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B3.1
Quantum structural methods for atoms and molecules

Jack Simons

B3.1.1 What doesquantum chemistry try to do?

Electronic structure theory describes the motions of the electrons and produces energy surfaces and wave-
functions. The shapes and geometries of molecules, their electronic, vibrational and rotational energy levels,
aswell astheinteractions of these states with el ectromagnetic fields lie within the realm of quantum structure
theory.

B3.1.1.1 The underlying theoretical basis—the Born—Oppenheimer model

Inthe Born—Oppenheimer [1] model, it isassumed that the el ectrons move so quickly that they can adjust their
motions essentially instantaneously with respect to any movements of the heavier and slower atomic nuclei.
In typical molecules, the valence electrons orbit about the nuclei about once every 10~2° s (the inner-shell
electrons move even faster), while the bonds vibrate every 10~1* s, and the molecule rotates approximately
every 10712 s, So, for typical molecules, the fundamental assumption of the Born-Oppenheimer model is
valid, but for loosely held (e.g. Rydberg) electrons and in cases where nuclear motion is strongly coupled to
electronic motions (e.g. when Jahn—Teller effects are present) it is expected to break down.

This separation-of-time-scal es assumption allows the el ectrons to be described by electronic wavefunc-
tionsthat smoothly ‘ride’ the molecule's atomic framework. These electronic functions are found by solving
a Schrodinger equation whose Hamiltonian H, contains the kinetic energy T¢ of the electrons, the Coulomb
repulsions among all the molecul€’s electrons Ve, the Coulomb attractions Ve, among the electrons and all
of the molecul€e’s nuclei, treated with these nuclei held clamped, and the Coulomb repulsions V;,, among all
of these nuclel, but it does not contain the kinetic energy Ty of all the nuclei. That is, this Hamiltonian keeps
the nuclei held fixed in space. The electronic wavefunctions v, and energies E; that result

HeVi = Exi

thus depend on the locations {Q;} at which the nuclei are sitting. That is, the E; and v are parametric
functions of the coordinates of the nuclei, and, of course, the wavefunctions v, depend on the coordinates of
all of the electrons.

These electronic energies’ dependence on the positions of the atomic centres cause them to be referred
to as electronic energy surfaces such as that depicted below in figure B3.1.1 for a diatomic molecule. For
nonlinear polyatomic molecules having N atoms, the energy surfaces depend on 3N — 6 internal coordinates
and thus can be very difficult to visualize. In figure B3.1.2, a‘dlice’ through such a surface is shown as a
function of two of the 3N — 6 internal coordinates.

The Born—Oppenheimer theory is soundly based in that it can be derived from a Schrodinger equation
describing the kinetic energies of all electrons and of al N nuclei plus the Coulomb potential energies of
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Figure B3.1.1. Energy as afunction of internuclear distance for atypical bound diatomic molecule or ion.
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Figure B3.1.2. Two-dimensional slice through a (3N — 6)-dimensional energy surface of a polyatomic molecule or ion.
After [2].
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interaction among all electrons and nuclei. By expanding the wavefunction W that is an eigenfunction of
thisfull Schrodinger equation in the complete set of functions {v,} and then neglecting all termsthat involve
derivatives of any ;. with respect to the nuclear positions { Q;}, one can separate variables such that:

(1) the electronic wavefunctions and energies obey

HeV = Exyne

(2) the nuclear motion (i.e. vibration/rotation) wavefunctions obey

(Tw + EDxer = ExLxer

where Ty isthe kinetic energy operator for movement of all nuclei.

Each and every electronic energy state, labelled &, has a set, labelled L, of vibration/rotation energy levels
E.;, and wavefunctions yy. .

B3.1.1.2 Non-Born—Oppenheimer corrections—radiationless transitions

Because the Born—Oppenheimer model is obtained from the full Schrodinger equation by making approxi-
mations, it is not exact. Thus, in certain circumstances it becomes necessary to correct the predictions of the
Born—Oppenheimer theory (i.e. by including the effects of the neglected coupling terms using perturbation
theory). For example, when developing atheoretical model to interpret the rate at which electrons are gjected
from rotationally/vibrationally hot NH™ ions, we had to consider [3] coupling between:

(1) 2IT NH™ initsv = 1 vibrational level and in a high rotational level (e.g. J > 30) prepared by laser
excitation of vibrationally ‘cold” NH™ in v = 0 having high J (due to natural Boltzmann populations),
seefigure B3.1.3; and

(2) *X~ NH neutra plus an gjected electron in which the NH isin its v = 0 vibrational level (no higher
level is energetically accessible) and in various rotational levels (labelled N).

Because NH has an electron affinity of 0.4 eV, the total energies of the above two states can be equal
only if the kinetic energy K E carried away by the gjected electron obeys

KE = Eibpot(NH™ (v =1, J)) — Eyipyrot(NH (v = 0,N))—04¢eV.

In the absence of any coupling terms, no electron detachment would occur. Itisonly by the anion converting
some of its vibration/rotation energy and angular momentum into electronic energy that the electron that
occupies abound Ny, orbital in NH™ can gain enough energy to be ejected.

My own research efforts [4] have, for many years, involved taking into account such non-Born—Oppen-
heimer couplings, especially in caseswhere vibration/rotation energy transferred to el ectronic motions causes
electron detachment, as in the NH~ case detailed above. Professor Yngve Ohrn has been active [5] in
attempting to avoid using the Born—-Oppenhei mer approximation and, instead, treating the dynamical motions
of the nuclei and electrons simultaneously. Professor David Yarkony has contributed much [6] to the recent
treatment of non-Born—Oppenheimer effects and to the inclusion of spin—orbit coupling in such studies.

B3.1.1.3 What is learned from an electronic structure calculation?

The knowledge gained via structure theory is great. The electronic energies E,(Q) alow one to determine
[7] the geometries and relative energies of various isomers that a molecule can assume by finding those
geometries{Q;} at which the energy surface E;, hasminimad E; /0 Q; = 0O, with al directions having positive
curvature (thisis monitored by considering the so-called Hessian matrix H; ; = 8%E;/9Q;9Q;: if noneof its
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Figure B3.1.3. Energies of NH~ and of NH pertinent to the autodetachment of v = 1, J levels of NH~ formed by laser
excitationof v =0, J”"NH™.

eigenvalues are negative, al directions have positive curvature). Such geometries describe stableisomers, and
the energy at each such isomer geometry gives the relative energy of that isomer. Professor Berny Schlegel
[8] has been one of the leading figures in using gradient and Hessian information to locate stable structures
and transition states. Professor Peter Pulay [9] has done as much as anyone to devel op the theory that allows
us to compute gradients and Hessians for most commonly used electronic structure methods.

There may be other geometries on the E;, energy surface at which all *‘slopes’ vanish dE;/dQ; = O, but
at which not all directions possess positive curvature. If the Hessian matrix has only one negative eigenval ue,
thereisonly onedirection |eading downhill away fromthepoint { Q;} of zeroforce; al theremaining directions
lead uphill from this point. Such ageometry describesthat of atransition stateand its energy playsacentral
role in determining the rates of reactions which pass through this transition state. The energy surface shown
in figure B3.1.2 displays such transition states, and it also shows a second-order saddle point (i.e. a point
where the gradient vanishes and the Hessian has two directions of negative curvature).

At any geometry {Q;}, the gradient vector having components 0 E; /3 Q; provides the forces (F; =
—0Ey/0Q;) aong each of the coordinates Q;. These forces are used in molecular dynamics simulations
which solve the Newton F' = ma equations and in molecular mechanics studies which are aimed at locating
those geometries where the F' vector vanishes (i.e. the stable isomers and transition states discussed above).

Also producedin electronic structure simulations are the el ectronic wavefunctions {1, } and energies { E; }
of each of the el ectronic states. The separation in energies can be used to make predictions on the spectroscopy
of the system. The wavefunctions can be used to evaluate the properties of the system that depend on the
spatial distribution of theelectrons. For example, the z component of the dipole moment [10] of amolecule .,
can be computed by integrating the probability density for finding an electron at position » multiplied by the
z coordinate of the electron and the electron’s charge e: 11, = [ ey; ¥z dr. The average kinetic energy of
an electron can also be computed by carrying out such an average-value integral: | w,j(—ﬁz /2meV2) Y dr.
The rulesfor computing the average value of any physical observable are devel oped and illustrated in popular
undergraduate text books on physical chemistry [11] and in graduate-level texts[12].

Not only can electronic wavefunctions tell us about the average values of all the physical properties for
any particular state (i.e. v, above), but they also allow us to tell us how a specific ‘perturbation’ (e.g. an
electric field in the Stark effect, a magnetic field in the Zeeman effect and light's electromagnetic fields in
spectroscopy) can ater the specific state of interest. For example, the perturbation arising from the electric
field of a photon interacting with the electrons in a molecule is given within the so-called electric dipole
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approximation [12] by: .
Hpt = Y _e?r; + E(1)
J

where FE is the electric field vector of the light, which depends on time ¢ in an oscillatory manner, and r;
givesthe spatial coordinates of the jth electron. This perturbation, flpen can induce transitions to other states
Y, With probabilities that are proportional to the square of the integral:

/ 1ﬂlj/lflpert‘ﬂk dr.

So, if thisintegral were to vanish, transitions between v, and v would not occur, and would be referred to
as ‘forbidden’. Whether such integrals vanish or not often is determined by symmetry. For example, if v
were of odd symmetry under a plane of symmetry o, of the molecule, while v, were even under o, then the
integral would vanish unless one or more of the three Cartesian components of the dot product r; - E were
odd under o,,. Thegenera ideaisthat for theintegral not to vanish, the direct product of the symmetries of ;.
and of ¥ must match the symmetry of at least one of the symmetry components present in I:Ipen. Professor
Poul Jgrgensen [13] has been involved in developing such so-called response theories for perturbations that
may be time dependent (e.g. asin the interaction of light’s el ectromagnetic radiation).

B3.1.1.4 Summary

In summary, computational ab initio quantum chemistry attemptsto solve the electronic Schrodinger equation
for the E; (R) energy surfaces and wavefunctions ¥ (r; R) on a‘grid’ of values for the ‘clamped’ nuclear
positions. Because the Schridinger equation produces wavefunctions, it has agreat deal of predictive power.
Wavefunctionscontainall theinformation needed to computedipole moments, polarizability, etc and transition
properties such as the electric dipole transition strengths among states. They also permit the evaluation of
system responses with respect to external perturbations such as geometrical distortions [9], which provides
information on vibrational frequencies and reaction paths.

B3.1.2 Why isit sodifficult to calculate electronic energies and wavefunctions with reasonable accu-
racy?

Asascientifictool, ab initio quantum chemistry isnot yet as accurate as modern laser spectroscopic measure-
ments, for example. Moreover, it is difficult to estimate the accuracies with which various methods predict
bond energies and lengths, excitation energies and the like. In the opinion of the author, chemists who rely
on the results of quantum chemistry calculations must better understand what underlies the concepts and
methods of thisfield. Only by so doing will they be able to judge for themselves the value of given quantum
chemistry data to their own research. There exist avariety of sources of further information on the ‘jargon’,
underlying theory, methodologies, and current strengths and weaknesses of ab initio quantum chemistry. In
1996, Head-Gordon [14] produced a nice overview entitled ‘ Quantum chemistry and molecular processes’,
Schaefer et al[15] offered avery good discussionin 1995; Simons[16] offered asomewhat earlier perspective
in 1991. The present chapter includes many of the ideas contained in these and other earlier descriptions of
thisfield’'simpacts, but also attempts to extend the perspective to include more recent devel opments.

Returning now to the issue of the accuracy of various electronic structure predictions, it is natural to
ask why it is so difficult to achieve reasonable accuracy (i.e. ca. 1 kcal mol~* in computed bond energies
or activation energies) even with the most sophisticated and computer-resource-intensive quantum chemistry
calculations. The reasons include the following.

(A) Many-body problems witiR—* potentials are notoriously difficultlt is well known that the Coulomb
potential falls off so slowly with distance that mathematical difficulties can arise. The 47 R? dependence
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of the integration volume element, combined with the R~ dependence of the potential, produce ill-
defined interaction integrals unless attractive and repulsive interactions are properly combined. The
classical or quantum trestment of ionic melts[17], many-body gravitational dynamics[18] and Madelung
sums [19] for ionic crystals are all plagued by such difficulties.

(B) The electrons require quantal treatment and they are indistinguishaiblee electron’s small mass
produces local de Broglie wavelengths that are long compared to atomic ‘sizes’, thus necessitating
guantum treatment. Their indistinguishability requires that permutational symmetry be imposed on
solutions of the Schrodinger equation.

(C) All mean-field models of electronic structure require large correctidtssentially all ab initio quantum
chemistry approachesintroducea‘ meanfield’ potential Vi that embodiesthe averageinteractionsamong
the N electrons. The difference between the mean-field potential and the true Coulombic potentia is
termed[20] the*fluctuation potential Thesolutions{¥;, E;} tothetrueelectronic Schrodinger equation
are then approximated in terms of solutions {¥?, E?} to the model Schrodinger equation in which Vi
isused. Improvements to the solutions of the model problem are made using perturbation theory or the
variational method. Such approaches are expected to work when the difference between the starting
model and the final goal is small in some sense.

The most elementary mean-field models of electronic structure introduce a potential that an electron at
r1 would experience if it were interacting with a spatially averageelectrostatic charge density arising from
the N — 1 remaining electrons:

2
€ ’

Vint (r1) = / pn-1(r) ;
lre — ']

Here py_1(r’) represents the probability density for finding the N — 1 electronsat =/, and e?/|r, — 7’| isthe

mutual Coulomb repulsion between electron density at »; and .

Themagnitudeand ‘ shape’ of such amean-field potential isshown below [21] infigureB3.1.4for thetwo
1s electrons of aberyllium atom. The Be nucleusis at the origin, and one electron is held fixed 0.13 A from
the nucleus, the maximum of the 1s orbital’s radial probability density. The Coulomb potential experienced
by the second electron is then a function of the second electron’s position along the x-axis (connecting the
Be nucleus and the first electron) and its distance perpendicular to the x-axis. For simplicity, this second
electron is arbitrarily constrained to lie on the x-axis. Along thisdirection, the Coulomb potential is singular,
and hence the overall interactions are very large.

On the ordinate, two quantities are plotted: (i) the mean-field potential between the second electron and
the other 1s electron computed, viathe self-consistent field (SCF) process (described later), asthe interaction
of the second electron with aspherical |1s|? charge density centred on the Be nucleus; and (ii) the fluctuation
potential (F) of this average (mean-field) interaction.

As afunction of the inter-electron distance, the fluctuation potential decays to zero more rapidly than
doesthe mean-field potential. However, the magnitude of F isquite large and remains so over an appreciable
range of inter-electron distances. The corrections to the mean-field picture are therefore quite large when
measured in kcal mol~t. For example, the differences (called pair correlation energies) AE between the
true (state-of-the-art quantum chemical calculation as discussed later) energies of the interaction among the
four electrons in the Be atom and the mean-field estimates of these interactions are given in table B3.1.1 in
electronvolts (1 eV = 23.06 kcal mol™2).

Another exampleof thedifficulty isofferedinfigureB3.1.5. Herewedisplay ontheordinate, for helium’s
1S (1) state, the probability of finding an electron whose distance from the He nucleus is 0.13 A (the peak
of the 1sorbital’s density) and whose angular coordinate relative to that of the other electron is plotted on the
abscissa. The He nucleus is at the origin and the second electron also has aradial coordinate of 0.13 A. As
the relative angular coordinate varies away from 0°, the electrons move apart; near 0°, the el ectrons approach
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Figure B3.1.4. Fluctuation and mean-field SCF potentials for a 2s electron in Be.

Table B3.1.1. Pair correlation energies for the four electronsin Be.

Orbital pair  1swlsp 1sw2se 1sw2sf 1sB2se  1sB2sB  2su2sp
AE (eV) 1.126 0.022 0.058 0.058 0.022 1.234

one another. Since both electrons have opposite spin in this state, their mutual Coulomb repulsion aone acts
to keep them apart.

What figure B3.1.5 shows is that, for a highly accurate wavefunction (one constructed using so-called
Hylleraas functions [23] that depend explicitly on the coordinates of the two electrons as well as on their
interparticle distance coordinate), one findsa‘cusp’ in the probability density for finding one electron in the
neighbourhood of another electron with the same spin. The probability plot for the Hylleraas function is
the lower bold curve in figure B3.1.5. The line above the Hylleraas plot was extracted from a configuration
interaction wavefunction for He obtained using arather large atomic orbital (AO) basisset [22]. Evenfor such
a sophisticated wavefunction (of the type used in many state-of-the-art ab initio calculations), the cusp in the
relative probability distribution is, clearly, not well represented. Finally, the Hartree—Fock (HF) probability,
which is not even displayed above, would, if plotted, be flat as a function of the angle shown above and thus
clearly very much in error.

B3.1.2.1 Summary

The above evidence shows why an ab initio solution of the Schrodinger equation is a very demanding task
if high accuracy isdesired. The HF potential takes care of ‘most’ of the interactions among the N electrons
(which interact via long-range Coulomb forces and whose dynamics requires the application of quantum
physics and permutational symmetry). However, the residual fluctuation potential is large enough to cause
significant corrections to the HF picture. The redlity is that electrons in atoms and molecules undergo
dynamical motions in which their Coulomb repulsions cause them to ‘avoid’ one another at every instant
of time, not only in the average-repulsion manner that the mean-field models embody. The inclusion of
instantaneous spatial correlations (usualy called dynamical correlationsamong electrons is necessary to
achieve amore accurate description of the atomic and molecular electronic structure.
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Figure B3.1.5. Probability (asafunction of angle) for finding the second electron in He when both electrons are located
at the maximum in the 1s orbital’s probability density. The bottom lineis that obtained using a Hylleraas-type function,
and the other related to a highly-correlated multiconfigurational wavefunction. After [22].

B3.1.3 What arethe essential concepts of ab initio quantum chemistry?

The mean-field potential and the need to improve it to achieve reasonably accurate solutions to the true
electronic Schrodinger equation introduce three constructs that characterize essentially al ab initio quantum
chemical methods: orbitals, configurationsand electron correlation

B3.1.3.1 Orbitals and configurations—what are they (really)?
(a) How the mean-field model leads to orbitals and configurations

The mean-field potentials that have proven most useful are all one-electron additive: Vi (r) = > j Vi (rj).
Since the electronic kinetic energy 7 = 3 ; fj operator is also one-electron additive, so is the mean-field
Hamiltonian H° = T + V. The additivity of A° implies that the mean-field energies {E?} are additive
and the wavefunctions {\IJ,?} can be formed in terms of products of functions {¢;} of the coordinates of the
individual electrons.

Thus, itistheansatzhat Vi isseparablethat |eadsto the concept of orbitals, which are the one-electron
functions {¢;} found by solving the one-electron Schrodinger equations: (71 + Vi (1)) (1) = €, (11);
the eigenvalues {¢;} are called orbital energies

Given the compl ete set of solutionsto thisone-electron equation, acomplete set of N-electron mean-field
wavefunctions can be written. Each \Il,? is constructed by forming a product of N orbitals chosen from the
set of {¢;}, allowing each orbital in the list to be a function of the coordinates of one of the N electrons (e.g.

U2 = |1 (r1)dra(r2)dra(r3) - . . Prn—1(rn—1)din (rn) |, s above). The corresponding mean-field energy is
evaluated as the sum over those orbitals that appear in Wp: EQ =Y ,_; v &
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Because of the indistinguishability of the N electrons, the antisymmetric component of any such orbital
product must be formed to obtain the proper mean-field wavefunction. To do so, one applies the so-called
antisymmetrizer operator [24] A = Y p(=DF P, where the permutation operator P runs over all N! per-
mutations of the N electrons. Application of A to a product function does not alter the occupancy of the
functions {¢y;} in WO it smply scrambles the order which the electrons occupy the {¢ ;} and it causesthere-
sultant function (which is often denoted |1 (71) dr2(r2)dr3(r3) . . . dry—_1(rv_1) ey (ry)| and called a Slater
determinant) to obey the Pauli exclusion principle.

Because the el ectrons al so possessintrinsic spin, the one-electron functions {¢; } used in this construction
are taken to be eigenfunctions of (7} + Vi (r1)) multiplied by either an & or 8 spin function. This set of
functionsis called the set of mean-field spin orbitals

By choosing to place N electrons into N specific spin orbitals, one specifies a configuration By
making other choices of which N¢; to occupy, one describes other configurations. Just as the one-electron
mean-field Schrodinger equation has a complete set of spin—orbital solutions {¢; and ¢;}, the N-€electron
mean-field Schrodinger equation has a compl ete set of antisymmetric N-electron Slater determinants. When
these determinants are combined to generate functions that are eigenfunctions of the total $? and S, and
eigenfunctions of the molecule’s point group symmetry (or L2 and L. for atoms), one has what are called
configuration state functionlCSFs) w? whose mean-field energies are also given by E? = > =N Ekj-

(b) The self-consistent mean-field (SCF) potential

The one-electron additivity of the mean-field Hamiltonian H° givesriseto the concept of spin orbitalsfor any
additive Vi (r). In fact, there is no singlemean-field potential; different scientists have put forth different
suggestions for Vi over the years. Each gives rise to spin orbitals and configurations that are specific to the
particular V. However, if the difference between any particular mean-field model and the full electronic
Hamiltonian is fully treated, corrections to al mean-field results should converge to the same set of exact
states. In practice, one is never able to treat all corrections to any mean-field model. Thus, it is important
to seek particular mean-field potentials for which the corrections are as small and straightforward to treat as
possible.

In the most commonly employed mean-field models[25] of electronic structure theory, the configuration
specified for study plays a central role in defining the mean-field potential. For example, the mean-field
Coulomb potential felt by a2p, orbital’s electron at a point r in the 1s22s?2p, 2p, configuration description
of the carbon atomis:

Vit (1) = 2f 11s(r") |22/ |r — v/| dr’ + 2/ 128(r")|2€? /|7 — v'| dr’ +f 12p, (') |?€? /|7 — | dr’.

The above mean-field potential is used to find the 2p, orbital of the carbon atom, which is then used to
define the mean-field potential experienced by, for example, an electron in the 2s orbital:

Vo () = 2/ |1s(r") %/ 7 — /| dr’ +/ |2s(r)|%¢?/|r — 7'| dr’ +/ 12p, () |22/ 7 — 7' | dr’
+ / 12p, () [2€® /|7 — /| dr'.

Notice that the orbitals occupied in the configuration under study appear in the mean-field potential.
However, it is Vi that, through the one-electron Schrodinger equation, determines the orbitals. For these
reasons, the solution of these equations must be carried out in a so-called SCF manner. One begins with
an approximate description of the orbitalsin \Il,?. These orbitals then define Vi, and the equations (T, +

Vint (r1)¢;(r1) = e;¢;(r1) are solved for ‘new’ spin orbitals. These orbitals are then be used to define
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an improved Vi, which gives another set of solutions to (74 + Vit (1)) (1) = &;¢;(r1). Thisiterative
process is continued until the orbitals used to define Vi are identica to those that result as solutions of
(T1 + Vi (r1))9; (r1) = €;¢;(r1). When this condition is reached, one has achieved ‘ self-consistency’.

B3.1.3.2 What s electron correlation?

By expressing the mean-field interaction of an electron at » with the N — 1 other electrons in terms of a
probability density py_1(r’) that isindependent of the fact that another electron resides at r, the mean-field
modelsignore spatial correlationsamong the electrons. In reality, as shown in figure B3.1.5, the conditional
probability density for finding one of N — 1 electronsat r’/, given that one electronisat » dependson+’. The
absence of a spatial correlation is a direct consequence of the spin—orbital product natureof the mean-field
wavefunctions {W}}.

To improve upon the mean-field picture of electronic structure, one must move beyond the single-
configuration approximation. It is essential to do so to achieve higher accuracy, but it is aso important to
do so to achieve a conceptuallycorrect view of the chemical electronic structure. Although the picture of
configurationsin which N electrons occupy N spin orbitals may be familiar and useful for systematizing the
electronic states of atoms and mol ecules, these constructs are approximations to the true states of the system.
They were introduced when the mean-field approximation was made, and neither orbitals nor configurations
can be claimed to describe the proper eigenstates {V;, E;}. It isthusinconsistent to insist that the carbon
atom be thought of as 1s?2s?2p? while insisting on a description of this atom accurate to 41 kcal mol 2.

B3.1.3.3 Summary

The SCF mean-field potential takes care of ‘most’ of the interactions among the N electrons. However,
for all mean-field potentials proposed to date, the residual or fluctuation potential is large enough to require
significant corrections to the mean-field picture. This, in turn, necessitates the use of more sophisticated and
computationally taxing techniques (e.g., high-order perturbation theory or large variational expansion spaces)
to reach the desired chemical accuracy.

For electronic structures of atoms and molecules, the SCF model requires quite substantial corrections
to bring its predictions in line with experimental fact. Electrons in atoms and molecules undergo dynamical
motions in which their Coulomb repulsions cause them to ‘avoid’ one another at every instant of time, not
only in the average-repulsion manner of mean-field models. The inclusion of dynamical correlationgmong
electronsis necessary to achieve amore accurate description of atomic and molecular electronic structure. No
single spin—orhital product wavefunction is capable of treating electron correlation to any extent; its product
nature renders it incapable of doing so.

B3.1.4 How tointroduce electron correlation via configuration mixing
B3.1.4.1 The multi-configuration wavefunction

In most of the commonly used ab initio quantum chemical methods [26], one forms a set of configurations
by placing N electrons into spin orbitals in a manner that produces the spatial, spin and angular momentum
symmetry of theelectronic state of interest. Thecorrect wavefunction W isthenwritten asalinear combination
of the mean-field configuration functions {¥;}: ¥ = >, Ck\IJ,?. For example, to describe the ground 1S state
of the Beatom, the 15*2s? configuration isaugmented by including other configurationssuch as 1s?3s?, 1s?2p?,
123p?, 18°2s3s, 35228, 2p?2<?, etc, al of which have overall 'S spin and angular momentum symmetry.
The various methods of electronic structure theory differ primarily in how they determinethe {C;} expansion
coefficients and how they extract the energy E corresponding to this W.
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Figure B3.1.6. Polarized orbital pairsinvolving 2s and 2p, orbitals.

B3.1.4.2 The physical meaning of mixing in ‘excited’ configurations

When considering theground ' Sstate of the Beatom, thefollowing four antisymmetrized spin—orbital products
are found to have the largest C; amplitudes:

W = (4|15°25° — Co[|15°2p% | + [15°2p5 | + [15°2p7]].

The fact that the latter three terms possess the same amplitude C» is aresult of the requirement that a state of
1S symmetry is desired. It can be shown [27] that this function is equivalent to

W = C1l1swlsB{[(25 — a2p)e(25+a2p,)f — (25— a2p,) (25 +a2p)e]
+[(2s—a2py)a(2s+a2p,)B — (2s— a2p,)B(2s+ a2p,)a]
+[(2s— a2p.)a(2s+a2p;)p — (28— a2p.)B(2s+ a2p;)a]}|

wherea = /3C,/Cx.

Heretwo electronsoccupy the 1sorbital (with opposite, a and 8 spins) whiletheother electron pair resides
in 2s— 2p polarized orbitalsin amanner that instantaneously correlatestheir motions. These polarized orbital
pairs (2s+ a2p, yor;) areformed by combining the 2s orbital with the 2p, , o, orbital in aratio determined
by C2/C1. Thisway of viewing an electron pair correlation forms the basis of the generalized valence bond
(GVB) method that Professor Bill Goddard [28] pioneered.

Thisratio C,/ C1 can be shown to be proportional to the magnitude of the coupling (1s22s%| H|1s22p?) be-
tween thetwo configurationsinvolved and inversely proportional to theenergy difference (152252 H |1s22<?) —
(1s22p?| H|1s22p?)) between these configurations. In general, configurations that have similar Hamiltonian
expectation values and that are coupled strongly give rise to strongly mixed (i.e. with large |C,/ C1| ratios)
polarized orbital pairs.

A set of polarized orbital pairsis described pictorially in figure B3.1.6. In each of the three equivalent
terms in the above wavefunction, one of the valence electrons moves in a 2s + a2p orbital polarized in one
direction while the other valence electron moves in the 2s — a2p orbital polarized in the opposite direction.
For example, the first term (2s — a2p,)a(2s+ a2p,) B — (25 — a2p,)B(2s+ a2p, )« describes one electron
occupying a2s— a2p, polarized orbital whilethe other electron occupiesthe 2s+a2p, orbital. The electrons
thus reduce their Coulomb repulsion by occupying differentregions of space; in the SCF picture 1s?2s?, both
electrons reside in the same 2s region of space. In this particular example, the electrons undergo angular
correlationto ‘avoid’ one another.

L et us consider another example. In describing the 772 electron pair of an olefin, it isimportant to mix in
‘doubly excited’ configurations of the form (7 *)2. The physical importance of such configurations can again
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B

T+ X" T —xn"

left polarized right polarized

Figure B3.1.7. Left- and right-polarized orbital pairsinvolving = and * orbitals.

be made clear by using the identity

Cil...pagB...| = Co|...¢'ad'B...| = C1/2{]...(¢ —x(¢p +x¢")B...| —|.. .(p —x9")B(p +x¢)a.. [}

wherex = (C2/Cp)Y2.

In this example, the two non-orthogonal ‘ polarized orbital pairs' involve mixing the = and =* orbitals
to produce two left—right polarized orbitals as depicted in figure B3.1.7. Here one says that the 72 electron
pair undergoes left—right correlation when the (7 *)? configuration is introduced.

B3.1.4.3 Are polarized orbital pairs hybrid orbitals?

It should be stressed that these polarized orbital pairs are not the same as hybrid orbitals. The latter are used
to describe directed bonding, but polarized orbital pairs are each a“mixture’ of two mean-field orbitals with
amplitude x = (C»/C1)*? and with asingle electrorin each, thereby allowing the electrons to be spatially
correlated and to ‘avoid’ one another. In addition, polarized orbital pairs are not generally orthogonato one
another; hybrid orbital setsare.

B3.1.4.4 Relationship to the generalized valence bond picture

In these examples, the analysis allows one to interpret the combination of pairs of configurations that differ
fromoneanother by a‘ doubleexcitation’ fromoneorbital (¢) toanother (¢’) asequivalent toasinglet coupling
of two polarized orbitals (¢ — a¢’) and (¢ + a¢’). Asmentioned earlier, this pictureis closely related to the
GVB model that Goddard [28] and Goddard and Harding [29] developed. In the simplest embodiment of the
GVB model, each electron pair in the atom or molecule is correlated by mixing in a configuration in which
that pair is ‘doubly excited' to a correlating orbital. The direct product of all such pair correlations generates
the simplest GV B-type wavefunction.

In most ab initio quantum chemical methods, the correlation calculationisactually carried out by forming
alinear combination of the mean-field configuration state functions and determining the {C,} amplitudes by
some procedure. The identities discussed in some detail above are then introduced merely to permit one
to interpret the presence of configurations that are ‘doubly excited' relative to the dominant mean-field
configuration in terms of polarized orbital pairs.
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B3.1.4.5 Summary

Thedynamical interactionsamong el ectronsgiverisetoinstantaneousspatial correlationsthat must be handled
toarriveat an accurate picture of the atomic and molecular structure. Thesingle-configuration pictureprovided
by the mean-field model is a useful starting point, but it is incapableof describing electron correlations.
Therefore, improvements are needed. The use of doubly-excited configurations is a mechanism by which &
can place electron pairs, which in the mean-field picture occupy the same orbital, into different regions of
space thereby lowering their mutual Coulombic repulsions. Such electron correlation effectsarereferred to as
dynamical electron correlatigrthey are extremely important to include if one expects to achieve chemically
meaningful accuracy.

B3.1.5 Thesingle-configuration picture and the HF approximation

Given a set of N-electron space- and spin-symmetry-adapted configuration state functions {®,} in terms of
which W isto beexpanded as W = ", C,®,, two primary questions arise: (1) how to determine the {C}
coefficients and the energy £ and (2) how to find the ‘best’ spin orbitals {¢;}? Let usfirst consider the case
where asingle configuration is used so only the question of determining the spin orbitals exists.

B3.1.5.1 The single-determinant wavefunction

(a) The canonical SCF equations

The simplest trial function employed in ab initio quantum chemistry isthe single Slater determinant function
in which N spin orbitals are occupied by N electrons:

V = |p19203. .. ¢

For such a function, variational optimization of the spin orbitals to make the expectation value (V|H|V)
stationary produces [30] the canonical HF equations

Fi = eig;
where the so-called Fock operator £ is given by

Fe; = hey + Z [J; — K,1.

Jj(occupied)

The Coulomb (J ;) and exchange (K ;) operators are defined by the relations

I = f Pr(r ;) /Ir — 7| de’ i (r)

Rigr = / B0 /I — | dt’ ;)

the symbol / denotes the sum of the electronic kinetic energy, and electron—nuclear Coulomb attraction
operators. The dr implies integration over the spin variables associated with the ¢; (and, for the exchange
operator, ¢;), asaresult of which the exchange integral vanishes unless the spin function of ¢; isthe same as
that of ¢;; the Coulomb integral is non-vanishing no matter what the spin functions of ¢; and ¢;.
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(b) The equations have orbital solutions for occupied and unoccupied orbitals

The HF [31] equations F¢; = ¢;¢; possess solutions for the spin orbitalsin (the occupiedspin orbitals) as
well as for orbitals not occupied in W (the virtual spin orbitals) because the F' operator is Hermitian. Only
the ¢; occupied in W appear in the Coulomb and exchange potentials of the Fock operator.

(c) The spin-impurity problem

Asformulated above, the HF equationsyield orbitals that do not guarantee that W has proper spin symmetry.
To illustrate, consider an open-shell system such as the lithium atom. If 1sx, 1s8, and 2sx spin orbitals are
chosen to appear in W, the Fock operator will be

A A

F =h+f15a+fls,g+fzsa —[Ielsa+lelsﬂ+k25a]-
Acting on an « spin orbital ¢, with F and carrying out the spin integrations, one obtains
Fra = hopa + (2415 + J25)Pra — (K1s+ K29) i
In contrast, when acting on a 8 spin orbital, one obtains
Fong = hg + (2J1s+ Jos)prp — (K1) s

Spin orbitals of « and B type do not experience the same exchange potential in this model because ¥
containstwo « spin orbitalsand only one 8 spin orbital. A consequence isthat the optimal 1sx and 1s8 spin
orbitals, which are themsel ves sol utions of ﬁqbi = ¢;¢;, donot haveidentical orbital energies(i.e. e1s, # £158)
and are not spatially identical. This resultant spin polarization of the orbitals gives rise to spin impuritiesin
V. The determinant |1sa1s 82sx| is hot a pure doublet spin eigenfunction, althoughitisan S, eigenfunction
with M; = 1/2; it contains both § = 1/2 and S = 3/2 components. If the 1sx and 18 spin orbitals were
spatially identical, then |1sx 15 82s¢| would be a pure spin eigenfunction with § = 1/2.

The above single-determinant wavefunction is referred to as being of the unrestricted Hartree—Fock
(UHF) type because no restrictions are placed on the spatial nature of the orbitalsin W. In general, UHF
wavefunctions are not of pure spin symmetry for any open-shell system or for closed-shell systems far from
their equilibrium geometries (e.g. for H, or N, at long bond lengths) These are significant drawbacks of
methods based on a UHF starting point. Such a UHF treatment forms the basis of the widely used and highly
successful Gaussian 70 through Gaussian-9X series of electronic structure computer codes [32] which derive
from Pople [32] and co-workers.

To overcome some of the problems inherent in the UHF method, it is possible to derive SCF equations
based on minimizing the energy of a wavefunction formed by spin projecting a single Slater determinant
starting function (e.g. using {| 1s2s8| — | 1s82s|} /2%/2 for thesingl et excited state of Herather than | 1sx2s8|).
It is also possible for atrial wavefunction of the form |1sw1sf2sx| to constrain the 1se and 1s8 orbitals to
have exactly the same spatial form. In both cases, one then is able to carry out what are called restricted
Hartree—Fock (RHF) calculations.

B3.1.5.2 Thelinear combinations of atomic orbitals to form molecular orbitals expansion of the spin orbitals

The HF equations must be solved iteratively because the J; and K; operatorsin F depend on the orbitals ¢;
for which solutions are sought. Typical iterative schemes begin with a ‘guess’ for those ¢; that appear in
W, which then allows F to be formed. Solutionsto 13"45,- = ¢;¢; are then found, and those ¢; which possess
the space and spin symmetry of the occupied orbitals of W and which have the proper energies and nodal
character are used to generate anew £ operator (i.e. new J; and K; operators). Thisiterative HF SCF process
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is continued until the ¢; and ¢; do not vary significantly from oneiteration to the next, at which time one says
that the process has converged.

In practice, solution of F¢; = &;¢; as an integro-differential equation can be carried out only for
atoms [34] and linear molecules [35] for which the angular parts of the ¢; can be exactly separated from
the radial because of axial- or full-rotation group symmetry (e.9. ¢; = Y;..(6, ¢)R,(r) for an atom and
¢ = expimd) R, 1. (p, z) for alinear molecule).

In the procedures most commonly applied to nonlinear molecules, the ¢; are expanded in a basisy,,
according to the linear combinations of AOs to form molecular orbitals (LCAO-MO) [36] procedure;

¢ = Z C}L,inL'
w

This reduces F¢; = &;:¢; to amatrix eigenvalue-type equation:
Z Fu,vcv,i =¢&; Z Su,ucv,i

where S, , = (x.|x») iSthe overlap matrix among the AOs and

Fuw = Otulhlxe) + D Vs Xs 18100 i) = V570 X618 X x0)]
8,k

is the matrix representation of the Fock operator in the AO basis. Here and elsewhere, the symbol ¢ is used
to represent the electron—electron Coulomb potential e?/|r — +/|.
The charge- and exchange-density matrix elementsin the AO basis are:

Vs = Z CS,iCK,i

i (occupied)

and
Vik = Z Cs,iCu.i
i (occupied and same spin)
where the sum in y runs over those occupied spin orbitals whose m, value is equal to that for which the
Fock matrix is being formed (for a closed-shell species, yo, = 1/2ys.).

It should be noted that by moving to a matrix problem, one does not remove the need for an iterative
solution; the F,, , matrix elements depend on the C, ; LCAO-MO coefficients which are, in turn, solutions
of the so-called Roothaan [30] matrix HF equations: ), F,,,C.; = € Y, S,,»Cy;. One should also note
that, just as ﬁq&,» = ¢&;¢; possesses a complete set of eigenfunctions, the matrix F,, ,, whose dimension M is
equal to the number of atomic basis orbitals, has M eigenvalues ¢; and M eigenvectors whose elements are
the C, ;. Thus, there are occupied and virtuaM Os each of which is described in the LCAO-MO form with
the C,; coefficients obtained viasolutionof " F, ,C,; =& Y, S, vCy;.

B3.1.5.3 AO basis sets

(a) Slater-type orbitals and Gaussian-type orbitals

The basis orbitals commonly used in the LCAO-MO process fall into two primary classes:

(1) Slater-type orbitals (STOS) xu.1m (. 0, @) = Npim.cYi.m (6, d)r"~Lexp(—cr), are characterized by the
quantum numbers ., I and m and the exponent (which characterizes the ‘size’) ¢. The symbol N, ; . ¢
denotes the normalization constant.
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(2) Cartesian Gaussian-type orbitals (GTOS) xa.p.c(7, 0, ¢) = N}, . ,x* ybz¢ exp(—ar?), are characterized
by the quantum numbers a, b and ¢, which detail the angular shape and direction of the orbital, and the
exponent « which governsthe radial ‘size'.

For both types of orbitals, the coordinatesr, 6 and ¢ refer to the position of the electron relative to a set
of axes attached to the centre on which the basis orbital is located. Although STOs have the proper ‘ cusp’
behaviour near the nuclei, they are used primarily for atomic- and linear-molecule calculations because the
multi-centre integrals which arise in polyatomic-mol ecul e cal cul ations cannot efficiently be performed when
STOsareemployed. In contrast, such integrals can routinely be donewhen GTOsare used. Thisfundamental
advantage of GTOs has led to the dominance of these functionsin molecular quantum chemistry.

To overcome the primary weakness of GTO functions (i.e. their radial derivatives vanish at the nucleus
whereas the derivatives of STOs are non-zero), it is common to combine two, three, or more GTOs, with
combination coefficients which are fixed and not treated as LCAO-MO parameters, into hew functions
called contractedGTOs or CGTOs. Typically, a series of tight, medium, and loose GTOs are multiplied by
contraction coefficientand summed to produce aCGTO, which approximatesthe proper ‘ cusp’ at the nuclear
centre.

Although most calculations on molecules are now performed using Gaussian orbitals (STOs are till
commonly employed in atomic calculations), it should be noted that other basis sets can be used as long as
they span enough of the region of space (radial and angular) where significant el ectron density resides. Infact,
itispossibleto use planewaveorbitals[37] of theform x (r, 6, ¢) = N expli(k.r Sin6 cos¢ +k,r sinf sing +
k.r cosf)], where N is a normalization constant and k., k, and k, are the quantum numbers detailing the
momentaof theorbital alongthe x, y and z Cartesian directions. The advantageto using such ‘simple’ orbitals
isthat the integrals one must perform are much easier to handle with such functions; the disadvantage is that
one must use many such functionsto accurately describe sharply peaked charge distributions of, for example,
inner-shell core orbitals.

(b) Basis set libraries

Much effort has been devoted to developing sets of STO or GTO basis orbitals for main-group elements and
the lighter transition metals. This ongoing effort is aimed at providing standard basis set libraries which:

(1) vyield predictable chemical accuracy in the resultant energies;
(2) arecost effectiveto usein practical calculations;

(3) arerelatively transferable so that a given atom’s basis is flexible enough to be used for that atom in
various bonding environments.

The fundamental core and valence basisln constructing an AO basis, one can choose from among several
classes of functions. First, the size and nature of the primary core and valence basis must be specified. Within
this category, the following choices are common.

(1) A minimal basisin which the number of STO or CGTO orbitals is equa to the number of core and
valence AOsin the atom.

(2) A double-zetdDZ) basisin which twice asmany STOs or CGTOs are used asthere are core and valence
AOs. Theuse of more basisfunctionsis motivated by adesireto provide additional variational flexibility
so the LCAO-MO process can generate MOs of variable diffuseness asthe local electronegativity of the
atom varies.

(3) A triple-zeta(TZ) basis in which three times as many STOs or CGTOs are used as the number of core

and valence AOs (and, yes, there now are quadruple-zeta (QZ) and higher-zeta basis sets appearing in
the literature).
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(4) Dunning and Dunning and Hay [38] developed CGTO bases which range from approximately DZ to
substantially beyond QZ quality. These basesinvolve contractions of primitive uncontracted GTO bases
which Huzinaga [39] had earlier optimized. These Dunning bases are commonly denoted as follows
for first-row atoms: (10s,6p/5s,4p), which means that 10 s-type primitive GTOs have been contracted
to produce five separate s-type CGTOs and that six primitive p-type GTOs were contracted into four
separate p-type CGTOs in each of the x, y and z directions.

(5) Even-tempered basis sets [40] consist of GTOsin which the orbital exponents «;, belonging to series of
orbitals consist of geometrical progressions: «;, = af*, wherea and g characterize the particular set of
GTOs.

(6) STO-3G bases[41] were employed some years ago, but have recently become less popular. These bases
are constructed by least-squares fitting GTOs to STOs which have been optimized for various el ectronic
states of the atom. When three GTOs are employed to fit each STO, a STO-3G basisisformed.

(7) 4-31G, 5-31G and 6-31G bases [42] employ asingle CGTO of contraction length 4, 5, or 6 to describe
the core orbital. The valence space is described at the DZ level with the first CGTO constructed from
three primitive GTOs and the second CGTO built from asingle primitive GTO.

(8) More recently, the Dunning group has focused on developing basis sets that are optimal not for use
in SCF-level calculations on atoms and molecules, but that have been optimized for use in correlated
calculations. These so-called correlation-consistent bases [43] are now widely used because more and
more ab initio calculations are being performed at a correlated level.

(9) Atomic natural orbital (ANO) basis sets [44] are formed by contracting Gaussian functions so as to
reproduce the natural orbitals obtained from correlated (usually using a configuration interaction with
single and doubl e excitation (CISD) level wavefunction) calculations on atoms.

Optimization of the orbital exponentg¢ s or as) and the GTO-to-CGTO contraction coefficienttor the
kind of bases described above have undergone explosive growth in recent years. Asaresult, it isnot possible
to provide a single or even afew literature references from which one can obtain the most up-to-date bases.
However, the theory group at the Pacific Northwest National Laboratories (PNNL) offer a webpage [45]
from which one can find (and even download in a form prepared for input to any of several commonly used
electronic structure codes) awide variety of Gaussian atomic basis sets.

Polarization functions. One usually enhances any core and valence functions with a set of so-called
polarization functions. They are functions of one higher angular momentum than appears in the atom’'s
valence orbital space (e.g. d-functions for C, N and O and p-functions for H), and they have exponents
(¢ or «) which cause their radial sizes to be similar to the sizes of the valence orbitals (i.e. the polarization
p orbitals of the H atom are similar in size to the 1s orbital). Thus, they are not orbitals which describe the
atom’s valence orbital with one higher [ value; such higher-1 valence orbitals would be radially more diffuse.

The primary purpose of the polarization functionsis to give additional angular flexibility to the LCAO—
MO process in forming the valence MOs. This isillustrated below in figure B3.1.8 where polarization d,
orbital sare seento contributeto formation of thebonding r orbital of acarbonyl group by allowing polarization
of the carbon atom’s p,, orbital toward the right and of the oxygen atom’s p,, orbital toward the |eft.

The polarization functions are essentia in strained ring compounds because they provide the angular
flexibility needed to direct the electron density into the regions between the bonded atoms.

Functions with higher [ values and with ‘sizes' like those of lower-I valence orbitals are also used to
introduce additional angular correlation by permitting angularly polarized orbital pairsto beformed. Optimal
polarization functions for first- and second-row atoms have been tabulated and are included in the PNNL
Gaussian orbital web site data base [45].
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Figure B3.1.8. Therole of d-polarization functionsin the = bond between C and O.

Diffuse functions. When dealing with anions or Rydberg states, one must further augmenthe basis set by
adding so-called diffuse basisorbitals. Thevalence and polarization functions described above do not provide
enough radial flexibility to adequately describe either of these cases. Once again, the PNNL web site data
base [45] offers a good source for obtaining diffuse functions appropriate to a variety of atoms.

Once one has specified an AO basis for each atom in the molecule, the LCAO-MO procedure can be
used to determine the C,,; coefficients that describe the occupied and virtua orbitals. It isimportant to keep
in mind that the basis orbitals are not themselves the SCF orbital s of the isolated atoms; even the proper AOs
are combinations (with atomic values for the C,,; coefficients) of the basis functions. The LCAO-MO-SCF
process itself determines the magnitudes and signs of the C,,;; alternations in the signs of these coefficients
allow radial nodes to form.

B3.1.5.4 The physical meaning of orbital energies

The HF—SCF equations F¢; = ¢;¢; imply that &; can be written as

g = (il Flgy) = (gilhlg) + D (ild; — Kjlgn) = (gilhlg) + D [ — Kijl.

Jj (occupied) Jj (occupied)

Thus ¢; isthe average value of the kinetic energy plus the Coulombic attraction to the nuclei for an electron
in ¢; plusthe sum over all of the spin orbitals occupied in W of the Coulomb minus exchange interactions.

If ¢; isan occupied spinorbital, theterm[J; ; — K ;] disappearsand thelatter sum representsthe Coulomb
minus exchange interaction of ¢; with all of the N — 1 other occupied spin orbitals. If ¢; isavirtual spin
orbital, this cancellation does not occur, and one obtains the Coulomb minus exchange interaction of ¢; with
al N of the occupied spin orbitals.

Hencetheorbital energiesof occupiedorbitalspertainto interactionsappropriateto atotal of N electrons,
whilethe orbital energies of virtual orbitals pertain to asystemwith N + 1 electrons. Thisusually makes SCF
virtual orbitalsnot very good for usein subsequent correlation cal culationsor for usein interpreting electronic
excitation processes. To correlate apair of electrons that occupy avalence orbital requires double excitations
into avirtual orbital of similar size; the SCF virtual orbitals are too diffuse. For this reason, significant effort
has been devoted to developing methods that produce so-called ‘improved virtual orbitals' (IVOs) [46] that
are of more utility in performing correlated calculations.

(a) Koopmans' theorem

Let us consider a model of the vertical (i.e. at fixed molecular geometry) detachment or attachment of an
electron to an N-electron molecule.
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(1) Inthismodel, boththe parent molecule and the species generated by adding or removing an electron are
treated at the single-determinant level.

(2) TheHF orbitals of the parent molecule are used to describe both species. It is said that such amodel ne-
glects’ orbital relaxation (i.e. the reoptimization of the spin orbitalsto allow them to become appropriate
to the daughter species).

Within this model, the energy difference between the daughter and the parent can be written as follows
(¢ represents the particular spin orbital that is added or removed):

(1) For electron detachment
EN"Y_ EN = —¢.

(2) For electron attachment
EN — EN' = —¢.

So, within the limitations of the single-determinant, frozen-orbital model, the ionization potentials (1Ps)
and electron affinities (EAS) are given as the negative of the occupied and virtual spin—orbital energies,
respectively. This statement is referred to as Koopmans' theorenjd7]; it is used extensively in quantum
chemical calculations as a means for estimating |Ps and EAs and often yields results that are qualitatively
correct (i.e.,, £0.5eV).

(b) Orbital energies and the total energy

Thetotal SCF electronic energy can be written as

E= Y (¢lhlg)+ Y [y —Kijl

i(occupied) i> j(occupied)

and the sum of the orbital energies of the occupied spin orbitalsis given by

Z & = Z (¢illgpi) + Z [Vij — Ki ]

i(occupied) i(occupied) i, j(occupied)

These two expressions differ in avery important way; the sum of occupied orbital energies double countsthe
Coulomb minus exchange interaction energies. Thus, within the HF approximation, the sum of the occupied
orbital energiesis not equal to the total energy.

B3.1.5.5 Solving the Roothaan SCF equations

Before moving onto discuss methodsthat go beyond the single-configuration mean-field model, itisimportant
to examine some of the computational effort that goes into carrying out an SCF calculation.

Once atomic basis sets have been chosen for each atom, the one- and two-electron integraéppearing in
F,,, must beevaluated. There are numerous, highly-efficient computer codes[48] which alow suchintegrals
to be computed for s, p, d, f and even g, h and i basis functions. After executing one of these ‘integral
packagesfor a basis with atotal of P functions, one has available (usually on the computer’s hard disk) of
the order of P2/2 one-electron ((x,.|A|x,) ad (x,|x.)) and P*/8 two-electron ((x,xs|&|x.x.)) integras.
When treating extremely large AO basis sets (e.g. 1000 or more basis functions), modern computer programs
[49] calculate the requisite integrals, but never store them on the disk. Instead, their contributions to Fy, ,
are accumulated ‘on the fly’ after which the integrals are discarded. Recently, much progress has been made
towards achieving an evaluation of the non-vanishing (i.e. numerically significant) integrals [48] as well as
solving the subsequent SCF eguations in a manner whose effort scales linearlyf50] with the number of basis
functionsfor large P.
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After the requisite integrals are available or are being computed on the fly, to begin the SCF process
one must input into the computer routine which computes F, , the initial ‘guesses’for the C,; values
corresponding to the occupied orbitals. These initial guesses are typically made as follows.

(1) If one has available the C,,; values for the system from a calculation performed at a nearby geometry,
one can use these C,, ; values.

(2) If onehasC, ; valuesappropriate to fragments of the system (e.g. for C and O atomsif the CO molecule
isunder study or for CH, and O if H,CO is being studied), one can use these.

(3) If one has no other information available, one can carry out one iteration of the SCF process in which
the two-electron contributions to F,, , are ignored (i.e. take F,,, = (x.|h|x»)) and use the resultant
solutionsto ) F,, ,Cy; = & Y, S,vCy,; asinitial guesses,

Oncetheinitial guesseshave been madefor the C,; of the occupied orbitals, thefull F, , matrix isformed
and new ¢; and C,; values are obtained by solving >, F,,,C,; = & Y, S,.»Cy;. These new orbitals are
then used to form anew F,, , matrix fromwhich new ¢; and C,,; are obtained. Thisiterative processis carried
on until theg; and C,,; do not vary (within specified tolerances) from iteration to iteration, at which time the
SCF process has reached self-consistency.

B3.1.6 Methodsfor treating electron correlation
B3.1.6.1 An overview of various approaches

There are numerous procedures currently in use for determining the ‘best’ wavefunction of the form
U= Z C1®;
1

where & isaspin- and space-symmetry-adapted CSF consisting of determinants |p;1¢2¢;3 . . . ¢ | (See[14,
16, 26]). In al such wavefunctionsthere are two kinds of parametersthat need to be determined—the C and
the LCAO-MO coefficients describing the ¢;,. The most commonly employed methods used to determine
these parameters include the following.

(a) The multiconfigurational self-consistent field method

In this approach [51], the expectation value (W|H W) /(W |W¥) is treated variationally and made stationary
with respect to variationsin the C; and C,,; coefficients. The energy functional is a quadratic function of the
C, coefficients, and so one can express the stationary conditions for these variablesin the secular form

ZH,,,C, = EC.
J

However, E isaquartic function of the C,, ;sbecause H; ; involvestwo-electronintegrals (¢; ¢ |2 1¢x¢;) that
depend quartically on these coefficients.

It is well known that minimization of the function (E) of several nonlinear parameters (the C, ;) isa
difficult task that can suffer from poor convergence and may locate local rather than global minima. In a
multiconfigurational self-consistent field (M CSCF) wavefunction containing many CSFs, the energy isonly
weakly dependent on the orbital sthat appear in CSFswithsmall C; values; in contrast, E isstrongly dependent
on those orhitals that appear in the CSFs with larger C; values. One is therefore faced with minimizing a
function of many variables that depends strongly on several of the variables and weakly on many others.

For these reasons, in the MCSCF method the number of CSFsis usualy kept to a small to moderate
number (e.g. afew to several thousand) chosen to describe essential correlation@.e. configuration crossings,
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near degeneracies, proper dissociation, etc, all of which are often termed non-dynamical correlationsand
important dynamical correlations (those el ectron-pair correlations of angular, radial, left—right, etc nature that
are important when low-lying ‘virtual’ orbitals are present).

(b) The configuration interaction method

In this approach [52], the LCAO-MO coefficients are determined first via a single-configuration SCF cal-
culation or an MCSCF calculation using a small number of CSFs. The C; coefficients are subsequently
determined by making the expectation value (V| H|W) /(¥ |¥) stationary.

The CI wavefunction is most commonly constructed from CSFs of @ that include:

(1) all of the CSFsin the SCF or MCSCF wavefunction used to generate the molecular orbitals ¢;. These
arereferred to as the ‘referencé CSFs;

(2) CSFsgenerated by carrying out single-, double-, triple-, etc, level *excitations' (i.e. orbital replacements)
relative to reference CSFs. Cl wavefunctions limited to include contributions through various levels of
excitation are denoted S (singly), D (doubly), SD (singly and doubly), SDT (singly, doubly, and triply)
excited.

The orbitals from which electrons are removed can be restricted to focus attention on the correlations
among certain orbitals. For example, if the excitations from the core electrons are excluded, one computes
the total energy that contains no core correlation energy. The number of CSFsincluded in the Cl calculation
can be far in excess of the number considered in typical MCSCF calculations. Cl wavefunctions including
5000 to 50000 CSFs are routine, and functions with one to several billion CSFs are within the realm of
practicality [53].

The need for such large CSF expansions should not be surprising considering (i) that each electron pair
requires at leasttwo CSFs to form polarized orbital pairs, (ii) there are of the order of N(N — 1)/2 = X
electron pairs for N electrons, hence (iii) the number of terms in the Cl wavefunction scales as 2¥. For a
molecul e containing ten electrons, there could be 2%° = 3.5 x 10'3 termsin the Cl expansion. Thismay be an
overestimate of the number of CSFs needed, but it demonstrates how rapidly the number of CSFs can grow
with the number of electrons.

The H; ; matrices are, in practice, evaluated in terms of one- and two-electron integrals over the MOs
using the Slater—Condon rules [54] or their equivalent. Prior to forming the H; ; matrix elements, the one-
and two-electron integrals, which can be computed only for the atomic (e.g. STO or GTO) basis, must be
transformed [55] to the MO basis. This transformation step requires computer resources proportional to
the fifth power of the number of basis functions, and thus is one of the more troublesome steps in most
configuration interaction calculations.

For large Cl calculations, the full Hy ; matrix is not formed and stored in the computer's memory
or on disk; rather, ‘direct CI’ methods [56] identify and compute non-zero Hy ; and immediately add up
contributions to the sum ), H; ;C;. lterative methods [57], in which approximate values for the C,
coefficients arerefined through sequential applicationof ), H ; to the preceding estimate of the C vector,
are employed to solve these large eigenvalue problems.

(c) The Mgller—Plesset perturbation method

Thismethod [58] usesthe single-configuration SCF processto determine aset of orbitals {¢;}. Then, using an
unperturbed Hamiltonian equal to thesum of the N electrons’ Fock operatorsI:I 0— Doicin F (i), perturbation
theory isusedtodeterminethe C; amplitudesfor the CSFs. TheMPPT procedure[59] isaspecial caseof many-
body perturbation theory (MBPT) inwhich the UHF Fock operator isused to define H°. Theamplitudefor the
referenceCSF istaken as unity and the other CSFs' amplitudes are determined by the Rayleigh—Schrodinger
perturbation using H — H° as the perturbation.
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In the MPPT/MBPT method, once the reference CSF is chosen and the SCF orbitals belonging to this
CSF are determined, the wavefunction W and energy E are determined in an order-by-order manner. The
perturbation equations determinewhat CSFs to include and their particular order. Thisis one of the primary
strengths of thistechnique; it does not require one to make further choices, in contrast to the MCSCF and C 1
treatments where one needs to choose which CSFsto include.

For example, the first-order wavefunction correction W is

S jlglm,n) = G, jlgln, m)len — & + s —e,171 | B
i<j,m<n

wherethe SCF orbital energies are denoted ¢, and <I>"’J" represents a CSF that is doubly excited¢; and ¢; are
replaced by ¢,, and ¢, relativeto ®. Only doubly-excited CSFscontributeto thefirst-order wavefunctiorthe
fact that the contributions from singly-excited configurations vanish in ®* is known as the Brillouin theorem
[60].
The energy E is given through second order as
E=Esce— Y |(i.jlglm,n)— i, jlgln.m)?/lem — &+, — &]].
i<jm<n

Both W and E are expressed in terms of two-electron integrals (i, j|g|m, n) coupling the virtual spin orbitals
¢ and ¢, to the spin orbitals from which the electrons were excited ¢; and ¢; as well as the orbital energy

differences|e,, —¢;+¢, —¢ ;] accompanying such excitations. Clearly, themajor contributionsto thecorrelation

energy are made by double excitations into virtual orbitals ¢,,¢, with large (i, j|g|m, n) integrals and small

orbital energy gaps[e,, — & +¢&, — &;]. In higher-order corrections, contributions from CSFs that are singly,

triply, etc excited relative to & appear, and additional contributions from the doubly-excited CSFs also enter.

(d) The coupled-cluster method

In the coupled-cluster (CC) method [61], one expresses the wavefunction in a somewhat different manner:
v =exp(T)d

where @ is asingle CSF (usually the UHF determinant) used in the SCF process to generate a set of spin
orbitals. The operator T is expressed in terms of operators that achieve spin—orbital excitations as follows:

m,n

T = Ztm mti+ Ztm."nTﬁJ']l +.

where the combination of operators/#*i denotes the creationof an electron in the virtual spin orbital ¢,, and
the removalof an electron from the occupied spin orbital ¢; to generate a single excitation. The operation
m*i*ji therefore repreeents adouble excitation from ¢;¢; t0 ¢,

The amplitudes ¢, ", etc, which play the role of the C; coefficients in CC theory, are determined

[ 129)

through the set of equatlons generated by projecting the Schrodinger equation in the form
exp(—T)H exp(T)® = E®
against CSFswhich are single, double, etc, excitations relative to @:
(@' |A +[H, T)+ 3L, TT, T+ §[[[H, 71, 71, T1 + HIH, 71, 7T, T], T|®) = 0
(@A +[H, T+ 3[[H. T]. )+ {[[[H. T). T). T) + A[[[[H. T]. T]. T]. T]|®) =
(@"5P1A +[H, T+ 3[[H. T]. T+ [[[H. T). T). T) + A[[[[H. T]. T]. T]. T]|®) = 0

and so on for higher-order excited CSFs.
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It can be shown [62] that the expansion of the exponential operators truncates exactly at the fourth power
in 7. Asaresult, the exact CC equations are quartic equationgor the 1", t,.’f‘j?", etc amplitudes. The matrix
elements appearing in the CC equations can be expressed in terms of one- and two-electron integrals over the
spin orbitals including those occupied in @ and the virtual orbitals not in ®.

These quartic equations are solved in an iterative manner and, as such, are susceptible to convergence
difficulties. In any such iterative process, it is important to start with an approximation reasonably close to
the final result. In CC theory, this is often achieved by neglecting all of the terms that are nonlinear in the
t amplitudes (because the ¢s are assumed to be less than unity in magnitude) and ignoring factors that couple
different doubly-excited CSFs (i.e. the sum over i’, j', m’ and n’). This givest amplitudes that are equal to
the amplitudes of the first-order MPPT/MBPT wavefunction:

nt = (i, jlglm, n) [len — i +en — g].
AsBartlett [63] and Pople have both demonstrated [64], thereisacl oserel ationship between the MPPT/MBPT
and CC methods when the CC equations are solved iteratively starting with such an MPPT/MBPT-like initial

‘guess’ for these double-excitation amplitudes.

(e) Density functional theories

These approaches provide aternatives to the conventional tools of quantum chemistry. The CI, MCSCF,
MPPT/MBPT, and CC methods move beyond the single-configuration picture by adding to the wavefunction
more configurations whose amplitudes they each determine in their own way. This can lead to avery large
number of CSFsin the correlated wavefunction and, as aresult, aneed for extraordinary computer resources.
The density functional approaches are different [65]. Here one solves a set of orbital-level equations

[—EZ/ZmeVZ — D Zac?/Ir — Ral + / p(r)e?/lr —r'|dr' + U(r)}qx = &
A

inwhichthe orbitals {¢;} ‘feel’ potentials due to the nuclear centres (having charges Z 4), Coulombic interac-
tion with the total electron density p (+') and a so-called exchange-correlatiopotential denoted U (+'). The
particular electronic state for which the calculation isbeing performed is specified by forming acorresponding
density p(r'). Before going further in describing how density functional theory (DFT) calculationsare carried
out, let us examine the origins underlying this theory.

The so-called Hohenberg—K ohn [66] theorem statesthat the ground-statesl ectron density o () describing
an N-electron system uniquely determines the potential V () in the Hamiltonian

. _ 1
H=Y" { —R2/2meVi+ V (rj) + 5 Zez/r,,k}
J k#j

and, because A determinesthe ground-state energy and wavefunction of the system, the ground-state density

o (r) determines the ground-state properties of the system. The proof of this theorem proceeds as follows.

(@ p(r) determines N because [ p(r) d* = N.

(b) Assumethat there are two distinct potentials (aside from an additive constant that simply shifts the zero
of total energy) V (r) and V'(r) which, when used in A and A’, respectively, to solve for a ground
state produce Eo, W (r) and Eg, ¥’ (r) that have the same one-electron density: [ [W|2drodrs...dry =
p(r) = [|¥')2dradrs...dry.

(c) If wethink of ¥’ astrial variational wavefunction for the Hamiltonian A, we know that

Eo < (W|H|V) = (W|H'|W) + f PPV (r) = V()] dr = Ey+ / PV () = V'(r)] dr.
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(d) Similarly, taking ¥ asatrial function for the H’ Hamiltonian, one finds that
Ey < Eo+/p(r)[v’(r) — V()] d.

(e) Adding the equationsin (c) and (d) gives
E0+E6 < E0+E6.

A clear contradiction.

Hence, there cannot be two distinct potentials V and V'’ that give the same ground-state p(r). So, the
ground-state density o (r) uniquely determines N and V', and thus H, and therefore ¥ and Eq. Furthermore,
because W determines all the properties of the ground state, then p(r), in principle, determines al such
properties. Thismeansthat even the kinetic energy and the el ectron—el ectron interaction energy of the ground
state are determined by p(r). It is easy to seethat [ p(r)V(r) d® = V[p] gives the average value of
the electron—nuclear (plus any additional one-electron additive potential) interaction in terms of the ground-
state density p (), but how are the kinetic energy T[] and the electron—electron interaction Ve[ p] energy
expressed in terms of p?

The main difficulty with DFTs s that the Hohenberg—Kohn theorem shows that the ground-statevalues
of T, Vee, V, etc areall unique functional s of the ground-statep (i.e. that they can, in principle, be determined
once p isgiven), but it does not tell us what these functional relations are.

To see how it might make sense that a property such asthe kinetic energy, whose operator (—72/2me) V2
involves derivatives, can be related to the electron density, consider a simple system of N non-interacting
electrons moving in athree-dimensional cubic ‘box’ potential. The energy states of such electrons are known
to be

E = (h?/8meL?)(n? +n’ +n?)

where L isthe length of the box aong the three axes and n,, n, and n, are the quantum numbers describing
the state. We can view n? +n2 +n? = R as defining the squared radius of a sphere in three dimensions, and
we redlize that the density of quantum states in this space is one state per unit volume in the n,, n, and n,
space. Becausen,, n, and n, must be positive integers, the volume covering all states with energy less than
or equal to a specified energy E = (h?/2meL?) R? is one-eighth the volume of the sphere of radius R:

®(E) = :(4n/3)R® = (/6)(8meLE [ h?)¥2.

Since there is one state per unit of such volume, ®(E) is aso the number of states with energy less than or
equal to E, and iscalled the integrated density of state¥he number of states ¢g(E) dE with energy between
E and E + dE, the density of statesgs the derivative of ®:

¢(E) = d/dE = (1r/4)(8meL?/ h2)32EY2,
If we calculate the total energy for N electrons, with the States having energies Up to the so-called Fermi

energy(Er) (i.e. the energy of the highest occupied molecular orbital HOMO) doubly occupied, we obtain
the ground-state energy:

Er
Eo=2 / g(E)E dE = (87/5)(2me/ h®)¥?L3E?.
0
The total number of electrons N can be expressed as

Er
N=2 / g(E)dE = (87/3)(2me/ h?)¥?L3EY?
0
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which can be solved for Er interms of N to then express Eg interms of N instead of Ef:
Eo = (3h?/10me)(3/8m)%2L3(N /L3>3,

This gives the total energy, which is aso the kinetic energy in this case because the potential energy is zero
within the ‘box’, in terms of the electron density p (x, vy, z) = (N/L®). It therefore may be plausible to
express kinetic energies in terms of electron densities p(r), but it is by no means clear how to do so for ‘real’
atoms and molecules with electron—nuclear and el ectron—electron interactions operative.

In one of the earliest DFT models, the Thomas—Fermtiheory, the kinetic energy of an atom or amolecule
is approximated using the above type of treatment on a‘local’ level. That is, for each volume element in »
space, one assumes the expression given above to be valid, and then one integrates over all » to compute the
total kinetic energy:

Trelp] = / (3h2/10me) (3/87)%3[p (m)]%° & = Cr / [p(r)]53 dr

where the last equality smply defines the Cr constant (which is 2.8712 in atomic units). Ignoring the
correlation and exchange contributions to the total energy, this 7' is combined with the electron—nuclear V
and Coulombic electron—electron potential energies to give the Thomas—Fermi total energy:

Eotlp] = Cr / [o(@)]* d*r + / V(r)p@r) dr +e?/2 / pm)p)/Ir — 7| d*r &',

This expression is an example of how Ej is given as alocal density functional approximatiofi. DA). The
term local means that the energy is given asafunctional (i.e. afunction of o) which depends only on p(r) at
the pointsin space, but not on p(r) a more than one point in space.

Unfortunately, the Thomas—Fermi energy functional does not produce resultsthat are of sufficiently high
accuracy to be of great use in chemistry. What is missing in this theory are the exchange energy and the
correlation energy; moreover, the kinetic energy is treated only in the approximate manner described.

Inthe book by Parr and Yang [67], it is shown how Dirac was able to address the exchange energy for the
‘uniform electron gas' (N Coulomb interacting electrons moving in a uniform positive background charge
whose magnitude balances the charge of the N electrons). If the exact expression for the exchange energy
of the uniform electron gas is applied on alocal level, one obtains the commonly used Dirac local density
approximation to the exchange energy

Ee pirac[p] = —C» /[,O(T)]4/3 &3

with C, = (3/4)(3/m)Y/3 = 0.7386 in atomic units. Adding this exchange energy to the Thomas—Fermi total
energy Eo e[ p] gives the so-called Thomas—Fermi—Dirac (TFD) energy functional.

Because electron densities vary rather strongly spatialy near the nuclei, corrections to the above ap-
proximationsto T'[p] and Ee pirac are needed. One of the more commonly used so-called gradient-corrected
approximations is that invented by Becke [68], and referred to as the Becke88 exchange functional:

Ee(Becke88) = Eex piracl0] — ¥ / x?p*3(1L+6yxsinh™(x)) ' dr
wherex = p~*3|Vp|, and y isaparameter chosen so that the above exchange energy can best reproduce the

known exchange energies of specific electronic states of the inert gas atoms (Becke finds y to equal 0.0042).
A common gradient correction to the earlier T[] is called the Weizsacker correction and is given by

S Tovsizsacker = (1/72) (/o) [ V()2 p(r) dr.
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Although the above discussi on suggests how one might computethe ground-state energy oncetheground-
state density p(r) is given, one still needs to know how to obtain p. Kohn and Sham [69] (KS) introduced a
set of so-called KS orbitals obeying the following equation:

{—(%Z/Zmew2 +V(r)+e?/2 / p(r')/|lr —r'|dr’ + ch<r>}¢, =e;0;

where the so-called exchange-correlation potential Uyxc(r) = 8 Exc[0]/30 () could be obtained by functional
differentiation if the exchange-correlation energy functional Eyc[o] were known. KS also showed that the
KS orbitals {¢;} could be used to compute the density p by simply adding up the orbital densities multiplied
by orbital occupanciesn;:

p(r) = "njlp;r)%
J

Heren; = 0, 1 or 2 isthe occupation number of the orbital ¢; in the state being studied. The kinetic energy
should be calculated as

T =3 njig;(m)|—G/2m)V?($;(r).
J

The same investigations of the idealized ‘ uniform electron gas’ that identified the Dirac exchange func-
tional, found that the correl ation energy (per electron) could also bewritten exactly asafunctionof theelectron
density p of the system, but only in two limiting cases—the high-density limit (large p) and the low-density
limit. There till exists no exact expression for the correlation energy even for the uniform electron gas that
isvalid at arbitrary values of p. Therefore, much work has been devoted to creating efficient and accurate
interpol ation formul ae connecting the low- and high-density uniform electron gas expressions (see appendix E
in [67] for further details). One such expression is

Eclo] = f p(r)ec(p) dr
where
ec(p)=A/2{In(x/X)+2b/ Q tan~*(Q/(2x+b)) —bxo/ Xo[IN((x —x0)%/ X)+2(b+2x0)/ Q tan™*(Q/(2x+b))]}

isthe correlation energy per electron. Herex = r&/?, X = x2+bx+c, Xo = x3+bxo+cand Q = (4c—b?)2,
A = 0.0621814, xo = —0.409286, b = 13.0720, and ¢ = 42.7198. The parameter rs is how the density o
enters since gmg isequal to 1/p; that is, rs is the radius of a sphere whose volume is the effective volume
occupied by oneelectron. A reasonable approximationtothefull Ey.[ 0] would containthe Dirac (and perhaps
gradient corrected) exchange functional plusthe above Ec[p], but there are many alternative approximations
to the exchange-correlation energy functional [68]. Currently, many workers are doing their best to ‘cook
up’ functionals for the correlation and exchange energies, but no one has yet invented functionals that are so
reliable that most workers agree to use them.
To summarize, in implementing any DFT, one usually proceeds as follows.

(1) AnAO basisis chosen in terms of which the KS orbitals are to be expanded.
(2) Someinitial guessis made for the LCAO-KS expansion coefficientsC; .:¢; = Y, Cj.aXa-

(3) Thedensity iscomputed as p(r) = Z_,. njle; (r)|?. Often, p(r) isexpanded in an AO basis, which need
not be the same as the basis used for the ¢;, and the expansion coefficients of p are computed in terms
of those of the ¢;. It is also common to use an AO basis to expand p/3(r) which, together with p, is
needed to evaluate the exchange-correlation functional’s contribution to Ep.
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(4) The current iteration’s density is used in the KS equations to determine the Hamiltonian {—1/2V? +
Vr)+ e2/2fp(r’)/|r — 7' dr’ + Uxc(r)} whose ‘new’ eigenfunctions {¢;} and eigenvalues {¢;} are
found by solving the KS equations.

(5 These new ¢; are used to compute a new density, which, in turn, is used to solve a new set of KS
equations. This processis continued until convergenceisreached (i.e. until the ¢; used to determine the
current iteration’s p are the same ¢; that arise as solutions on the next iteration).

(6) Once the converged p(r) is determined, the energy can be computed using the earlier expression

E[p] =) ni(;(r)|—(h%/2m)V?|¢; (r))+ / V(r)p(r) dr+e?/2 / p(r)p(r')/Ir—r'|dr dr'+Exc[p].
J

In closing thissection, it should once again be emphasi zed that thisareais currently undergoing explosive
growth and much scrutiny [70]. Asaresult, it isnearly certain that many of the specific functional s discussed
above will be replaced in the near future by improved and more rigorously justified versions. It is also
likely that extensions of DFTs to excited states (many workers are actively pursuing this) will be placed on
more solid ground and made applicable to molecular systems. Because the computational effort involved in
these approaches scales much less strongly [71] with the basis set size than for conventional (MCSCF, ClI,
etc) methods, density functional methods offer great promise and are likely to contribute much to quantum
chemistry in the next decade.

(f) Efficient and widely distributed computer programs exist for carrying out electronic structure calculations

The development of electronic structuretheory hasbeen ongoing sincethe 1940s. At first, only afew scientists
had access to computers, and they began to develop numerical methods for solving the requisite equations
(e.g. the HF equations for orbitals and orbital energies, the configuration interaction eguations for electronic
state energies and wavefunctions). By the late 1960s, severa research groups had developed reasonably
efficient computer codes (written primarily in Fortran with selected subroutines that needed to be written
especialy efficiently in machine language), and the explosive expansion of this discipline was underway. By
the 1980s and through the 1990s, these electronic structure programs began to be used by practicing ‘bench
chemists' both because they became easier to use and because their efficiency and the computers' speed grew
to the point where modest to large molecules could be studied.

Web pagelinks[72] to many of themorewidely used programs offer convenient access. At present, more
electronic structure cal culationsare performed by non-theoriststhan by practicing theoretical chemists, largely
because of the proliferation of such programs. This does not mean that all that needs to be done in electronic
structure theory is done. The rates at which improvements are being made in the numerical agorithms used
to solve the problems as well as at which new models are being created remain as high as ever. For example,
Professor Rich Friesner [ 73] has developed and Professor Emily Carter [74] has implemented, for correlated
methods, a highly efficient way to replace the list of two-electron integrals (¢; ¢, 11/ 71 2| ¢repr), which number
N*, where N isthe number of AO basis functions, by a much smaller list (¢;¢;|g) from which the original
integrals can be rewritten as

(9i9;11/ri2ldudr) = Z(@ (9)¢; (g))f dr ¢ (r)gi(r)/Ir — gl.
8

This tool, which they call pseudospectral methodsromises to reduce the CPU, memory and disk stor-
age requirements for many electronic structure cal culations, thus permitting their application to much larger
molecular systems. In addition to ongoing developments in the underlying theory and computer implemen-
tation, the range of phenomena and the kinds of physical propertiesthat one needs electronic structure theory
to addressisgrowing rapidly. Thereisevery reason to believe that this sub-discipline of theoretical chemistry
is continuing to blossom.
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B3.1.6.2 Computational requirements, strengths and weaknesses of various methods
(a) Computational steps

Essentialy al of the techniques discussed above require the evaluation of one- and two-electron integrals
over the N AO basis functions: (x.|f1x») and (x.x»|&|xcxa). As mentioned earlier, there are of the order
of N*/8 such two-electron integrals that must be computed (and perhaps stored on disk); their computation
and storageisamajor consideration in performing conventional ab initio calculations. Much current research
is being devoted to reducing the number of such integrals that must be evaluated using either the pseudo-
spectral methods discussed earlier or methods that approximate integrals between product distributions (one
such distribution is x, x. and another is x,xs when the integral (x.x»|8|xcxa4) 1S treated) whenever the
distributionsinvolve orbitals on sites that are distant from one another.

Another step that is common to most, if not all, approaches that compute orbitals of one form or another
is the solution of matrix eigenvalue problems of the form

Z Fu,vcv,i =& Z Su,ucv,i-

The solution of any such eigenvalue problem requires a number of computer operations that scales as the
dimension of the F,, ,, matrix to the third power. Since the indices on the F, ,, matrix label AOs, this means
that the task of finding all eigenvalues and eigenvectors scales as the cube of the number of AOs (N3).

TheDFT approachesinvolvebasisexpansionsof orbitalsg; = > C;,, x, andof thedensity p (or various
fractional powers of p), which is a quadratic function of the orbitals (o = Y, n;|¢:1?). These steps require
computational effort scaling only as N2, which is one of the most important advantages of these schemes. No
cumbersome large CSF expansion and associated large secular eigenvalue problem arise, which is another
advantage.

The more conventional quantum chemistry methods provide their working equations and energy ex-
pressions in terms of one- and two-electron integrals over the final MOs: (¢i|f|¢j> and (¢;¢;181dre). The
MO-based integrals can only be eval uated by transformingthe AO-based integrals [55]. Clearly, the N scal-
ing of the integral transformation process makes it an even more time-consuming step than the (N#) atomic
integral evaluation and a severe bottleneckio applying ab initio methods to larger systems. Much effort has
been devoted to expressing the working eguations of various correlated methods in a manner that does not
involve the fully-transformed M O-based integrals.

Oncetherequisite one- and two-electron integralsare availablein the MO basis, the multiconfigurational
wavefunction and energy calculation can begin. Each of these methods has its own approach to describing
the configurations {®;} included in the calculation and how the {C;} amplitudes and the total energy E are
to be determined.

The number of configurationgN¢) varies greatly among the methods and is an important factor to
keep in mind. Under certain circumstances (e.g. when studying reactions where an avoided crossing of two
configurationsproducesan activation barrier), it may beessentiato usemorethan one el ectronic configuration.
Sometimes, one configuration (e.g. the SCF model) is adequate to capture the qualitative essence of the
electronic structure. In al cases, many configurations will be needed if a highly accurate treatment of
electron—electron correlations are desired.

Thevalueof N¢ determineshow much computer timeand memory isneeded to solvethe Nc-dimensional
> ., H;;C; = EC; secular problem in the Cl and MCSCF methods. Solution of these matrix eigenvalue
equationsrequirescomputer timethat scal %asNé (if few eigenvaluesare computed) to Ng (if most eigenvalues
are obtained).

So-called complete active spacfCAS) methods form all CSFs that can be created by distributing
N valence electrons among P valence orbitals. For example, the eight non-core electrons of H,O might be
distributed, in a manner that gives Mg = 0, among six valence orbitals (e.g. two lone-pair orbitas, two OH
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o-bonding orbitals and two OH o *-antibonding orbitals). The number of configurations thereby created is
225. If the same eight electrons were distributed among ten valence orbitals 44 100 configurations result; for
20 and 30 valence orbitals, 23474025 and 751 034 025 configurations arise, respectively. Clearly, practical
considerations dictate that CA S-based approaches be limited to situations in which afew electrons are to be
correlated using afew valence orbitals.

(b) Variational methods provide upper bounds to energies

Methods that are based on making the functional (\I/|I§|\D)/(\IJ|\IJ) stationary yield upper boundgo the
lowest energy state having the symmetry of the CSFsin W. The Cl and MCSCF methods are of this type.
They also provide approximate excited-state energies and wavefunctionsin the form of other solutions of the
secular equation [75] >, H; ;C; = EC,;. Excited-state energies obtained in this manner obey the so-called
bracketing theoremthat is, between any two approximate energies obtained in the variational calculation,
there exists at least one true eigenvalue. These are strong attributes of the variational methods, as is the
long and rich history of developments of analytical and computational toolsfor efficiently implementing such
methods.

(c) Variational methods are not size-extensive

Variational techniques suffer from a serious drawback, however: they are not necessarily size extensivgre].
The energy computed using these tools cannot be trusted to scale with the size of the system. For example,
a calculation performed on two CH3 species at large separation may not yield an energy equal to twice the
energy obtained by performing the samekind of calculation on asingle CH3 species. Lack of size extensivity
precludesthese methodsfrom usein extended systems (e.g. polymersand solids) where errors dueto improper
size scaling of the energy produce nonsensical results.

By carefully adjusting the variational wavefunction used, it is possibleto circumvent size-extensivity
problems for selected species. For example, the Cl calculation on Be, using all * Zg CSFsformed by placing
the four valence electronsinto the 2oy, 20y, 3oy, 3oy, 1y, and Lrg orbitals can yield an energy equal to twice
that of the Be atom described by CSFsin which the two valence electrons of the Be atom are placed into the
2s and 2p orbitals in al ways consistent with a 'S symmetry. Such CAS-space MCSCF or Cl calculations
[77] are size extensive, but it isimpractical to extend such an approach to larger systems.

(d) Most perturbation and CC methods are size-extensive, but do not provide upper bounds and they assume
that one CSF dominates

In contrast to variational methods, perturbation theory and CC methods achieve their energies by projecting
the Schrodinger equation against a reference function (®| to obtain [78] a transition formula(®|H|¥),
rather than from an expectation value (¥| H|W). It can be shown that this difference allows non-variational
techniques to yield size-extensive energies.

This can be seen by considering the second-order MPPT energy of two non-interacting Be atoms. The
reference CSF is @ = |1s22s21522s2; as discussed earlier, only doubly-excited CSFs contribute to the
correlation energy through second order. These ‘excitations' can involve atom a, atom b, or both atoms.
However, CSFsthat involve excitations on both atoms (e.g. |1§C‘25012pa13§25b2pb|) giveriseto one- and two-
electron integrals over orbitals on both atoms (e.9. (25:2pa|g12s2pp)) that vanish if the atomsarefar apart, so
contributions due to such CSFsvanish. Hence, only CSFsthat are excited on one or the other atom contribute
to the energy. This, in turn, resultsin a second-order energy that is additive as required by any size-extensive
method. In general, a method will be size extensive if its energy formulais additive and the equations that
determine the C; amplitudes are themselves separable. The MPPT/MBPT and CC methods possess these
characteristics.
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However, size-extensive methods have two serious weaknesses. Their energies do not provide upper
boundsto the true energies of the system (because their energy functional isnot of the expectation-value form
for which the upper bound property has been proven). Moreover, they express the correct wavefunction in
terms of corrections to a (presumed dominant) reference function which is usually taken to be a single CSF
(although eff ortshave been madeto extend the M PPT/MBPT and CC methodsto all ow for multiconfigurational
referencefunctions, thisisnot yet standard practice). For situationsinwhichtwo CSFs' cross' along areaction
path, the single-dominant-CSF assumption breaks down, and these methods can have difficulty.

B3.1.7 Thereare methodsthat calculate energy differencesrather than energies

In addition to the myriad of methods discussed above for treating the energies and wavefunctions as solutions
to the electronic Schrodinger equation, there exists a family of tools that allow one to compute energy
differences ‘directly’ rather than by first finding the energies of pairs of states and subsequently subtracting
them. Various energy differences can be so computed: differences between two electronic states of the same
molecule (i.e. electronic excitation energies A E), differences between energy states of a molecule and the
cation or anion formed by removing or adding an electron (i.e. IPs and EAS).

Because of space limitations, we will not be able to elaborate much further on these methods. However,
it isimportant to stress that:

(1) theseso-called Greens functiowr propagatormethods[ 71] utilize essentially the sameinput information
(e.g. AO basis sets) and perform many of the same computational steps (e.g. evaluation of one- and two-
electron integrals, formation of a set of mean-field MOs, transformation of integrals to the MO basis,
etc) as do the other techniques discussed earlier;

(2) thesemethodsare now rather routinely used when A E, IP, or EA information issought. Infact, the 1998
version of the Gaussian program includes an electron propagator option.

The basic ideas underlying most, if not all, of the energy-difference methods follow

(1) One forms a reference wavefunctiod (this can be of the SCF, MPn, CC, etc variety); the energy
differences are computed relative to the energy of this function.

(2) Oneexpressesthefinal-state wavefunctio®’ (i.e. describing the excited, cation, or anion state) in terms
of an operator €2 acting on the reference W: W’ = QW Clearly, the 2 operator must be one that removes
or adds an electron when one is attempting to compute | Ps or EAS, respectively.

(3) One writes equations which & and ¥’ are expected to obey. For example, in the early development
of these methods [80], the Schrodinger equation itself was assumed to be obeyed, so HV = EW and
H'V = E'V are the two equations (note that, in the IP and EA cases, the latter equation, and the
associated Hamiltonian H’, refer to one fewer and one more electrons than does the reference equation
HV = EV).

(4) One combines Q¥ = W’ with the equations that ¥ and ¥’ obey to obtain an equation that € must
obey. In the above example, one: (a) uses QW = W' in the Schrodinger equation for W/, (b) allows
to act from the left on the Schrodinger equation for W and (c) subtracts the resulting two equations to
achieve (H'$2 — QH)V = (E' — E)QW or, in commutator form [H, Q]¥ = AEQW. By expressing
the Hamiltonian in the second-quantization form, only one H appearsin thisfinal so-called equation of
motion(EOM) [H, Q)W = AEQW (i.e. in the second-quantized form, A’ and H are one and the same).

(5) One can, for example, express ¥ in terms of a superposition of configurations W = ), C,®,; whose
amplitudes C; have been determined from an MCSCF, CI or MPn calculation and express 2 in terms
of second-quantization operators { Ok } that cause single-, double-, etc, level excitations (for the IP (EA)
cases, 2 is given in terms of operators that remove (add), remove and singly excite (add and singly
excite) electrons): Q = Y, D Ok.
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(6) Substituting the expansions for ¥ and for 2 into the EOM [H, Q]\If = AEQW, and then projecting
the resulting equation on the left against a set of functions (e.g. {Ox | W)} or {Ox/| Do), Where @ isthe
dominant component of W), gives amatrix eigenvalue—eigenvector equation:

D (O WI[H, Ok]W)Dx = AE Y (OxW|0xW)Dg
K K

to be solved for the Dx operator coefficients and the excitation energies AE. Such are the working
equations of the EOM (or Greens function or propagator) methods.

In recent years, these methods have been greatly expanded and have reached adegree of reliability where
they now offer some of the most accurate tools for studying excited and ionized states. In particular, the use
of time-dependent variational principles have allowed the much more rigorous development of equations for
energy differences and nonlinear response properties [81]. In addition, the extension of the EOM theory to
include coupled-cluster reference functions[82] now allows oneto compute excitation and ionization energies
using some of the most accurate ab initio tools.

B3.1.8 Summary of ab initio methods

At thistime, it may not be possible to say which method is preferred for applications where all are practical.
Nor isit possible to assess, in away that is applicable to most chemical species, the accuracies with which
various methods predict bond lengths and energies or other properties. However, there are reasons to recom-
mend some methods over othersin specific cases. For example, certain applications require a size-extensive
energy (e.g. extended systems that consist of a large or macroscopic number of units or studies of weak
intermolecular interactions), so MBPT/MPPT-, CC- or CAS-based MCSCF are preferred. Moreover, many
chemical reactions and bond-breaking events require two or more ‘essential’ electronic configurations. For
them, single-configuration-based methods such as conventional CC and MBTP/MPPT should be used only
with caution; MCSCF or CI calculations are preferred. Very large molecules, in which thousands of AO basis
functions are required, may be impossible to treat by methods whose effort scales as N or higher; density
functional methods would be the only choice then.

For all calculations, the choice of AO basis set must be made carefully, keeping in mind the N* scaling of
the two-electron integral evaluation step and the N° scaling of the two-electron integral transformation step.
Of course, basis functions that describe the essence of the states to be studied are essentia (e.g. Rydberg or
anion states require diffuse functions and strained rings require polarization functions).

As larger atomic basis sets are employed, the size of the CSF list used to treat a dynamic correlation
increases rapidly. For example, many of the above methods use singly- and doubly-excited CSFs for this
purpose. For large basis sets, the number of such CSFs (Nc) scales as the number of electrons squared 3
times the number of basis functions squared N2. Since the effort needed to solve the Cl secular problem
variesas NZ or N& (the latter being to find all eigenvalues and vectors), a dependence as strong as nSN® can
result. To handle such large CSF spaces, al of the multiconfigurational techniques mentioned in this paper
have been developed to the extent that calculations involving of the order of 100-5000 CSFs are routinely
performed and cal culations using even several billion CSFs are possible [53].

Some of the most significant advances that have been made recently in expanding the applicability of
the ab initio methods to larger systems are based on recognizing that many of the two-electron integrals and
one- and two-electron density matrix elements arising in the pertinent working equations vanish if expressed
in terms of localized (atomic or molecular) orbitals. For example, in a polymer consisting of P monomer
units (or a crystal composed of P unit cells), the integrals and density matrix elements indexed by monomer
units far distant from one another are negligible. Thus, if a method whose effort scales as the kth power of
the number of AOs (N) per monomer (or unit cell) is applied to a system having P units, the effort should
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Table B3.1.2. Properties of commonly used methods.

Method Variational/size extensive  Computational scaling
HF Yes/Yes N* integrals, N° eigenvalues; P*
GVB Yes/Yes N*%integrals
N* (per electron pair) GVB equations
DFT No/Yes N3 eigenvalues; N? integrals; P!
N3 orbital orthogonalization; P*
MP2 No/Yes N5; p?
Cl Yes/No N° transformed integrals;
N2 to solve for oneCl energy and eigenvector
CISD Yes/No N® transformed integrals;
n?N* to solve for one ClI energy and eigenvector
CAS-MCSCF  Yes/Yes N5 transformed integrals;
N2 to solve for Cl energy; many iterations also needed
CCs No/Yes N*
CCSsD No/Yes N
CCSDT No/Yes N8
CCSD(T) No/Yes N7

N isthe number of atomic basis functions, which usually is proportional to the number of electronsn. Nc isthe
number of configurations; in Cl calculations, N¢ is usualy at least as large as the number of electrons squared
times the number of orbitals squared n2N?; in MCSCF calculations, N is usually much smaller than n2N2. P is
explained in section B3.1.8.

not scale as (P N)* but, hopefully, as PN*. Indeed, for the DFT (k = 3), SCF (k = 4) and MP2 (k = 5)
methods, specialized techniques[50] have allowed for the implementation of codes scaling linearly (or nearly
so for MP2) with the system ‘size’ P (i.e. the number of units).

Other methods, most of which can be viewed as derivatives of the techniques introduced above, have
been and are still being developed; stimulated by the explosive growth in computer power and changes in
computer architecture realized in recent years. All indications are that this growth pattern will continue; so
ab initio quantum chemistry islikely to have an even larger impact on future chemistry research and education
(through new insights and concepts). For many of the most commonly employed ab initio quantum chemistry
tools, the computational efforts, as characterized by how they scale with the system size P (i.e. the number
of units), with basis set size N and with the number of electronic configurations N, aswell their variational
nature and size extensivity are summarized in table B3.1.2.

Figure B3.1.9 [83] displaysthe errors (in picometres compared to experimental findings) in the equilib-
rium bond lengths for aseries of 28 molecules obtained at the HF, MP2-4, CCSD, CCSD(T), and CISD levels
of theory using three polarized correlation-consistent basis sets (valence DZ through to QZ).

Clearly, the HF method, independent of basis, systematically underestimates the bond lengths over a
broad percentage range. The CISD method is neither systematic nor narrowly distributed in its errors, but the
MP2 and MP4 (but not MP3) methods are reasonably accurate and have narrow error distributionsif valence
TZ or QZ bases are used. The CCSD(T), but not the CCSD, method can be quite reliable if valence TZ or
QZ bases are used.

In closing this section and this chapter, | wish to remind the reader that my discussion has been limited
to ab initio techniques; that is, to methods that begin with the electronic Schrodinger equation attempt to
solve it without explicitly introducing any experimental data or any numerical results from another calcu-
lation. There exists a whole family of alternative approaches called semi-empirical methods4] in which
(a) overlaps between pairs of orbitals distant from one another are neglected, (b) many of the two-electron
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-5 cc-pVDZ HF 5 -5 cc-pVTZ HF 5 -5 cc-pVQZ HF b
S ccpVDZMP2 S .S ccpVTZMPZ S cc-pVQZMPZ S
-5 cc-pVYDZ MM 5 -5 cc-pVTZ MP3 5 -5 cc-pVQZ MFP3 5
S ccpVDZIMPE S 5 ccpVTZMP4 5 S ccpVQZMP4 S
-5 ccpYDZCCSD S 5 ccpVTZOCSD  § -5 cc-pVQZOCSD 5
-5 cepVDZ CCSIKT) 5 -5 c-pVQZ OCCSDIT) 5 -5 cc-pVQZ OCSDIT) S
/\ _/-\\_ .
% ccpVDZCISD S 5 wpVTZCISD 5§ 5 copVQZCISD S

Figure B3.1.9. Distribution in errors (picometres) in calculated bond lengths for 28 test molecules.
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integrals appearing in ab initio methods are neglected (because they are ‘ small’ in some sense) and (c) certain
combinations of one- and two-€electron integrals that can be (approximately) related to orbital energies of a
constituent atom are not computed explicitly but are replaced by experimental data (or datafrom an ab initio
calculation) on that atom. Interested readers in these approaches to electronic structure are referred to the
articlesgivenin [84].
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For early perspectives, see, for example:
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