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An analysis of the equation-of-motion (EOM) method for computing molecular electron affinities and ionization paten-
tials is presented. The method is compared with the Dyson equation approach of Green function theory. Particular empha-
sis is devoted to c1arifying the similarities between these twa theories when carried ou t to second and to third order. The
Epstein-Nesbet hamiltonian and the fiction of diagonal scattering renormalization have been used to systcmatize this com-
parison.

1. Introduction

Until recently, most of the theoretieal studies of
molecular electron affinities (EA) wecebased on sep-
arate calculations of the energiesof the neutral and
jon species; the EA would then be obtained erom the
difference of these twa quantities. As discussedby
one ofus in ref. [1] (hereafter referred to as EOM-I),
simplecalculations based on Koopmans' theorem [2]
or on separate Hartree-Fock (HF) treatments of
both the neutral and the jon frequently result in poor
EAs due to the inadequacy of such approaches in
dealing with charge redistribution and the change in
electron correlation energy associated with adding the
"extra" electron. The conventional approach for over-
coming these difficulties bas been to perform moce
accurate calculations by same form of perturbation
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theory or configuration interaction (CI) on the twa
speciesand to then compute the energy difference.
As a result, one frequently bas to subtract Iwo num-
bers of almost equal magnitude. Furthermore, it is
found that many identical terms appear in the neutral
and jon energy expressions and therefore cancel when
the difference is considered [3]. Therefore, a direct
calculation technique which is aimed at the significant
aspects of the problem is to be preferred. The EOM
method as developed by Rowe [4] and applied by
McKoy [5] and other authors [6-13] to atomie and
molecular problems provides a means for directly cal-
culating excitation energies, transition moments, and
other quantities ofinterest. This method is capable of
providinghighly accurate results without explicitly re.
quiring calculations of correlated ground and excited
stale wavefunctions.

RecentIr , several papers [l, 14, 15] have appeared
in which the EOM theory bas been developed and ap-
plied to the problems of molecular ionization poten-
tials (IP) and EAs. In additio,n to these ion-neutral
energy differences one can illsoobtain other useful
information including the one-particIe density matrix
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ofthe paleni cIosed-shell species. Further,just as in.
the ease of eleetronic excitation energies, there is a
cIose eonneetion between the Green ruBelion [16-27]
and EOM treatments. One of the goals of Ibis paper
is to establish Ibis eonneetion.

In seetion 2, we present expressions for the various
hamiltonians used in the development of OUTtheory.
In seetion 3, we summarize the well-known results of

the Dyson equation approaeh. Finally, in sections 4
and 5, we establish the eonneetions between the EOM
and the perturbational treatment of one-particie
Green funetions [16, 18,22-25,28,29].

2. The hamiltOllian

The hamiltonian deseribing the electronic structure
of moleeules (negleeting relativistie effects and in-
voking the Born-Oppenheimer approximation) is

H= H2r + WHr + <OIHIO), (I)

whele

H~r =~ ciN[Ct Cd,
l

(2)

and

WHr =l L) (ijlvlkI)N[Cjet qcd .
i,j, k,l I

(3)

The c/s ale spin-orbital energies in the Hartree-Foek
(HF) approximation and WHFis the perturbationaJ
part of the hamiltonian. Note that we have expressed
the zeroth-order approximation HRF and the residual
perturbation part WHFin normaJ produet form [30].
The third term in eq. (I) is the expeetation value of
the hamiltonian for the zeroth-order approximation
to the ground stale of the neutral moleeule. Wehave
adopted the eonvention for two-eleetron integraJs
that (ijlvlkI) ==<ijlvlk[)- <ijlvllk),Le., the integrals
invofvedireet and exehange terms. The partitioning
of H deseribedin eqs. (I )-(3) is widely used in the
eurrent literature il}the application of perturbation
theory to eorrelation problems. There is another par-
titioning scheme, proposed by Epstein and Nesbet
[31] (EN) which is alsoused in ibis article, and which
we naw deseribe.

The EN deeomposition of His defined as follows:

1/ =HEN + WEN + <OIHlO), (4)

where

HEN = HI~r + Vd ' (5)

and

Vd =~ ~(ijIVlij)N[CrCJCjC;J1,1
(6)

and

WEN=WHF- Vd . (7)

The zeroth order of the EN hamiltonian differs erom

the H2F in eq. (2) by the diagonal seattering term Vd'
The perturbation term WENis the same as WHFwhen
the diagonal seattering term is omitted. The operator

HEN bas the following diagonal properties. For a gen-
eral p-particie h-hole vector lA ),

lA) = C~llC~12 .., C~pCO:1CO:2... CO:hIO>'

The expectation value of HEN is given by

p h

<AIHENIA)= ~ cm; - ~ cal1=1 1=1

(8)

+ . ~ aij(ijlvlij) .-
1,/E(m;. aj)

(9)

where

aij = I if i, i ale both particIe states or both
hole states, (10)
otherwise ,= -I

and

<AIIHENIAZ) = O, ifIAI):#=IAZ)' (11)

For eonvenienee in using the EN hamiltonian in sub-

sequent seetions, we introduee the folIowing short
band notation for diagonal scattering terms:

(ijlvlij) ==[ii] , (12)

and for non-diagonal seattering terms:

(ijlvlkI) ==[ijlklj , (i :#=k. j:#= I), (13)

and in general (without distinguishing the diagonal
and non-diagonal):

(ijlvlkI) ==(ijlkI) . (14)
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In the EOMmethod, as described in ref. [1] and
briefly outlined later, HEN is treated as the zeroth or-
der approximation and WENis considered as the per-
turbation. However,in the Green function develop-
ment, the introduction of HEN and WENis avoided
in the perturbation expansion, but the notion ofdiag-
onal scattering terms is found to be very useful (see
refs. [32, 40]). With this discussion of the twa decom-
positions of H completed, let us naw tum to a review
of Green functi~mtheory and then to the connections
with OUTEOM theory.

3. Many-body Green functions

The perturbational approach to Green functions is
naw well-established[16, 18, 22- 25, 28, 29] .Th~
Dyson equation may be formuIated as a pseudo-
eigenvalueproblem [33],

6 [dj..+M-. (M )]X.=MX.. } I} I} } I '
I -

where the matrix elements Mij(M) of the mass oper-
ator or self-energyM(AF.)ale represented by the sets
of Hugenholtz diagramsin figs. 1 and fig. 2 in second
and third orders, respectively [23]. The rules for as-
signingcontributions to each of these diagrams depend
on whether the diagonal scattering renormalization
(DSR) [32] is used. For the case where renormaliza-
tion is neglected, the rules ale well-known [34], and
ale given,along with their DSRgeneralizations as fol-
lows:

Rule (J): To each vertex in a diagram,

(15)
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Fig. 1. Second order Hugenholtz diagrams.
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Table l
Secondorder contribution to Green function and EOM

Green function Eq uation-()f -fiction
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Diagram
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a) For the energy denominators in tables l and 2, the following notation is employed:

e~~::~1lfl=(ea + eiJ +... + e'Y + eó) - (em + en + u. + €p + eq)'

E:;;r.:::fl.q = (ea + eiJ +...+ e'Y + eó) - (em + e" +...+ €p + eq) + {sgn("v-",,)} AJ:' + ~ biiliil ,1,/ '

where i and i run through the set of indiccs {m, ", u., p, q, a, iJ, u., 'Y,ó}, "p and II" are the number ol' particie and hole lines, rcspectively, and

bij=-l
= l

if i, i are both particie or both hole statcs,
otherwisc.

Table 2
Third order contributions to Green function and EOM

Green function

Numcrical

Diagram factor
l II

Denominators

III IV
Term
V

(l) [? ~J {3}(3 3') {3'}~,?J

(2) [? ~J {3}~ n

(3) ~~J {3}(3S){s}~?J

(4) fi~] {3}~?]

- (S) ~~J {S}(S 3){3}~?J

(6) ~~] cn (~3) {3'} ~'~J -1/4

1 1/4

1/42

3 1/4

4 -1/4 Ell/
'Yo E~

. ~.,,- ..-""

(ial-yó) ('Yó Imn) (mn !ja)
*

(imlO<{J) [0</3l-yo] ho lim)
* *

Numerical Numerical
factor Denominator a) Term factor Denominator a) Numerator Case l Casc II Casc III
li III IV V VI VlI VIlI IX X

1/2 E :;111
(1) [8 J {3} [J

1/2 E::n (io<lnVl)(mnVo<)* * *

-1/2 E
(2) J rn[?J -1/2 E (imlaiJ)(aiJlim) * * *

(3) [ J {S} .J -1/8 Emii .
aiJ

:-3
::,
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:::

'",....
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III
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Equations-()f-motion

Numerical
factors Denominators
VI VlI VlIl

1/4 E::n ECq

1/4 E:;m emIl'Yó

1/8 Enn Ell/ni'Yó

1/4 envl E::n'Yó

E{:" ECq

E::n Emnj'Yó

Emni E::"'Yó

Emij Emij'Yó O<{J

Case
Numerator I 11
IX X Xl

(ialmn}(mnlpq] (pq!ja)
* *

(ialmn)(mnl'Yó )('YóIja) * *
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Table 2 (continued)

Green function Equations-<Jf-motion

Numerical Numerical Case
Diagram factor Denominators Term factors Denominators Numerator I II III
I II III IV V VI VII VIII IX X XI XII

(7) [?J {j}(J5){S}[?J -1/8 E;J; Emij *
C't/J

(8) [? J {S}(S 3) {3}[?J -1/8 Emij E * :-i
'Yb :-i

(9) [? J {S}(S S) {S}[?J -1/16 Emij Emij * g'Yb ojJ '"

(10) [? g en
;:s

Emij Er;:f -1/4 E g (imlpq) (pqlC't/J)(C't/J!jm) * * * '"S -1/4 ...aif3 ..,...

(11) [? {3}(jS){S}?J -1/8 EZ/J Ej * t>J

(12) [? J {S}(S S') {S'} ,?J -1/16 Emij Eg7/
* ......C't/J '"c

-1/4 Ei Emij
(13) [?J {j}[t -1/4 EZ/J (imIQ(3) (aif3lpq) (pqljm)

* * *6
Q(3 .s;

(14) [? 2J {S}(S 3) {j}[?J

'"
-1/8 Ei Em * fi;',.,Q(3

(1S) [? J {S}(S S'){S'} ,?J -1/16 Ei Emij * :::
aif3 :=;';::j

7 l E:;m Emp
(16) [?J {3}(33'){3'},?J

1 E::zn Emp (iQlmn) [n'YlpQ] (mpl/'Y) * * * .'Y 'Y ,,'

(17) [? g] {3}:J

.,

8 I E::zn ppnj 1 Ezm pn (iQlmn) (pnlQ'Y)(m'Yljp) * * * §'Q'Y Q'Y

(18) J {3}(3S){S}?J Epnj
c'

1/2 E::zn * ;:s
Q'Y if

9 I Epni E::zn (19) Q J {3}
l pn E;:m (ipl111Y)(Q'Ylnp) (mnljQ) * * * c'

:::Q'Y Q'Y

(20) [? J {S}(S 3) {3} ?J Epni
c

1/2 E::zn * ...'""Q'Y :::

EPij Emij
(21) [? J {3}(j j'){n ,?J

s.10 -l -I EP
EZ/J (imIQ(3) [(3pl'Ym] (Q'Yljp)

* * * O;"Q'Y Q{3 Q'Y

(22) [7 {j}(j S) {s} ?J -1/2 EP Emij *
Q'Y C't/J

(23) J {S}(S 3) {3} ?J -1/2 EPij EZ/J
*

Q'Y

(24) [? J {S}(S 5) {5] ?]
-1/4 EPij Emij *

Q'Y Q{3

11 -l Emij
ER!!,j (2S) {j} -l

EZ/J (i'YIQP) (mpl'Y(3) (Q{3ljm)
* * *C't/J ....

.".
'D



Table 2 (oontinued)
VI
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Green function Equations-of-motion

Numerical Numerical Casc
Diagram factor Denominators Term factors Denominators Numerator I II III
I II III IV V VI VII VIII IX X XI XII

(26) {!}(Js) {S} -1/2 EJ:b E/hmj
*

(27) [J {S}(S S') {S'}.,?J -1/4 Emij E/hmj
* :-i

a{J :-i
12 -1 E/trmi EW (28) [ {!} -I eft.rm EJ:b (imlCl/J) (-YPlmp) (aplj-y) * * * Q'"::

(29) [ {S}(S 3) {!} ?J -1/2 EG!;li EJ:b
* ..,...

(30) [? {S}(SS'){S' , -1/4 EGi Emij * h1esCl/J

13 1/2 EPs; E'/Ji (31) D ij 1/2 e t4J (ipljq)(sPICl/J).(a{Jlsq)a)
* * * :;.'"ap c

(32) D {s} ?J Epsi EW1/4 (ipljq) (sp 1a{J)(a{JIsq) *
ap '"

(33) [? {S} J

..
1b'

1/4 FP,i Egp
.* '"

'ixjJ ...o
(34)[? {S}(S S') {S'},?]

Epsi EW
::

1/8 *
ap

Si14 -1/2 EGi EPqj
(3S) D G -1/2 e epq (ialj{J)('Yalpq) (pql'Y{J)b}

* * * :;'
ary ary .

(36) D {s} ?J
..

-1/4 ef1i EPqj [ialj{J] (-yalpq)(pql'Y{J) * ::
I:>..a'Y
c'

(37)[?' {S}j ERii epq * ::
-1/4 ..°ary

(38) [? {S}(S S') {S'} ).?J EGi EPqj
c'

1/8 * ::
ary "1:3c

IS 1/2 Emj EPqj
(39) [? {3}rn n 1/4 Emj epq (ialjm)(amlpq) (pql'Ya)

* * * ::a 0l'Y Ol ary ...
ISo

(40) [? iJ 1/4 E EPq * * ;;;-
ary

(41) [? {3}(3 S) {S} ?]
1/4 Emj EPqj *

Ol ary

16 1/2 EPqi Emi
(42) D {3}?J 1/4 epq Emi (imIjOl) (pql'Ym) ('YOllpq)

* * *a'Y Ol ary Ol

(43) U?J 1/4 EPq EJ: * *
0l'Y

(44) [? {S}(S3) {3} ?J 1/4 EPqi E:;li *
ary
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assign a factor (ijJkl) for the case without DSR; a fac-
tor (ijlkl] with DSR.

Rule (2): To fach vertical cu t between twa neigh-
bering vertices, assign an energy denominator equal to

L; (hole Jine energies) - L; (particIe Jine
a p

energies)+ C

where

C= {sgn(np-nh)} M,

for the case without DRS, where np and nh arf the
number of particIe and hole Jines, respectively; and

C= ~bij[ij] + {sgn(np-nh)}M,I,/

for the case with DSR, where i, jare line indices be-
longing to this vertical cut, and

b" =-1I/ if i, jare both particIe indices
ar both hole indiees,
otherwise,=

Rule (3): Assign a sigo factor (-l)nh+l where l is
the number of closed loops [35],

Rule (4): Assign a factor 2-e, where e is the num-
ber of pairs of equivalent Jines in the given diagram, .

Rule (5): Multiply alt the factors assignedabove,
and sum over al! the internat Jine indiees,

For convenience, we have written the contributions
to the second and.third-order Green function dia-
grams in the tables l and 2. To aid in OUtcomparison
with the EOMmethod, discussed in the next section,
we have alsoJisted the contributions of fach second
and third order diagram to the effective hamiltonian

Hi/M) of OUtEaM theory. Ascan be seen erom
tables l and 2, theprincipal differences, between the
iwo approaches is the assignmentof energy denomi-
nators to fach diagram and the overal!numerical fac-
tor multiplying fach diagram. Beforegoing further in-
to the comparison, we naw givea brief outline of vari-
ous approximations which arf made to generale work-
ing EOMtheories of molecular electron affinities.

4. The equation-of-motion method

Following the formulation of Rowe [4] and
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McKoy [5], we consider a Fermion operator ni
which is constructed erom products of odd numbers
of creation and annihilation operators, describingthe
additionof an electronto the groundstale IgN)of an
N-electron cIosed-shellmolecule. As shown by Rowe
and in ref. [1], one caDobtain the basic EOMin sym-
metrized [36] "double commutator" form,

(gNI{ónA,H, n!J }lgN) = MA (gN, {ónA; ni}lgN),
. (16)

where the commutators are Gefined as

{x,y, z} ==~ {x, [y, z]} + 4 {[x,y],z}, (17)

{A,B} ==AB+ BA, (18)

[A,B]==AB-BA, (19)

and MA ==E-t-Er:+1 is the vertical EA (Er:+1is the
electronic energy of the Athstale of the negativejon
and E-t the ground stale energy of the neutral species.)
Generally, the Fermion operator nl is taken to be a
truncated linear combination of products of odd num-
bers of creation and annihilation operators,

ni ~ xct + yct cct + zctcctcct + .... (20)

The operator ónA is then the adjoint of aDYoperator
within the srace in which ni is expressed

ónA~c,cctc,cctcctc, (21)

In practice, the criteria by which theimportant com-

ponents in the truncated operator ni are chosen and
the requirements for the input ground stale wavefunc-
tion IgN) to becomparablein accuracyto a chosen
ni are not elear. This is an inherent difficulty of the
EOMapproach. Furthermore, the dimensionality of
the EOMshown in eq. (16) is often very large. The
problem of1arge dimensionality caDbe avoidedby
using the partitioning technique and perturbation
theory [38] to cast the originaleigenvalueproblem
into a new effective pseudo-eigenvalueproblem of
much smaller dimension. Such an approach caDbe
very convenient provided the convergenceof the per-
turbation expansion of the elements of the new effec-
tive hami1tonianmatrix is fast enough to permit the
incIusion of only second and third order terms (the
probabIe limit of OUTpresent computing facilities).
Basedupon the assumption that calculationswhich
are carried out through third order will be adequate to

yield EAs to an accuracy of:!: 0.2 eV, we ghalIuse the
notion of order in perturbation theory to determine
whether various components in ni and in IgN)are
going to eontribute to the effective eigenvalueprob-
lem through third order. Following this !ine of
thought, we have found that, in order to inelude all
the second and third order effects in the effective
pseudo-eigenvaJueproblem, we must choose the trun-

cated operator ni as follows [39]

nt =1; XiCl + 6 YnamcJcac~I m<n
a

+ 6 y crm(JclCmcJa«J
m

+ 6 Yróq-ypcJ CócJ C'YC;p<q<r
-y<ó

==6 Xicl + 6 Yncrmd~am + 6 yQ:1n(Jd!m(Ji m <n a«J
a m

(22)

+ p<~r Yróa-rPd;óq-yp'
-y<ó

and the ground stale wave function IgN), apart erom
a normalizationfactor,as*
IgN) =10)+11>+12>, (23)

where we have introduced the shorthand notation

) - I ~ (pqIJlv)ctctc C lO),
11 =- LJ eP.a p a v }J.4 }J.,v }J.v

p,q

(24)

12)==!
(

6 (rmlpq)(qplrQ)
2 m, a cm cpq

\p,q, 'Y a C<-y

~ (pQlrÓ)(rÓIPm)

)
ct Cala).-LJ mpm m

m, a Ca c'Yó
p, 'Y,Ó

(25)

* In EOM-I, monoexcited configurations were not included
in the ground state; as a consequence of Hus EOM-I ne-
glects the terms (40), (43), (46), and (49) shown in tatle 2
of this paper. There ale also second order bi-excited com-
ponents which ale not included because they do not contri-
bute until fourth order to the ionization potential or dec-
tron affinity.
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j) In theseequations 10) is the HF ground-state wave-
function, 11) is the fjrst order bi-excited component,
12) is the second order monoexcited component, and

€~~::~f:l={€c< + €(J+ 000 +€~ + €v)-{€m +€n +... +€p +€q).

By using eqo (22) for nt and successively choosing

on as Ci' CmC!Cn, C{JClCc<,and CpC~CqCl Cr' one
obtains erom eq. (16) a set of equations for the ex-

pansion coefficients Xi> Yna<m' y a<m{3'and Yróq-yp'
which in matrix form becomes

T.-T. Chen et al./EOMtheory ofelectron affinities and ionization potentials

(: :)C)=~t:)(:) (26)

Here, the coefficients Xi and Yn<P'!'y a<m{3'Yróq-yp'
appear in column v~ectorform as X and Y, respectively.
The elements of the submatrices in eqo(26) are .

Aij =(gN I{Ci' H, C} }lgN), (27a)

Bi,x = <goNI{Ci' H, dl }lgN),

(x = nOiJ11,0iJ11(3,roq-yp) ,

Dx,y = (gNI {dx' H, d~}lgN),

(27b)

(x, y = nOiJ11,0iJ11(3,roq-yp) , (27c)

Ri,x = (gNI{Ci,dl}lgN), (27d)

Sx,y =(gNI {dx,d~}lgN) o (27e)

The dl have been introduced to represent cJ cc<cl,
etco The partitioning of eqo(26) to yield a pseudo-
eigenvalue problem of smaller dimension is easily per-
formed by rewriting eq. (26) in the form of simulta-
neGus equations and eliminating the vector Y in favor
of Xo In this manner the following equations are ob-
tained:

H{M)X=MX, (28a)

where

H{M)=A + (a-MR){MS-D)-l (at-MAt).
(28b)

Eq. (28) is a pseudo-eigenvalue equation which is
solved iterativelyo It should be noted that the dimen-

sion of H (M) is equal to the dimension of the spin':'-
orbita! basis used to generale the HF orbitaIso The
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most convenient war of eva!uatingthe matrix elements
of A, a, D, S and R in eqso(27)-{28) is to employ
Wick's theorem and diagrammatic techniques [41] of
many-body theoryoThis greatly simplifies the book-
keepingo

Two difficulties remain at this stage of the analysiso
The calculation of the overlap matrices S and R in-
volve the evaluation of 1-,2-,3- and 4-partic1edensity
matricesoIt can be shown that R is at least of second

order and S differs erom the unit matrix 1 by second
and higher order termsoThe replacement of S by 1
causes a fourth order error in the second term on the
right-handside of eq. (28b) since a is at least first or-
der while D is at least zeroth order. Since aur objective
is to obtain results accurate through third order, the
approximationS ~ 1 ismade.Further,asin EOM-I,
we make the approximation that R ~O, turning later
to the consequences of this approximationo

HI{M)X= MX.

HI{M)=A+a{M1~D)-lat o

(29a)

(29b)

In EOM-I, we have made one additional approxima-

lian, namely, the replacement of H by HEN to render
the D matrix diagonal. This was dane in order to avoid
the very laborious ca!culation of the inverse matrix

{M1- D)-lo As an improvement over this approxi-
mation, we employ the following expansion of the in-
verse matrix:

{M1-D)-1 =={M1-DEN)-1

+ (Ml-DEN)-l Dl (M1-DEN)-1

+ {M1-DEN)-1 Dl (M1-DEN)-1 Dl (M1-DEN)-1
(3D)

where D is decomposed as

D= DEN+ Dl'

with

(31)

{DEN)X,y= °x,y<gA'1{dx,HEN,d~}lgN), (32)

(Dl)x,y=(1-oX,y)(gNI{dx' WEN,d~}lgN). (33)

In eqs. (32)-{33), the diagonal properties [eqso(9)-
(ll)] ofthe EN hamiltonian have been fully ex-
ploitedoKeepingin mind that we are only interested
in keeping terms in H(M) through third orderwe
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need only retain the first and second terms on the
right band side of eq. (30). The improved effective
hamiltonian operator H(~E) thus becomes *

H(M)= A+B(M1 -DEN)-lBt

+B(M1-DEN)-1 Dl (M1-DEN)-lBt . (34)

To aid in the description of the various termsin eq.
(34) we define the following quantities:

[~:]==<al{Ci'WHF' C}}lb),
(35a)

[~~J ==<al{Ci' WIIF' dl}Ib>,
(35b)

{x} ==[<Ol{dx,HEN,dl}10)j-1 ,

(xy) ==<Ol{dx, WEN' d~}IO>,

(35c)

(35d)
.~

[~~J=[~~J* ==<bl{dx'WHF,Cit}la),
(35e)

where a, b = O,1,2 represent the zeroth, first, and
second order components of IgN) respectively. In ad.
dition, we shalluse 1,3,3, and 5 to denote collective-
Iy the illdicesi, nam, am{3,and roq"lPrespectivelyas
shown ~eqs. (27a)-(27c). With these notational sim-
plifica~ions,we caDnaw write down the non-zero
contributions to the matrix elements Hi/M) through
third order. In the tables we have specialized to the
case for which i and jare both particIestates, that is
the results are presented for an electron affinity cal-
culation. For the sake of organization and clarity, we
have presented the second- and third-order contribu-
tions together with the Green function results in
tables 1 and 2. In zeroth order we obtain the Koopmans'
theorem result erom the Aij term:

Ai,j =(gNI{Ci'H, C}rlgN)

=e/iii + (third and higher order terms). (36)

* The referee has pointed out that this expression for H(~
has improper ana1ytica1 properties as a function of t:..Eand
may give non-physical resuIts if it were applied to "shake-
up" processes. For a discussion of the use of GF methods
as applied to shake-up processes, see: LS. Cederbaum, J.
Chem. Phys. 62 (1975) 2160, and LT. Redmon, G. Purvis
and Y. Ohm, J. Chem. Phys. 63 (1975) 5011.

In second order, as listed in tatle 1, the contribu.
tions come erom the sum of the twa Hugenholtz dia.
grams shown in fig. 1. To compute the contribution
of each diagram to the self.energy of Green function
theory (or the effective hamiltonian of the EOMthe.
ory) one musi form the product of the numerical rac.
tors listed in columns II and VII (V and VII) and
divide by the energy denominator listed in column III
(VI). The numerical factors for the Green function
contributions are a result of applying the diagram
rules discussedin section 3, whereas the factors listed
for the EOMcase arise erom using the diagram rules
of section 3 to evaluate the symmetrized matrix ele.
ments givenin eq. (27).

The flrst point to be made concerning the relation.
ship of EOMand Green function theories is that De.

glect of the CJCÓCJC"'(CJterms in nt leads to
equivalence between the twa approaches through sec-
and order (see tatle 1).

The third order terms listed in labIe 2 caDbe re-
presented by the 18 Hugenholtz diagrams shown in
fig. 2. For the Green function (EOM) theory, the con.
tribution of each diagram is the product of the num.
erical factors givenin columns II and IX (VI and IX)
divided by the product of energy denominators given
in columns III and IV (VII and VIII). The diagonal
scattering form of the Green function is given;the
maTefamiIiar form without renormalization of the
energy denominators is obtained by omitting all twa
e1ectroninteraction terms appearing in the denomina-

tors (Le.,the e':fi~::~~qformof the energydenomina.
tors should replace the E':fi~::~q).In order to facili-'
tate comparison between the twa theories in
third order, let us naw specificallyconsider the fol-
lowing special cases within the general EOMtheory
discussedearlier in this section (recalI that we have
takenR "'" O and S"'"1).

O1seI: Only the first order component of IgN) is
retained:

IgN) "'" 10)+ II),

and nl is truncated by eliminating dtÓq"'(p:

nl =P XiCl + ~ YncxmdZcxm + ~ y cxml3d!m13.l m<n 01<13
Ol m

CaseII: The fulllgN) of eq. (23) is used:
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'; but ut is truncated:

ut =6XicJ + 6 Yncxmd~cxm+ 6 y cxml1d!ml1'
A i I m <n a<11 (38)a m

Case III: The fuli second order IgN) is used:

IgN) ~ 10) + II> + 12) , (39)

and ut is not further truncated:

ut=6x.d+ 6 Yncxmd~cxm+6Ycxm~!m11A i I I n<m a<11
a m

~
Y dt .

+ LJ róq-yp róq-ypp<q<r -
'Y<ó

(40)

In columns X, XI and XII of Labie2, we have marked
with an asterisk each term which contributes to the
overall self-energyor effective hamiltonian under
each of the above three specjalcases of the EOM theo-
Ty.From this tabulation it isseen that Case II of the
EOMbears the most similanty to the maDy-body
Green function (MBGF) approach; the only difference
between EOMCase II and the MBGFapproach being
the form of same of the energy denominators. For
example, for term 2 of Labie2 the MBGFdenominator
isE;:n E~nj wbiJethe corresponding denominator in
the EOMisE;:n €~n. Usingthe definitions givenin
eq. (12) we find

E;:n =-€m-€n + €a-[mn] + [ma] + [na] + M ,(41)

E;;,nj = -€m-€n-€j+ €'Y+€ó- [mn] - [ni] - [mi)
(42)

- [-y6] + [m-y] +[m6] + [n-y] +[n6]+IJ-y] +1J6] + M,

€mn = -€ -e n + €", + €ó .-yó m , (43)

From comparison of eqs. (42) and (43) we see that
for term (2) of Labie2 the EOMand MBGFenergy
denominators differ in twa ways. First, two-electron
matrix elements appear in eq. (42) but not in eq. (43)
and secondly eq. (42)also contains a M-€j contri-
bution lacking in eq. (43). From expansion of the
energy denominator

(€m+€n+€j-€'Y-€ó ~M- 6bxy[x,y] )
-1

x,y

~ (€m + €n + €j - E-y- Eó - M)-1

( ~ bxy[x,y] )X l+LJ
xy € +E +€.-€ -€ ó -M. m n J 'Y

it is elear that the twa electron renormalization terms
contribute in fourth and higher orders of the inter-

action. If M is algOreplaced by Ejthen we have
agreement between the Case II EOMand MBGF re-
presentations of term (2) through third order. The re-

placement of M by Ejis precisely the fieststep to an
iterative solution of the EOM.If a similaranalysis is
performed on the other entries in Labie2, we find
that through third order the MBGFand Case II EOM
approaches agree. Consequently, CaseII EOMrepre-
sents a moce consistent theory than do the Case I
and CaseIII EOM approaches.

The extension of Dur°rerator set to inelude terms
of the sort C: eó et eóCp causes the EOMto differ
from the MBGFa~proach in second, third and higher
orders. Thus, care must be taken to ensure that the
operator set is consistent with the ground stale ap-
proximation and other approximations introduced in-
to the EOM.In fact, the discrepancy between the
MBGFand EOMapproaches that arisesin second and
third order when et eó et c et terms are ineluded in
h .

d
r

h
a-yP..

ROt e operator 15 ue to t e approxlmatlOn ~ .
Eq. (28) may be rewritten

[HI(M) + m (M)] X =M X,

where HI(tlE) is given by eq. (29) and

m(tlE) =B(MS-D)-IRt + R(MS-D)-IBt

(44)

(45)

(46)
-MR(MS-D)-IRt.

WhenC: eó eJ eó c; terms are included in the
operator set they givense to second and third order
contributions to m(tlE). After considerable algebra
involvingexpansion of energy denominators and the
regroupingof terms, we find that these new terms
cancel through third order the terms involvingthe
et eet eet operators in tables 1 and 2. ApparentIy,
we again have agreement between EOMand MBGF.
However, it algOturns out that the et eet operators
contribute to m(M) in third order due to the pre-
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sence of singleexcitations in the ground stale givenin
eq. (23). These new terms ale represented by diagrams
15-18 in fig. 2 and their contribution causes a slight
disagreementbetween the MBGFand EOM theories in
third and higher orders. For example, let us consider
the terms contributing to diagram 15. The new contri.
bution flam m(AE) enters with a coefficient of -1/8
which means that the overallcoefficient is 3/8 rather
than the 1/2 of the MBGFapproach [remember that
term (41) containing the contribution flam the five
operator is cancelled through third order by the five
operator contribution to m(AE)]. This disagreement
is not serioussince the contribution of these diagrams
to molecular electron affinities and ionization poten-
tials is smali [23,42].

5. Discussion

In this paper we have established the connections
between the EOM and the one-particie Green function
approaches to ionization potentials and electron affin-
ities. The EOM derivation presented herc bas em-
ployed the symmetrized "double commutator" defined
in eqs. (16)-(17). We note that in general

<g.N1{Cj> [H, CJ CQCl] }lgN)

*<gNI{[C;,H],c~CQCl}lgN),

since the exact ground stale is not employed [42]. In
the development of this paper we have employed the
symmetrized double commutator

Bi.ncrm=H<.gNI([Ci,H], CJCQCl}lgN)

+ <.gNI{Ci' [H,CJCQCl] }lgN)}.

It is not obvious that the use of the symmetrized
double commutator results in a mOlestraightforward
or consistent formulation of the EOM.In order to in-
vestigate this matter, we have also carried out the der-
ivations of this paper using Bi, ncrm=
<.gNI{Ci' [H,CJCQCl] }lgN). The differencesbe"
tween this development and that of the text arisesin
the coefficients of the terms contributing to diagrams
15-18 of LabIe2. To illustrate the resulting changes,
we wiJ]briefly discuss the various contributions to
diagram 16 with the above unsymmetrized definition
of B. Term (42) naw appears with a coefficient of 1/2

rather than 1/4. Terms (43) and (44) stil! have coef.
ficients of 1/4, and the contribution of the five Oper-
ators in term (44) againis cancelled through third or-
der due to the contribution erom m(AE). As before,
the presence of the singleexcitations in the approxi-
mation to IgN) also givesrise to a third order tenn
due to m(AE), however the coefficient is naw -1/4
rather than -1/8. Thus, through third order, we naw
have agreement with the MBGFapproach. Thus, ff
OUTobject were to obtain a theory correct through
third order, there is no oecd to include either the

operators CJClict C ct or the"singleexcitations in
the ground stale (kN5.rhis finding suggests that the
unsymmetrized version of the EOM approach may
be preferable.

As with the EOM for excitation energies [43],
maur questions rem:rinconcerning the effects of vari-
ous choices of IgN)and ni- The role of terms such
as Cl C CJ, Cl CpC!, and Cl Cnct bas not been
established. Simi1arlythe significanle of second-order
double excitations in IgN)bas not been explored.
OUTexperience with the CJClict C ct operators in-
dicates that these questions do n~t ha~e unambiguous
answers. Whether a certain operator or ground stale
component contributes to a givenorder in the intel'
action depends on the other terms and ground stale
components present as well as to approximations
marle to R and S and whether symmetrized commuta.
tors ale employed.

In this paper wehave discussedvarious approximate
EOM theories for ionization potentials and e1ec~ron
affinities. Wehave presented an EOMtheory which is
correct through third order and sums a large number
of terms to all orders in Rayleigh-Schrodinger per-
turbationtheory. This summation of a large number
of terms to all orders is a property shared with the
Green function approaches {23].

It is significant to note that even the EOM-Imeth-
od, which neglects certain third order terms, gives
good ionization potentials (usually within 0.2 eV O,f
the experimental value). For perspective, in labIe 3
we compare IPs calculated via EOM-I [14,15,44]
with the experimental values for HF, BH, BeH-, OH-,
and CN- (for the BeH- , OH- , and CN- we ale re-
porting the vertical detachment energies). Wehave al.
so inc1udedOUTtheoretical predictions [45,46], as
obtained from EOM-I,for the EAs of UH, NaH, BeO,
and UF. Webelieve that these calculated EAs ale cor-
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reet to 0.1 eV. These studies on the negativeions of
UH, NaH, BeO,and UF were undertaken in order to
investigate the nature of the binding of electrons to
highly polar moleeules. Expenmental electron affini..
ties are not availablefor BeO,NaH, and UH, and our
studies have led us to conc1ude [46,47] that the ex.
penmental EA of UF is in erraTby about 0.9 eV.

Weare eurrent1yapplying the EOMmethod to the
calculation of IPs and EAs for vanous polyatomie
molecules. Although, the energies given in LabIe3 COl.
respond to vertical proeesses, the method is capable
of describingthe geometrical rearrangements that oc.
eur upon ionization or electron attachment. So far,
we have restricted OUTattention to positive electron
affinities. Weplan to investigate the usefulnessof
EOMmethods for describing temporary negativeions
of molecules such as ethylene and butadiene [48].
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