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. Abstract

The ab initio calculation of molecular electron affinities (EA) and ionization potentials (IP) is a difficult task
because the energy of interest is a very small fraction of the total electronic energy of the parent species. For
example, EAs typically lie in the 0.01-10 eV range, but the total electronic energy of even a small molecule, rad-
ical, or ion is usually several orders of magnitude larger. Moreover, the EA or IP is an intensive quantity but the
total energy is an extensive quantity, so the difficulty in evaluating EAs and IPs to within a fixed specified (e.g.,
+0.1 eV) accuracy becomes more and more difficult as the system’s size and number of electrons grows. The
situation becomes especially problematic when studying extended systems such as solids, polymers, or surfaces
for which the EA or IP is an infinitesimal fraction of the total energy. Equations of motion (EOM) methods such
as the author developed in the 1970s in collaboration with P. Jgrgensen and others offer a route to calculating
the intensive EAs and IPs directly as eigenvalues of a set of working equations. A history of the development of
EOM theories as applied to EAs and IPs, their numerous practical implementations, and their relations to Greens
function or propagator theories are given in this contribution. EOM methods based upon Mgller-Plesset, multi-
configuration self-consistent field, and coupled-cluster reference wave functions are included in the discussion as
is the application of EOM methods to metastable states of anions.
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1. INTRODUCTION

The vertical electron affinity (EA) of a molecule can be estimated by (approximately) solv-
ing the Schrodinger equation for the energy E (0, N) of the N-electron neutral molecule
and the Schrédinger equation for the energy E(K, N + 1) of the K'th state of the (N + 1)-
electron anion and subtracting the two energies:

EA=E@©,N)—E(K,N +1). @
The corresponding vertical ionization potential (IP) is given as
IP=E(K,N — 1)~ E(0, N). ' )]

Here, we use K to label the electronic state of the anion or cation that one wishes to study,
and 0 to label the state of the neutral (usually but not necessarily the ground state) to which
the electron is being attached or from which it is removed.

In using such an approach to obtaining the EA or IP, one is faced with a very difficult
numerical challenge because E(0, N), E(K, N—1),and E(K, N+1) tend to be extremely
large (negative) numbers, whereas EA and IP nearly always lies in the range 0~20 eV. For
example, the EA of the 4S3/2 state of the carbon atom [1] is 1.262119 % 0.000020 eV,
whereas the total electronic energy of this state of C is —1030.080 eV (relative to a Ct+
nucleus and six electrons infinitely distant and not moving that defines the zero of energy).
Since the EA is ca. 0.1% of the total energy of C, one needs to compute the C and C~
electronic energies to accuracies of 0.01% or better to calculate the EA to within 10%.

This observation shows only the “tip of the iceberg”, however as the major problem
relates to the fact that £(0, N), E(K, N — 1), and E(K, N + 1) are extensive proper-
ties whereas EA and IP are intensive quantities. For example, the EA of Cy in its XZES',"
ground electronic state is [1] 3.269 + 0.006 eV near the equilibrium bond length R, but
only 1.2621 eV at R — oo (i.e., the same as the EA of a carbon atom). However, the total
electronic energy of C; is —2060.160 eV at R — oo and lower by ca. 3.6 eV (the dissoci-
ation energy [2] of C;) at R,, so again EA is a very small fraction of the total energies. For
buckyball Cep, the EA is [1] 2.666 4 0.001 eV, but the total electronic energy is sixty times
—1030.080 eV minus the atomization energy (i.e., the energy change for Csy — 60 C)
of this compound. Clearly, the challenge of evaluating EA (or IP) to within even 50% be-
comes more and more difficult as the size (i.e., number of electrons) in the molecule grows,
and it becomes impossible when the system of interest is an infinite solid, surface, or poly-
mer. This same kind of difficulty (i.e., calculating an intensive quantity as the difference
between to extensive energies) plagues the computation of EAs and of ionization potentials
(IPs), bond energies, and electronic excitation energies.

The problems discussed in the preceding paragraph do not disappear if one uses a
computer with higher numerical precision in its arithmetic (i.e., a longer word length)
or algorithms that compute the one- and two-electron integrals needed for any quantum
chemistry calculation to more significant figures. No mater how precise the integrals and
how long the floating point word length (as long as they are finite), the evaluation of in-
tensive properties such as IPs, EAs, and excitation energies as differences between pairs of
extensive total electronic energies is doomed to fail.

Of course, much progress can be made in computing EAs and IPs as differences between
anion and neutral or cation and neutral total energies [3] because of large systematic cancel-
lation in energy errors [4]. For example, the pair correlation energies of the two 1s electron
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pairs in C; is quite large, but is very nearly the same as in C, , so even a large percent error
made in computing these contributions to the total energy may not greatly affect the EA
computed by subtracting E(K, N + 1) from E(0, N). Some of the earliest high quality ab
initio calculations of EAs were carried out using wave function techniques and calculat-
ing separate neutral and anion energies. Nevertheless, in the late 1960s and early 1970s,
workers were motivated to develop methods that would allow intensive energy differences
such as EAs [5], ionization potentials (IPs) and excitation energies (A Es) “directly” rather
than as differences in two very large numbers. This point of view is what led to the de-
velopment of so-called equations of motion (EOM) methods as well as Greens function
methods [6] pioneered by the Linderberg and Ohrn groups and, more recently, response
function approaches [7] of Jgrgensen, Olsen, and co-workers. In all of these theories, one
performs a derivation in which the two total energies (i.e., ion and neutral or ground and
excited state) are subtracted analytically (rather than numerically) thereby achieving an
analytical expression for the desired intensive energy difference. It is by thus dealing with
equations that involve only intensive energies that one can overcome the problems detailed
earlier.

Among the earliest practitioners of EOM methods in the chemistry community were
McKoy [8] and his group at Cal Tech. They imported many ideas and mathematical tools
from the nuclear physics literature [9], where EOM theories had been used to study excited
states of nuclei, and they focused their efforts on electronic excitation energies A E, not IPs
or EAs. In 1973, the author used the framework of EOM theory [10] as expressed by the
McKoy group to develop a systematic (i.e., order-by-order in the Mgller-Plesset perturba-
tion theory sense) approach for directly computing molecular EAs and IPs as eigenvalues
of the EOM working equations. It is this development and its subsequent improvement, to
several of which Prof. Poul Jgrgensen contributed, and extensions [11] by our group and
others that we now describe.

2. BASICS OF EOM THEORY
2.1. The EA equations of motion

The fundamental working equations of any EOM theory can be derived by writing the
Schrédinger equations for the neutral and anion (or neutral or cation or ground and ex-
cited) states of interest and subtracting the two equations as a first step toward obtaining a
single equation that will yield the EA or IP or AE. That is, the EOM theory produces the
intensive energy difference directly as an eigenvalue of the working equation. As above,
we use |0, N) to denote the Oth electronic state of the N-electron neutral and |K, N + 1)
to denote the Kth state of the (N + 1)-electron anion and write the two Schrédinger equa-
tions as

H|0, N) = E(0, N)|0, N}, 3
H|K,N+1)=E(K,N+1|K,N+1). “)

Because |0, N) and |0, N + 1) contain different numbers of electrons, it is convenient
in developing EOM theories of EAs to express the electronic Hamiltonian H in second-
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quantized form [12]:

- . . .+ . 1 . . .+ .+
H_Zh(z,])l ]+-2—.Z (i, jik, it jtik (5)
i,J i,j.k,1
where (i, j) represents a matrix element of the one-electron operators (i.e., kinetic en-
ergy, electron-nuclear Coulomb attraction, efc.) within the orthonormal molecular spin-
orbital basis {¢;}, (i, jlk,I) is a matrix element of the two-electron operators (i.e.,
electron-electron repulsion), and the set of Fermion creation operators {it} create an
electron in the {¢;} spin-orbitals, whereas the {i} operators destroy such an electron.
Writing H in such a form allows us to use the same H in equations (3) and (4)
even those these two Schrodinger equations relate to N and N + 1 electrons, respec-
tively.
The next step in developing an EOM equation is to assume that the anion state | K, N+1)
can be related to the neutral state |0, N} through an operator @+ (K):

|K, N +1) = 07 (K)|0, N) (6)

that maps the neutral molecule wave function into the desired anion wave function.

For the EA case at hand, the operator Q% (K) is usually written in terms of scalar co-
efficients #(K, I) multiplied by operators 7+ (J), also expressed in second-quantization
language, each of which involves adding an electron

QF(K) =) 1(K,DT(). ™
1

Manne showed [13] that a complete set of such 77 (I) operators consists of the union of
sets of operators {p*} that add an electron to a spin-orbital ¢,,, operators { p*q*a} that add
an electron to ¢, and excite another electron from ¢, to ¢q, operators {pTgTrTab} that
add an electron to ¢ p €Xcite an electron from ¢, to ¢, and excite another electron from ¢y
to ¢4 as well as higher-level electron addition and excitation operators up to the highest-
level operators that add an electron and induce N excitations. In labeling these operators,
the indices a, b, c, d, etc., are used to denote spin-orbitals occupied in a so-called refer-
ence Slater determinant within |0, N} and p, q, r, s, etc., are used to denote unoccupied
(i.e., virtual) spin-orbitals. The reference determinant, which is what defines the concept of
occupied and unoccupied spin-orbitals, is usually chosen to be the determinant |[0) within
the neutral-molecule wave function

0.N)= ) CO NIV @®)
J=0,M
with the largest amplitude C (0, 0), but it has been shown [13] that |0) can actually be taken
to be any determinant within |0, N) that possesses non-zero amplitude. Later we will deal
with how one determines the C(0, J) amplitudes in the wave function |0, N); for now,
suffice it to say these amplitudes can, for example, be taken from Mgller—Plesset (MP)
perturbation theory, from multiconfiguration self-consistent field (MCSCF) theory, from
configuration interaction (CI) theory or from coupled-cluster (CC) theory.
Using equation (6) in equation (4) and subtracting equation (3) from (4) gives a single
equation whose eigenvalue gives the desired EA:

(HQ™(K) — @*(K)H)|0, N) = (E(K, N + 1) — E(0, N)) Q" (K)|0, N) ©
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or, in terms of the commutator [H, Q7 (K)]
[H, 0T (K)]I0, N) = EQ™ (K)|0, N) (10)

where the eigenvalue E is the negative of the EA. The key point is that one now has a single
equation to be solved that produces the intensive EA as its eigenvalue. This equation ap-
pears to be of the conventional eigenvalue-eigenfunction form, but it is somewhat different
because the operator that acts on the eigenfunction 01 (K)|0, N) is not the Hamiltonian
but a commutator involving the Hamiltonian. The fact that the commutator appears is what
causes the eigenvalue to be an intensive energy difference.

To progress further toward practical implementation, specific choices must be made for
how one is going to approximate the neutral-molecule wave function |0, N) and at what
level one is going to truncate the expansion of the operator @ (K) given in equation (7). It
is also conventional to reduce equation (10) to a matrix eigenvalue equation by projecting
this equation onto an appropriately chosen space of (N + 1)-electron functions. Let us first
deal with the latter issue.

Once the number of T7 (/) operators used to construct 01 (K) has been chosen (we
discuss this choice later), the total number [™* of # (K, /) amplitudes has been determined.
Multiplying equation (10) on the left by the adjoint 7'(j) of any one of the T operators,
and then projecting the resultant equation against (0, N| gives one form of the working
EOM EA equations:

> (0, NIT()[H, TD]I0, N)e(K, 1) = E > (0, NIT()HTTDI0, N)2(K, D).

l 1 (11)
To make use of this equation, the (0, N|T(/)[H, T+ ()10, N) and (0, N|IT(j)T*())|0, N)
matrices of dimension ™ x ™% must first be evaluated in terms of one-and two-electron
integrals (appearing in H) and one-, two-, and higher-body density matrices (depending
upon the level at which the {T ()} operator expansion is truncated). Subsequently, the EA
values (i.e., EAs for the various anion states, K, relative to the |0, N} state of the neutral)
are computed as minus the eigenvalues E of equation (11).

2.2. The analogous equations of motion for ionization potentials

It is useful to explore how this same framework has been used to compute molecular ion-
ization potentials (IPs). It is fairly straightforward to show that an equation analogous to
equation (10) but reading

(0, NI(HQF(K) — @ (K)H) = (E(O, N) — E(K, N = D)(0, N|Q¥(K)  (12)

is valid if the operators {Q1(K)} are as given in equation (7) but with the {T*(I)} de-
fined to include operators of the form {a*, atb™ p,atbTctgr, etc.}. Of course, in equa-
tion (12), the operators within Q¥ (K) act to the left on (0, N| to generate cationic states.
As a result, neutral-cation energy differences appear in equation (12) and thus this offers
a route to computing IPs. Multiplying this equation on the right by any one of the T'(j)
operators and then projecting against |0, N) gives

> (0. NI[H, TYDO]T ()10, N1 (K, 1) = EY (0, NITTOT (IO, Nyr(K, D) (13)
l 1
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but now the eigenvalues E denote values of (E(0, N) — E(K, N — 1)), which are the
negatives of the IPs.

Thus far, we see that EOMs can be written that allow EAs or IPs to be computed. The
fundamental constructs within these equations are as follows:

(i) For the EA case, matrix elements (0, N|T(j)[H, T*(1)]|0, N) involving the commu-
tator of H with the 7 (I) operators then multiplied on the left by a T'(j) operator, as
well as an analogous overlap matrix element (0, N|T (;)T()|0, N);

(ii) for the IP case, matrix elements (0, N|[H, T*(I)]T(j)|0, N) of the same commutator
but with the 7'(j) operator on the right, as well as the corresponding overlap matrix
element (0, N|T()T(j)|0, N):

(iii) the neutral-molecule wave function |0, N) with respect to which the EA or IP is to be
evaluated.

2.3. The rank of the operators

It is now useful to analyze the density matrix elements! that enter into these equations.
Each of the T (j) operators contains an odd number of creation or annihilation opera-
tors, and the Hamiltonian H contains two (i.e., it j) or four (i.e., i * j*1k) such operators.
It can be seen that the commutator [H, T+ (/)] does not contain four plus the number of
creation or annihilation operators in 7% (1), but two fewer operators. For example, the
commutator [i* j*Ik, pTq*a] does not yield any terms with four creation and three an-
nihilation operators but only terms with three creation and two annihilation operators. We
say that the act of forming the commutator (which is what causes the higher order op-
erators to cancel) gives rise to a reduction in the rank of the operators. As a result, both
the operator products T (j)[H, T*(1)] and [H, T*(I)]T (j), which appear in the EA and
IP equations of motion, respectively, contain terms only involving both creation and an-
nihilation operators equal to the number of creation operators in T+ (I) plus one plus the
number of creation operators in 7'(j). For example, if TT (/) = ptqta and T(j) = b*rs,
then T(j)[H, T+ ()] and [H, T*(1)]T (j) will contain terms with no more than four cre-
ation and four annihilation operators. This means that the density matrices needed to from
(O, NIT(j)[H, T*(D1|0, N) and (0, N|[H, T*T ()T (j)|0, N) will be, at most, fourth or-
der density matrices of the (0, N|... |0, N) density.

2.4. Equations of lower rank for both EAs and IPs

Indeed, in the early years of using EOM methods [14] to compute EAs and IPs, oper-
ator manifolds of the form {T+()} = {p*; pTqta, ptqtrtba, etc} or {TH()} =
{a*,atbtp,atbtctqr, etc.} were employed with Mgller-Plesset approximations to
|0, N) (usually taken through first order) to form the kind of matrix elements appearing
in equations (11) and (13) and to then evaluate EAs and IPs from their eigenvalues E.
However, it became more common to use a combination of the EA and IP EOMs formed

1 The first- and second-order density matrices, respectively, have elements given by (0, N[j*k|0, N) and
(0, NIjtktin|0, N).
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by adding equations (11) and (13), while expanding the {7 (I)} operator manifold to in-
clude both those needed to evaluate EAs {p™*; ptq*a, pTqTrtba, etc.} and those needed
for the IPs {at,athTp,aTbtcTqr, etc.}, to simultaneously compute both such energy
differences. ‘

To understand why such a combination has proven beneficial, it suffices to examine the
form and rank of the operators whose (0, N| ... |0, N) matrix elements must be evaluated

Z(O, NI[H, TTO]T () + TG)[H, T*D]I0, N)1(K, 1)
1

=EY (0, NIT*OTG) + T(HTDI0, Nyt (K, D). (14)
)

Recall that the T 7(j) operators contain an odd number of creation or annihilation opera-
tors. Bach of the products [H, TT(DIT (), THIH, TT D1, THOT (j), and TGHT* ()
thus contain an even number of such operators. However, because of the fundamental anti-
commutation properties of these operators

itj+jit =4, as)
ij+ji =0, (16)
itjit+jtit =0 (a7)

it can easily be shown that the operator combinations T*()T(j) + T(j)T* () and
[H, TT(OIT () + T()[H, T ()] contain one fewer creation and one fewer annihila-
tion operator than does either of the two terms in the sums. So, by combining the EA and
IP EOMs, one effects a rank reduction in the operators appearing in the equations although
the dimensions of the matrices one needs to construct are doubled (because the {T*(I)}
operator manifold was doubled when both EA and IP operators were included. The rank
reduction is important because it means that the density matrices that need to be evalu-
ated to compute the (0, N|...|0, N) matrix elements are of lower rank in equation (14)
than in either equation (11) or equation (13). As we said, it has become more common
to use the combined EA and IP equation (14) because lower-order density matrices are
required.

2.5. Summary

Thus far, we have shown how one can obtain eigenvalue equations, in which the energy
eigenvalues correspond to the intensive EAs (or IPs), by postulating that the anion (or
cation) wave function can be related to the neutral-molecule wave function through an
operator. We have also shown how the EA and IP equations of motion can be combined to
generate a combined EOM from which both EAs and IPs can be obtained. The advantage
to the latter approach is that the operators appearing in the resultant equations are of lower
rank and thus lower-order density matrices must be evaluated to carry out the calculations.
Let us now move on to address more specific embodiments of such EOM theories that
result from different choices of the neutral-molecule wave function and of the operator
connecting the neutral and anion wave functions.
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3. PRACTICAL IMPLEMENTATIONS OF EOM THEORIES FOR EAS
AND IPS

The basic ideas underlying any EOM method for computing EAs or IPs appear above.
However, as discussed earlier, in any specific embodiment of such a method, one must
commit to

(i) a specific approximation to the neutral-molecule wave function |0, N),
(ii) a specific choice of how large an operator manifold {7 (/)} to employ, and
(iii) how to solve the resultant EOM equations for the eigenvalues E that then produce
the EAs or IPs. In the following subsections, we describe the most commonly used
choices for these three issues.

3.1. The Mgller-Plesset based approximations

In the earliest implementation of EOM approaches to EAs, the author’s group [10,14] chose
to represent the |0, N) wave function in a Mgller-Plesset (MP) expansion

0,N) =y + ¢l +y2 +... (18)

with the single-determinant unrestricted Hartree-Fock (HF) function being v and the cor-
responding neutral-molecule HF Hamiltonian being H°. This choice was made because
there existed substantial evidence that EAs and IPs computed at the Koopmans® theorem
level would not meet the desired 0.1 eV accuracy. The evidence on atoms and small mole-
cules also showed that EAs and IPs computed using standard second-order MP theory were
much more accurate but not sufficient to approach the 0.1 eV standard. For this reason, the
author’s group set their sites on the next reasonable level, that of third-order MP theory.

The operator manifold {7+ (/)} was taken to consist of {p™; pTg*a} and {at,atb* p}.
In a close collaboration with P. Jgrgensen, this choice of operator manifold was shown to
be capable of producing EAs and IPs that were precise through third order? in the MP
perturbation, which is why this choice was made.

The resultant variant of equation (14) was not solved by finding the eigenvalues of
this matrix eigenvalue equation whose dimension is the sum of the dimensions of the
{p*; pTq*a} and {a*, a*b* p} operator manifolds. Rather, that large matrix eigenvalue
problem was partitioned [10] using a primary subspace defined by the {p*, a*} opera-
tors and a secondary subspace defined by the {p*q*a, a*b* p} operators. The partitioned
eigenvalue problem

Y H j(E)X; = EX; (19)

j=a,p
whose dimension was that of the {p*, a*} operator space was used to find the eigenval-
ues E. Of course, the act of partitioning the higher-dimension matrix eigenvalue problem
does not change the values of E that represent solutions to the equations. That is, the same
E values that fulfill the original equations are also solutions to the partitioned equations.
However, once one introduces approximations designed to evaluate elements of the par-
titioned H; ;(E) matrix to a chosen order in perturbation theory, this equivalence is lost.

2 See Ref. [6k].
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It is precisely by making such an order analysis (e.g., computing H; ;(E) through second
or third order) that EOM theories capable of evaluating EAs or IPs to a given order were
obtained.

When the elements of the partitioned matrices were evaluated through second order in
the MP series, the following expression was obtained for the matrix elements H; ;;

. (20)

H; j(E) = &i8ij — Z

p.gq.a

(l;a”P,CI)(Pa‘I”],a) + Z (i,P”a,b)(a,bHJ»P)
ept+éeg—€a—E 5 Eatep—ep—E

Here, the ¢ ; denote the UHF spin-orbital energies of the neutral molecule and the (7, j||k, [}
denote differences in two-electron integrals ({i, j||k,I) = (i, jlk,I}) — (i, j|I, k)). Such
expressions were also obtained by Reinhardt and Doll [17] within the Greens function
framework, but they had not extended their efforts to third or higher orders.

The expression for H; j(E) valid through third order in the MP series is more compli-
cated and is derived in Refs. [10].3 The partitioned matrix eigenvalue equation was written
in those works as

H(E)X = EX 2y

where the elements of the H matrix were defined as follows:

Bi,amﬂB;‘iamﬁ _ Z Bi,naN+1gB;'=‘m,N+1
Ep+E N+ln _E
Bi,namgB

*
J.nam
. 22
Enn = F (22)

Hij(E)=Aij+ Y.

a<f,m

-

N+l<m<n, o

N+l<n,

In turn, the elements of the A and B matrices are shown below:

I,
Biamp = — (imlap) — = ) (im|pg)Kof? 23)
p.q
+ [iylpKGD — tivIpBK D],
1474

1
Binam = (ialmn) + 2 3 ialy§)K(y, (24)
y.8

+Y [iplym K& — (iplym) KD,
y.p

Aij =8 8+ Y _(ikljl)Fu (25)
k.l

to which one adds the following E-independent terms

say = Y UPIid) Bl nnliph)

(65 —ep)(es +ep — &m — &€n)

8,8, p.m,n
n Z (j8llip){pB|lmn){mn||38)

, (€5 —€p)(es + &g — &m — &n)

8,8,.p.m,

3 See Ref. [6k].



222 J. Simons

+ Y {jpllid)(sn||pa) (Bl pn)

(85 — ep)(eq + 88 — Ep — &p)

s,a,8,p,n
{jéllip)(én||Ba){c n
+ Z (Jéllip)(sn||Ba){aBllpn) 26)
508 pn (eg—sp)(ea—{—s,«;—sp—sn)
The energy denominators appearing in the H;; matrix elements are
EJ" = em + &, — 6o — (@mlam) — (an|an) + (mn|mn), 27N
Ef, =&, — &5 — &, — (3pI8p) — (vplyp) + (6y18y). (28)
Finally, the F quantities appearing above are given as
Fu= Y [KGKG+KSKE]~ Y [KEKD + KPIKPY) (29)
a<ﬂ’ Y4 r<q, a
where
K$? = Kl - K2, 30)
Kiap) = Kag = Kpa @31
KD = K24~ K25 — KP4+ K32, (32)

and the latter quantities are the MP expansion coefficients of the first-order wave function:

K(;r:gn _ {mnlap) ) (33)
EatEp—Em — &y

Although more complicated than their second-order counterparts, the basic structure of
the above expressions for H;, j(E) are the same as those shown earlier.

These third-order equations have been used in many applications in which molecu-
lar EAs have been computed for a wide variety of species as illustrated in Refs. [14].
Clearly, all of the quantities needed to form the second- or third-order EOM matrix ele-
ments Hj i are ultimately expressed in terms of the orbital energies {g;} and two-electron
integrals (j, k|, h) evaluated in the basis of the neutral molecule’s Hartree—Fock orbitals
that form the starting point of the Mgller—Plesset theory. However, as with most elec-
tronic structure theories, much effort has been devoted to recasting the working EOM
equations in a manner that involves the atomic-orbital (AQ) two-electron integrals rather
than the molecular-orbital based integrals. Because such technical matters of direct AO-
driven calculations are outside the scope of this work, we will not delve into them further
here although we note that J. Oddershede [15] and our group looked into how to express
EOM-type calculations in the AO basis.

3.2. Relationship to Greens functions/propagators

It turns out that in the early 1970s when we were developing and implementing the EOM
method for treating EAs and IPs, several groups had taken a different approach to the evalu-
ation of atomic and molecular electronic energy differences using what were called Greens
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functions (GF) or propagators. Linderberg and Ohrn pioneered* the use of such methods
in quantum chemistry, while Cederbaum and co-workers {16], Reinhardt and Doll [17],
Taylor, Yaris, and co-workers [18] and Pickup and Goscinski [19] were among the first to
apply the methods to EAs and IPs using an ab initio approach. Purvis and Ohrn [20] soon
thereafter expanded the range of the theory to include open-shell systems. These workers
as well as Jgrgensen and Oddershede [21] and others [22] developed Mgller-Plesset based
GFs for evaluating electronic excitation energies but we will not discuss these develop-
ments further here because our emphasis is on IPs and EAs.

The GF EA and IP theories were derived from consideration of the following time-
dependent matrix elements:

G, x(t) = (1/ih)@()(0, N| exp(iH1/h) jT exp(—iHt/h)k|0, N)
+ (1/ik)@(—1)(0, Nk exp(iHt /h)j* exp(—iH1t/)|0, N). (34)

Here, ©(?) is the Heaviside step function, which equals unity when ¢ is positive and zero
when ¢ is negative, j* and k are the same creation and annihilation operators discussed
earlier, and |0, N) is the neutral-molecule reference wave function. Introducing complete
sets of N — 1 and N +1 electron Hamiltonian eigenfunctions into the first and second terms
in equation (34), it is straightforward to see that one observes time dependences varying as
exp([E(0, N) — E(K, N — 1)]t/h) and exp([E (K, N + 1) — E(0, N)]t/h), respectively.

Taking the time derivative of equation (34), one obtains expressions involving commu-
tators of the form [H, j*1k and k[H, j¥] just as one finds in equation (14). By analyzing
the resulting time-derivative equations, workers in this field were able to obtain equations
that such G ¢ (t) matrix elements obey (n.b., these were called the equations of motion for
these quantities). The workers named above were able to express the resulting equations
in terms of one-and two-electron integrals and corresponding density matrices much as the
author had done within the EOM framework. In fact, it turned out that the final working
equations of the so-called one-electron Greens function (GF) or electron propagator de-
fined in equation (34), when Fourier transformed from the time to the energy domain, were
exactly the same as the EOM equations given above (i.e., equation (20) and those repro-
duced from Refs. [10].> However, only the Cederbaum group achieved the full third-order
expressions within the GF framework analogous to what we reproduced above.

Especially in recent years, much of the work aimed at calculating EAs and IPs using
these direct-calculation EOM and GF methods has been performed within the notation of
Greens functions and has been carried out by Vince Ortiz’s group [23] as well as by the
Cederbaum group. The workers who pioneered GF theory have also shown that the residues
(or eigenvectors, depending on how one solves the equations) also provide a wealth of in-
formation other than energy differences. To further illustrate the impact that such advances
have had within the quantum chemistry community, we note that the Ortiz group has imple-
mented various (i.e., Mgller—Plesset and other) variants of these theories within the highly
successful Gaussian [24] suite of computer codes as a result of which many workers world-
wide now employ EOM of GF-type methods to evaluate EAs and IPs.

4 See Refs. [61] and [6r].
5 See Ref. [6k].
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3.3. The natural orbital or extended Koopmans’ theorem approach

In the mid 1970s, R.G. Parr and co-workers [25] and, independently, D. Smith and co-
workers [26] proposed to use an equation such as equation (13) for computing IPs and
they referred to these methods as natural orbital or extended Koopmans’ theorem theo-
ries. Subsequently, E. Andersen and the author analyzed [27] the working equations of this
approach through second and third order in the MP series and noted differences between
them and the Greens function and equivalent EOM theories computed through these same
orders. Of course, based on the discussion of Section 2. D, these differences relate to the
ranks of the operators appearing in the working equations and are not surprising. More
recently, Cioslowski and co-workers [28] have shown that these extended Koopmans’ the-
orem approaches indeed offer a very efficient and reasonably accurate route to computing
IPs or EAs, so it is likely that these methods will continue to develop. One of the more
attractive aspects of the extended Koopmans approaches is that they have been shown [29]
to be capable, at least in principle, to be able to yield the correct lowest ionization potential
of a neutral molecule because they are capable of generating the proper asymptotic form
for the density.

3.4. Multi-configuration based approximations

Following on the proof by R. Manne [13] that the operator spaces {T* (1)} = {p™; ptqta,
pTqtriba, etc.} and {T+()} = {a*,atb* p,atbrctgr, etc.} can be used (ie., is ca-
pable of forming complete sets of ion states) even when no single determinant forms a
dominant component of the neutral-molecule wave function |0, N), the author’s group ex-
tended the combined EA and TP EOM theory to the case in which |0, N) is of an arbitrary
multi-configuration self-consistent field (MC-SCF) form [30] and the ionization opera-
tor manifold {7+ ()} included operators of the form {p*; ptqta} and {a*,atb*p}.
The resultant working equations were written as in equation (19), with the H ;i k ma-
trix elements given in equations (18) of Ref. [30a], which we do not reproduce here
because of their complexity. The primary additional difficulty involved in implementing
these multi-configuration-based equations is the fact that three-electron density matrices
(0, N|i* j*k*1hn|0, N) taken with respect to the MC-SCF wave function |0, N) are in-
volved. These density matrices arise when the commutators [H, p*g*a] and [H, atbt p]
are evaluated.

To date, not much use has been made of the MC-SCF based EOM theories as developed
in the author’s group. Instead, the framework of time-dependent response theory, which can
treat essentially any kind of reference wave function |0, N) including the MC-SCF variety,
has superseded the EOM-based developments for such cases. It is important to keep in
mind, however, that both the EOM and response function theories involve formulating and
solving sets of equations whose solution (i.e., the unknown energy) is an intensive energy.

3.5. Coupled-cluster based EOM

The use of coupled-cluster (CC) wave functions within EOM theory for excitation energies,
IPs, and EAs has been developed [31,32] upon slightly different lines than outlined in Sec-
tion 2. The CC wave function ansatz for |0, N) is written as usual in terms of an exponential
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operator acting on a single-determinant (e.g., unrestricted HF) “reference function” |0)
0, N) = exp(T)|0). (35)

The so-called cluster operator 7 is expressed in terms of spin-orbital excitation operators
of the form {T1} = {p*a}, {2} = {p+q*ba}, {Tu} = {pTqtrtcha}, etc., with Ty relating
to the excitation of k electrons from occupied spin-orbitals (a, b, ¢, etc.) to virtual spin-
orbitals (p, g, 7, etc.). Prior to forming any EA EOM, the neutral-molecule CC equations
need to be solved for the amplitudes {z,} that multiply the {7} operators to form the CC T
operator. For completeness, let us briefly review how the conventional CC wave function
evaluation is carried out.

We recall the CC equations are formed by manipulating the Schrédinger equation

H exp(T)|0) = E exp(T)|0) (36)
to read
exp(—T)H exp(T)|0) = E|0) 37

and subsequently projecting this equation against the set of functions {(0| T,'}. Because the
T operator contains only creation operators for unoccupied spin-orbitals and annihilation
operators for occupied spin-orbitals, it turns out that the commutator expansion

exp(—T)H exp(T) = H — [T, H] + 1/2[T, [T, H1] - 1/3\[T, [T, [T, H]]]
+ /4T, [T, [T. [T, H]]]] + - -- (38)

exactly truncates at the fourth order term. So, the final working equations of CC theory can
be written as

OIT;{H — [T, H] + 1/2[T, [T, H]] - 1/3![T, [T, [T, H][]
+ 141, [T,[T, (T, H1]]]}I0) = 0. ' (39)

Once the CC amplitudes {,} are determined by solving these quartic equations, the CC
energy is computed as

(O|H — [T, H]1+ 1/2[T, [T, H]] — 1/3![T, [T, [T, H]]]
+ /4T, [T, [T. [T, H]]]]I0) = E. (40)

The operator Q*(K) that maps the CC wave function |0, N) into an anion or cation
state is expressed as in equation (7) with the {7 (!)} operators including, for example,
(Tt} = {p*; ptqta, pTqTrTba, etc.} when EAs are to be computed and the adjoints
of {at,atb*rp,atb*ctqr, etc.} when IPs are computed. The basic EOM analogous to
equation (10) is then written as

[H, 0F (K)]exp(T)10) = EQ™(K) exp(T)[0). 41)

Multiplying on the left by exp(—T) and realizing that T and 01+ (K) commute reduces
this equation to

[H', 0T (K)]I0) = EQ™(K)|0) 42)
where

H' = exp(—T)H exp(T), ‘ - 43)
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which can be expanded as in equation (38) to involve at most quartic terms in the {z,}
amplitudes. Then, multiplying on the left by (0|7'(j) reduces the EOM equations to their
final working form

, Z(OlT(j){H — T, H1+1/2[T, [T, H]] - 1/3![T, [T, [T, H]]]
1

+ /41, [T, [T, [T, HI]]]}, TT 010yt (K, 1)
=E Z(om HDTTDI0) (K, D). (44)
1

This set of matrix eigenvalue equations are then solved to obtain E which gives the EA
or the IP (depending on what operator set was used). Such so-called electron-attached and
electron-removed equations of motion (EA-EOM and IP-EOM) approaches have proven
highly successful [31,32] in computing EAs and IPs of a wide range of atoms and mole-
cules primarily because the coupled-cluster treatment of electron correlation provides such
a highly accurate treatment of the dynamical electron correlation. At present there is a great
deal of activity within this framework of utilizing EOM theories for computing EAs, IPs,
and AEs.

4. SOME SPECIAL CASES
4.1. Calculating EAs as IPs

In this discussion, we have focused on computing EAs and IPs by forming a neutral-
molecule wave function |0, N) and computing the EA or IP as an eigenvalue of an EOM
matrix problem. Consider applying such an approach to evaluate the EA of the X2IT state
of the NO molecule. Because the X-state wave function of NO is spatially degenerate
(i.e., the 7, and ) orbitals should be degenerate), one may encounter artifactual symme-
try breaking when forming this neutral-molecule wave function. That is, the 7, and Ty
orbitals may not turn out to be degenerate; in fact, most commonly employed electronic
structure codes are not able to guarantee this degeneracy as they should. It would then be
unwise to use this symmetry-broken wave function to compute any property of this state
of NO, including the EA. To overcome such difficulties, one could use the X33+ state
of NO™ as |0, N) and employ an EOM method to evaluate the IP of NO~ (actually the
electron detachment energy of NO). The advantage to this approach is that the open-shell
337 state of NO~ would not be susceptible to symmetry breaking because it is not spa-
tially degenerate and has its 7, and , orbitals equivalently occupied. This example shows
that it may sometimes be better to compute an EA of a molecule as the IP of the corre-
sponding anion. Likewise, it may be better to compute an IP of a molecule as the EA of
the molecule’s cation in some cases.

4.2. Metastable anion states

A different kind of problem arises when one attempts to compute the EA of a molecule
whose anion is not electronically bound relative to the corresponding neutral. For example,
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the Xlﬂé" state of the N> molecule does not bind an electron to form an electronically

stable anion. Instead the X?I7, state of N, formed by adding an electron to the g anti-
bonding orbital of N is a so-called resonance state that lies higher in energy than N, and
can spontaneously eject its excess electron. One cannot simply employ conventional basis
sets and ab initio electronic structure methods (including EOM or GF or response-function
methods) to correctly determine the energies of such states.

The most common and powerful tool for studying such metastable states theoretically
is the so-called stabilization method (SM). This method, pioneered by Professor Howard
Taylor’s group [33], involves embedding the system of interest (e.g., the N ! anion) within
a finite “box” in order to convert the continuum of states corresponding, for example, to
N + €7, into discrete states that can be handled by conventional square-integrable basis
functions using, for example, the EOM method. By varying the size of the box, one can
vary the energies of the discrete states that correspond to N, 4+ e~ (i.e., one varies the box
size to vary the kinetic energy KE of the orbitals containing the excess electron). As the box
size is varied, one eventually notices (e.g., by plotting the orbitals) that one of the N, + e~
states obtained in the EOM process possesses a significant amount of valence character.
That is, one such state has significant amplitude not only at large-r but also in the region of
the two nitrogen centers. It is this state that corresponds to the metastable resonance state,
and it is the EOM eigenvalue E of this state that provides the stabilization estimate of the
resonance state energy relative to that of the neutral Nj.

Let us continue using N5 as an example for how one usually varies the box within
which the anion is constrained. One uses a conventional atomic orbital basis set that likely
includes s and p functions on each N atom, perhaps some polarization d functions and some
conventional diffuse s and p orbitals on each N atom. These basis orbitals serve primarily
to describe the motions of the electrons within the usual valence regions of space. To this
basis, one appends an extra set of diffuse 7 -symmetry orbitals. These orbitals could be p,
(and maybe d;) functions centered on each nitrogen atom, or they could be d,; orbitals
centered at the midpoint of the N-N bond. Either choice can be used because one only
needs a basis capable of describing the large-r L = 2 character of the metastable 217g
state’s wave function. One usually would not add just one such function; rather several
such functions, each with an orbital exponent «; that characterizes its radial extent, would
be used. Let us assume, for example, that K such additional diffuse 7 functions have been
used.

Next, using the conventional atomic orbital basis as well as the K extra & basis functions,
one carries out an EOM calculation for the EA of the N, molecule. In this calculation, one
tabulates the energies of many (say M) of the EOM EA eigenvalues. One then scales the
orbital exponents {a;} of the K extra 7 basis orbitals by a factor : @y — nay and repeats
the calculation of the energies of the M lowest EOM eigenvalues. This scaling causes the
extra 7w basis orbitals to contract radially (if > 1) or to expand radially (if n < 1). It is
this basis orbital expansion and contraction that produces expansion and contraction of the
“box” discussed above. That is, one does not employ a box directly; instead, one varies the
radial extent of the more diffuse basis orbitals to simulate the box variation.

If the conventional orbital basis is adequate, one finds that the extra 7 orbitals, whose
exponents are being scaled, do not affect appreciably the energy of the neutral N, system.
This can be probed by plotting the N energy (computed as (0, N|H |0, N)) as a function of
the scaling parameter n; if the energy varies little with 7, the conventional basis is adequate.
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Resonance State Energy (e

Orbital Scaling Parameter 1 ——3»

Fig. 1. Plots of the EOM EA eigenvalues for several anion states vs. the orbital scaling
parameter n. Note the avoided crossing of state energies near 1 eV.

In contrast to plots of the neutral N, energy vs. 7, plots of the energies of the MN; !
anion states relative to the energy of N3, obtained as EOM eigenvalues, show significant
n-dependence as Fig. 1 illustrates.

What does such a stabilization plot tell us and what do the various branches of the plot
mean? First, we notice that each of the plots of the energy of an anion state (relative to
the neutral molecule’s energy, which is independent of 57) grows with increasing 7. This
n-dependence arises from the 7-scaling of the extra diffuse v basis orbitals. Because most
of the amplitude of such basis orbitals lies outside the valence region, the kinetic energy is
the dominant contributor to such states’ relative energies. Because 7 enters into each orbital
as exp(—nar?), and because the kinetic energy operator involves the second derivative with
respect to r, the kinetic energies of orbitals dominated by the diffuse 7 basis functions vary
as 1. It is this quadratic growth with 7 that appear as the basic trends in the energies vs. n
plots in Fig. 1.

For small 5, all of the & diffuse basis functions have their amplitudes concentrated at
large r and have low kinetic energy. As n grows, these functions become more radially
compact and their kinetic energies grow just as the particle-in-a-box energies grow as the
box length decreases. For example, note the three lowest energies shown above in Fig. 1
increasing from near zero as 7 grows. As 7 further increases, one reaches a point at which
the third and fourth anion-state energies in Fig. 1 undergo an avoided crossing. At higher
n values, it is the second and third states and then the first and second states whose ener-
gies undergo such avoided crossings. At such n values, if one examines the nature of the
two anion wave functions (obtained as in equation (6)) whose energies avoid one another,
one finds they contain substantial amounts of both valence and extra diffuse 7 function
character. Just to the left of the avoided crossing, the lower-energy state (the third state
in Fig. 1 for the smallest n at which an avoided crossing occurs) contains predominantly
extra diffuse 7 orbital character, while the higher-energy state (the fourth state) contains
largely valence 7 * orbital character. To the right of the avoided crossing, the situation is



Response of a Molecule to Adding or Removing an Electron 229

reversed—the lower-energy state (the third state in Fig. 1 for small n) contains predom-
inantly valence orbital character, while the higher-energy state (the fourth state) contains
largely diffuse orbital character.

However, at the special values of n where the two states nearly cross, the kinetic energy
of the diffuse state (as well as its radial size and de Broglie wavelength) are appropriate to
connect properly with the valence state to form a single resonance state. By connect prop-
erly we mean that the two states have wave function amplitudes, phases, and slopes that
match. It is such boundary condition matching of valence-range and long-range character
in the wave function that the stabilization method achieves. So, at such special 7 values,
one can achieve a description of the resonance state that correctly describes this state both
in the valence region and in the large-r region. Only by tuning the energy of the large-r
states using the n scaling can one obtain this proper boundary condition matching.

Another observation helps to understand the content of such stabilization plots. One con-
siders the density of states (i.e., how many states are there between energy E and E + dE
for a fixed small value of dE?) in a plot such as Fig. 1. Clearly, in the range of energies near
the avoided crossings, there is an enhanced density of states, while the state density is lower
at “off resonance” energies. When viewed either from the point of view of state densities
or avoided crossings, there is something special about the region of energies near such res-
onances. As noted above, it is the fact that the valence-range and continuum components
of the wave function can be properly matched at such energies that is “special”.

If one attempts to study metastable anion states without carrying out such a stabilization
study, one is doomed to failure, even if one employs an extremely large and flexible set
of diffuse basis functions. In such a calculation, one will certainly obtain a large number
of anion “states” with energies lying above that of the neutral, but one will not be able to
select from these states the one that is the true resonance state because the true state will
be buried in the myriad of “states” representing the N, + e~ continuum.

In summary, by carrying out a series of anion-state energy calculations for several states
and plotting them vs. 7, one obtains a stabilization graph. By examining this graph and
looking for avoided crossings, one can identify the energies at which metastable reso-
nances occur. It is absolutely critical to identify these resonance energies if one wishes to
probe metastable anions. It is also possible [34] to use the shapes (i.e., the magnitude of
the energy splitting between the two states and the slopes of the two avoiding curves) of
the avoided crossings in a stabilization graph to compute the lifetimes of the metastable
states. Basically, the larger the avoided-crossing energy splitting between the two states,
the shorter is the lifetime of the resonance state.

5. SUMMARY

We have tried to illustrate how, by focusing on the intensive energies that one wishes to
compute when studying EAs, IPs, or electronic excitation energies, one can replace the
solution of the Schrédinger equation by the solution of so-called equations of motion. It is
the eigenvalues of these EOMs that produce the EAs and IPs directly. We have reviewed
some of the history of the development of EOM theory, especially as it applied to EAs
and IPs, and we have attempted to show its relationships to Greens functions and extended
Koopmans’ theorem approaches to these same intensive energies. We have shown that a
wide variety of EOM theories can be developed depending on how one chooses to describe
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the neutral molecule’s wave function (i.e., in MP, MC-SCEF, or CC fashion). Finally, we
discussed some of the pitfalls that one encounters when applying EOM theory to EAs of
molecules whose anion states are not bound but are metastable resonance states. It is our
hope and belief that EOM methods have proven useful computationally and for gaining
insight and will continue to have a bright future.

Readers who wish to learn more about how molecular EAs (and to a lesser extent, IPs)
have been studied theoretically are directed to this author’s web site http://simons.hec.utah.
edu as well as to a series [35] of his reviews and chapters. The species that this group
have examined include dipole-bound anions, zwitterion ions, conventional valence anions,
multiply charged anions, as well as a wide variety of metastable anions.
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