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It is shown that although non-orthogonal spin geminals and variation of the spin geminals can be incorporated into
our method for constructing optimally N-representable density matrices, they offer no practical advantages. A tech-
nique for predicting the effects of basis augmentation is presented and the role of error bounds in our theory is

briefly discussed.

1. Introduction

Recently we proposed a method for constructing
optimally N-representable 2-matrices which are ex-

pressible in terms of any given set of spin geminals [1].

A measure of N-representability was introduced and
error bounds which allow us to estimate the conse-
quences of approximate N-representability were de-
rived. In this letter we consider the use of non-ortho-
normal spin geminals and possible variations of these
spin geminals chosen to improve the N-representability
of the resulting 2-matrices. One conclusion is that non-
orthogonal spin geminals can be used in our method
but they offer no advantages over orthonormal func-
tions. In fact, while carrying out a calculation one
would eventually be faced with the task of orthogonal-
izing the chosen set of spin geminals. Thus one might
as well perform the orthogonalization as the initial
step.

We also conclude that no improvement in N-repre-
sentability can be made by varying the spin geminals
within the space spanned by the original set of func-
tions. Only augmentation of the basis gives the possi-
bility for improvement. A scheme for estimating the
effects of augmentation is presented.

1 N.S.F. Postdoctoral Fellow.
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Lastly we make some brief remarks aimed at clar-
ifying the role of error bounds in our proposed meth-
od for constructing optimally N-representable density
matrices. These error bounds are an essential compo-
nent of our modified variational technique which al-
lows the optimization of variational parameters ap-
pearing in the resultant 2-matrices.

2. Non-orthonormal spin geminals

We assume that we have available a set of antisym-
metric, but not necessarily orthonormal, spin gemi-
nals # {¢,(1,2),i=1.2, ...,M}. The development
presented in our earlier paper (hereafter referred to
as I) can be carried through directly with only the
following modification: the normalization condition
on ¥(1,2, ..., N) becomes

e

1=2 2 ¢ [6°(12)¢.(12)dr,dr,C,
Z, Z clisapsudming,

11 The reader is referred to ref. [1] for notation and details
of the discussion.
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where the second equality serves to define the overlap
matrix S.

The problem of choosing the coefficients {C;_ }to
maximize the N-representability, subject to the con-
straint given in eq. (1), leads to the following matrix
equation:

Sl

> 2 r =12 S,C, . )

=1 pg=1 ia,jB .m j=1

To convert this to a conventional matrix eigenvalue
problem we first form the matrix M whose entries are
given by

M:‘a, j8 = 5aﬁN ij » (3)
where the elements V;; are related to the eigenvectors ¥
Vi; and eigenvalues s; of Sby

g
Ni=s;"V;. @

If we now define coefficients {Q;, } by

fa,ngjg . (5)

we can premultiply eq. (2) by the transpose of M to ob-
tain the desired eigenvalue relation

il

2 (MTTMY, 60y =\ ©
with

¥ Notice that the subscript j labels the eigenvalue and i is the
running index within the jth eigenvector.

Once eq. (6) has been solved for the largest eigenvalue
of the matrix (MT
the optimum coefficients {
in terms of the Q;, as

and its associated eigenvectors,
C;, }are immediately given

G E NyjQje - ®)

From this discussion it is clear that the only added
complexity encountered in treating non-orthonormal
spin geminals is the problem of finding the eigenvalues
and eigenvectors of the M-dimensional overlap matrix
S. Forming the matrix MT TM involves simple ma-
trix multiplications over indices which run from 1 to
M, cf. eq. (7). However, the problem of finding the
eigenvalues and eigenvectors of S is exactly equivalent
to orthogonalizing the original set of spin geminals
and then carrying out the calculation using this new
orthonormal set. We therefore conclude that the most
expeditious route to take when working with non-
orthonormal spin geminals is to orthogonalize the
geminals by finding the eigenvectors of Sand to then
use the results presented in I for orthonormal spin
geminals. We gain no convenience by using the non-
orthogonal functions directly.

3. Variations of the spin geminals
Let us suppose that the scheme proposed in I has

been successfully completed so that we know the op-
timum (for the initially chosen {¢;}) functions

{x(3,4, ..., M) }in the expansion of ¥(1,2, ..., N):
V(12,..M)= L 6,012 %34, - ) . ©)
\1 :

With the {x;}considered fixed we now investigate the
possibility of varying the {¢;}to further increase the

N-representability of the resulting 2-matrix. This pro-
cedure would then lead to an iterative scheme for im-
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proving N-representability in which the {¢;}and the
{x;}are successively varied.

Let us first consider the situation in which we re-
strict the new spin geminals {¢. ;Jto lie within the
space spanned by the original {¢;}:

M
3’,-(1,2)=§ U;6/1.2), (10)

where Uis some non-singular matrix ¥. The new func-
tion ¥(1,2, ...,M_Eonstructed with the known {x;}
and the variable {¢;}is then given by

M

12,00 = 21 §(1.2) X33, -, V)

M
= I_JZ:)L $/1,2) Uy ;(3.4,..... N) . (11)

The answer to the problem of varying U to maximize
N-representability is immediately seen to be

U=1, (12)

the identity matrix. To show this result in more detail,
let us define the variable {x;}in terms of the fixed

{x;}as
M
X = Z‘i Uyxd34, - N) . (13)

The function ¥ can then be written as

M
12, M) =2 40,9 G, o N) (14)

We now inquire as to what choice of the {;i}(or equiv-
alently what choice of the Uy;) will, for fixed {¢:}
maximize N-representability. By assumption this prob-
lem has already been solved and the answer was to
choose

'ff(B’ s=ny N) = Xf(39 '"sN) ’ (15)
which immediately implies eq. (12).

+ We wish to preserve the number of independent spin gemi-
nals.

96

CHEMICAL PHYSICS LETTERS

15 July 1971

This discussion therefore tells us that once the op-
timum {x;}have been found for a given set of spin
geminals, nothing can be gained by varying the spin
geminals within the space of the original {¢;}. To im-
p ove N-representability we must either augment the
basis of spin geminals or replace some of the {¢;}by
new functions. One scheme for augmenting the basis
to improve N-representability and reduce possible er-
rors in calculated expectation values was presented in
1. There still remains a need for specific criteria in
choosing which spin geminals are most essential in
any augmentation.

We now turn our attention to considering the ef-
fects of basis set augmentation on the N-representa-
bility of resulting 2-matrices. Let us assume that the
method in I has been carried through using a basis of

M spin geminals {¢;}and ( NJ«R- 2) Slater determinants
{[«]}(see I for notation). The T -matrix for this initial
calculation will be denoted by TO, with (largest)
eigenvalue \® and eigenvector {C }2)}. If we now add
(M'—M) orthonormal spin geminals to the original
basis, the dimension of the new T-matrix will be

N=-2 N=-2

the augmented T-matrix

M'( R ) X M'(- A ) The eigenvalue equation for

Tc=ac, (16)
can be decomposed into two matrix equations

TIIC1+T12C2=)\C1 g (17)
The+ 16 =10y, (18)

by partitioning T and C into contributions due to the
original spin geminals and contributions which arise
when the basis is augmented. It should be apparent
that we are to identify T1; with T©.

Rearranging eqs. (17) and (18) leads to the follow-
ing equations for €y and Cj:

[T+ T2y -Top) 1 Tyl €y =2ey (19)
and
Cy=(Ny-Ty)- 11,0, , (20)

where |5 is a unit matrix whose dimension is equal
to the dimension of T,,. Once eq. (19) is solved for
C, eq. (20) immediately gives C5.
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Because eq. (19) contains the unknown eigenvalue A
in a complicated fashion it is probably necessary to
attempt some approximate solution, perhaps an itera-
tion approach or a perturbation expansion. If, in a per-
turbation-theoretic sense, we approximate A by A(®)
and C; by C©, egs. (19) and (20) can be used to
write the first-order correction A(1) to the eigenvalue
Aas

XD = cO T 1y —Ty)1 T, €O (21)
and the first gpproximation to C; as
P =91y, -T))1 1,,c0. (22)

Of course the resulting approximation {'Cw), C (21)] to
C would then have to be renormalized to maintain con-
sistency with the statements in L.

Although this partitioning scheme requires the in-
version of the (\©1,, —T,,) matrix, it does not cause
any major computational difficulty because we have
in mind a situation in which the number of added spin
geminals is quite small, i.e., the dimension of Tg will
usually be much smaller than the dimension of 1211
Evaluation of the elements le, TZI ,and Tzz is easily
accomplished by using the results given in I. Egs. (21)
and (22) then give closed (approximate) expressions
for the contributions to A and C due to any basis aug-
mentation.

This procedure not only allows us to estimate the
consequences of specific augmentations but it also in-
troduces the possibility of developing rules for deter-
mining which spin geminals are most important to add
to the original basis. Hopefully we shall have more
constructive contributions along these lines in the near
future.

4, Error bounds

In I we obtained a bound on the quantity Iz‘i—ﬁ |
involving the measure of N-representability u. E'is the
expectation value of the hamiltonian with respect to a
certain antisymmetric wave function while £ is the en-
ergy calculated as the trace of the reduced hamiltonian
times a 2-matrix obtained by our procedure. The bound-
ary equation

I —pE| < f(w)

clearly implies

(23)
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E-f<uE<E +f. (24)
Because £ is an upper'bound to the true ground-state
energy Et

E>Er, (25)
eq. (24) can be used to write
pE>E-f>Er-f. (26)

This relation is easily rearranged ¥ to give the final re-
sult

E>Ep+p! [Ep(1-p) - f@)] -

Because f(u), u, and (1 —u) are non-negative quanti-
ties and, for bound-state problems, E'p is negagve,

eq. (27) allows us to state that the calculated £ will
not be more than p~1|E(1—u) —f| below the true
ground-state energy E'p. If we know a lower bound to
ET (say Ep ), we can replace eq. (27) by
E>Ep+p! [EL(1-0)-fW)] ,
which says that E cannot be more than
pYEL (1-4) — f()| below E7.

The importance of this bound lies in the fact that
Eis usually obtained as the minimum energy in a va-
riational calculation involving the 2-matrix. For such
a variational approach to have any validity we must be
able to predict a lower bound to any calculated ener-
gy (as in the common variational method), i.e., there
must be some value below which no energy calculated
with our 2-matrix can fall.

27

(28)

5. Conclusion

In this letter we showed how non-orthonormal spin
geminals can be used in our scheme for constructing
optimally N-representable 2-matrices. We concluded
that the most direct approach seems to be the best:
orthogonalize the spin geminals and then carry out
the calculation in terms of these orthonormal func-
tions. It was also demonstrated that nothing can be
gained by varying the spin geminals within the space

“
1 This step is valid for positive u. From I we know that
0 < i < 1 50 u =0 is the only possibility for trouble. The

= 0 case is of no interest to us because u = 0 implies
that the resulting 2-matrix is not at all N-representable.
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of the original {¢,}; augmentation of the basis is neces- Reference
sary to improve the N-representability. A method for
estimating the effects of spin geminal augmentation [1] J. Simons and J.E. Harriman, Phys. Rev. A2 (1970) 1034.

was also presented. Finally, we discuss&d in somewhat
more detail than in I the meaning of the error bounds
contained in our method.
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