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ABSTRACT

Molecular anions that possess excess internal vibrational and/or rotational
energy can eject their “extra” electron through a radiationless transition event
involving non Born-Oppenheimer coupling. In such processes, there is an
interplay between the nuclear and electronic motions that allows energy to be
transferred from the former to the latter and that permits momentum and/or
angular momentum to also be transferred in a manner that preserves total energy,
momentum, and angular momentum. There are well established quantum
mechanical expressions for the rates of this kind of radiationless process, and
these expressions have been used successfully to compute electron ejection rates.
In this paper, we recast the quantum rate equation into more physically clear
forms by making use of semi-classical approximations that have proven useful
in rewriting the quantum expressions for rates of other processes (e.g., photon
absorption) in a more classical manner. It is hoped that by achieving alternative
and clearer interpretations of the electron ejection rate equation, it will be

possible to more readily predict when such rates will be significant.

1. INTRODUCTION

1.1 Relation to Experiments

There exist a series of beautiful spectroscopy experiments that have been
carried out over a number of years in the Lineberger (1), Brauman (2), and
Beauchamp (3) laboratories in which electronically stable negative molecular
ions prepared in excited vibrational-rotational states are observed to eject their
“extra” electron. For the anions considered in those experiments, it is unlikely
that the anion and neutral-molecule potential energy surfaces undergo crossings
at geometries accessed by their vibrational motions in these experiments, so it is

believed that the mechanism of electron ejection must involve vibration-rotation
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to electronic energy flow. That is, the couplings between nuclear motions and
electronic motions known as non Bom-Oppenheimer (BO) couplings have been
postulated to cause the electron ejection rather than curve crossings in which the
anion’s energy surface intersects that of the neutral at some geometries.

In earlier works (4), we and others (5) have formulated and computed such
non BO coupling strengths for several of the anion systems that have been
studied experimentally including:

1. Dipole-bound anions (5a, 4f) in which the extra electron is attracted primarily
by the dipole force field of the polar molecule and for which rotation-to-

electronic coupling is most important in inducing electron ejection.

2.NH (X*I0) for which (4d) vibration of the N-H bond couples only weakly to
the non-bonding 2p;; orbital and for which rotation-to-electronic coupling can be
dominant in causing electron ejection for high rotational levels.

3. Enolate anions (4€) that have been “heated” by infrared multiple photon
absorption for which torsional motion about the H,C-C bond, which destabilizes
the w orbital containing the extra electron, is the mode contributing most to
vibration-to-electronic energy transfer and thus to ejection.

Our calculations have been successful in interpreting trends that are seen in
the experimentally observed rates of electron ejection. However, until now, we
have not had a clear physical picture of the energy and momentum (or angular
momentum) balancing events that accompany such non BO processes. It is the
purpose of this paper to enhance our understanding of these events by recasting
the rate equations in ways that are more classical in nature (and hence hopefully
more physically clear). This is done by
1. starting with the rigorous state-to-state quantum expression for non BO
transition rates (4g),

2. including what is known from past experience (4) about the magnitudes and
geometry dependencies of the electronic non BO matrix elements arising in these

rate expressions, to
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3. make the simplest reasonable semi-classical approximation to the nuclear
motion (7) (i.e., vibration-rotation) and its coupling to the electronic motions.
By so doing, we are able to arrive at expressions for rates of electron ejection
that, in our opinion, offer better physical insight into these radiationless
processes and thus offer the potential for predicting when such rates will be

significant in other systems.

1.2 State-to-State Quantum Rate Expression
Within the Born-Oppenheimer approximation to molecular structure, the
electronic Schrédinger equation

he (11Q) W(rlQ) = EK(Q) wi(rlQ) M
is solved to obtain electronic wavefunctions yi(r/Q), which are functions of the

molecule’s electronic coordinates (collectively denoted r) and atomic coordinates

(denoted Q), and the corresponding electronic energies Ey(Q), which are functions

of the Q coordinates. The electronic Hamiltonian

he(rQ) = X; {-h/2m, V¥ +112 5 €/rij - ZaZq€’ /i

+ 128y, Zo 7 & Ron @

contains, respectively, the sum of the kinetic energies of the electrons, the
electron-electron repulsion, the electron-nuclear Coulomb attraction, and the
nuclear-nuclear repulsion energy. In h, , second-order differential operators
involving the coordinates of the electrons appear, but the coordinates of the
atomic centers appear only parametrically in the various Coulomb potentials.

Hence, the solutions {yy and Ey} depend only parametrically on the nuclear

positions.
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Given the solutions to the electronic Schrédinger equation, the solutions of
the full Schrédinger equation (i.e., the equation in which all nuclei and electrons

are moving)

H(rQ) ¥(r,Q) = E ¥(r,Q) (€)

are expressed as sums over the (complete set of functions of the electronic

coordinates r) electronic functions {\yy (flQ)}

¥(r,Q) = I wil(rlQ) xx (Q), @
with the “expansion coefficients” y,(Q) carrying the remaining Q-dependence.
When substituted into the full Schrédinger equation, this expansion of ¥ gives
equations which are to be solved for these {)y} functions:

(H - E)Zx yi(rlQ) xx (Q) = 0. ®)
Using the fact that the full Hamiltonian H is he plus the kinetic energy operator
for nuclear motion T

H=he+T= he + I, (-h/2m, V), ©

and premultiplying the above Schrédinger equation by yp, and integrating over
the electronic coordinates gives the set of coupled equations that need to be
solved for the {¥y}:

S ) Yk (t1Q) {he +T -E} wiriQ) xi(Q) dr

= {E(Q) -E} xn(Q + T %a(Q

+ 2, 5 { Wa*(rlQ) (-ik-0wi/OR,)(-ik-0y/OR ,)/m, dr

+ ] ya*@Q) (B79% wifoR,” )/2m, dryx } = 0. %)

The expression
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{En(Q) -E} %a(Q) + T xn(Q) =0 (8a)
is, within the Born-Oppenheimer model, the equation governing the nuclear
motion functions {¥y 1 (Q)} in the absence of the so-called non Born-
Oppenheimer (non BO) coupling terms (i.e., the latter two terms in Eq.(7)).
Within this model, the vibration-rotation functions {)x (Q)} of each specific
electronic state labeled k are found by solving the vibration-rotation Schrédinger

equation

{T + E(Q)} XL (Q) = &k L XiL (Q) (8b)
There are a complete set of functions of Q (i.e., the {}x 1} for each electronic
state k.

In the theory of radiationless transitions as covered in this paper (6,4g), the
two non BO terms are treated as perturbations (not externally applied, but arising
as imperfections within this model of molecular structure) that can induce
transitions between unperturbed states each of which is taken to be a specific
Born-Oppenheimer product state:

FrL (Q) = yi (1Q) xk,L (Q). ®
It is reasonably well established that the non BO coupling term involving second
derivatives of the electronic wavefunction contributes less to the coupling than
does the term (-0 /0R,) (-i-0Y/0R,)/m, having first derivatives of the
electronic and vibration-rotation functions. Hence, it is only the latter terms that
will be discussed further in this paper.

With this background, it should not be surprising that it has been shown
that the rate R (sec™!) at which transitions from a Born-Oppenheimer initial state
W, = y; to a final state W¢ = yys is given, via first-order perturbation

theory, as:
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R = /8 [ <l <wi [Pl e >(P/uyee>l 8(es +E - &) p(E) dE. (10
Here, €; ¢ are the vibration-rotation energies of the initial (anion) and final
(neutral) states, and E denotes the kinetic energy carried away by the ejected
electron (e.g., the initial state corresponds to an anion and the final state to a
neutral molecule plus an ejected electron). The density of translational energy
states of the ejected electron is p(E) = 4mneL3(2meE)” 2/h? . We have used the

short-hand notation involving P P/l to symbolize the multidimensional

derivative operators that arise in the non BO couplings as discussed above:

(Pye )(P/uxs) = Zy (-royy/oR,) (i 9y #OR,)/m, , (1)
where R, runs over the Cartesian coordinates (X,, Y, , Z, ) of the a atom whose
mass is m,. In Eq. (10), the product p dE is unitless, 8(gf + E - €; ) has units of
sec2/(gm cm?), the square of the P matrix element has units of (gm cm/sec)?, the
square of the P/| matrix element has units of (cm/sec)?, and 27/k has units of
(sec/(gm cm?)). Hence the product has units of sec!.

1.3 The Electronic Non BO Matrix Elements
The integrals over the anion and neutral-plus-free-electron electronic states

mi¢= <yr [P| yi> (12)
are known to be large in magnitude only under special circumstances:

1. The orbital of the anion from which an electron is ejected to form the state yf
of the neutral (usually the anion’s highest occupied molecular orbital (HOMO))
must be strongly modulated or affected by movement of the molecule in one or
more directions (Q). That is 0y;/0Q, which appears in Py; , must be significant.
2. The state-to-state energy gap &; - £¢, which is equal to the energy E of the

ejected electron, must not be too large; otherwise, the oscillations in the ejected
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electron’s wavefunction ¢ will be so rapid as to render overlap with 9yi/0Q
negligible.

Moreover, symmetry can cause m; ¢= <Ws [P| y;> to vanish. In particular, if the
direct product of the symmetry of ; and of 9/0Q do not match that of yr, then
m; ¢ will vanish.

Let us consider these conditions in more detail before proceeding further
because they form the basis for approximations that are introduced later. The
derivatives or responses of the anion’s orbitals to nuclear motions d;/0Q arise
from two sources:

1. The orbital’s LCAO-MO coefficients depend on the positions of the atoms
(or, equivalently, on bond lengths and internal angles). For example, the *
orbital of an olefin anion that contains the “extra” electron is affected by
stretching or twisting the C-C bond involving this orbital because the LCAO-
MO coefficients depend on the bond length and twist angle. As the bond
stretches or twists, the t* orbital’s LCAO-MO coefficients vary, as a result of
which the orbital’s energy, radial extent, and other properties also vary.

2. The atomic orbitals (AO) themselves respond to the motions of the atomic

centers. For example, vibration of the X2[1 NH" anion’s N-H bond induces dy
character into the 2p, orbital containing the extra electron as shown in Fig. 1.
Alternatively, rotation of this anion’s N-H bond axis causes the 2p, HOMO to
acquire some 2pq character (see Fig. 1 again). Such AO responses can be

evaluated using the same analytical derivative methods that have made
computation of potential energy gradients and Hessians powerful tools in

quantum chemistry.
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dW/dR = (¥ (R+5) - ¥(R))/d d¥/de = (¥(6+9) - ¥(9))/8

causes 2p, to acquire d character €3uses 2px to acquire 2p,
character

Figure 1. Orbital response of NH ‘s 2p orbital to (a) vibratation of the N-H
bond (left) and (b) rotation of the N-H bond (right).

Another view of how the LCAO-MO coefficients vary with geometry can be
achieved by differentiating h, y; = E; y; with respect to Q (an arbitrary molecular
motion) and then premultiplying by the anion-plus-free-electron function Wy and

integrating over the electronic coordinates r to obtain:

<y |ohe/dQI; >/(E; -Ef -E) = <y¢|o/dQy; >. 13)
In this form, one sees that the response of the anion’s electronic state, when
projected against the neutral-plus-free-electron state to which it will decay, will
be enhanced at geometries where the anion and neutral potential surfaces
approach closely (so the denominator in Eq. (13) is small). Enhancement is also
effected when the initial and final states have a strong matrix element of the
“force operator” dhy/0Q. The latter is effectively a one-electron operator
involving derivatives of the electron-nuclear Coulomb attraction potential Z; Z,
y A /Tii a5 80 the matrix element <\ |ohe/0Q|\; > can be visualized as
<¢s|0he/0Q|0; >, where ¢; is the anion’s HOMO and ¢¢is the continuum orbital
of the ejected electron. At geometries where the anion-neutral energy surfaces are
far removed, the denominator in Eq.(13) will attenuate the coupling. If the state-

to-state energy difference €; - £/= E accompanying the electron ejection is large,
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the integral <¢¢ |0he/0Q|®; > will be small because the continuum orbital ¢¢
will be highly oscillatory and thus will not overlap well with (0he/0Q )d;.

In summary, for non BO coupling to be significant (4) the anion’s HOMO
must be strongly modulated by a motion (vibration or rotation) of the
molecule’s nuclear framework and the state-to-state energy gap must not be too

large as to render the HOMO-to-continuum-orbital overlap insignificant. For the
HOMO to be strongly modulated, it is helpful if the anion and neutral energy
surfaces approach closely (n.b., this is not the same as requiring that the state-to-

state energy gap €; - € be small) at some accessible geometries.

It should be emphasized that it is necessary but not sufficient for E{Q) -
E;(Q) to be small over an appreciable range of geometries; this only guarantees
that the denominator in Eq. (13) is small. It is also necessary that E{Q) - E;(Q)
decrease at a significant rate as the point of closest approach is reached; this is
why we say the surfaces must approach closely. Viewed another way, if E{Q)
- E;(Q) were small yet unvarying over some range of geometries (Q), then the
HOMO’s electron binding energy (and thus radial extent) would remain
unchanged over this range of geometries. In such a case, movement along Q
would not modulate the HOMO, and thus dyj/0Q would vanish. Let us consider

a few examples to further illustrate.

1.4 A Few Examples

In Fig. 2 are depicted anion and neutral potential curves that are
qualitatively illustrative of (1b,4d) the X>[TNH™ case mentioned earlier. In
this anion, the HOMO is a non-bonding 2p;, orbital localized almost entirely on
the N atom. As such, its LCAQ-MO coefficients are not strongly affected by
motion of the N-H bond (because it is a non-bonding orbital). Moreover, the

anion and neutral surfaces have nearly identical R, and ®, values, and similar

D, values, as a result of which these two surfaces are nearly parallel to one
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another and are separated by ca. 0.4 eV or more than 3000 cm’l. It has been seen
experimentally that excitation of NH' to the low rotational states of the v=1
vibrational level, which lies above v=0 NH neutral, results in very slow (e.g.,
cs. 108 sec™!) electron ejection, corresponding to ca. one million vibrational
periods before detachment occurs. However, excitation to high rotational levels
(e.g., J = 40) of v=1 produces much more rapid electron ejection (ca. 10°-1010
sec’!). These data have been interpreted as saying that vibrational coupling is
weak because of the non-bonding nature of the 2p, MO, while rotational
coupling becomes significant for high J.

30000

Eincm-1
o
(=]
8
sl 3 1

III‘IIIIIIIIIIIII
R in Angstroms

Figure 2. Anion (lower) and neutral (upper) potential energy surfaces illustrative
of NH where the surface spacing does not vary strongly along R.

Fig. 3 shows a hypothetical case similar to the NH situation but for which
the anion and neutral curves approach closely at longer bond lengths. In this
case, one would expect larger rates of detachment than in NH™ because
1. The state-to-state gap €; -€¢ is small for the two states labeled in Fig. 3.

2. The anion and neutral curves approach one another at R values that are
accessible to the vibrational wavefunctions of the two states shown in Fig. 3,
thus allowing strong modulation of the HOMO.
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Figure 3. Anion (lower) and neutral (upper) potential energy surfaces illustrative
of cases where the surface spacing varies strongly along R and becomes small at
some R.

In Fig. 4 are shown anion and neutral potential curves, as functions of the

“twist” angle of the H,C-C bond in a typical enolate anion (2,4¢e) such as
acetaldehyde enolate HCCHO™ . Angles near 8 =0 correspond to geometries
where the p, orbital of the H>C moiety is delocalized over the two py orbitals of
the neighboring C and O atoms, thus forming a delocalized ®t HOMO.

Theta in Degrees

Figure 4. Anion (lower) and neutral (upper) potential energy surfaces illustrative
of enolate cases where the surface spacing varies strongly along the H,C-C

torsion angle 0 and becomes very small near 6 = 90°.
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At angles near 0 = 90° , the py orbital of the H,C group is no longer stabilized
by delocalization; so the HOMO’s energy is much higher (as a result of which
the anion-neutral surfaces approach closely). In this case, excitation of, for
example, v=7 in the H>C-C torsional mode of the anion might be expected to
produce electron ejection because v=7 of the anion lies above v = 0 of the
neutral. However, over the range of 0 values accessible to both the v=7
vibrational function of the anion and the v=0 function of the neutral, the anion-
neutral potential energy gap is quite large (i.e., Eg (Q) - E;(Q) is large even
though ¢; -€¢ is small). In contrast, excitation of v=9 of the anion could produce
more rapid electron ejection (to v=2 of the neutral, but not to v=0 of the neutral)
because for the v=9 — v=2 transition there are angles accessed by both v=9
anion and v=2 neutral vibrational functions for which E¢(Q) - E;(Q) is small and
changing; moreover, the state-to-state gap &; -€¢ is also small in this case.

The purpose of these examples and of considering the nature of the
electronic non BO matrix element was to prepare for critical approximations that
are to be introduced. In particular,

1. We will focus on transitions for which €;- €¢ _is small.

2. We will focus on molecular deformations that most strongly modulate the

anion’s HOMOQ, so
3. we will focus on geometries Q near which the anion-neutral surface spacing is
small and changing.

2. TIME CORRELATION FUNCTION EXPRESSION FOR RATES

Before dealing further with the non Born-Oppenheimer case, it is useful to
recall how one can cast other rate expressions, such as the rate of photon

absorption (7) accompanying an electronic transition in a molecule, in terms of a
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Fourier transform of a time dependent function that involves dynamical motions
on the initial and final electronic states’ potential energy surfaces.

2.1 The Optical Spectroscopy Case

2.1.1 From Wentzel-Fermi Golden Rule to the Time Domain

The expression for the rate R (sec’!) of photon absorption due to coupling V
between a molecule’s electronic and nuclear charges and an electromagnetic field
is given through first order in perturbation theory by the well known Wentzel
Fermi “golden rule” formula (7,8):

R = 2/)i<y; i [V] e Xe>I” S(er - & - ho). (14)
Here, ; ¢ and ¥ rare the initial and final state electronic and vibration-rotation
state wavefunctions, respectively, and €; ¢ are the respective state energies which
are connected via a photon of energy k. For a particular electronic transition
(i.e., a specific choice for y;j and yrand for a specific choice of initial vibration-
rotation state, it is possible to obtain an expression for the total rate Rt of

transitions from this particular initial state into all vibration-rotation states of
the final electronic state. This is done by first using the Fourier representation of
the Dirac d function:

8(es - € - ho) = (1/2h) | explit(e; - € - ho)/h] dt (15)

and then summing over the indices labeling the final vibration-rotation states X

Rr= (2n/k)Z; (1/2nh) | explit(es - & - ko) /]

<wi Xi [V W xe> <wi i [V] e xe>* dt. (16)
Next, one introduces the electronic transition matrix element (which may be an
electric dipole matrix element, but need not be so restricted for the development

presented here)
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Hif =<yl Viy;> 17
and uses the facts that the y; ¢ are eigenfunctions of the electronic Hamiltonian
he and that the ; ¢ are eigenfunctions of the vibration-rotation Hamiltonia T +
V;£(Q) belonging to the two electronic states having potential energies Vi £(Q)
and vibration-rotation kinetic energy T (both of which are functions of the
molecule’s atomic position coordinates collectively denoted Q)

he Wi £=Vi£(Q) Vif (18a)
[T+ Vis(Q) 1 %is = EifXis- (18b)

These identities then allow R to be rewritten as

Rr=Quk)Ze (1/21h) | exp[-it o]
<xi lexp(-ithi/k) Wi ¢ *| x> <xrexp(itheR)| p; el xi> dt. (19)
In this form, the completeness of the {)s}

Zelxe<xd = 1 20)
can be used to eliminate the sum over the vibration-rotation states belonging to

the final electronic state and thus express Rt in the following manner:

Rr= (2n/h) (1/27h) | exp[-it ©]
< exp(ithi/k)x;i | Wis* exp(ithg®) pif| x; > dt. (21)

The above expression is often visualized (and computed) (9) in terms of_the

(a) One function F is equal to the initial vibration-rotation function [x;> upon
which the electronic transition perturbation ;¢ acts, after which the resultant
product function is propagated for a time t on the final-state’s potential energy
surface by using the propagator exp(ithgh).
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(b) The second function F; is equal to the initial vibration-rotation function [¥;>
which is propagated for time t on the initial-state’s potential energy surface
using the propagator exp(ith;/) (which, of course simply produces exp(ite;/h)
times [x;>) , after which the electronic transition perturbation Li; ¢ is allowed to
act.

The overlap <F, |[F> is then Fourier transformed at the energy k of the
photon to obtain the rate Rt of absorption of photons of frequency .

Before returning to the non-BO rate expression, it is important to note that,
in this spectroscopy case, the perturbation (i.e., the photon’s vector potential)
appears explicitly only in the p; ¢ matrix element because this external field is
purely an electronic operator. In contrast, in the non-BO case, the perturbation
involves a product of momentum operators, one acting on the electronic
wavefunction and the second acting on the vibration/rotation wavefunction
because the non-BO perturbation involves an explicit exchange of momentum
between the electrons and the nuclei. As a result, one has matrix elements of the
form <y;| <y; |P| W >(P/w)xs> in the non-BO case where one finds <y;| <wj;
|V| W >[xs> in the spectroscopy case. A primary difference is that derivatives of

the vibration/rotation functions appear in the former case (in (P/i)y ) where only

X appears in the latter.

2.1.2 The Semi-Classical Approximation to Rt
There are various approximations (7) to the above expression for the
absorption rate Ry that offer further insight into the photon absorption process

and form a basis for comparison to the non Born-Oppenheimer rate expression.
The most classical (and hence, least quantum) approximation is to ignore the fact

that the kinetic energy operator T does not commute with the potentials V; ¢ and

thus to write
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exp(ith; ¢/k) = exp(itT/k) exp(itV; ¢/h). (22)
Inserting this into the above equation for Rt and also assuming that T also
commutes with [4; ¢ (or that |1; r does not depend significantly on geometry Q),

gives

Rr= (2n/k) (1/2nh) [ exp[-it @]
< i exp(itVi/B)| ;¢ * exp(itVeh)| pig| xi> dt. 23
Then, carrying out the Fourier integral over time gives,

(1/2nh) [ explit(Ve - V; - ho) /b] dt=8(V¢ - V;- hw). (24)
This delta function can be used in the expression for Rt to constrain the

multidimensional integral over vibration-rotation coordinates (denoted Q) to

those specific values which obey the energy conservation condition

ho = VAQ) - Vi(Q), 25
thereby yielding
Rr=(2n/k) < xi| Wi * 8(Vs - Vi-ho) Hif| Xi> . (26)

This semi-classical result can be interpreted as saying that Rt is given as the
norm of the function ; ¢; , consisting of the perturbation L; ¢ acting on the
initial vibration-rotation state, constrained to those regions of space which obey
the condition k@ = VAQ) - V;(Q). This condition is equivalent to constraining
the integration to those regions within which the change in classical kinetic
energy in moving from the initial-state surface V; to the final-state surface Vy is

zero. One can visualize such geometries as those at which the upper potential
energy surface V¢(Q) is intersected by the lower surface V; (Q) once the lower

surface is shifted to higher energy by an amount k. In Fig. 5 is shown such an
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intersection between a V{Q) surface and a lower-state V;(Q) surface that has been
shifted upward in energy. In this example, transitions between the initial level g
and the final level £¢, whose difference &¢- € = ho determines the energy shift,

would occur at R values near where the two surfaces cross.

2.1.3 Relation to Landau-Zener Surface Hopping Rates

It is instructive to examine further the approximate semi-classical form for
Rt shown above because, when viewed as a rate of transition between two
intersecting energy surfaces, one anticipates that connection can be made with
the well known Landau-Zener theory (10). For a non-linear molecule with N
atoms, the potentials V; £(Q) depend on 3N-6 internal degrees of freedom (for a
linear molecule, V¢ depend on 3N-5 internal coordinates). The subspace S

rororrrrrryryryrriryg

R in Angstroms

Figure 5. Anion (lowest) and neutral (second lowest at large R) potential energy
surfaces arising in the photon absorption case. The curve that is highest in
energy at large R is the anion surface that has been shifted upward in energy by
the photon’s energy k® (which has been chosen to make g¢ equal to €; plus the

photon’s energy).



Non-Adiabatic Induced Electron Ejection in Molecular Anions 301

within which V¢(Q) = V;(Q) +hw will be of dimension 3N-7 for the non-linear

molecule case. Any geometrical arrangement of the molecule can be described by
specifying an orientation Q (i.e., three orientation or Euler angles for a non-
linear molecule), a 3N-7 component vector s lying within the subspace S and a

distance d along the unit vector n that is normal to S at s:

Q={Q,R}, where R=s+dn. )
Points lying within S are characterized by d=0.

The integral appearing in Rt can be rewritten (7b) as an integral over
orientations, an integral over the 3N-7 dimensional subspace S, and a one-
dimensional integral over d:

Ry = Qub)dQ [dS Jdd xi(s.d.0) s (.4.Q) 8(Ve(s.d)

- Vi(s.d) - hw). (28)
Expanding V¢ (s,d) - Vi(s,d) - ko in powers of d about the point d=0 and
realizing that V¢(s,0) - Vi(s,0) - hw =0, allows the delta function to be written

as a delta function for the variable d:

8(V(s,d) - Vi(s.d) - w) = 8(V¢(s,0) - Vi(s,0) - B + [F(s) -Fi(s)1 d )

= | F(s) -Fis) 8(d). (29)
Here, F; (s) are the gradients of the respective potentials Vi along the direction
n normal to S evaluated at the point s,d=0; these gradients, of course, are the
negatives of the classical forces normal to S experienced on the V; ¢ surfaces.
With this expression for the delta function, the rate Rt can be expressed as an

integral over orientations and over coordinates totally within the space S:

Rr = QuUBAQ [aS xi(s.0.2) i (5.0, | F(s) -Fi(s)[™ . (30)
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The Landau-Zener expression for the probability P of moving from V;(Q) +
hw to VAQ) under the influence of the perturbation p; ¢ (s,0,2) is

2 -1
P=2m |uif(s,0,Q)" [| F(s) -Fi(s)| hvq] @
where v4 is the speed at which flux passes through the intersection of the two

surfaces (n.b., any velocity components lying within S do not cause flux to
move between the surfaces since, within S, the surfaces are degenerate). If this
probability is multiplied by the probability of the molecule residing within S

(i.e., by 1xi(s,0,Q)|2) , then by the rate at which the molecule moves from d=0
to d=3 (i.e., by v4/8), and if one then integrates over all orientations and all S

and over the small range d=0 to d=9, one obtains:

[dS dQ [xi(s,0,Q)/"(va/8) P &
= QMR [aS 1ri(s,0,Q)” it (5,09 | Fe(s) Fi(s)" = Rr. (32)

That is, the semi-classical approximation to the photon absorption rate is

equivalent to a Landau-Zener treatment of the probability of hopping from V; +
ko to V¢ induced by the electronic coupling perturbation Y; r (s,0,2).

2.2 The Non Bom-Oppenheimer Case

2.2.1 From Wentzel-Fermi Golden Rule to the Time Domain

Let us now consider how similar the expression for rates of radiationless
transitions induced by non Born-Oppenheimer couplings can be made to the
expressions given above for photon absorption rates. We begin with the
corresponding (6,4g) Wentzel-Fermi “golden rule” expression given in Eq. (10)
for the transition rate between electronic states i ¢ and corresponding vibration-

rotation states ; r appropriate to the non BO case:
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2
R = n/k) [ <l <wi [P| we >(P/u)xe>|" 8(er + E - &) p(E) dE. (10)
We recall that €; ¢ are the vibration-rotation energies of the molecule in the

anion and neutral molecule states, E denotes the kinetic energy carried away by
the gjected electron, and the density of translational energy states of the ejected
electron is p(E). Also recall that we use the short hand notation to symbolize the
multidimensional derivative operators that arise in non BO couplings and that
embody the momentum-exchange between the vibration/rotation and electronic
degrees of freedom:

(Pys )(P/uxs) = Za (-iH0WyfOR,) (-i-0Y7/OR,)/mg , (1)
where R, is one of the Cartesian coordinates (X,, Y, , Z, ) of the a™ atom whose
mass is m,. These 3N coordinates span the same space as the three center of

mass coordinates plus the Q , s, and d coordinates used earlier in detailing the
semi-classical photon absorption rate expression.

In the event that some subset {Q;} of internal vibration or rotation
coordinates have been identified as inducing the radiationless transition, (Pys
)(P/uxs) would represent X (-h0w/dQ;) (-ir-0x/0Q;)/(;), where i is the
reduced mass associated with the coordinate Q;. As indicated in the discussion of
Sec. L C, it is usually straightforward to identify which distortional modes need
to be considered by noting which modes most strongly modulate the anion’s
HOMDO. So, for the remainder of this work, we will assume that such active
modes have been identified as a result of which the sum Z; (-th0y¢/0Q;) (-ikr
0x¢9Q;)/(1;) will include only these modes. The integration over all of the other
coordinates contained in the matrix element <y;| <y; |P| w¢>(P/u)xs> in Eq.
(10) can then be carried out (assuming the electronic element <y; |P| y¢> to not
depend significantly on these coordinates) to produce an effective Franck-Condon
like factor (FC):
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<xil <wi [Pl we >(P/yxs>

= MMiminactive JAQj <Xij 1X£> Mi=active / dQj <xijl <wi [P we >(®/Wxs j>

= FC Mj=getive | dQj <tigl <Wi [Pl e >(®/l)xe - (32)
Since, by assumption, the anion and neutral molecule do not differ significantly
in their geometries (and vibrational frequencies) along the coordinates
contributing to the FC factor (otherwise, the anion-neutral energy gap would
depend substantially on these modes), the FC factor is probably close to unity in
magnitude. Hence, for the remainder of this paper, we will focus only on the
active-mode part of this expression, and will do so assuming only one such
mode is operative (i.e., we treat one active mode at a time).

Introducing the electronic coupling matrix element

m;r= <y [P| yi>, (33)
which plays a role analogous to the j f of photon absorption theory, and

realizing that P is a Hermitian operator, allows the non BO rate R to be

rewritten as:

R = (2n/k) | <(P/wygil mig *1xe> <xe | mie (PAX>
d(er +E -¢) p(E) dE. (34)
If the Fourier integral representation of the delta function is introduced and the

sum over all possible final-state vibration-rotation states {¥s} is carried out, the

total rate RT appropriate to this non BO case can be expressed as:

Ry = (2n/b) ¢ (1/2nh) | explit(es - & +E)/A]

<®/Wxil myg*xe> <xel mig (PA)y> dt p(E) dE. (3%
The next step is to replace (g¢+ E) <ygd by <xs| (T + V¢ +E) and (g;)| X; > by
|(T + V;) %= which reduces Rt to
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Ry = (2n/k) Z¢f (1/2mth) [ p(E) <m; ¢ (P/u) exp(it(T + V;)/k) ¥
x> <x¢lexp(it(E+ T + Vg)/k) my ¢ (P/pyx;> dt dE. (36)
The sum Z¢ [x£><)s| =1 can then be carried out to give

Ry = @b [ (1/2n8) [ p(E)

<m; ¢ (P/W) exp(it(T + V)/k) x; | exp(it(E+ T + Ve)/k) m ¢ (P/Wy> dtdE.  (37)
In this form, the rate expression looks much like that given for the photon

absorption rate in Eq. (21), but with m; ¢ (P/u) replacing the molecule-photon

interaction potential V. As in the absorption case, one can view (and even

compute) Rt as the Fourier tran:

functions:

(a) The first F; is the initial vibration-rotation state 7; upon which the non BO
perturbation m; ¢ (P/W) acts after which propagation on the neutral molecule’s
potential surface Vy is effected via exp(it( T + Vg)/h).

(b) The second F5 is the initial function ¥; which is propagated on the anion’s
surface V; via exp(it( T + V;)/k) (producing, of course, exp(itej/h) y;) after which
the perturbation m; ¢ (P/1) is allowed to act.

The time dependent overlap <F, | F|> is then Fourier transformed at energy E =
€; -€f, and multiplied by the density of states p(E) appropriate to the electron
ejected with kinetic energy E.

It should be noted that to use the above time-domain formulas for
computing rates, one would need an efficient means of propagating wave packets
on the neutral and anion surfaces, and one, specifically, that would be valid for
longer times than are needed in the optical spectroscopy case. Why? Because, in
the non-BO situation, the <F | F|> product is multiplied by exp(iEt/k) and then

integrated over time. In the spectroscopy case, <F; | F|> is multiplied by
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exp(-iot) and integrated over time. However, in the former case, E corresponds
to the (small) energy difference E = ¢; - € , whereas hw is equal to the energy of
the optical spectroscopic transition. Hence, short time propagators give
sufficiently accurate <F; | F;> functions to use in the spectroscopy case, but

longer time propagations will be needed in the non-BO case.

2.2.2 The Simplest Semi-Classical Approximation Fails
If one attempts to follow the photon absorption derivation and make the
assumption that the kinetic energy operator T commutes with V; ¢ and with m; ¢

(n.b., T does commute with P/p), the following expression is obtained for RT:

Rt = (2n/k) [ (1/2nhk) J p(E)
<m; £ (P/W) exp(it(V/h) ¥; | exp(it(E+ Ve)/k) my ¢ (P/p)x;> dt dE. (38)

The Fourier integral over time can be carried out and one obtains

Ry = (2n/k) [ p(E) <mj (P/u) Xi| 8(Ve+ E- V) mig (P/u)y;> dE. (39
For anions that are electronically bound, the anion’s electronic energy V; (Q) lies
below the neutral molecule’s electronic energy V¢(Q) as depicted in Figs. 2-5.
Hence, because E is a positive quantity, there are no geometries for which the
argument of the delta function in the above expression vanishes and, as a result,
the non BO rate can not be cast in terms of shifted intersecting energy surfaces as
can the photon absorption rate.

Therefore, the simplest classical treatment in which the propagator exp(it
(T+V)/R) is approximated in the product form exp(it (T)/h) exp(it (V)/k) and the
nuclear kinetic energy T is conserved during the “transition” produces a
nonsensical approximation to the non BO rate. This should not be surprising
because (a) In the photon absorption case, the photon induces a transition in the
electronic degrees of freedom which subsequently cause changes in the vibration-

rotation energy, while (b) in the non BO case, the electronic and vibration-
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rotation degrees of freedom must simultaneously interchange energy and
momentum and/or angular momentum, which is impossible to do without the

nuclei recoiling.

2.2.3 An Approximation that Works

The matrix element occurring in the non BO rate equation

M = <mj ¢ (P/u) exp(it(T + Vi)/k) Xi | exp(t(E+ T + V) mi¢ (P/u)xi>  (40)
can more fruitfully be handled by

a. replacing exp(it(T + V)/k) x; by exp(it(g;)/k) ¥; , which is exact, and

b. approximating exp(it(E+ T + Vg)/h) by exp(it(E+ T )/k) exp(it(V)/h),

which is an approximation, thus achieving

M = <m; £ (P/u) exp(it(e))/k) X | exp(it(E+ T )/k) exp(it(Ve) mir (P/u)xi>. (41)

Now introducing completeness relations in the forms

[dp [p><p| =1 (42a)
[dQ|Q>=<Q|=1 (42b)
and using (T + V;) x; = &; X, allows M to be written as

M =[dQ’ | dQ | dp <mj ¢ (P/) exp(it(e)/h) x; Q">
<Q’| p> exp(it(E+ Tjass )/h) <plQ><Q| exp(it(Ve(Q)/E ) mis (P/Wxi>.  (43)
Here T, is the eigenvalue of the Q-coordinate’s kinetic energy operator T in

the momentum eigenbasis {|p>}

Tetass = (0°/21Q) @4)
and
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: -12 ;e
<Q’lp>= (2nh) " exp(ipQ’/k) 43)
is the coordinate representation of the momentum eigenfunction along the active
Q coordinate.

The integration over time can be carried out and gives the following

expression fot the total rate:

Rr = (nh) [p(E) | dQ’ [dQ [ dp <mj(P/p) xi [Q><Q’| p>

&( Terass + E+ Vi (Q) - &) <plQ> <Q| mj¢ (P/u)y> dE. (46)
Since the energy E is restricted to match the state-to-state energy differences E =
€; - €, the integral over dE in Eq. (46) can be replaced by a sum over accessible

final-state €¢ values multiplied by the spacing between neighboring such states

(dEf = g¢-e5.1) :

Rr = (2n/k) Z¢ p(ei-e¢ )dE¢ ] dQ” [ dQ [ dp <mi (P/w) x; 1Q™><Q’| p>

O( Tetass + Vi (Q) - &) <plQ> <Q| mj s (P/W)Y>. @7
In this form, which is analogous to Eq. (26) in the photon absorption case, the
rate is expressed as a sum over the neutral molecule’s vibration-rotation states to

which the specific initial state having energy €; can decay of (a) a translational

state density p multiplied by (b) the average value of an integral operator A

whose coordinate representation is

AQ',Q) = dp [Q">mi (Q") <Q'| p>
8(p* /210 + Vi (Q) - &) <plQ> mig (Q) <Q| 48)

with the average value taken for the function

v = |(P/Wxi> @9
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equal to the anion’s initial vibration-rotation state acted on by P/u (in the
harmonic approximation, P/iy; would yield a combination of functions of one

higher and one lower quantum of vibration or rotation).
The integral operator A can be recast in a different form by carrying out the
integration over the p-variable in Eq. (48) identifying

fip) = (2rh) % exp(-ipQ/k) (2rk) " exp(ipQ’/k) (50)
and a = g¢- V¢(Q). Doing so produces

[8(0? /20 - a)f(p)dp

—o0

0 0
= [8( /21 ~2)f(p)dp + j 8(p /2040 ~a)f(P)dp
0

8(x~ a)f(J2uQx)T-+J‘5(x a)f(~ .fqux)7===
8(x —a) {f(|2Hqx) + f(- w/2uQx>}:/-==
= {f(2hqa) + f(~[Ziga)} Jﬁ;

1 uQ
- L acou0-o) B Vi@ G
= 0s{[Q -QL21q (e — V¢(Q)) },‘(ZHQ(Bf‘Vf(Q)) G

The quantity {2q (& - V£(Q))} 172 5 the classical momentum along the Q

O"——-»ﬁ Q‘——bs

coordinate with energy €r moving on the neutral molecule’s surface V¢(Q), so
Uq divided into this is the speed of movement at Q. Substituting this result

back into the expression for Rt gives
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Ry =(2n/ W)Y p(e; - e)E; [4Q [dQ <my (P /hyt; Q> —

f
Cos{[Q -Qly21q(er = V£(Q)) / B}

HQ ; .
\(ZU-Q(Ef = Vf(Q)) < Q t ml,f(P "{IJ')X1 > (52)

Bearing in mind the discussion of the nature of the electronic non BO matrix

elements m; £(Q) given in Sec. L. C, the above rate expression can be further
approximated by constraining Q’ and Q to the region Q’=Q=0Q, where the anion

and neutral surfaces approach most closely:

d{V¢(Q - Vi(Q}/dQ=0atQ=Qp. (532)

If, as assumed, m; ¢(Q) is significant only near Q, then we can approximate m; ¢

Qas

m; ¢(Q) =8(Q-Qp)m* (53b)
where the quantity m* is the integral representing the total strength of the m; ¢

coupling concentrated at the geometry Qg

m* = [m; £(Q)dQ. (53¢)
Introducing this approximation into Eq. (52) and using the fact that the argument

of the Cos in Eq. (52) vanishes, allows Rt to be written in its simplest form

as:

1

= (54)

Ry =(2n/h)Y p(e; —er)dE{(P/ wyxi(Qo)} > m* 2
fi

where vy is the velocity along the Q-coordinate at the geometry Qq:
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(33)

y2uq(er = Vr(Qo))
Vo =
HQ
and fmi“‘l2 is the square of the integrated electronic non BO matrix element

introduced above (n.g., [m*}? has units of (gm cm?/sec)?.
3. INTERPRETATION OF RATE EXPRESSION

The semi-classical expression shown in Eq. (54) for the rate of ejection of
electrons from a specified initial vibration-rotation state %; (Q) induced by non

BO coupling to all accessible neutral-molecule-plus-free-electron final states
(labeled f) gives this rate as:
1. A sum over all final vibration-rotation states €¢ lying below g; for which the

geometry Qg is within the classically allowed region of the corresponding
vibration-rotation wavefunction ¥y (Q) (so that vg is real) of

2. the modulus squared of the function m*(P/p)y; evaluated at Qg

3. multiplied by the state density p(g;-e¢) dE¢ for the ejected electron and

multiplied by (2r/k)(1/mh), and finally
4. divided by the speed v of passage through Qg .

4. SUMMARY
The rate of ejection of electrons from anions induced by non BO couplings
can be expressed rigorously as a Fourier transform of an overlap function

between two functions

Rt = (2n/k) | (1/2nhk) | p(E)
<mj ¢ (P/p) exp(it(T + Vi)/h) x; | exp(it(E+ T + Vg)/k) m; ¢ (P/)y;>dtdE  (37)
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one of which is the initial vibration-rotation function %; acted on by the non BO
perturbation m; ¢ (P/l) and then propagated on the neutral molecule surface, the
other being the initial %; propagated on the anion surface and then acted on by
m; ¢(P/y). In computer applications, it would be efficient to compute Rt in this
manner whenever long-time surface propagation tools are applicable.

By introducing the simplest semi-classical approximation to the
propagators, in which the nuclear motion kinetic energy is assumed to commute
with the anion and neutral potential energy functions and with the non BO

coupling operators, one obtains

Rt = 2n/h) | p(E) <mjr (P/u) xi| 8(Ve+ E- Vi) | mig (P/u)x;> dE. (39
Unlike its success in treating the photon absorption rate expression, this
simplest approximation produces a nonsensical expression in the present case
because there are no geometries at which (V¢+ E- V;) =0, as a result of which
R is predicted to vanish. In the photon absorption situation, there are
geometries at which the classical momentum is conserved (i.e., where the excited
and shifted ground state surfaces intersect). In the non BO transition case, such
geometries do not exist because the transition is not one in which the nuclear-
motion momentum is conserved. Quite to the contrary, non BO transitions
involve the simultaneous interchange of energy (from the nuclei to the electrons)
and of momentum and/or angular momentum.

Improving on the semi-classical treatment of the vibration-rotation motion

only slightly allows Rt to be recast in a form

Rr =21/ W)Y p(e; ~£0)dE | 0Q dQ < my P/ Wi | Q> —

£
Cos{[Q —-Qly21q(er — Ve(Q) / 7}

£Q : . 52
g - Vi) <Qm;e(P/p)x; > (52)
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that may prove computationally useful in cases where the geometry (Q)-
dependence of the non BO electronic matrix element m; ¢ is known. In this
expression, the rate is given in terms of the functions m; ¢ (P/W)y; , the density
of state function p, the classical momentum on the neutral molecule’s surface,

and a Cos function whose argument is the classical action connecting the points

Q’ and Q via the momentum of the neutral molecule having energy &¢. This
Cos function will oscillate rapidly when this action is large, so its dominant
contributions to the rate will arise for small momenta and/or small Q’-Q values.
Finally, by using what is known about the geometry dependence of the mj f
functions (i.e., that m; ¢ is strongly “peaked” near geometries Qo where the anion
and neutral surfaces approach most closely), it is possible to further simplify the

semi-classical equation for Ry

Ry =Qn/m)Y ple; —e0)dE¢{(P/ wxi(Qo)}> >lm* [ ;51-— (54)
f Vo

to one that requires knowledge of the derivative of the initial-state vibrational
wavefunction (P/pLy;) evaluated at Q , the speed vy at which classical motion on

the neutral molecule surface passes through Qg , the density of states p, and the
magnitude of the integrated strength m* of m; s at Qg .

It should be emphasized that it is not the modulus [x; (Qp) [* that enters
into the weighting function in Eq. (54), it is the derivative (P/[y;) whose
modulus squared enters. In contrast, in the photon absorption case, the rate

involves, as given either in Eq. (28) or Eq. (30)

Ry = 2uR)fdQ JdS Jdd [i(s, 4. Q) s (5.4Q) 8(Ve(s,d)
- Vi(s.d) - hoo). (28)
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Rt = QumIAQ JdS xi(s,0.Q)1" |uis (5.0 | F(s) Fi(s)™ . (30)
the modulus squared of %; itself. The qualitative difference in the two cases has
to do with the inherent requirement that the nuclear-motion momentum and/or
angular momentum change in non BO transitions while the same quantities are

preserved in photon absorption events (in the semi-classical treatment).
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