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A SIMPLEAPPROACHTO PREDlCTINGRESONANCELEVELS
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We propose a modification of Hazi and Taylor's stabilization method for calculatingresonance energies by adding a posi-
tive definite operator to the hamiltonian. The purpose of this operator is to raise the energies of seattering states while not
significant1y affecting the bound or resonance states. The method has advantages over the ordinary stabilization techniques.
We treat two model problems and discuss possible applications to atomic and molecular systems.

1. Introduction

In principle, the Schrodinger equation, HI/; =
(t + V) I/; = E1/I,and its accompanying eigenfunctions
and eigenvalues are uniquely described by the poten-
tial energy, V [l]. For any V, we may define three
different types of eigenfunctions and eigenvaIues [2].
The first type are bound state solutions having energy
below that of the component species separated to in-
finity. For example, the ls, 2s, 2p, 3s, 3p,... energy
levels for the hydrogen atom (V = -e2jr) problem.

AlI of the other states have positive energy and are re-
oferred to as continuum states. For many problems we

find a further taxonomic division is useful. There may
be solutions with energy above the separated particie
energy, but stilllower than a potential energy maxi-
mum. (These states are nonetheless not square inte-
grabIe.) The corresponding eigenfunctions may be
nearly bound and quite localized in the potential well.
These states are caIled resonance states, while the more
delocaIized states with arbitrary positive energy are
called scattering states. For example, the "semi-empir-
ical" [3] potential
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V(r) =-a/2r4 + 1(I+ I)/2r2 ,

where a is the polarizability of the atom and l the an-
gular momentum state of the added electron (l =O, s;

.1 = l, p; etc.) is used to approximate a potential ener-
gy "barrier" which can temporarily bind an additional
electron.

The physical properties of resonance states are very
different from scattering states [3]. For example, they
are much longer lived. Accordingly, we are led to the
question of deciding if a given calculated cQntinuum
state is a resOnance or scattering state. A frequently
employed approach is Hazi and Taylor's stabilization
method [4]. A basis of square integrable functions

{1/Ik} is chosen and the representation of the hamilto-
nian, within this basis is diagonalized. A resultant
eigenvalue, EOl'and eigenvector COlare judged to be
stabilized if, as the basis is chosen to be more and
more complete by expanding the basis set (or system-

atically varying orbitaI exponents), the eigenvalue EOl
remains essentially unchanged. As Hazi and Taylor
have shown, stable roots of the secular equation corre-
spond to bound state or resonance state solutions.
Solutions whose roots are not stable correspond to
approximations to the scattering eigenfunctions of H.

The trul~bound eigenst.ates of H cim be approxi-
mated in a straightforward and well-understood man-
ner, the Rayleigh-Ritz variational principle and the
accompanying Hylleraas-Undheim theorem [5]. The
corresponding calculation of continuum states, both
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resonance and scattering, is compIicated by the prob-
lem of variational collapse, Le. belowany continuum
state there is an infinite number of other states. As

such, there is a major difficulty in the st\bilization
technique: it is necessary to do numerous caJculations
for any problem of interest. It is well.known that the
expense of a caJculation increases dramatically with
the size of ~asis set chosen [6]. Accordingly, the ne.
cessity of performing caJculations with ever larger sets
may simply be economically unfeasible for the basis
sets of interest. This seems surprising noting the exten-
sive Iiterature involving large configuration interaction
(CI) studies [6]. The standard procedures for deter-
mining the approximate eigcnfunctions and eigen-
values or energy levels of large matrices provide only
the first few values [7]. This is sufficient for most sys-
tems studied by CI techniques. However, we are not
looking for the lowest energy solutions but for those
that are stabilized. Accordingly, with the usual stabili-
zation method, we must look at numerous eigenvalues
and we must examine how they change with changes
in the basis set.

In this paper we wish to present an alternative tech-
nique for studying resonance states. Rather than mini-
mizing the expectation value of H, we will instead
take the functional derivative of

E'[1/IJ =(1/IIH+nI1/l}/(1/I11/I), (1)

,"

Iti

where the positive operator n has been chosen so that
its expectation values are smali for bound and reso-
nance states but large for scattering states. This will
allow us to look for just the lower eigenvalues of ex-
pression (J), as in the above mentioned CI calcula-
tions, because the scattering states will have been re-
moved from the low-energy spectrum. We now discuss
possible choices of n and examine in more detail how
the method is implemented.

r
l
t 2. Implementation of the method
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Let us now discuss how to choose n and the con-

sequences of minimizing expression (J). We wish to
have an added functional (n) that is smali for the

bound or 10caJjzed resonance states but large for scat-
tering states. This suggests that n should be positive
definite as to prevent the possibility of an eigenfunc-
tion of (J) having an eigenvalue that is lower than a
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real bound state. LocaIized states may be expected to
have smali values of (rS) (at least for smali square inte-
grabIe basissets). This suggeststhat ",s with appro-
priate choices of the (smali) scale factor Kand (Jarge)
exponent s can be used to accompIishthe above dis-
tinction between resonance and seattering states.

A more quantitative statement of this philosophy
is that the stationary points of the functional

E'[1/I] ==(1/I1-lV2 + V(r)+",sI1/I)/(1/I11/I} (2)

should be nearly equal to the localized stationary
points of the functional with K =O.The stationary
points of E' [1/1]corresponding to nonlocaIized func-
tions should be high er in energy than the correspond-
ing stationary points of E'[ 1/1]for K = O. Indeed, the
resultant separation of 10caIized (Jow-eigenvalue) and
non-locaIized (high-eigenvalue) states is the most im-
portant aspect of the approach described here.

If the trial function 1/1is approximated as a linear
combination of square integrable basis functions

I/Jk(k = 1,2,... m)

1/1 = 6cicl/Jk'k
(3)

the condition that E' [1/1]reach an extremum can be
expressed as follows

m

6 [(l/Jkl-lv2+ V(r)II/J/} + K(l/Jklrsll/J/}]cl,Q1=J

= 6 (I/JkII/J/}cl,QE~ .1
(4)

Once the eigenvaluesand eigenvectors of eq. (4) be.
longingto 10caIized(bound or resonance) states are
obtained (these are presumably the lowest Iyingener-
gy states and relatively few in number), we can use a .~
perturbation theory [2J approach to remove from the ~
eigenvalueE~ the effects of the artificial "external
potential" Krs. First order Rayleigh-Schrodinger per-
turbation theory approximates the desired (Jocalized)
eigenvalue(EQ)of H as

m

EQ ==E~ -.~ c[QcjQ (l/Jilrsll/Jj}K .I,J=1
(5) 1

Although we may be able to go to higher orders in per-
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turbation theory we feel that for the localized states

or H' it is adequate to stop at this first-order expres-
sion because of the smalI effect of K.rson such states.

or course, eq. (5) is not used to generate corrections
to the scattering states of H' because we are not in-
terested in these states.

3. Solutions of the model problem

Wereturn to Hazi and Taylor's paper [4] and note
their one-dimensionalmodel problem useful for simu-
lating atomie shape resonance potentials. These
authors solved for eigenstatesof the model potential

V(x)=!X2,

= !x2 exp(-Ax2),

x~O;

x;;;'O,
(6)

with A> O,both by numerical integration of the
Schrodingerequation and by making a finite basis set
expansion of the wavefunction 1/;(x).Noting the simi-
larity or the potential with that of the harmonie os-
cillator [2], these authors used the eigenfunctions of
the latter problem as the basis set for the former.

Wesolved for the eigenstates of a related potential

V(x) = !x2 o(-x)

+ [!x2 exp(-Xx2)-/exp(-Ax2)+/]O(x), (7)

where A and 1 are constants and O(x) is the Heaviside
step function [O(x) = l, x> O;8(x) = O,x < O]. For
1 = O, we recover the Hazi- Taylor potcntial. For
I> O, the Hazi- Taylor potential is modified so that
the potential energy approaches1 asx'" 00. According-

ly, there is now the possibility of having bound states
in addition to resonance and seattering continuum
states. A nonzero "external potential" K.x:fis then add-
ed to V(x) to "decide" between the resonance and

scattering states. The obvious problem is how to
choose I<and s. Jf I<is too smali for a certa in s, then
the effect on the non-re sonant continuum states will

not be very large. In such cases several true continuum
states may lie below the resonance state(s) and little
would be gained by so modifying the potential. Con-
trariwise, if" is too large then both the bound and
resonance energies will aIso be changed significantly
from their respective values when the "external poten-
tlal" K.x:fis turned off. First-order perturbation theory

;.

may then not be sufficient to correct the energies.
Wehave found the followingprocedure to be use-

ful in choosing these important parameters. OptimaI
values of I<are determined from the position of the
maximum value of V for positive x [the right-hand
hill height of V(x)] , xmax = (21 + 1/A)I/2 as follows:

K. =[c-'/2(2J+ I/Ay/2]-l, c;;;' l.

States which, for" = Ohad large ampIitudes outside
of the potential maximum, xmax' will have significant-
Iy largerenergieswhen K.* O.States which had large
amplitudes inside the potential should be much less
affected.

In fig. I we show the Hazi- Taylor (I =O,A=0.19)
potential for the cases (I<=O) and (s = 8, I< =8.1 X
1O-s). The eigenvaluesof both potentials shown by
horizonal Iinesare the lowest four eigenvaluesfor the
secular matrix derived from a basis consistingof the
lowest forty Hermite polynomials. The eigenvalues,
expectation values of x2, and first-order corrected
eigenvaluesof eq. (5) are given in table l.

The "stabilized" resonance root has an energy of
approximately 0.45. It is the second lowest root of
the unmodified 40 X 40 case. However,by evaluating
the expectation value of x2 for the two lowest roots
(the scattering state and the desired resonance state)
we find the followinguseful fact: the state at E =
0.1797 is very diffuse having <x2)=40.2428 while
the higher-Iying state with E =0.45 has <x2) of the
low-lyingeigenstatesof H, we can determine that the
state of 0.1797 is not a resonance state.

Modifyingthe Hazi- Taylor potential by adding an

1 . . i .ó,~2.000 .
f

r j
1.500; II I

V r ~::~
0000 /000 2.000 3000 4000 5000

X

Fig.. 1. The Hazi- Taylor potential and associated eigenvalues
(solid lines) plus the (s = 8, I( =8.1 X lO-s) modified Hazi-

Taylor potential and associated eigenvalues (dashed lines) for
the 40 X 40 case.
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Table 1
Roots of the 40 X40 secular cquation. Columns 2 and 3 refer
to the ordinary Hazi- Taylor model potential (J =O," =O,
). = 0.19) while tlte potcntial of columns 4,5, and 6 are modi.
liedwith" =0.000081 and, =8 "

Ea) Eb)<X2) <X2)E'

"external pc.tential" of 0.000081 x8 causes significant
changes in the energy spectrum. For the 40 X40 case,
the lowest root of H' is the stable resonance state at
0.45. The more diffuse states lie at considerably higher
energies.For example, the next lowest state is at an
energy of I.l9. For this simplemodel potentiaJ the
problem of contamination of the low-Iyingroots by
continuum states described within a discrete square-
integrable basiscauses no serious difficulties. The tech.
nique of addingKr shifted the unwanted seattering
states to higher energies.

The results of a second example are shown in fig.2
and table 2. In this case the state at 0.50 au is a bound
state and the state at 1.5 is a very broad resonance.
(This state is broad because it liesclose to the top of
the potential V(x).) For the 40 X40 diagonalization
with K = O, a continuum state is the second lowest
root. With K =2.8 X 10-5 and s = 8, the second lowest

,
I
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Fig. 2. The potential given in eq. (7) (J = 0.8,). = 0.19) and
the associated eigenvalues (solid lines), plus the modified
(, =8," = 2.8X 10-5) potential and its associaled eigenvalues
(dashed lines) for the 40 X40 case.
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Table 2
Roots of the 40 X40 secularequation. Columns2 and 3 refer
lo a potential with J =0.8,).=0.19,and" =Owhilethepo-
lenlial of columns4, 5, and 6 are modifiedwith" =0.000028
and, =8

Ea) Eb) <X2)<X2) E'

state corresponds to the resonance state. More diffuse
states lie at much high er energies; again the method
has been successfuJ.

ln table 3 we show results for this same potential
with J = 0.8, ~ = 0.19 for various valuesof K,s being
chosen again as 8. The H' matrix is forOled using the
lowest fifteen HerOlite polynomials as basis functions.
As K is changed from 10-1 to 10-6, the energies of
the bound and resonance states do not change much
nor do their values of <x2). However, both the ener-
gies and <x2) change drastically for the non-resonance
continuum states. These observations suggest the fol-
lowing modification of the usual stabilization techni.
ques.

For a fixed basis set size, a few caJculations are
don e for which Kranges from large to small vaJues.
In these caJculations it is important that the basis set
include sufficient diffuse functions to permit an ade.
quate description of continuum states. The eigenvaJues
and <x2) for bound and resonance states will not

change significantly as K changes, in contrast to scat.
tering states.

For smali K there may be continuom states having
large <x2) which lie below or among the resonance
states. However as K attains larger vaJues, such con-
tinuum states can easily be identified by their large
changes in (x2). This identification of the continuum
states is the primary purpose of carrying out a caJcula-
tion at a relatively large vaJue oCK. The caJculation at
smali K, for which the perturbation is smalI, is to be
used, together with perturbation theory, to evaJuate
the energies and <x2) of bound and resonance states.
An advantage of applying this method to atoms and
molecules is that, for a given basis set, the integraJs

root 1 0.1797 40.2428 0.4582 0.4558 0.6403
root 2 0.4526 1.2282 1.2434 1.1928 2.6124
root 3' 0.6052 33.9139 1.9132 1.740 1 3.9961
root 4 1.0578 20.1351 2.7252 2.4570 4.2974

a) For tlte "=Ocase.
b) From eq. (5).

roOI l 0.5016 0.4874 0.5019 0.5016 0.4846
root 2 1.3711 38.5831 J.S205 1.5128 1.8722
rool 3 1.5076 3.8845 2.2584 2.1767 0.4377
root 4 1.7753 31.4735 2.9366 2.7292 5.5658

a) For the " =Ocase.
b) From eq. (5).
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Table3
Roots of the 15 X 15 secular equation. J =0.8,?.=0.19,$ =8. /( ranges from 0.1 to 0.000001. These energies include the perturba-
tion correction

over SCF orbitaIs need be computed only once regard-
iess of the range of K studied. In the conventionalsta-
bilization technique the basis size (or nature) must be
varied, thereby necessitating repeated integral trans-
formation.

Although the results of our model potential studies
are encouraging, things are clearly mqre complicated
for atoms and molecules. The electronic hamiltonian

could be modified by addition of a function Klx$t +
K2y$2 + K3Z$3where the exponents are even integers.
Clearly for atoms K =KI =K2 = K3' and s = sI = s2 =
s3' Optimal values of K can be chosen in several differ-
ent ways. The first is to choose K so that states with

(r2) less than r~ax where rmax = [2a/2/(/ + I)J 1/2,
are not significantly affected by our perturbation
while those states with (r2) greater than r~ax will be
markedly changed. To accommodate the anisotropy of

molecules" l ' K2' and K3 may be chosen by using the
diagonal tensorial components of the polarizability:

axx' ayy, azz. Alternatively, one can use the expecta-
tion value of r2 (or for molecules x2 , y2 , and z2 whieh
are related to components of the quadrupole moment)
for the electronic ground state of the target (which is
bound and hence localized) to' determine K (or " l ' K2'
K3) as discussed above.

Once K is chosen, for our scheme to work, the basis

must include functions 1Pjfor which K(1Pjlrsl1Pj)is both
large and smalI. This restriction on the basis guarantees
that localized functions for whieh K(r$) is smaIl will

be adequately described and that nonlocalized scatter-
ing functions for whieh K(r$) is large will have much
larger eigenvalues than for the case with K =O.Thus
these scattering states will not be among the lowest
few eigenvalues of H'.

4. Conclusion

We have proposed and tested on simple one-dimen-
sional models a method for identifying resonance
eigenstates. The method exploits the different spatial
characteristics of localized (bound or resonance) states
and nonlocalized (scattering) states to remove from
the low energy spectrum of the hamiltonian the un-
wanted scattering states in favor of the desired bound
and resonance states. As a result of shifting the scatter-
ing states to higher energy, we need only compute the
lower eigenvalues of the (modified) hamiltonian ma-
trix to find the resonance states. The proposed method
is successfuIly applied to model problems which simu-
late the behavior of atomie shape resonances. However,
the usefulness of our approach cannot be adequately
measured by its success in model situations. We are
now in the process of applying our modific~tion of
the stabilization technique to investigations of shape
resonances in atomie and molecular systems. The out-
come of these future studies will aIlow us to better

determine the value of our proposed method.
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