4, 15.7, 15.12, and 15.16 of ref 1, where the
distributions of errors in such quantities for various basis sets
and methods are shown.
Knowing the number (M) of AO basis functions is important

because this determines how much computer time the
calculation will take moving from one basis to another. In
Table 1, I illustrate how the basis set size can greatly exceed the
number of valence electrons by listing M for several commonly
used bases for a first-row atom. In most QC programs, the total
number of basis functions for the molecule being studied is given in
the output information, so the easiest way9 to determine M is by
initiating a QC calculation.

4. THE INTEGRAL TRANSFORMATION SCALES AS
HIGH AS M5

The QC computer codes evaluate the AO-based two-electron
integrals ⟨χμ(1)χλ(2)| | |r r

1 |χν(1)χγ(2)⟩ and the corresponding
one-electron producing M4 such. The code then performs a
series of four steps to transform the integrals to the MO basis.
First, an intermediate four-indexed array X is formed from the
AO integrals:

| =
= r

C X(1) (2)
1

(1) (2)
M

l l
1 1,2

, , ; ,
(24)

This step involves M multiplications of an AO-based two-
electron integral by an LCAO-MO coefficient for each of the Nl
MOs labeled l and for each of the three indices μ, γ, ρ, thus
requiring a total of Nl×M4 computations.
The second step involves Nl×Nk×M3 calculations and forms

an array Y:

=
=

X C Y
M

l k k l
1

, ; , , , ; ,
(25)

The third step involves Nl×Nk×Nn×M2 calculations and
produces an array Z:

=
=

Y C Z
M

k l n n k l
1

, ; , , , ; ,
(26)

The final step requires Nl×Nk×Nn×Nm×M calculations and
produces the two-electron integrals in the MO basis:

=
| |
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Notice that if one or more of the Nl , Nk , Nn, and Nm (call it
N″) is not proportional to M, the overall scaling of this process
will be N″×M4; on the other hand, if all four of these numbers

are proportional to M, the scaling is M5. In any event, this step
presents one of QC’s biggest computational challenges.
The computer time (CPU) needed in a QC calculation is the

sum of the time needed to carry out all the steps, but often there
is one step that is most taxing, in which case we quote the scaling
of that step. The MOs occupied in the reference wave function
are O in number. For HF and KS-DFT, O = N, as is the case for
MPPT and CC, because all four approaches use a single Slater
determinant of N spin-orbitals as their starting point. In CI and
MCSCF, O > N because there are two or more Slater
determinants in these wave functions. An AO basis having M
functions produces these O MOs as well as M−O = V virtual
MOs.
For a given molecule and a given method, if one changes from

a basis having M AOs to another with M′ AOs, O does not
change but V does. In such cases, the CPU time scales as some
power of (M′ −O)/(M−O). On the other hand, using a given
class of basis set on two different molecules, both O and M will
be different, so the CPU time will vary as a power of (O′/O)
times a power of (M′ −O′)/(M−O). The former scaling is
usually referred to as basis-set scaling and the latter as molecule-
size scaling. For larger basis sets, where M ≫ O, (M′ −O′)/
(M−O)≈M′/Mwill hold, and this is how this scaling is usually
denoted.
When it comes to molecule-size scaling, it is important to note

that techniques such as localized orbitals10−12 and methods for
approximating two-electron integrals13,14 have proven useful in
reducing the scaling problems in larger molecules and clusters.

5. EXAMPLES OF HOW VARIOUS QC STEPS SCALE
WITH BASIS SIZE

Assume that a researcher wants to find the energies of the lowest
two electronic states of ethylene and the energy of the ethylene
cation at the equilibrium geometry {Ra} of the neutral. Assume
the researcher has chosen to use a 6‑31++G(d,p) basis set for the
C- and H-atoms that together contain 62 GTOs, and has chosen
to first carry out a HF or DFT calculation to optimize the
geometry and, in the HF case, to subsequently treat the
correlation energy using PT with second-order Møller−Plesset
perturbation theory (MP2), and to search for the excited state’s
energy using configuration interaction (CI). The worker will tell
the program how to occupy the orbitals with the available
electrons; let’s assume that the researcher has specified a state
with 8 α and 8 β electrons coupled to give a singlet state and with
the 16 electrons occupying the 8 lowest-energy HF or DFT
orbitals.
The program first performs a series of HF or DFT calculations

in which a geometry optimization algorithm is employed to
generate a series of steps (i.e., geometry changes) that lead to
lower and lower total electronic energies. All QC codes have a
variety of such geometry optimizationmodules15 and the worker
may have to specify one. Some use the gradient (i.e., first
derivative with respect to displacements of the nuclei) of the HF
or DFT energy to find a path leading downhill, hopefully to the
desired minimum; others also use second-derivative information
on this search.
If all goes well, the result would be a minimum-energy

geometry corresponding to H2C�CH2 and a corresponding
HF or DFT energy. If the user also specified that the program
compute the MP2 energy at this same geometry, the program
would do so. To estimate the energy of the ground state of the
ethylene cation, the user could either use Koopmans’ theorem
(KT) tomake this estimate asminus theHF orbital energy of the

Table 1. Basis Set Size M for a Variety of Common Bases for
Each First-Row Atom

Basis 6-31++G 6-31++G* 6-311++G 6-311++G*
M 13 19 17 23

Basis aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

M 23 46 80
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π orbital or ask the program to compute the HF, DFT, or MP2
energy for the system with only 15 electrons (e.g., with the π-
orbital β electron removed) coupled to generate a doublet spin
state. I will now walk through the steps involved in this project,
pointing out the computational-scaling issues that arise.
5.1. The Hartree−Fock Step. The wave function is

approximated by a single Slater determinant involving N spin-
orbitals:

= | |N(1) (2) (3) (4)... ( )NHF 1 2 3 4 (28)

If the spin-orbitals occur in spatially identical pairs of orbitals, as
they would in the calculation being considered here, this is a
spin-restricted HF (RHF) calculation. If each spin-orbital were
allowed to have its own LCAO-MO coefficients (e.g., the πα
spin-orbital having different LCAO-MO coefficients than the πβ
spin-orbital), QC calls this a spin-unrestricted HF (UHF)
calculation. I’ll say more about UHF later.
With each of the spin-orbitals expressed as a linear

combination of the AO basis functions multiplied by LCAO-
MO coefficients, this leads to the HF eigenvalue problem,

| | = |F C Cj j j, ,
(29)

where Cj,ν is the expansion coefficient of the jth MO involving
the AO χν, εj is the HF orbital energy of that MO, ⟨χμ|χν⟩ is the
overlap integral between the two AOs, and ⟨χμ|F|χν⟩ is the
corresponding matrix element of the Fock operator, defined as
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(30)

Here, k runs over the N occupied spin-orbitals. We see the
kinetic energy, the interaction of the electron with each of the
nuclei, and the Coulomb and exchange energies of the orbital
(labeled j) interacting with the N− 1 other electrons occupying
spin-orbitals.
The Fock and overlap matrices have dimensions M×M, and

the HF eigenvalue equations are solved iteratively since the
matrix elements of the Fock operator involve knowledge of Cj,ν
for the N occupied spin-orbitals. Each iteration involves solving
anM×M matrix eigenvalue problem forMMO energies and M
sets of LCAO-MO coefficients; of these, N belong to the
occupied spin-orbitals while M−N = V belong to virtual spin-
orbitals.
Two significant computational costs arise in this process. The

one- and two-electron integrals must be computed in the AO
basis, requiring CPU time proportional to M4. In some
approaches, these same integrals must be stored for future use
(the HF process must be iterated, and these same integrals are
needed in subsequent QC steps); this requires storage
proportional to M4. If the integrals are not stored, they must
be re-calculated in each iteration of the HF process.
Second, at least theN eigenvalues and eigenvectors belonging

to the occupied spin-orbitals must be found, needing CPU time
scaling as N×M2. In subsequent studies beyond the HF level,
one usually needs to know all or most of the orbital energies and

LCAO-MO coefficients, not just those belonging to the N
occupied HF spin-orbitals, soM5 scaling of this step is possible.
Notice that HF does not require that the integrals be transformed

from the AO to the MO basis. If the researcher had used DFT
rather than HF in this step of the calculation, things would have
progressed much as described above, with overall M4 scaling
from the AO integral evaluation. However, in the MP2 and CI
steps and in MCSCF and CC calculations, this integral
transformation step is (usually) necessary.
5.2. The MP2 Step. To carry out the MP2 calculation, one

needs access to a subset of the two-electron integrals in the MO
orbital basis, and the MP2-level energy is the HF energy plus a
correction,

= | | | |
+< = < = +

E
m n i j m n j i, , , ,

i j

N

m n N

M

i j m n
MP2

1 1

2

(31)

where the indices i and j label theN occupied spin-orbitals andm
and n label the (M−N) unoccupied spin-orbitals. Because the
number of occupiedMOs (i and j) is not proportional toM, only
N×M4 calculations are required in the integral transformation
for MP2. Also, if one does not wish to include correlation of the
core orbitals, the indices i and j can be further limited, as a result
of which even fewer of the two-electron integrals need be
transformed. Nevertheless, integral transformation remains the
limiting factor.
As an alternative to using MP2 to estimate the correlation energy,

CI or MCSCF could be used. For these methods one usually needs
most if not all of the MO-based two-electron integrals, but in these
cases at least one of the indices i, j, k, and l does not grow with M, so
the integral transformation CPU time can scale as O×M4.
In CC methods, there are steps having even higher-power scaling.

For example, when including only single- and double-excitation
operators (T1 andT2; termedCCSD), the calculation time, aside
from the integral transformation step, scales asN2×M4, whereN
= O is the number of orbitals occupied in the reference Slater
determinant. If triple excitation operators (T3) are treated
perturbatively as in CCSD(T), the calculation scales as N3×M4.
For a fixed molecule but varying the basis set, the scaling of
either CC method is (M′/M)4, but for a fixed basis type and
different molecules, the scaling is (N′/N)2 or 3×(M′/M)4. So, the
ef fort in such CC calculations can exceed the potential M5 scaling of
the integral transformation.
5.3. DFT Offers an Alternative That Includes Correla-

tion, with M4 and Potentially M3 Scaling. The geometry
optimization and HF- and MP2-level energy calculations
detailed above could instead be achieved using KS-DFT.
Analytical gradient and Hessian expressions are available to
use in the geometry optimization step, and DFT’s energy
includes correlation. In the most common variants of DFT,16,17

one solves the KS equations for the KS spin-orbitals ϕi and
orbital energies εi,
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(32)

using an exchange-correlation functional U(ρ(r)) that depends
only on the electron density ρ(r) at the location r.U(ρ(r)) is not
a simple function but a functional that usually depends on spatial
gradients of ρ(r), integrals involving ρ(r), and fractional powers
of ρ(r). The sum of the squares of the N occupied spin-orbitals
gives ρ(r) at each iteration of the KS equation.
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The ϕi are expanded in an AO basis, which leads to an
eigenvalue problem,

| | = |F C Cj j jKS , ,
(33)

where

| | = |
| |

|
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| |
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(34)

The first two terms are the kinetic energy and electron−nuclei
Coulomb interactions. The third term gives the matrix element
involving the Coulomb repulsion of an electron at r interacting
with the full electron density ρ(r′). This includes the Coulomb
interaction of the electron at rwith its own density; this is the so-
called self-interaction, which should not be present.
The final term in the KS equation involves the exchange-

correlation functional U(ρ(r)) that fills two roles: it attempts to
correct for the self-interaction just discussed, and it expresses the
correlation energy. The main challenge in developing DFT has
been in creating functional forms for U(ρ(r)) that are
computationally tractable, physically meaningful, and accurate.
Themyriad of functionals18 that have been put forth, and are still
under active development, is one of DFT’s contributions to the
complications of QC.
Solving the M×M-dimension KS eigenvalue equations

requires CPU time proportional to M3, but it does not
necessarily require calculation of the same M4 AO-based two-
electron integrals that HF theory does, nor does it require
transformation of the integrals to the MO basis. DFT expresses
the KS orbitals in the same kind of LCAO-MO expression as in
HF, but in some variants it expresses the density ρ(r′) as a
separate linear combination of AOs (a so-called auxiliary set of
M′ AOs is used for this expansion),

=
=

r c r( ) ( )
M

1 (35)

where the expansion coefficients {cμ} of the density can be
obtained from the LCAO-MO coefficients of theN occupied KS
spin-orbitals. This allows the third term in the KS equation to be
rewritten as
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These integrals have only three AO indices, so there are only
M′×M2 of them, where M′ is the number of auxiliary basis
functions, thus giving cubic rather than quartic scaling in the
integral-evaluation step.
A similar path can be followed for the fourth term in the KS

equations. For example, if U(ρ(r)) involves a term of the form
−Aρ1/3(r), the function ρ1/3(r) could also be expanded in terms
of auxiliary AOs,

=
=

r f r( ) ( )
M

1/3

1 (37)

and again the fμ coefficients can be related to the occupied-
orbitals’ LCAO-MO coefficients. The fourth term in the KS
equations can then be expressed as

=
=

r U r r r Af r r r r( ) ( ( )) ( ) d ( ) ( ) ( ) d
M

1

(38)

thus retaining the M′×M2 cubic scaling. I note that most DFT
calculations include in the exchange-correlation functional
exchange integrals as in HF (discussed later), thus returning
one to M4 overall scaling.
5.4. Evaluating the Ionization Potential. The QC

researcher also wants to determine the energy of the ethylene
cation. This could be achieved by subtracting the neutral
molecule’s HF, MP2, or DFT total energy from the cation’s HF,
MP2, or DFT energy. Of course, this path would require a
separate HF, MP2, or DFT calculation on the cation thus
essentially doubling the computer time involved.
Alternatively, one could use Koopmans’ theorem19 and

estimate the vertical ionization potential (IP) as minus the
energy επ of the π orbital. This theorem was derived by
analytically subtracting the Hamiltonian expectation value of the
HF Slater determinant having 16 electrons from the expectation
value of the Slater determinant in which one of the electrons in
the π orbital has been removed:

| |

| |

| |

| | =

H

H
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(1) (2) (3) (4)... (15) (16)

(1) (2) (3) (4)... (15) (16)

(1) (2) (3) (4)... (15)

(1) (2) (3) (4)... (15)

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 (39)

The difference in these two expectation values turns out to be επ:
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where i = π.
The other occupied orbitals’ energies εi give estimates of IPs

for removing an electron from each of those MOs. In principle,
the orbital energies εm belonging to unoccupied HF orbitals can
give estimates for the electron affinities (EAs) associated with
adding an electron to those MOs, but one has to be very careful
in identifying which virtual orbital is chosen,20 especially when
considering orbitals having positive energies. When using a basis
set with diffuse functions, it is common for some/many of the
lower positive-energy virtual orbitals to correspond to pseudo-
continuum orbitals that approximate a free electron plus the
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neutral molecule. Reference 20 details how to avoid such
problems.
In contrast with HF, DFT orbital energies21 do not offer the

same connection to IPs and EAs. The energy of the highest
occupied KS MO gives the correct IP if one has the exact
functional U(ρ(r)), but the virtual KS MOs’ energies are not
good estimates to EAs (but the virtual-to-occupied KS orbital
energy differences often do give decent excitation energies).
5.5. The Energy of the Excited State. If the excited state of

ethylene of interest is of a different spatial or spin symmetry than
the ground state, then a HF calculation followed by an MP2
evaluation of the correlation energy, or a DFT calculation, can
suffice. In the HF or DFT case, the program occupies the spin-
orbitals in a manner that produces the desired spatial and spin
symmetry. For example, if the triplet ππ* state were under
consideration, the worker could tell the program to place the
15th and 16th electrons into πα and π*α spin-orbitals,
respectively. The HF or DFT code could then produce an
energy for this triplet ππ* state, and the energy of the ground
state could be subtracted from it to estimate the vertical (i.e., at
the specific geometry) excitation energy. The MP2 energy
correction for this excited state could be evaluated as discussed
above, and this value could be used to form an MP2-level
estimate of the excitation energy. I should note that, to study a
singlet ππ* state, this approach would not work because the
most basic approximate wave function for such cases would
require two Slater determinants.
If the QC researcher wants to determine the energy of an

excited state of the same spatial and spin symmetry as the ground
state, then a different approach is needed, and CI offers such a
route. When using CI, the program forms several Slater
determinants, all having the same spatial and spin symmetry as
the ground state, that differ from the dominant determinant of
the ground state through the promotion of one, two, three, or
more electrons. Once the CI code is instructed as to which
single, double, etc. promotions to include, it forms the relevant
Slater determinants and then forms the Hamiltonian matrix
elements of eq 10 between all pairs of Slater determinants. These
matrix elements are expressed in terms of the MO-based integrals, so
the CI calculation will require this potentially M5 calculation step.
The dimension of the CI Hamiltonian matrix thus formed is

Ndet×Ndet and to find NStates eigenvalues requires NStates×Ndet2
steps, which can get out of control ifNdet becomes very large. For
this reason, most CI calculations involve careful selection (e.g.,
by limiting the orbital energy ranges for electron promotions and
selecting only determinants that couple strongly with the most
dominant determinants) of which determinants to include.
Moreover, special techniques22 are used to solve for the NStates
eigenvalues of such largematrices. The results of a CI calculation
in which the lowest two states are extracted as solutions of the
Ndet×Ndet eigenvalue problem are the energies of these two
states (the ground state and the lowest excited state of the same
symmetry) and their corresponding CI expansion coefficients
{CJ}.

6. WHAT ARE DYNAMIC AND STATIC ELECTRON
CORRELATIONS?

The PT, CI, MCSCF, and CC methods include correlation
effects by including more than one Slater determinant in the
wave function. DFT treats correlation through its exchange-
correlation functional. Both routes present challenges, but I
begin by discussing the former to explain what dynamic and
static correlations are.

One might think the most important determinants to add to
the dominant Slater determinant would be those involving single
promotions (e.g., determinants like |ϕ1(1)ϕ2(2)ϕ3(3)ϕK(4)...
ϕN(N)| in which ϕ4 has been replaced by ϕK). However, this is
not the case, because a combination of the dominant
determinant and one involving a single promotion is equivalent
to a single determinant in which the fourth spin-orbital is a
combination of ϕ4 and ϕK:
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+ | |
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A N
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A B K N

1 2 3 4

1 2 3

1 2 3 4
(41)

If the energy has already been minimized with respect to the
LCAO-MO coefficients of the fourth spin-orbital, the optimal
value of CB will be zero. This does not mean that singly excited
determinants will have zero amplitudes if one also includes
doubly and/or higher promotions; it just illustrates why the
single promotions are usually not very important�because the
occupied orbitals have already been optimized.
Doubly promoted determinants are actually the most

important to include, which I illustrate by considering a wave
function consisting of two determinants, with the second formed
by taking the doubly occupied orbital ϕ in the first and replacing
this orbital by a different orbitalϕ′ (e.g.,ϕ = π andϕ′ = π* in the
ethylene situation). It can be shown that such a combination of
two determinants, with coefficientsC1 and−C2, can be rewritten
as follows:

= | | | |

= [| + |

| + |]

C C
C

x x

x x

... ... ... ...

2
...( ) ( ) ...

...( ) ( ) ...

1 2

1

(42)

where

=x
C
C

2

1 (43)

Instead of viewing the function as one determinant having both
electrons inϕ and another having both electrons inϕ′, with |C1|2
giving the probability of the first and |C2|2 giving the probability
of the second, one can take another viewpoint. This same
function can be viewed as one electron being in one polarized
orbital,

= +
++

x

x1 2 (44)

while the other electron resides in another polarized orbital,

=
+

x

x1 2 (45)

The factor of + x1 2 makes them normalized.
In Figure 2, I show how the π and π* MOs of ethylene

combine to form a polarized orbital pair. The ϕ+ = ϕ + xϕ′
orbital is polarized to give more electron density on the left
atom, while ϕ− = ϕ − xϕ′ is polarized to give more electron
density on the right atom. Note that the polarized orbital pairs
need not involve the polarization basis functions I discussed earlier
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(they were of d character); polarized orbitals pairs and polarization
basis functions need not be the same thing and are not in this case.

When the ethylene molecule is at or near its equilibrium
geometry with the π bond intact, the coefficient x turns out to be
small but non-zero. In this case, the polarized orbitals describe
what QC calls dynamical correlation, in which the two electrons
are avoiding one another. Such correlation corrections to the
total energy are often tenths of an eV per electron pair for
valence orbitals of first-row atoms. Static/essential correlation
arises when the π bond is broken by rotating the CH2 groups
toward 90°, where x becomes unity, meaning the polarized
orbitals have evolved into one localized on the left atom with the
other on the right. This is how two determinants generate
singlet-coupled radical centers upon homolytic cleavage of the π
bond.
Although MCSCF, PT, CI, and CC calculations describe

correlations through the introduction of doubly excited
determinants (although CC theory does so via its T2 operator),
they differ in an important manner. PT and CC theory focuses
on finding the total electronic energy of one electronic state
through the choice of the single-determinant reference function
that is assumed to dominate the final wave function. In contrast,
CI and MCSCF can provide more than one solution of their
matrix eigenvalue problem, offering a route to the energies of
more than a single electronic state; also, they don’t assume that
one Slater determinant is dominant in any solution. All of these
methods suf fer the potential M5 plague of integral transformation
plus the NStates ×Ndet

2 eigenvalue-solution step of CI and MCSCF or
the steps scaling as high as M6 or M7 in CC.
In contrast, DFT treats electron correlation through its

exchange-correlation functional U(ρ(r)) that fills two roles:
correcting for the self-interaction error and expressing the
correlation energy (in some functionals23,24 also including long-
range dispersion terms). Largely for scaling that does not exceed
M4 and for accuracy that has resulted f rom developments and testing
of exchange-correlation functionals, DFT has become one of QC’s
most widely used methods.
However, it is important to be aware of some weaknesses that

remain in DFT (although they are being addressed by a
multitude of researchers). In addition to the issue of KS orbital
energies not offering the same connection to IPs and EAs as
Koopmans’ theorem, there are twomore I wish to highlight: how

the exchange-correlation functionals handle the self-interaction
problem and to what extent they are capable of treating the
essential/static correlations that arise when bonds are homolyti-
cally cleaved.
In hybrid DFT methods, the self-interaction is addressed by

adding into the KS Fock matrix terms that explicitly are of the
exchange form, weighted by a fractional parameter 0 < X < 1:

| |
X C C r r r r

r r
r r( ) ( ) ( ) ( )

1
d d

j
j j

,
, ,

(46)

and then scaling the exchange portion of U(ρ(r)) by the
counterbalancing factor (1.0 − X). Following this path brings one
back to having two-electron integrals with four indices and thus to
M4 scaling but still avoids the M5 integral transformation.
As an example25 illustrating the importance of properly

correcting for self-interaction errors, consider dissociation of the
H2+ cation into H + H+ (analogous problems arise in
dissociations of other bonds involving odd numbers of
electrons). In this case, most common KS-DFT methods
produce a total electron density

= | |r r( ) ( )g
2

(47)

as the square of the singly occupied σg orbital. As such, the net
charge on each of the two nuclear centers is +1/2; that is, the
electron density is half on the left center and half on the right.
This produces in the DFT energy profile a Coulomb repulsion
between the two +1/2 charges at large R, which, of course, is
wrong. The hybrid approach discussed above tries to remedy
this but turns out not to do so fully.
DFT has also had difficulty with static correlation arising in

homolytic bond cleavage,26 as in dissociation of H2 into two H-
atoms (similar issues arise, for example, in rotating the two H2C
units in ethylene to break the π bond). The simplest qualitatively
correct model involves two electronic configurations,

= | | | * * |C C(1) (2) (1) (2)1 2 (48)

where the bonding and anti-bonding MOs are

= + * =c c c candleft right left right (49)

and χleft and χright are comprised of AO basis functions on the two
nuclei. This wave function allows the polarized orbital pair to
evolve into χleft and χright to produce a singlet-coupled pair of
radical centers when the bond breaks.
The problem that DFT has in dealing with this is that it

expresses the total density, ρ(r′) = ∑j=1
N |ϕj(r′)|2 as a sum over

densities for the N occupied KS spin-orbitals in its single Slater
determinant. However, most available KS procedures are not
able to find a single spatial orbital to use in a singlet-coupling
manner within a single Slater determinant that can produce the
electron density of the above two-determinant function:

= [| | + | * | ]r C r x r( ) 2 ( ) ( )1
2 2 2 2 (50)

where

=x
C
C

2

1 (51)

A single determinant

= | |+ r r( ) ( )1 2 (52)

involving the polarized orbital pair

Figure 2. Illustration of howmixing the bonding π and anti-bonding π*
orbitals gives rise to left- and right-polarized orbitals.
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= ± *

+±
x

x1 2 (53)

does have the correct density, but this determinant is not a
singlet; it is a mixture of singlet and triplet spin functions.
Generalizations26,27 of DFT that make use of more than N spin-
orbitals have been introduced that show significant progress in
dealing with this issue but most DFT methods still suffer in this
manner.
One can still determine homolytic bond energies using DFT

by carrying out a DFT calculation on the reactant molecule (e.g.,
H2), carrying out separate DFT calculations on each of the
fragments obtained when the bond is cleaved, and then
subtracting these energies. However, it is difficult to form a
reliable energy vs bond-length curve for dissociating H2 by using
DFT energies at H−H distances ranging from equilibrium
through large-R. If the two occupied spin-orbitals are not
required to have identical spatial character, a full potential curve
can be obtained, but there is a problem. For H2 this uses a
determinant of the form |σα(1)σ′β(2)| in which the two spatial
orbitals can be different combinations of χleft and χright. Such so-
called unrestricted (UKS) wave functions can be used to
generate an energy plot that evolves from near the equilibrium
bond length (where the energy minimization gives σ′ = σ) out to
large-R (where σ′ becomes χright and σ becomes χleft). The
problem with this approach is that, at some critical distance, σ
and σ′ suddenly become different. The energy plot does not
undergo a discontinuity, but its slope does, and the spin
eigenvalue is no longer singlet. Such “kinks” in the UKS (or
UHF) energy surfaces are not fully satisfactory descriptions.

7. THE SCHRÖDINGER ENERGIES ARE EXTENSIVE,
BUT MOST PROPERTIES WE ARE INTERESTED IN
ARE INTENSIVE�THIS IS A PROBLEM

I will use two molecules to illustrate this issue, both described
using a 6-31++G** basis�ethylene and the H2N-(Ala)10-
COOHpolypeptide. For ethylene, the HF andMP2 energies are
−2123.54 eV and −2131.46 eV, respectfully, and there are 62
GTOs in the basis. For the polypeptide, the HF and MP2
energies are −68 969.52 eV and −69 182.78 eV, and the basis
has 1281 GTOs.
Each of these energies approximates the total energy of the

molecule with its electrons attached relative to the energy of that
molecule with all its electrons stripped away. I don’t know of any
experiment that actually measures such energies! Usually,
experiments measure intensive quantities such as bond energies,
activation energies, excitation energies, IPs, and EAs.
To compute intensive energies as differences in two

Schrödinger total energies presents a numerical-precision
challenge. For example, the polypeptide’s energy is ca. 32
times that of ethylene, which is not too surprising since it has far
more electrons than ethylene. However, the bond energies, IPs,
and other intensive energies of these two molecules don’t differ

bymuch. To cleave ethylene’s double bond costs 6.4 eV, while to
break a C−C single bond near the middle of the polypeptide
requires 3.9 eV.
As the molecular size grows, the total (extensive) energy

increases correspondingly but the magnitudes of the intensive
energies do not change correspondingly. Therefore, to reliably
compute the intensive properties by subtracting two total
energies requires that the extensive energies be computed to
higher and higher precision as the molecular size grows. For
example, to determine the 3.9 eV bond energy of the
polypeptide, the total energy (−69 182.78 eV) has to be precise
to 6 digits. Clearly, this situation becomes futile for very large
molecules and is why QC’s basic ingredients (e.g., integrals and
matrix eigenvalues) need to be computed using double-
precision (or higher) arithmetic even for small or medium-size
molecules. This suggests that trying to calculate eigenvalues of the
Schrödinger equation head-on might not of fer an optimal connection
to experiments.
The good news is that methods exist within QC for directly

calculating intensive properties, although most of them still
require that an approximate wave function (HF, KS-DFT, CI,
MP, MCSCF, or CC) first be calculated, even though its energy
is not used to determine the desired intensive property. As a
result, the computational scaling of the wave function
determination remains. The properties that can be evaluated
in this manner include excitation energies (EEs), IPs, EAs,
polarizabilities, and more. However, there are properties such as
reaction activation energies, reaction ΔE and ΔH values, and
non-covalent intermolecular interactions that are not subject to
these direct-calculation approaches; they still need to be
determined through the Schrödinger energy-difference route.
Most of these so-called response methods express the

intensive properties as solutions to matrix eigenvalue problems.
For IPs and EAs, the matrices have dimension M×M and are
embodied in equations-of-motion (EOM) or Green’s function
methods whose reference wave functions have various levels of
rigor, including HF (i.e., Koopmans’ theorem), MP2,28

MP3,29−31 up to the CC level,32 and others33,34 relate to KS-
DFT orbitals in their underlying foundation. For EEs, the
matrices have (larger) dimension (N×M)×(N×M) that are
usually treated using iterative techniques.22,35 These methods36

include CI including single excitations (CIS), time-dependent
DFT (TDDFT), the Random-Phase Approximation (RPA),
and CC-based37,38 EOM theories. All of these responsemethods
produce intensive energies because their working equations are
derived by analytically subtracting all terms common to the
extensive energies of the ground and excited states (for EEs) or
the neutral and ionic states (for IPs and EAs). Because they
produce the response in energy that accompanies displacement
of a nuclear center, I would add to these theories the well-known
analytical gradient (and higher derivatives) methods39,15 that
have proven extremely useful in finding equilibrium geometries
and transition states.

Table 2. Scaling of Computationally Dominant Components with Number of AOs (M) and Occupied MOs (N) for AO-Integral
Evaluation (eval.), AO-to-MO Integral Transformation (trans.), and Matrix Eigenvalue-Solving (eigenval.) Steps or Steps
Intrinsic to the Method

HF, DFT MP(2) CCSD CCSD(T) CI, MCSCF CIS, RPA, TDDFT CCSD-EOM-EE, IP, EA

M4 NM4 N2(M − N)4 N3(M − N)4 NM4 NM4 N2(M − N)4

eval. trans. trans. trans. for CCSD step
NStatesNdet2 (NM)2 (NM)2 for EE or M2 for IP, EA
eigenval. eigenval. eigenval.
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8. SUMMARY
I hope this Perspective allows the reader to better understand
whyQC is so complicated (because electrons move in a way that
is described by quantum, not classical, mechanics), what QC’s
various methods are and how they describe the electrons’
correlated motions, where the computational and conceptual
complexities in QC arise, and how to estimate how the
computing time of your QC calculation will change if you
change basis sets or move from onemolecule to another with the
same basis type. [Refer back to section 4 for information on how
these two distinct cases are handled.] In Table 2, I remind you
about the dominant scaling in various methods to be of
assistance.
Finally, let me touch briefly on “what method and basis should

I use?” It depends on what you want to do. To determine
equilibrium geometries and harmonic vibrational frequencies, it
would make sense to begin by using HF or KS-DFT within a
modest basis. If you know that the state of interest is multi-
configurational, it would be better to replace HF/KS-DFT by
MCSCF. This would be essential when studying a transition
state whose barrier involves an avoided crossing. In carrying out
the geometry optimization, you should make use of analytical
gradients, and to obtain the harmonic vibrational frequencies,
analytical second-derivatives could be used. The resultant
geometry and frequency data could then be used to estimate
entropies and enthalpies. After that, it would be wise to expand
the basis and move beyond HF to include correlation using MP,
CI, and CC if feasible, ultimately reaching the most precise
method and best basis you can afford to employ; this is where
you need to use knowledge of scaling to help decide what is
feasible. This strategy can also be followed to study reaction
paths and bond dissociation energies, but when faced with a
barrier resulting from an avoided crossing, it would be wise to
test results obtained with any single-determinant-based method
(e.g., MP or CC) by also using a multi-determinant-based
method (e.g., MCSCF or CI).
If you are interested in EEs, IPs, or EAs, it would be wise to

first try CIS or TDDFT for EEs or Koopmans’ theorem or
Green’s function for IPs or EAs, again starting with a modest
basis. For EEs, CIS is often a wise first step as it is not very
computationally taxing, although it should be viewed as only
that, since it is not treating electron correlation. If an excited
state is expected to have a large charge-transfer character,
TDDFT should be avoided as it has difficulties in these
situations40 (the self-interaction problem). After that, the basis
should be enhanced and one should consider using EOM-CC-
level EE, IP, or EAmethods if possible, again using knowledge of
scaling to guide you.
QC continues to undergo rapid growth in terms of the

number of people using it, while growing computing power (e.g.,
GPUs, quantum computers, etc.) and new methods (e.g.,
machine learning, artificial intelligence, density matrix renorm-
alization group, Monte-Carlo, etc.) promise to offer even more
capability. In my opinion, these evolutions are likely to produce
even greater “complications” than QC currently displays.
However, I think scholars from the experimental and other
theoretical chemistry communities will continue to be able to
surmount such difficulties, even if they also continue to
complain about them, even if only because of QC’s utility.
In line with the tone of this Perspective article, I am not giving

an exhaustive list of literature references. Rather, I provide
references primarily to articles or chapters of an overview or

review nature that I found especially pedagogical and that I think
offer an efficient avenue for the readers I am attempting to reach
to gain more in-depth insights. Within these references, the
reader can find ample sources to the earlier works bymany of the
pioneering workers and to their efforts over the ensuing years.
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