
Contents lists available at ScienceDirect

Chemical Physics

journal homepage: www.elsevier.com/locate/chemphys

Strategy for creating rational fraction fits to stabilization graph data on
metastable electronic states

K. Gaspericha, K.D. Jordana,⁎, J. Simonsb

a Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
bDepartment of Chemistry, University of Utah, Salt Lake City, UT 84112, United States

A B S T R A C T

An exactly soluble model of two diabatic electronic states interacting through a coupling of strength V is used to generate data for testing the rational fraction analytic
continuation technique for determining the energies and widths of metastable states of anions. By making analytical connections between the coefficients in the
rational fraction and the parameters of the model, we are able to suggest how to choose the orders of the polynomials and the range of the scaling parameter, Z,
within which to compute the energies for a given precision. This analysis also allows us to specify the range of Z-values to use in constructing the rational fraction in a
manner that allows determination of all parameters of the model for a given precision. The constraint on the Z-value ranges can be used as a guide for constructing
rational fractions of data obtained in electronic structure calculations on actual resonance states.

1. Introduction

When treating metastable electronic states of atomic and molecular
anions, the stabilization technique introduced by Hazi and Taylor [1]
has proven to be very useful. In its most commonly employed form, the
energies of several electronic states of the excess-electron system are
computed for a range of values of a parameter (Z) that controls the
radial extent of the basis functions used in the calculations [2]. These
energies are then plotted as functions of the parameter Z to generate
stabilization plots such as that shown in Fig. 1.

Such stabilization plots typically display three characteristics that
merit attention:

1. One or more plateau regions within which the energy of one of the
branches changes slowly as the scaling parameter is varied. In Fig. 1,
such plateaus occur at energies near 0.45 and 1.35 eV. The energies
of the plateau regions approximate the energies of the metastable
electronic states being studied.

2. A series of states whose energies change more rapidly as the scaling
parameter is varied; these energies describe pseudo-continuum
states that correspond to the neutral molecule plus a “free” electron
in a pseudo-continuum orbital. In Fig. 1 the energies of these states
increase with the scaling parameter Z which controls the radial
extent of the basis set.

3. As Z is varied, one encounters regions where two types of states
approach one another and undergo avoided crossings. The regions
of these avoided crossings play a central role in determining the

lifetime of the metastable state. In Fig. 1 we see that the plateau
regions are interrupted by a series of avoided crossing thus limiting
the range of Z-values over which any given plateau persists.

There is another class of stabilization methods that involves adding a
stabilizing potential that converts the resonance into a bound state fol-
lowed by analytically continuing the bound-state energy into the re-
sonance region [3]; however, we do not consider these approaches here.

The example illustrated in Fig. 1 shows how the energies of several
excess-electron states vary as the scaling parameter is changed. Elec-
tronic structure methods such as configuration interaction, equations-
of-motion coupled cluster (EOM-CC) [4,5], Koopmans’ theorem [6],
and many-body Green’s functions [7] can be used to extract multiple
roots for constructing stabilization plots. Given the energies of several
roots as functions of the scaling parameter, it is then usually relatively
straightforward to identify regions of avoided-crossings within a range
of Z-values. The rational fraction (RF) method, which is the subject of
this study, is designed to fit the energy of a single root of the stabili-
zation calculation as a function of the scaling factor, and it is usually a
root whose energy lies within a plateau region that is used [8].

2. Extracting the energy and lifetime of the metastable state from
a stabilization plot

2.1. RF and quadratic equation approaches for fitting stabilization-plot data

In the Siegert picture [9], a metastable state, also called a
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resonance, is associated with a complex energy −E Γi /2R , where ER is the
resonance position and Γ the width is proportional to the reciprocal of
the lifetime. This complex energy, when substituted into −e Et ħi / , de-
scribes a state that decays in time. Correspondingly, one can view such
a state as having an energy uncertainty (or width) Γ. The resonance
parameters ER and Γ can be obtained by analytically continuing the
energy as a function of Z into the complex plane, locating the stationary
points Zsp where ∂E/∂Z=0, and then evaluating E at Zsp [10]. In the RF
method, analytic continuation is performed after using computed en-
ergy values to construct a rational fraction:
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When the coefficients in the numerator and denominator are de-
termined from the coefficients of a Taylor series expansion of a func-
tion, the RF is also referred to as a Padé approximant [11]; when the
coefficients are determined using numerical data giving E at various Z-
values, the term RF is preferred.

The [n, d] approximant has + +n d 2 parameters; however, only
n+ d+1 of these are independent, because the energy depends on the
ratio N/D rather than on N and D individually. Often, one opts to set
d0= 1, but other choices are possible. After using the computed en-
ergies to determine the values {nj, dj} of the expansion coefficients, the
derivative of the energy with respect to Z is evaluated and set equal to
zero,

∂
∂
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Z
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Solving Eq. (4) for the Z-values at which this equation holds gives

the complex stationary points Zsp, which are then substituted into the
rational fraction expression to generate complex stationary energies

= ±E E Γi /2sp R (5)

Although the primary goal of this paper is to analyze the RF method,
it is useful to also consider the alternative quadratic equation (QE)
approach [2,10,12], in which one introduces the following expression
for how the energy E varies with the scaling parameter Z:
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where P, Q, and R are polynomials in Z:

∑=
=

=

P Z p Z( )
j

j p

j
j

0 (7)

∑=
=

=

Q Z q Z( )
j

j q

j
j

0 (8)

∑=
=

=

R Z r Z( )
j

j r

j
j

0 (9)

This expression has p+ q+ r+3 total parameters, but, as with the
RF, the energy is unchanged when all polynomials in Z are scaled by a
constant factor; therefore, the number of independent parameters is

+ + +p q r 2, and a common choice is to set p0 equal to unity. After
the polynomial coefficients {pj, qj, rj} are determined by fitting, one
solves for E, obtaining
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The derivative of the energy expression in Eq. (10) with respect to Z
is then set to zero to determine (complex) values of Z at which E(Z) is
stationary, which are then substituted into Eq. (10) to generate the
complex energies associated with the stationary points, yielding

= ±E E Γi /2sp R as discussed above. In general, the stationary points Zsp
associated with a resonance arising from a pair of coupled diabatic
states are not far from the complex branch points associated with the
avoided crossing between discrete and pseudo-continuum diabatic
states [10]. The branch points of Eq. (10) occur at values of Z where

− =Q Z P Z R Z( ) 4 ( ) ( ) 02 . The QE framework builds into its working
equations the existence of branch points, whereas the RF method does
not.

If one utilizes the same number of E(Zk) data points as one has
parameters in either the RF or QE analytic continuation expression, one
obtains a system of linear equations to be solved for the polynomial
coefficients. In the RF approach, one can cast the problem in the form of
a continued fraction, which allows the coefficients to be determined by
a recursion relation [13]. Alternatively, one can employ more data
points than parameters and use a least-squares procedure to optimize
the parameters. The details of how one fits the calculated energy values
to either Eq. (1) or Eq. (6) will not be further discussed in this work;
rather our focus will be on how to determine optimal ranges of Zk va-
lues used to compute the energies used in the fits and what order of
polynomials should be used in the RF fits.

2.2. Selecting data points for RF fits that are not too far from avoided
crossings

Pairs of diabatic states of the same symmetry that cross as the scale
parameter is varied undergo avoided crossings when they are allowed
to interact as shown in Fig. 1, resulting in adiabatic energies that dis-
play complex branch points. This behavior is the primary motivation for
introducing the QE analytic continuation procedure. In the QE ap-
proach, the data for the fitting generally employs data points from the
vicinity of an avoided crossing but may also include values more distant

Fig. 1. Example of a stabilization plot of the energies of several excess-electron
states relative to the energy of the corresponding neutral for the case where
increasing the parameter Z scales the radial extent of the basis set. The curves in
black are reproduced from A. Macias and A. Riera, The Journal of Chemical
Physics, 96, 2877 (1992)], with the permission of AIP Publishing. The colored
dashed regions were added by the present authors. The regions surrounded in
blue illustrate two of the plateaus, those in red illustrate four of the avoided
crossings, and those in green illustrate two of the pseudo-continuum regions
(see text).
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from the avoided crossing; moreover, in the QE approach, the data
points can be chosen from a single branch or from both branches in-
volved in the chosen avoided crossing. RFs of the form given in Eq. (1)
do not properly describe the branch points but generally have poles and
zeros at Z-values close to where the diabatic states cross. If one were
performing the analytic continuation using a simple power series, one
would then have to avoid data points “close” to the crossing point of the
diabatic curves because such points might be outside the radius of
convergence of the series. With RFs, this is less of an issue as con-
vergence can be achieved even when using data points close to the
crossing region, although the inclusion of such points may slow down
the rate of convergence, and, in practice, one often avoids using such
data points.

As we illustrate later, the RF approach will not be able to accurately
describe the resonance if one only uses data points from a stabilization
plot that are “far” from the avoided crossing. In that case, the E(Z) vs. Z
data contain too little information about the strength of the coupling
between the two diabatic states. A main goal of this work is to provide a
path by which one can estimate how close to the crossing point one
must include E(Z) data points given the precision to which one knows
the Z-variation of the energies contained in the stabilization plot.
Alternatively, we show to what precision one must, if feasible, de-
termine the E-values for a given choice of Z-values.

3. Model for which the exact energy and width are known

3.1. What is the purpose of introducing an analytically solvable model?

We use E(Z) vs. Z data generated from a model’s exact solution and
from expansions of the model’s exact solution valid through various
orders in the coupling strength V to illustrate the problems that arise if
one employs data points too far from a crossing point in forming a RF.
We provide explicit formulas, in terms of the model’s parameters, for
the ranges of Z within which data should be calculated given the pre-
cision ε to which variations in the energies E(Z) are known as Z varies
and given the order in V to which one wishes to determine the re-
sonance state’s width.

We suggest that the lessons learned from testing RF methodology on
this exactly soluble model can be applied to ab initio electronic struc-
ture stabilization graphs. In particular, by using data from an ab initio
stabilization graph’s plateau-region and from its region approaching an
avoided crossing to make connections to the model’s parameters, the
analytical expressions obtained for the model can be used to estimate
the range of Z-values to use in creating an RF fit to the ab initio data.

3.2. The model energy expression and its resonance energy and width

The avoided crossings that pairs of diabatic states undergo can be
qualitatively described using a two-state Hamiltonian matrix whose
diagonal elements H11 and H22 describe the energies of the diabatic
states as functions of the scaling parameter and whose off-diagonal
element V describes the coupling. The two eigenvalues of the resulting
matrix are given by + ± + −H H V H H{( ) 4 ( ) }1

2 11 22
2

22 11
2 . Distant from

an avoided crossing, the energies of the diabatic states generally vary
monotonically with the scaling factor Z, which suggests that H11 and
H22 can be represented as low-order polynomials in Z.

The most elementary reasonable model [14] of a stabilization plot’s
avoided crossing region assumes two diabatic states whose energies
vary linearly (in the region of their crossing) with the scaling parameter
Z

= − + = − +H b a Z and H b a Z11 1 1 22 2 2 (11)

These diabatic states intersect at the point
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−
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where their common energy is
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The parameter Z could be the factor by which selected diffuse
atomic basis functions are scaled. Alternatively, it could be (1/R2),
where R is the radius of a spherical box within which continuum radial
basis functions are constrained. In any case, it is best to define Z in a
manner that makes the Z-dependence of the diabatic pseudo-continuum
states as linear as possible.

The energy of the diabatic discrete state (here designated as H11)
would be expected to be independent of or only weakly dependent on Z.
However, the overlap between the pseudo-continuum basis functions
and the discrete state can introduce a Z-dependence to H11. Assuming
the two orthogonalized diabatic states couple with an off-diagonal
Hamiltonian matrix element, V, solution of the associated 2×2 secular
equation gives the expression

= + − ± + ⎡
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As can be seen from Fig. 1, the diabatic states that undergo an

avoided crossing in a stabilization plot do not rigorously vary linearly
with the scaling parameter; moreover, although we take V to be con-
stant within our model, in general it will depend on Z, because of the Z-
dependence in the coupling between the diabatic states and the impact
of the overlap contribution [15]. For these reasons, the analytical re-
sults obtained here are certainly approximate representations of stabi-
lization graphs from electronic structure calculations. Our analysis
could readily be extended to treat cases in which V depends on Z and
the diabatic states' energies vary non-linearly with Z; however, here we
will limit most of our discussion to the simplest case in which the
diabatic energies (accounting for overlap between the discrete and
pseudo-continuum states) are assumed to vary linearly and V is as-
sumed to be constant.

In this paper, we use Eq. (14) to generate values of E(Zk) to use as
input data for Eq. (1) to subsequently determine the energies and
widths of the resonance. We do so for three sets of parameters de-
scribing resonances with widths differing by a factor of 10 and re-
sonances with clear plateaus and one in which the plateau has a sub-
stantial slope. We will refer to energies computed from Eq. (14) as the
exact energies for the model problem. We suggest that employing Eq.
(14) to generate “test data” to use in Eq. (1) can provide valuable in-
sight into the performance of the RF method for different choices of
input data because plots of energies obtained from Eq. (14) display the
essential characteristics of actual stabilization plots. Moreover, as we
illustrate later, the functional form given in Eq. (14) can offer guidance
about what powers of Z to use and what range of Z-values to use in
forming an effective RF. We suggest that any RF whose polynomials do
not contain at least these minimum powers of Z or that do not use data
from the recommended range of Z-values will not only fail to give ac-
curate resonance energies and widths for the model problem used here
but will also fail when applied to stabilization plot data for real che-
mical systems.

The exact stationary points for the above model are

= ±Z Z V a
δa a a

2isp 0
1 2 (15)

with the associated energies being

= ±E E V
a a
δa

2isp
0 1 2

(16)

The branch points for the model occur at = ±Z Z 2ibp
V
δa0 ; hence the

stationary points lie further off the real axis than the branch points by a
factor of a a a/ 1 2 .

For the remainder of this paper, we will assume that (i) >a a| | | |2 1 , (ii)
that a2 and a1 have the same sign, and (iii) that data from only the
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branch having the smaller slope (i.e., the plateau branch with slope a1)
is being used to generate the E(Zk) data employed in the RF analysis. A
similar analysis could be carried out using data from the branch having
the larger slope. Moreover, simply for convenience, we will assume that
the {Zk} values are selected to the right of the crossing point Z0 so that
all = −δZ Z Zk k 0 values are positive.

3.3. Guidance offered by the model on how to select powers of Z and Z-
values at which to compute energies

The first thing to point out is that Eq. (14) contains five parameters
(E0, Z0, V, a, and δa). Together, the expression for the exact stationary
points, Eq. (15) and that for the corresponding resonance energy, Eq.
(16) require knowledge of all five of these parameters. This suggests
that to accurately predict Zsp and Esp, any reasonable RF fit should
contain at least five parameters.

As discussed earlier, applications [8] of the RF approach generally
utilize E(Zk) energies at Zk values chosen distant from the avoided
crossing region of the stabilization plot to avoid approaching the branch
points. As we make more quantitative below, when forming a RF uti-
lizing only Z-values that are far from the crossing point Z0 the E(Zk) data
might not be known with sufficient precision to accurately characterize
the stationary point. Although most ab initio electronic structure cal-
culations are performed using double precision arithmetic, issues such
as the tolerance to which one converges matrix eigenvalues limit the
final precision of the stabilization-plot energy data. Based on our ex-
perience, a precision of ca. 10−5 eV is a reasonable estimate and one
that we use in this paper.

As noted above, RFs with coefficients determined from fitting data
points are closely related to PAs where the coefficients are determined
by reproducing a fixed number of terms in a power series expansion
about an appropriate point. In particular, RFs can be viewed as em-
ploying coefficients that correspond to use of derivatives evaluated by
numerical differentiation. For that reason, we find it useful to expand
Eq. (14) in a power series about a point Z' chosen to be located ap-
proximately in the middle of the set of grid points employed in the RF
fit. With the choices of grid points describe above, this necessarily lo-
cates Z' to the right of Z0 (i.e., Z' > Z0). The resulting series expansion
through terms of order − ′Z Z( )4 is:
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where = + ( )K V ZΔδa2
2

2 2and = ′−Z Z ZΔ .0

For addressing the question concerning the location of Z', rather
than the distribution of data points around Z', we need only substitute Z'
into Eq. (14) giving

= + ± + ⎛
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If Z' obeys < 1V
δa Z

2
Δ , which it will for points within a plateau re-

gion, one can estimate the contributions to E at various powers of V by
expanding Eq. (18) as
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For the root of Eq. (14) having the smaller (plateau) slope a1 at
large-Z this becomes

= + − + +E E a Z V
δa Z

V
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This allows us to specify how close Z' must be to Z0 (i.e., how small ΔZ
must be) for terms proportional to V2 or V4 to exceed the precision ε to
which the electronic structure energies have been computed. In parti-
cular, to accurately determine the V

δa ZΔ

2
term in the series expansion

requires that <ZΔ V
δa

V
ε , which is likely achievable in most stabilization

calculations as we illustrate later. The next two terms in the energy
expansion are V

δa ZΔ

4
3 3 and V

δa Z
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5 5 . The V4 and V6 terms exceed ε in mag-
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5 , respectively. Later we will

show that selecting data in ranges that satisfy <ZΔ V
δa

V
ε is usually

straightforward, but to select data that satisfy the V4 condition

< ( )ZΔ V
δa

V
ε

1
3 can be challenging, and to satisfy the V6 condition is even

more so.

3.4. Stationary points and energies from the series expansion

The energy expression given by Eq. (17) when truncated at order V2

has the stationary points

= ±Z Z V
a δa
i

sp 0
1 (21)

with the corresponding energy

= ±E E V a
δa

2isp
0 1

(22)

Note that even if one knows a1 from large Z-results, these expressions
for Esp and Zsp do not allow one to extract individual values for V or a2.

If we consider the expansion in Eq. (17) through order V4, we find

= ±Z Z VJ
a δa
i

sp 0
1 (23)

and

= ± + +{ }E E V a
δa

J
J

a
δaJ

i 1
sp

0 1 1
3 (24)

where

=
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J
1 1 12

2

a
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1
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Notice that the V4 expression for the width involves factors of a1 and
V
δa

as well as an expression that depends on the ratio a
δa

1 , so only by
reaching the V4 level in Esp and Zsp is one able to access all three of a1,
a2, and V (assuming that a1 is available from large-Z data). We will refer
to the energy and half-width of Eq. (24) as the values through order V4

in the expansion of the square root in Eq. (14).

3.5. Guidance for creating rational fractions

A major advantage of Padé approximants is that they provide ap-
proximations to higher order terms in the Taylor series that were not
used in the fitting, and, as a result, they can often accurately represent
the function at points more distant from the expansion point than can
the original truncated Taylor series. However in application to stabili-
zation calculations, one uses numerical energy data from a grid of
points rather than the coefficients of a Taylor series, giving rise to what
are termed RFs.

When Z'≫ Z0, and reasonable values are chosen for the various
parameters in the model, it is found that the power of Z in the nu-
merator of the PA is essentially one higher than that in the denominator
even if one constructs a PA having a higher power denominator. This is
illustrated below by examining the [2,2] PA of Eq. (17) for the case
Z'=1.2 and using the S3 set of (a1, a2, V, E0, and Z0) parameters that
are defined in the next Section.
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= − −
− + −

Z Z
Z x Z

PA[2, 2] 1.727 5.069 21.337
1 5.334 0.165 10

2

4 2 (26)

Examination of this PA reveals that the coefficient of the Z2 term in
the denominator is essentially 0, effectively reducing this to the [2,1]
PA, which is reported along with the [1,1], and [3,2] PAs in the
Supplementary Material. Similarly, the [3,3] PA is found to be essen-
tially equivalent to the [3,2] PA. For this reason only [n+1, n] RFs are
considered in the subsequent discussion. We note that the conclusion
about the power of Z in the numerator being one higher than that in the
denominator would be altered were one or more of H11, H22, or V to
assume more complicated Z dependencies than assumed here. Another
observation to make is that the large-Z slopes of the [2,1] and [3,2] PAs
are very close to the exact value of 4.0. This shows that these low-order
PAs provide accurate values for the a1 slope parameter of the model.

Using the exact energies of Eq. (14) as numerical input, we will form
[n+1, n] RFs of the form

= + +
+

n n Z n Z
d Z

RF
11

0 1 2
2

1 (27)

and
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+ +

n n Z n Z n Z
d Z d Z
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12

0 1 2
2

3
3

1 2
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for the three sets of test data whose parameters are given in Table 1.
The goal of this numerical experiment is to determine the choices of Z-
values for which the stationary points Zsp and resonance energies of RF1
and RF2 approach the V2 or V4 or exact values (of the model). Because
RFs containing N parameters are designed to represent data better than
Taylor series expansions containing N parameters, we do not expect RF1
results to match V2 results or RF2 to match V4. However, because RF1
contains four parameters, as does the V2-level expansion of Eq. (19), we
expect the RF1- and V2-level results to be similar. Likewise, because RF2
contains six parameters while the V4-level expansion of Eq. (19) and the
exact expression of Eq. (14) contain only five parameters, we expect
RF2 to be able to match or exceed the V4-level results.

4. Comparing results of RF fits of model data to the exact, V2
, and

V4 results

We created three sets of test data (labeled S1-S3) by inserting three
choices of parameters (E0, Z0, a1, a2, and V) into Eq. (14). In all cases, E0

was taken to be 2.50 eV and Z0 was set equal to 0.200. The energy
ranges and coupling strengths V are typical of low-energy electronic
shape resonances in atoms and molecules. In Table 1, we list the V, a1,

and a2 parameters for each case and give where δZ equals ( )V
δa

V
ε

1
3 or

( )V
δa

V
ε with the energy-precision parameter ε set equal to 10−5 eV.
The Z-values shown in the third column are the Z-value bounds

beyond which the V4 contribution to the energy falls below ε. Those
shown in the fourth column are the bounds beyond which the V2 con-
tribution is below this same ε.

Fig. 2 depicts the exact solutions of Eq. (14) for the S1 parameter set
together with two sets of data points considered in the Supplemental
Information. One set satisfies the V4 bound and the other does not. The
figure also depicts the curves obtained from the RF1 and RF2 fits,

respectively.
For any value of ε, the range of acceptable Z-values is much broader

if one only wants to assure that the V2 contribution exceeds ε. The very
large values listed in the right column of Table 1 would likely never be
realized in an ab initio stabilization plot since other avoided crossings
would constrain Z to smaller values. For example, in Fig. 1, the blue
plateau region with energy near 0.45 eV exists only for Z-values be-
tween ca. 1 and 2 with the avoided crossing near Z=2 providing the
upper limit to Z. On the other hand, the data in the third column in
Table 1 suggest that one has to be careful in selecting Z-values if results
accurate to V4 are required to characterize the resonance.

Let us now examine for these three data sets the performance of RF1
and RF2 using various choices for Z-values at which the energies are
computed. For comparison, we list in Table 2 the half-widths obtained
using (i) Eqs. (22) and (24) that result from expansions of the square
root factor through orders V2 and V4, respectively, and the exact values
from Eq. (16).

The primary differences among cases S1-S3 are as follows:

1. S1 produces a narrow resonance (Γ/2= 0.07 eV) because it has
both a small value for V and a large difference between a1 and a2;

2. S2 produces a broad resonance (Γ/2=0.70 eV) because it has a
large value for V (it has the same values for a1 and a2 as in S1);

3. S3 produces a broad resonance (0.49 eV) not because it has a large
value for V (it has the same value as in S1) but because its slopes a1
and a2 do not differ much.

Because case S3 displays the largest differences among the V2, V4,
and exact half-widths, it offers the best opportunity to highlight the
interplay between the energy precision (ε) and the values of Z used to
form the RF fit. For this reason, we will discuss case S3 in detail while
placing analogous data for cases S1 and S2 in the Supplementary
Material.

4.1. Results of [n+ 1, n] RF fits for S3

We now determine the extent to which the stationary points and
Table 1
Description of the S1, S2 and S3 parameter sets and the upper limits for Z at the
V4 and V2 levels for the model given by Eq. (14).

Test Case V (eV); a1; a2
+( ) ZV

δa
V
ε

1
3

0 ε=10−5 eV +( ) ZV
δa

V
ε 0 ε=10−5 eV

S1 0.1; 1; 10 0.439 111
S2 1.0; 1; 10 5.36 11,100
S3 0.1; 4; 6 1.28 500

Fig. 2. Resonance model (Eq. (14) with the S1 parameter set. The dashed green
curves represent the exact energies. The circles denote the data points listed in
Table S1-1, and the blue curves the RF1 fit to those points. The squares denote
the data points listed in Table S1-3 and the orange curves are the RF2 fits to
these points.

Table 2
Resonance half-widths (eV) sets for the model given by Eq. (14) using the S1-S3
parameter sets defined in Table 1.

Test Case V2 Half-width V4 Half-width Exact Half-width

S1 0.0667 0.0697 0.0703
S2 0.6667 0.6973 0.7027
S3 0.2828 0.3810 0.4899
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resonance energies obtained by fitting numerical data from Eq. (14) to
RF1 do or do not reproduce the results of V2 and the extent to which
fitting numerical data to RF2 can yield stationary points and resonance
energies close to those of V4. In Table 3 we show the results of forming
an RF1 using the four Z-values listed. From inspection of the stabiliza-
tion plot (not shown), it was clear that Z=1.6 is well within the near-
linear region while Z=0.4 is in a region of significant curvature. The
real and imaginary parts of the stationary point Zsp, and the real and
imaginary values of the resonance energy Esp are indicated for three
different choices of the precision (10−5, 10−7, and 10−12 eV) in the
input data. In specifying the precision, we are indicating the number of
figures retained to the right of the decimal point. Although in ab initio
calculations the precision is likely to be limited to at most 10−5 eV, for
our model we also report results for precisions of 10−7 and 10−12 eV to
illustrate how the results would evolve if one had more precise data.

From Table 1 it is seen that the V2 and V4 bounds for this case occur
at Z= 500 and 1.28 (for ε=10−5 eV). Because all four of the Z-values
employed lie well within the V2 bound, it is no surprise that the half-
widths obtained at the three precision levels considered are very close
to the V2 value 0.2828 eV listed in Table 2. Although the [2,1] RF1 fit
does not yield an accurate value for the half-width, it does provide an
accurate a1 (4.0 as we pointed out earlier) and reasonably accurate
values for Z0 (0.18 compared to the exact 0.20) and E0 (2.4 eV com-
pared to the exact 2.5 eV).

In Table 4 we show the results of forming RF2 (i.e., [3,2]) fits for the
S3 parameter set using six Z-values ranging from 0.4 to 1.4; again, the
smaller Z-values lie in the curved region of the stabilization plot while
the larger Z-values lie in the near-linear portion of the stabilization plot.

Earlier we noted that the V4 bound for a precision of 10−5 eV is
1.28. We see that even though five of the six Z-values used in forming
this RF2 fit are below 1.28, the half-width obtained using data points at
the 10−5 precision level is essentially the same as the RF1 (V2) value.
Even using [4,3], [5,4], or [6,5] RF fits with the above five Z-values
below 1.28 together with additional Z-values above 1.28, at a precision
of 10−5 eV, the same V2 level half-width was obtained. This shows that
it is not the level of the RF but the values of Z that prevent RF2 from
doing better than V2 level with data at a precision of 10−5 eV. It also
shows that one needs to have all six of the Z-values below or very near
to the V4 bound because when the precision is increased to 10−7 eV
(where the V4 bound is Z= 5.20), a half-width significantly better than
the V4 value (0.38 eV) and close to the exact value (0.49 eV) is
achieved.

The inability of [3,2] (or higher) fits to achieve half-widths close to
(or better than as one might expect for RF fits) the V4 value with only
five of six Z-values below the V4 bound and using data at 10−5 precision

raises the issue that we address in the next Section — namely, how to
improve on the choice of Z-values by using results from the RF fits to
estimate the V2 and V4 bounds and to use these results to form more
accurate fits.

4.2. How to improve the choice of Z-values to create better [n+ 1, n] RFn
fits

As noted earlier, not all of the Z-values used to form the [3,2] and
higher RF fits whose results are shown in Table 4 are below the V4

bound for an energy precisions of ε=10−5 eV. Moreover, any [n+ 1,
n] fit we tried using five Z-values below the V4 bound did not improve
the situation. This suggests that we need to focus on placing at least six
data points at or below the V4 bound. In the case of the S3 example, we
know ahead of time where this bound is because we know the values of
V and δa, and, as we showed earlier, these two quantities cannot be
obtained from the results of the [2,1] fit. Because the [3,2] fit shown
above did not improve on the [2,1] level half-width at a precision of
10–5 eV, we cannot use the results of this [3,2] fit to obtain these
parameters. However, there are two routes through which an estimate
of the V4 bound can be made as we now demonstrate.

We know that a [2,1] (i.e., RF1) fit using four Z-values within the
wide range below the V2 bound should be capable of yielding reason-
able values for a1, Z0, E0, and V2/δa. The value of a1 is easily obtained
from the slope at large Z, which for the [2,1] RF is 4.0. Knowing a1, V2/

δa can be obtained from the V2 expression for the half-width 2 V a
δa

2 1 .
Using the [2,1] results shown in Table 3 (at any of the levels of preci-
sion as they are all essentially the same), we can offer the following
estimates: Z0=0.18, E0= 2.4 eV, and 4a1V2/δa=(0.29 eV)2, hence
V2/δa=5.3× 10−3 eV. However, we need one more piece of in-
formation (a2) to estimate the V4 and V2 bounds.

If one has sufficient knowledge about the slope of the other diabatic
state’s energy far from Z0, one can use that value as a2 and the [2,1]
value of V

δa

2
plus a1 obtained from the large-Z slope to estimate the V4

bound as = ( )δZ V
δa

V
ε

1
3 . This route is the most straightforward and

should be followed if a reasonable estimate of a2 is available. However,
in the absence of direct knowledge of a2, another route must be found.

The fact that the [3,2] RF described in Table 4 as well as results
from [4,3] and higher RFs using the Z-values in Table 5 and higher Z-
values did not improve the results suggests that one or more of the Z-
values used are above the V4 bound. We therefore replaced the six Z-
values whose [3,2] results are shown in Table 4 by six new values
ranging from Z=0.25–1.00. Doing so produced a new [3,2] RF2 fit the
results of which are shown in Table 5.

The first thing to notice is that the half-width obtained at a precision
of 10−5 eV has moved from 0.29 eV (see Table 4) to 0.49 eV, close to
the exact value. Even when we reduced the precision to 10−3 or
10−4 eV, the half-width changed significantly from the V2 value of
0.29 eV. The good agreement between the width calculated using data
at the 10−5 precision level and the exact value for the width is partially
fortuitous, as seen by the sizable error in the location of the stationary
point and in the calculated position of the resonance. Indeed, as shown
in Table 5, the half-width drops down to about 0.44 when calculated

Table 3
Zsp and Esp (eV) from RF1 fits to energy values at Z=0.4, 0.8, 1.2, and 1.6 for
the model described by Eq. (14) with the S3 parameter set as a function of the
energy precision ε (eV).

ε Zsp Esp

10−5 0.175840862 – 0.0367804471 i 2.40399052 – 0.294207598 i
10−7 0.177067499 – 0.0366038349 i 2.40877481 – 0.292804475 i
10−12 0.17700637 – 0.036613091 i 2.40853738 – 0.292877948 i

Table 4
Zsp and Esp (eV) from RF2 fits to energy values at Z=0.4, 0.6, 0.8, 1.0, 1.2, and
1.4 for the model described by Eq. (14) with the S3 parameter set as a function
of the energy precision ε (eV).

ε Zsp Esp

10−5 0.185646153 – 0.0358910308 i 2.44266485 – 0.28711605 i
10−7 0.185462414 – 0.0779571285 i 2.45378066 – 0.430534863 i
10−12 0.188780918 – 0.076937987 i 2.46415775 – 0.426152109 i

Table 5
Zsp and Esp (eV) from RF2 fits to energy values at Z=0.25, 0.40, 0.55, 0.70,
0.85, and 1.00 for the model described by Eq. (14) with the S3 parameter set as
a function of the energy precision ε (eV).

ε Zsp Esp

10−3 0.123918560 – 0.0481745490 i 2.20867287 – 0.384156255 i
10−4 0.147948561 – 0.0406098407 i 2.29477962 – 0.324741394 i
10−5 0.128442525 – 0.0851233013 i 2.27808877 – 0.489209000 i
10−7 0.177648487 – 0.0797605779 i 2.42936543 – 0.439177037 i
10−10 0.177045193 – 0.0803243612 i 2.42773751 – 0.441438257 i
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using [3,2] fits at higher precision values. This indicates that for the S3
model one needs to accurately characterize contributions higher than
V4 to the energy in order to accurately characterize the resonance. In-
deed [4,3] and [5,4] RF fits using appropriately placed Z-values and
sufficiently high precision gave half-widths near the exact value of
0.49 eV.

Seeing that placing six Z-values sufficiently low causes the new
[3,2] RF to produce a half-width significantly different from that of the
[2,1] RF, we now use the ratio of the new [3,2] and [2,1] half-widths to
estimate the V2 and V4 bounds and to then verify whether at least six
data points fall below or near to the V4 bound. To do so, we note that

the exact half-width of the model is 2 V a a
δa

2 1 2
2 , so the ratio of the exact

half-width to the [2,1] value should be a
δa

2 . Taking the [3,2] half-width
of 0.44–0.49 eV obtained using the new set of data points as an estimate
to the exact value and using 0.29 eV as the [2,1] half-width gives

= −2. 3 2. 9a
δa

2 , which allows us to solve for = −a 6. 1 6. 92 , so we esti-
mate δa=2.1–2.9. Finally, using V2/δa=5.3× 10−3, we obtain
V=0.11–0.12 eV.

We can now make use of these approximations to a1, a2, and V, to
estimate the V2 and V4 bounds, which can then be used to improve upon
the choice of Z-values used to verify the validity of the new [3,2] or to
create higher RF fits. For example, assuming that we have energy data
whose variation is precise to ε=10−5 eV, we estimate these bounds to
be (using the average of the parameter estimates given above, i.e.,
V=0.115 eV and δa=2.5), we obtain = =δZ 529V

εδa

2
(the exact value

is 500), and = =( )δZ 1. 04V
δa

V
ε

1
3 (the exact value is 1.28). This suggests

that the Z-values used to form the new [3,2] fit do lie below the V4

bound. As commented on earlier, the V2 bound is likely irrelevant in
real stabilization calculations as additional avoided crossings will limit
the scaling parameter; however, this path does offer a route for esti-
mating the more important V4 bound.

This process allows us to be confident that the final six lowest Z-
values in Table 5 used to form the [3,2] and higher RF fits were located
in a manner that allowed us to obtain V4 quality (or higher) resonance
energies and widths. It used information from the [2,1], [3,2], and
higher fits obtained using Z-values some of which were above the V4

bound to guide us toward using lower Z-values for an improved [3,2]
fit. This resulted in a new [3,2] fit of sufficient accuracy to generate an
estimated V4 bound to offer valuable guidance about where to choose Z-
values for forming a subsequent series of higher order RF fits.

In the Supplementary Material we present analogous discussions of
how to find appropriate Z-values for forming [2,1] and [3,2] RFs for the
S1 and S2 cases. As the reader will see, in the S2 case it became clear
that one should not locate all of the Z-values too far below the V4 bound
for either the [3,2] or the [2,1] RF because doing so can cause the
evaluation of the a1 slope parameter to fail; one needs at least one data
point in the nearly-linear region of the stabilization plot.

5. Conclusions and suggestions for application to ab initio
stabilization plot data

A five-parameter model of a stabilization graph which is based on
two diabatic states undergoing an avoided crossing, is used to generate
test data (energy vs. a scaling parameter Z) for creating RF approx-
imants. Our analysis allowed us to conclude that:

1. when forming a RF1 approximant to achieve results accurate to
order V2, one needs to use four (or more, if least squares fitting to
determine parameters) data points below = +Z Z V

δa
V
ε0 where the

second order contribution to the energy falls below the precision ε to
which the energies are known (ε of ca. 10−5 eV range was assumed),
but it is also important to include at least one point in the quasi-
linear portion of the stabilization plot to extract the a1 slope para-
meter;

2. when forming a RF2 approximant to achieve results accurate to
order V4, one needs to use six (or more, if least squares fitting to

determine parameters) data points below or very near + ( )Z V
δa

V
ε0

1
3

beyond which the fourth order contributions fall below ε, but again
it is important to include at least one point in the quasi-linear region
to extract a1.

We also note that stabilization graphs for real molecular resonances
often require fits with eight or more parameters to extract an accurate
value of the resonance width [15]. This indicates the importance of
higher-order V-dependence than V4, which would force one to select

data points even closer Z0 than + ( )Z V
δa

V
ε0

1
3 . For example, if terms of

the order V6 were important, one would have to choose points at or

below + ( )Z V
δa

V
ε0

2
1
5 , which would be Z= 0.28, 1.48, and 0.56 for S1,

S2, and S3, respectively. In our opinion, these facts argue in favor of
using the QE-type methods rather than RFs that emphasize the quasi-
linear large-Z regions of stabilization graphs.

Based on these observations, we suggest a strategy to use in con-
structing a [n+ 1, n] RF representation of data on a single branch of a
stabilization plot involving ab initio data in a manner that begins with
first identifying a quasi-linear plateau region. For such cases, one
generally does not know ahead of time how to select points optimal for
accurately determining the metastable state’s energy and width because
one does not know how close to the more curved region of the stabi-
lization plot one must characterize to achieve results of reasonable
accuracy. However, the results obtained here can provide guidance if
the ab initio stabilization plot displays two essential features that our
model relies upon- (i) a portion that varies approximately linearly with
Z at large-Z (described in our model by the terms + −E a Z Z( )0

1 0 ) and

(ii) a part (arising in our model from the term ± + ⎡⎣ − ⎤⎦V Z Z( )δa2
2 0

2

with curvature that increases in magnitude as Z moves closer to the
avoided-crossing point Z0.

For a stabilization plot that shows these characteristics, we suggest
the following pathway can allow one to confidently evaluate the re-
liability of a RF and of the location of its data points.

i. First, one should search the energy data set for a region sufficiently
far from Z0 for which the energy varies approximately linearly with
Z. The slope in this region can be associated with a1 of our model.
We suggest looking at our discussion of the S2 case in the
Supplementary Material where our first choice of Z-values did not
meet this criterion, and consequently, reasonable values of the re-
sonance parameters did not result.

ii. Then, one should examine the data set at smaller Z-values until
finding a region where the data begin to deviate significantly from
the near-linear form found in step i. Using at least one data point in
the near-linear region and the remaining data points in the region of
significant curvature, one can form a RF1 approximant.

iii. Since the stationary points of RF1 are expected to occur near the V2

value of = ±Z Zsp
V

a δa0
i

1
where the complex energy is

= ±E E V2i ,sp
a
δa

0 1 one can use Zsp and Esp to estimate three more
model-system parameters (with a1 having been estimated from the
near-linear region’s slope)

=V
δa

a Im Z( ( )) ;sp
2

1
2

(29)

=E ERe( );sp
0 (30)

and

=Z ZRe( )sp0 (31)

This knowledge then allows one to compute = +Z Z V
δa

V
ε0 , which
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one can use to verify whether the four data points used to create the
ab initio RF1 lie below the V2 bound. If not, it is recommended that
one adjust the choice of Z-values to form a new RF1. However, as
noted earlier, it is likely that all Z-values between successive
avoided crossings lie within this V2 bound in ab initio stabilization
graphs.

iv. If one has a reasonable estimate of a2, one can multiply the V2 width
by the ratio

−
a

a a
2

2 1
(see Eq. (16)) to obtain an estimate of the exact

width. Moreover, knowing a2, one has enough knowledge to eval-

uate the point + ( )Z V
δa

V
ε0

1
3 at which the V4 contributions to the

energy fall below ε, so one can estimate where to place data points
in forming a subsequent RF2 approximant.

v. If one does not have a good estimate for a2, to form RF2, one can
search the energy data for a range even closer to the crossing point
within which the energy deviates significantly from

+ − − −E a Z Z( ) V
δa Z Z

0
1 0 ( )

2

0
(using the values of E0, a1, Z0 and V

δa

2
ob-

tained in step iii). One can then use at least six data points in the
region where the data deviates from + − − −E a Z Z( ) V

δa Z Z
0

1 0 ( )

2

0
(being

careful to include one point as near as possible to the near-linear
region) to form a RF2 approximant. As outlined earlier, the ratio of
the half-width obtained from the RF2 to that from the RF1, is ap-
proximately a

δa
2 , which allows one to estimate a2.

Knowing all five parameters of a model derived from the ab initio
RF1 and RF2 then allows one to compute the point at which the fourth

order contributions to the energy fall below ε: + ( )Z V
δa

V
ε0

1
3 and to thus

verify whether all of the Z-values used to form the RF2 approximant in

step v lie below + ( )Z V
δa

V
ε0

1
3 . Knowing even approximate values for V

δa
V
ε

and (especially) ( )V
δa

V
ε

1
3 would allow one to wisely choose Zk values in

forming any higher-order [n+ 1, n] RF approximant of the ab initio
data, and it is likely that such higher-order RFs would then produce the
most reliable Esp and Zsp values to use in ab initio determinations of
resonance-state energies and lifetimes.

Acknowledgments

KG acknowledges the support of a graduate fellowship from the

Pittsburgh Quantum Institute. This research was supported by grant
number CHE1762337 from the U.S. National Science Foundation. We
also acknowledge the use of computational resources in the University
of Pittsburgh’s Center for Research Computing.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.chemphys.2018.07.019.

References

[1] A.U. Hazi, H.S. Taylor, Stabilization method of calculating resonance energies:
model problem, Phys. Rev. A 1 (1970) 1109–1120.

[2] J.S.-Y. Chao, M.F. Falcetta, K.D. Jordan, Application of the stabilization method to
the N2

−(X2Πg) and Mg–(12P) temporary anion states, J. Chem. Phys. 93 (1990)
1125–1135.

[3] J. Horáček, I. Paidarová, R. Čurík, Determination of the resonance energy and width
of the 2B2g shape resonance of ethylene with the method of analytical continuation
in the coupling constant, J. Phys. Chem. A 118 (2014) 6536–6541.

[4] J.F. Stanton, J. Gauss, Perturbative treatment of the similarity transformed ha-
miltonians in equation-of-hotion couple-clustered approximations, J. Chem. Phys.
103 (1995) 1064–1076.

[5] M. Nooijen, R.J. Bartlett, Equation of motion couple clustered method for electron
attachment, J. Chem. Phys. 102 (1995) 3629–3647.

[6] T. Koopmans, On the assignment of wave functions and eigenvalues to the in-
dividual electrons of an atom, Physica 1 (1934) 104–113.

[7] J. Schirmer, L.S. Cederbaum, O. Walter, New approach to the one-particle green's
function for finite fermi systems, Phys. Rev. A 28 (1983) 1237–1259.

[8] I. Haritan, N. Moiseyev, On the calculation of resonances by analytic continuation
of eigenvalues from the stabilization graph, J. Chem. Phys. 147 (014101)
(2017) 1–9.

[9] A.J.F. Siegert, On the derivation of the dispersion formula for nuclear reactions,
Phys. Rev. 56 (1939) 750–752.

[10] C.W. McCurdy, J.F. McNutt, On the possibility of analytically continuing stabili-
zation graphs to determine resonance positions and widths accurately, Chem. Phys.
Lett. 94 (1983) 306–310.

[11] G.A. Baker Jr., P. Graves-Morris, Padé Approximants, Cambridge Univ Press, 1996.
[12] K.D. Jordan, Construction of potential energy curves in avoided crossing situations,

Chem. Phys. 9 (1975) 199–204.
[13] L. Schlessinger, Use of analyticity in the calculation of nonrelativistic scattering

amplitudes, Phys. Rev. 167 (1968) 1411–1423.
[14] J. Simons, Resonance lifetimes from stabilization graphs, J. Chem. Phys. 75 (1981)

2465–2467.
[15] K. Gasperich, K. D. Jordan, unpublished results.

K. Gasperich et al. Chemical Physics 515 (2018) 342–349

349

https://doi.org/10.1016/j.chemphys.2018.07.019
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0005
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0005
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0010
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0010
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0010
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0015
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0015
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0015
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0020
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0020
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0020
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0025
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0025
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0030
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0030
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0035
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0035
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0040
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0040
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0040
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0045
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0045
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0050
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0050
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0050
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0055
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0060
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0060
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0065
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0065
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0070
http://refhub.elsevier.com/S0301-0104(18)30478-6/h0070

	Strategy for creating rational fraction fits to stabilization graph data on metastable electronic states
	Introduction
	Extracting the energy and lifetime of the metastable state from a stabilization plot
	RF and quadratic equation approaches for fitting stabilization-plot data
	Selecting data points for RF fits that are not too far from avoided crossings

	Model for which the exact energy and width are known
	What is the purpose of introducing an analytically solvable model?
	The model energy expression and its resonance energy and width
	Guidance offered by the model on how to select powers of Z and Z-values at which to compute energies
	Stationary points and energies from the series expansion
	Guidance for creating rational fractions

	Comparing results of RF fits of model data to the exact, V2, and V4 results
	Results of [n + 1, n] RF fits for S3
	How to improve the choice of Z-values to create better [n + 1, n] RFn fits

	Conclusions and suggestions for application to ab initio stabilization plot data
	Acknowledgments
	Supplementary data
	References




