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A method is given for obtaining the density matrix or matrices, expressible in terms of a
given set of spin geminals, which are as nearly N representable as possible. A measure of
N representability is introduced as the norm of the antisymmetric component of a normalized

wave function leading to the density matrix.

An error estimate is given for the maximum

deviation of an energy calculated with the density matrix from that calculated with an antisym-
metric wave function, Linear variational parameters may occur in the density matrix, and
their number can be increased at the expense of N representability. Implementation of the
method requires diagonalization of a large matrix, and the consequences of truncation are
considered. The method is also related to the problem of the exact N representability of a

given density matrix.

I. INTRODUCTION

The pth-order reduced density matrix,'~% or p
matrix,” for a pure state of an N-fermion system
can be obtained from tiie wave function ¥ as

D"”(l-"p;l'-"p’):f ‘I’(l"’P,P+1'°°N)
XU* (1o ep’,pt1o N)dTp e e d7y . (1)

It has certain properties as immediate consequen-
ces of this definition: It is Hermitian, and if ¥ is
a normalized, antisymmetric function, D’ is anti-
symmetric with respect to permutations of the
primed or of the unprimed variables, and is of
trace 1. However, a proposed density matrix hav-
ing these properties is not necessarily derivable
from an antisymmetric N-particle wave function,
The problem of determining conditions on a pro-
posed density matrix such that there exists at least
one antisymmetric function ¥ from which the given
D can be obtained according to Eq. (1) is known
as the (pure state) N-representability problem.™?
It has received much attention in recent years but
remains unsolved.

One reason for interest in this problem is that
it would be easier to do a variational calculation
with the 2-matrix directly than with a many-elec-
tron wave function,'®!®!® This is particularly true
when correlation effects are of interest, since they
can be dealt with fairly well in two-electron sys-
tems, If a trial density matrix is not N represent-
able, however, then the energy computed as the
trace of the product of the density matrix and an
appropriate reduced Hamiltonian matrix is not in
general an upper bound to the ground-state energy
of the system, as is a variational energy calculat-
ed from the wave function. The energy calculated
from a non-N-representable density matrix is rig-
orously bounded below only by the lowest eigenval-
ue of the reduced Hamiltonian, This eigenvalue is

2

also a lower bound for the ground-state energy of
the system, and may be quite far below it. Unless
N-representability constraints are imposed, a
density-matrix calculation is thus of doubtful val-
e, 20-23

Although N-representability conditions for the
1-matrix can be stated entirely in terms of its eig-
envalues, those for the 2-matrix necessarily in-
volve not only the matrix elements but also the
geminals in terms of which the matrix is expanded.
One of the many problems associated with direct
attacks on the N representability of the 2-matrix
has been that the conditions on geminals seem to
involve the very weakly occupied geminals to ex-
actly the same extent as the most strongly occupied
geminals.'® This is unfortunate since the weakly
occupied geminals have relatively little effect on
calculated physical properties. Itisa consequence
of the statement of the N-representability question
in “all or nothing” terms, We are thus led to con-
sider the possibility of an approximately N-repre-
sentable density matrix.

Some work has been done in which conditions
which are known to be necessary, butnot sufficient,
for N representability are imposed and a variation-
al calculation carried out. The results have been
encouraging.!®?® Perhaps if enough necessary
conditions are imposed the resultant density ma-
trices will not be too far from being N represent-
able. It would clearly be more satisfactory, how-
ever, if some measure of deviation from N repre-
sentability could be introduced and the consequen-
ces for calculation of properties suchasthe energy
quantitatively estimated.

In this paper we will consider the following ques-
tion, which is closely related to that of the N rep-
resentability of a 2-matrix: Given a set of M or-
thonormal antisymmetric spin geminals{¢;(1, 2),
i=1,...,M} in terms of which 2-matrices can be
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expressed as

"
D?(1,2;1,2")=2 d;¢:(1,2)95(1,2"), (2)
i,4=1
what are the restrictions on the coefficients d;;
such that D'® is as nearly N representable as pos-
sible ? We find this problem to be somewhat more
tractable than the N-representability problem it-
self, It will be of interest if we can establish a
measure of the extent to which 2(2) is N represent-
able, and an estimate of the maximum extent to
which an energy calculated from D® can fall be-
low the ground-state energy of the system. Since
we hope to do a variational calculation, we want to
obtain a density matrix whichhas some free param-
eters in it, We will examine the way in which
maximization of N representability interacts with
minimization of the approximate energy.

As a first step in investigating the question
posed above, we introduce in Sec. II a continuous
measure of the N representability of a density ma-
trix, and define a procedure which can in princi-
ple be used to obtain the density matrix or matri-
ces of optimal N representability for a given gemi-
nal basis set, The method could easily be extend-
ed to consider a general p matrix, but we will con-
fine our discussion to the 2-matrix, because of its
physical interest for systems of pairwise interact-
ing fermions, We find that the exact N-represent-
ability problem can be treated as a special case,
but the solution which then results is not of great
interest, leading in general to the equivalent of a
complete configuration-interaction (CI) calculation,

In Sec. III we consider the effects of approxi-
mate N representability on variational energy cal-
culations. We find that the maximum extent to
which the calculated energy can go below the true
ground-state energy can be related to our measure
of N representability and to the eigenvalues of the
reduced Hamiltonian in a greatly restricted basis
set,

In Sec. IV we expand on methods of calculation
which could be used in practice and consider the
effects of truncation of certain expansions on our
results, We also show how the geminal set can be
systematically expanded to improve N representa-
bility and decrease maximum possible errors.

We conclude with a discussion in Sec. V of the re-
sults which have been obtained, and a view to fu-
ture efforts.

II. DEVELOPMENT OF FORMALISM

In this treatment we will assume that we have
available a fixed set of orthonormal antisymmetric
spin geminals {¢;}. They may be explicitly corre-
lated or given as CI expansions in Slater geminals.

Any member of the family of N-particle functions
whose 2-matrix is expressible in terms of these

spin geminals can be written as
M

T(1oN)= 2 61, 2)%, (3 N) (3)

i=1

where the x; are arbitrary N - 2 particle functions.
Of course, ¥ will not in general be antisymmetric
in all particles. The 2-matrix of such a function
is given by Eq. (2) with the coefficients d;; deter-
mined by

dig =[x N5 @ "N drg'++ dry . (8)

It is clear that the matrix of coefficients d is Her-
mitian, positive semidefinite, and that trd=1, if
¥ is normalized to unity. (This will be assumed
to be the case throughout what follows.) These
are well known necessary conditions for N repre-
sentability.

We now introduce as a measure of the antisym-
metry of ¥ the norm of its antisymmetric com-
ponent

W)= [ [0y, ¥ dr

= [ ¥*(1---N)Oy... y ¥l -+ N)dTye - +dTy
(5)

where 0,.., y is the N-particle antisymmetric pro-
jection operator

O1...n = (N1t 2
Pe Sy

(=17 P, (6)

The summation on P extends over all N! permu-
tations of the N space-spin variables, and p is the
parity of P. Because 0,... y is a projection oper-
ator and ¥ is normalized we know that 0< p[¥] <1
and that g =0 implies that 0,... , ¥=0, while p=1
implies that 0,... y ¥ =¥, Substituting from Eq.
(3) into Eq. (5), we obtain an expression for the
measure of antisymmetry for any member of the
desired class of functions:

M
p’[\ll] = Z f¢*;(1,2))(?(3°-°N)01.°.N

i,i=1

X¢; (1,2)x; (8-« N) drye e vd1y . (7)

This expression can be simplified somewhat when
we realize that 0,... y can be decomposed as

-1
01...N:<A;\,> 701,203.. x5 . (8)

Here O, , and 0;... y are the 2 particle and N- 2

particle antisymmetric projection operators, re-
spectively, and 7 is the sum of all signed trans-
positior;s between particles 1 and 2 and particles
3---N 2%

N N
=1~ Z (P1j+P2j)+ Z Py; Py, . ©)
j=3 i<k=3
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Our method of obtaining the density matrices
which can be expanded in terms of the given set of
spin geminals and which are as nearly N repre-
sentable as possible will be to choose the functions
{x:} so as to maximize p[¥] and then to take d to
be given by Eq. (4). In general we will not be able
to attain the result p =1, which would imply exact
N representability, We can, however, interpret
the maximum attainable value of u as a measure
of the N representability of the density matrix we
have obtained,

The form of 0,... 5 introduced in Eq. (8) makes
it clear that in seeking a maximum value of u for
normalized ¥ we need consider only those func-
tions y; (3« + N) which are antisymmetric in the
N - 2 particles., The spin geminals ¢; are also
antisymmetric, by assumption, so that our ex-
pression for p can be written as

/NN ! M «
u[w]:( ) iZ‘ f«mx*,-m,x,drlmdm. (10)

2 Wi =1

If the antisymmetric functions x; are varied so as
to make p stationary subject to the normalization
constraint

M
[¥*¥ar= 2 [xixidrs--dry=1, (11)
i=1

a set of equations satisfied by the optimum {x ;} is
obtained,

u -
2 (Z) 1 J-‘P‘E(l,2)T¢j(1,z)xj(3...N) dr,dr,

i=1
=Ax48:+*N), i=1e+-M , (12)

where') is a Lagrange multiplier introduced to as-
sure that Eq. (11) will be satisfied.

In order to make progress in using Eq. (12) to
determine the optimum {x;}, we introduce in Ap-
pendix A a set of R (perhaps infinite) orthonormal
spinorbitals labeled by {a;, @, ..., @z} interms of
which all the {¢;} can be expressed. For conve-
nience we denote the spin orbitals themselves by
the indices a;. Then

R

$:(1,2)= 2 l(iialaa)[a;aa]. (13)

a1<a2 )
Here (i | @,a,) is an expansion coefficient and
brackets denote a normalized Slater determinant
[aa,] =272 {a,(1)a,y(2) - as(l)ay(2)} . (14)
In general there will be
R
2

Slater determinants [@;a;], but the number M of
spin geminals used in the density matrix will be

smaller, possibly much smaller, especially if the
spin geminals are correlated.

It can also be shown that the optimum {X ;} can
be expressed exactly in terms of the

(o)

N - 2 particle Slater determinants which can be
formed from the «;:

R
Xi(3:++N) = b Ciageoray (@3- ]
ag< e <ay=1 3 N
(%2
= az:ll Cia[a] ) (15)

where the set 5. ..y has been replaced by « for
brevity. That this expansion is possible for the
optimum {X; } can most readily be verified by ex-
amining the dependence of the terms in Eq. (12)
on one particle, say particle 3, and making use
of the antisymmetry of the functions.

Substitution of Eq. (15) into Eq. (10) gives

N 1 M (NEZ)
u[\p]‘=<2> Lonocl

i,i=1 «,B=1
X /;b)':[a]*f(p;[ﬁ] dTrCjg , (16)
which is a Hermitian form in the coefficients
{C;,}. In Appendix B we show that the integral

appearing in Eq. (16) can be further reduced by
use of the identity

(12\’)1/6:[0:]*1@[3] ar

=/¢’§[a]* T¢;[8] d7 =Tia, s, (17)

with?7+28

F= (2’)1 {1-2(N=-2)Py,

+3[(N=2)(N=3)] P3Pyt - (18)
Equation (16) can then be replaced by

(Nfz)
Y ChaTia6Cos - (19)

i,j =1 o,B=1

M=

ply] =

The functional u[¥] is thus a weighted average of
the eigenvalues of the matrix T whose elements
are given in Eq. (17). The maximum value of
u[¥] is equal to the largest eigenvalue of i, and
occurs when the {C;,} are the elements of an eigen-
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vector of j associated with this largest eigenval-
ue. Thus we are led to consider the eigenvalue
equation

y Gims)

2 2 FiaisCis=2Ciq . (20)
j=1 B=1

The normalization condition on ¥ takes the form

M " (Nga‘)
2 f Xi*Xi dtg*tdTy = Zi Zl ]Ciot |2=1, (21)
i= i=1 a=

so the eigenvector should be taken to be normal~
ized. We will denote the largest eigenvalue of T
by %y, and recall that it maybedegenerate. Equa-
tion (20) is an eigenvalue equation which can in
principle be solved directly, without requiring an
iterative process. This reason alone may place
the present method closer to being computationally
useful than some previous schemes.* However,
we must remember that the dimension of T is

u(y%,),

which can be an extremely large number, or even
infinite if R is infinite. In practice it would prob-
ably be necessary to choose some truncated set

of spin orbitals {a;, i=1,...,R’} interms of which
to express the N - 2 particle Slater determinants.
Also, we have in mind a situation in which the
number M of spin geminals ¢; is much less than

R R’
2 and probably much less than 9 |-

These approximations will be discussed in more
detail in Sec. IV.

We assume that the degeneracy of the largest
eigenvalue ), is 6 and denote the set of orthonor-
mal eigenvectors associated with it by {2, «
=1,...,6}. Any linear combination of these will

provide a set of coefficients optimizing u[¥]:
]
Cz'a = Z Yac(iaoz ’ (22)
a=1

in which the Y, are arbitrary except for the nor-
malization condition

6
Z;l ’Ya '2=1 ’ (23)
a=

will be an eigenvector of j with eigenvalue 2, and
thus with u=2X,. The coefficients Y, can be con-
sidered as variational parameters in the density

matrix, which is given by Eq. (2) with

wez)
dij = Z Ciucja
a=1

R
[ (N—a) "
= L Y, Y, L cfcelmt. (24)
a,b=1 a=1

This provides a solution in principle to the prob-
lem of constructing optimally N-representable 2-
matrices. In practice there would remain prob-
lems associated with the construction of T and the
determination of the {C‘")}. Except in simple cas-
es, the large dimension of T would probably make
the time and effort required_ to carry out these
steps prohibitively large. For this reason we will
examine later the possibility of decreasing the di-
mension of i by truncation of the set of determi-
nants [o;...ay] used in the expansion of the opti-
mum {x,-}.

If the { 4),-} were equivalent to the set of all Slat-
er geminals [a;@;], which requires that

M:<§>,

then the largest eigenvalue A, would be equal to 1
and its degeneracy 6 would be

(%)

This is just a restatement of the fact that

(%)

independent N-particle Slater determinants can be
formed from N spin orbitals.*®"3! The present ap-
proach then reduces (or expands) to the equivalent
of a conventional full CI calculation. In practice
we hope to use a number M of spin geminals which
is much smaller. The question of how this reduc-
tion will affect the value of A, and its degeneracy
is difficult to answer in general.

For such smaller sets of spin orbitals, X, may
be nondegenerate or the degeneracy may be low.
There may, however, be other eigenvalues of T
nearly as large as Xy, We can then gain more flex-
ibility in the density matrix by including in the ex-
pansion of Eq. (22) eigenvectors associated with
these slightly smaller eigenvalues. The result
will, of course, be to decrease slightly the value
of u[¥], i.e., the N representability of the density
matrix. The effects of such a decrease will be
considered below, when we consider the error
bounds which can be placed on energies calculated
from the density matrix. It may be that a small
loss of N representability is tolerable in order to
gain variational flexibility.

To make more explicit this possibility, let us
suppose that we have decided that there are g+ 1
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different eigenvalues of _1:‘_, Ngs A1y ooy Ay, With degen-
eracies 0y, 0;,...,0,, respectively, that are large
enough to be included. The eigenvectors associ-
ated with them are added to the expansion, and Eq.
(22) is replaced by

(25)

where C'%® is the ath eigenvector of _'f associated
with eigenvalue A,. The normalization condition
then becomes

a 5t
Z Z 'YatIZ:l (26)
t=0 a=1
and the N representability is measured by
¢ 5
u[‘l’] =2, 2 iYat |27‘t . (27)
t=0 a=1

Before turning to a discussion of errors, meth-
ods, and approximations, we find it of interest to
relate this treatment to the exact N-representa-
bility problem for a given density matrix. We
note that the {C;, } are not the only coefficients
which will lead to the matrix d. From the proper-
ties of d we know that there exists a square Her-
mitian matrix d ¥? such that

M
2. diE a¥t=d;; (28)
k=1
To relate d¥? to C={C;,} we define the rectangular
matrix V by

"
Cin=2 dV2V,, . (29)
i1
1t then follows from Eq. (28) and
R
(y=2)
dii = Z Ciacja
a=1
wo (ye2) . ok
23:11 Z_l AYE Vo ViadF: (30)
that
o)
. VieVia=0i; - (31)
o=

However, it is not necessarily true that

M
Z‘ V;‘anB :6013 .
i=

[
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Matrices such as V are referred to as partial iso-
metries,

To relate these partial isometries to the exact
N-representability problem, let us suppose that
we are given a Hermitian non-negative matrix d of
unit trace, and a set of orthonormal antisymmgtric
spin geminals {¢, }. We can then use Eq. (29) to
define a set of coefficients {C,—a} and thus a wave
function ¥, for any partial isometry V. We sub-
stitute this expression for the coefficients into Eq.
(19) and obtain

ul]
M (NEZ) % ~
= Z Z Vkoz (gvzzgvz)ka,w VlB ’ (32)
k,1=1 o,B8=1
where

(gl/zigl/z)ka' 8

M
= 2

LY 12
i,i=1 Api Tia,is dji -

If we now vary the {V,,} to make u[¥] stationary,
subject to the constraints

W
Ll ViaVie=di;, 47=1,.00,M, (33)
o=
we obtain the set of equations
M (Nfz N
2 2 (@21 d),, Vi
1=1 B=1 - —=
M
= Zl) €1 Via - (34)
1=

The ¢,, are Lagrange multipliers associated with
the constraints of Eq. (33). Since we initially know
neither the elements of the optimum V nor the La-
grange multipliers €, Eq. (34) would have to be
solved iteratively, if at all. If this can be done,

we obtain
M (Nfz)
plvl= 2 2 €01 Via Vil
kyl=l  @=l

M M
= 20 €udp =20 €= tre. (35)
k=1

kyl=1

We conclude that if the trace of the Lagrange mul-
tiplier matrix € is 1, then the given density ma-
trix is exactly N representable. When tre<1, we
interpret its value as a measure of how nearly N
representable the density matrix is. Because of
the large dimension of d¥2 T d"%, and because we
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do not know that Eq. (34) can in fact be solved,
there is little hope that this method will be com-
putationally useful. This discussion has been pre-
sented only to establish the connection between our
approach and the exact N-representability problem
for a given density matrix.

There is another formulation of the exact N-rep-
resentability problem for a given density matrix
which avoids the difficulties associated with Eq.
(34), although again the solution provided is one in
principle rather than one of practical utility. Giv-
en a Hermitian non-negative matrix d of unit trace
and a set of orthonormal antisymmetric spin gemi-
nals {¢;}, we first construct the matrix _T: and find
the & different eigenvectors associated with the
largest eigenvalue Xy If )y is not unity, the den-
sity matrix cannot be N representable, so the
question is answered. If 2y is equal to 1, we must
determine whether the parameters {Y,} of Eq. (22)
can be chosen so the Eq. (24) yields the given val-
ues of the d;;. The density matrix will be N rep-
resentable if and only if such coefficients can be
found. If we define

)
Piw= 2 C{5CR (36)
a=1
and
Zab: YaYb* ) (37)

Eq. (24) can be rewritten as

6
E Pil,abzab'_' dij, Bh,j=1,..., M. (38)
a,b=1

This can be thought of as M? linear equations in the
82 unknowns Z,, of which only 6 are independent.
That is, if we know Y, ¥y, Y, Yy, ..., Y, ¥} we
can determine all of the coefficients to within a
single arbitrary phase factor. As in all systems
of linear equations, the existence of solutions is
governed by the rank of the matrix P and the rank
of the augmented matrix which is formed by ad-
joining the “column vector” dto P,

dy1 Pijn .e. Pryes
dis Pyan Pis,66

pa_| see eee ‘ (39)
un Piyya Py, 66

From the ranks of P and P® we can in principle
learn how many, if—any, of the unknowns Z,, are
determined and how many are arbitrary. If the
density matrix is to be N representable there must
be a nontrivial solution to Eq. (38) having the fur-

ther property that
Zg= 25 . (40)

Methods, and even computational procedures, ex-
ist by which Eq. (38) can be solved and the solu-
tions tested to see if the necessary conditions are
satisfied. We are thus able in principle to test the
N representability of a given density matrix. Be-
cause of the large dimensions of i and P, however,
this approach is not useful, and is perhaps better
characterized as a restatement rather than a solu-
tion of the N-representability problem.

Let us review what we have found in this section.
To construct optimally N-representable 2-matrices
from a given set of orthonormal antisymmetric
spin geminals, we must find the eigenvectors asso-
ciated with the largest eigenvalue ), of the

(3%

dimensional matrix _T: . The required coefficient
matrix is then given by Eq. (24), and ), is a mea-
sure of how N representable the resultant density
matrix is, with the value 1 corresponding to exact
N representability. Additional eigenvectors of f_
associated with eigenvalues nearly as large as )\,
may also be included to increase the variational
freedom, with some loss of N representability.
This approach can also be related to the exact N-
representability problem for a given density ma-
trix, but the resultant equations are not practical
to work with.

III. CONSEQUENCES OF APPROXIMATE N
REPRESENTABILITY

As we remarked earlier, one reason for interest
in the N-representability problem is the desire to
do variational calculations directly with the re-
duced density matrix, which is a potentially sim-
pler thing than the wave function. If the Hamilton-
ian for the system is of the form

N N
=2 f@O)+ 2 g(), (41)
i=l i>j=1

then a 7veduced Hamiltonian may be defined as®?
%=z N[f(1)+ f(2)+(N-1) g(1,2)], (42)

such that for an antisymmetric wave function ¥
E=tr(Kd) = [ ¥*5ewdr, (43)

where K is the matrix of % in the {¢;} basis:

Ky = [ 67 (1,2)%¢,01,2) dry dr, . (44)

I;f ¥ is not antisymmetric the two expressions for
E are not equivalent, and £ calculated from d is
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not an upper bound to E,, the ground-state energy
of a fermion system defined by 3.% Since d is in
any case so defined as to be a non-negative Her-
mitian matrix, it will be true that

EZ €0, (45)

where €, is the lowest eigenvalue of X. However,
€y is a lower bound to the ground-state energy of
the N electron system. In this section we will con-
sider the errors which can arise from the use of a
density matrix that is only approximately N repre-
sentable. We will show that the extent to which E
can fall below the ground-state energy is related
to u, the measure of N representability introduced
in Sec. II, and approaches zero as u approaches
1.

We begin by introducing a vemaindev function
Q(1,2,...,N) defined for any ¥ of the type in Eq.
(3) by

2, .0e,N)=[0400uy = p]¥, (46)

with u determined from ¥ by Eq. (5). This func-
tion is antisymmetric in the first two particles,
and if only antisymmetric x’s are considered, it
is also antisymmetric in the last N -2 particles:

01,29 =03,..5y0=0Q . (47)

If the optimum ¥’ s are used, corresponding to u
=) then it also follows from Eq. (12) that & is
orthogonal to all of the ¢;:

J #¥ (1,201,283 +-N)dr, d7,=0 . (48)
The square of the norm of Q is
[ell?= [ [a]ar
= [ [(Oruoy=w)¥]* By — )T AT
=p=2p+ pP=pl-p). ‘ (49)

For an antisymmetric function such as 0y it is
readily shown by relabeling variables of integra-
tion that®

E= [ (ow)*scow dr/[ |o¥f dr
= [ (ow*xowdr/[ |c¥f ar. (50)

It is clear also, by the variation principle, that

E>E, We will consider the possible difference be-

tween E and E defined in terms of the density ma-

trix. Of course, any other symmetric one- or two-

electron operator can be substituted for the Hamil-
tonian if an appropriate reduced operator is also
defined, but the comparison with E, has an analogy
only for operators that are bounded below.

We look first at the expectation value of X with
respect to Q

(Qx @) = (0¥~ pelx |ow- py)

J. E. HARRIMAU 2

=(¥oxo [ - u[(w|x 0w
+{ow|% (9 ]+ pXe|x|® . (51)

Making use of O¥=Q + u¥ and the definitions of p
and @, we rewrite this as

(@fsc|y= s LOEOD o (KD
—u(2u i%cq;—@ +(\Ir|5clsz)+(9|ac|\1r)) (52)

or

(@ |2y + uY|x |2y +(2|% 9] = LE - u2E, (53)
since

(wlaelw) /(T = (¥|% | =tr(dK)=E. (54)
Then using the triangle inequality we find

LB - p2E|< (Q|%|@) |+ 2u|@|x]e)]|.  (55)

A more useful relationship can be obtained by us-
ing bounds for the terms on the right-hand side.
By the Schwarz inequality,

kel |y 2 <[] Ql|deg|? = w1 - uXy|%2|w) . (56)

It should be noted that X2, the square of a two-
electron operator, is itself a two-electron opera-
tor. It follows that

(¥|%2g =tr(K®d) . (57)
The remaining term can be bounded as
K815 |20 < (2] D lelmax = 1L = 1) |e|mex s (58)

where lel,,, is the eigenvalue of maximum absolute
value associated with X in the space spanned by
the Slater spin geminals [aioz ,] . This follows from
the expansion of Eq. (15).

We have seen earlier that in the case of the op-
timum {x;} when p=2,, @ is orthogonal to all the
spin geminals ¢;. In this case it follows that

Ke|% o)< p@ = u)le s » (59)

where le’l,,, is the eigenvalue of maximum abso-
lute value associated with X in the difference space
between that spanned by all the Slater geminals
and that spanned by the ¢;. The dimension of this
difference space is

B~

Our bound on the energy difference is thus
£ - uE|
< (1= p)]elmax +2[p = w)]¥2[er(K?d)] 2, (60)

and if the optimum x; are used, lel,,, can be re-
placed by le’l . The occurrence of y multiply-
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ing E is somewhat unfortunate, but not really seri-
ous since presumably u~1 in cases of interest.

Since both terms on the right-hand side of Eq.
(60) contain (1 - i), the bound can be improved by
modifying the spin geminal set to increase 4. In
the limit when p becomes equal to 1 the bound goes
to zero and £ = . For u’s somewhat less than 1,
if the optimum ¥; have been used and the term in-
volving le’l,,, makes a significant contribution, the
bound can be reduced by a particular augmentation
of the spin geminal basis. We add to the set {¢,;}
the eigenfunctions of &, within the difference space,
which are associated with large eigenvalues. Be-
cause the new difference space which remains
does not contain these high-energy functions, the
effect of this procedure will be to reduce le’|,,
and thus to improve our bound. Such an augmenta-
tion will clearly not decrease the optimum value of
TR

Of course, we could augment the spin geminal
basis by adding all of the functions in the difference
space. We would then have to deal with a set of

R

2
functions equivalent to the full set of Slater gem-
inals [@;a;], and would again be in effect doing a
complete CI calculation.

IV. METHODS OF CALCULATION AND EFFECTS OF
TRUNCATION

Clearly, the possible practical utility of the
method described above for the construction of
optimally N-representable density matrices is de-
pendent on our ability to construct the

)

dimensional matrix _'Ii and to find the eigenvectors
{C{¥} associated with the largest eigenvalue X,.
Let us first turn our attention to the evaluation of
the elements of i . The operator T is defined in
Eq. (18) and the matrix elements of interest are
those of Eq. (17). Using the well-known rules for
evaluating matrix elements of one- and two-par-
ticle operators between Slater determinants, we
obta.in the following expressions for contributions
to Ty, 48

J il

S o¥a]* Py ¢,[B]ar

1" ¢,08] ar= 0;0a8 (61)

=(N-2)"! ZN3 S o¥1, 2)a¥(3)p,(3, 2) (1) dr
k=

ifa=8

=W =2 (=1 " [p,(1,2)a
X F®)e,8,2)BnVar 0= B,
=0 otherwise (62)

fdﬁlaJ* P3Py (B8] ar

) 5 [ o7, 2) e, 2)

k<1=3

x [la,a,]*(3,4)0,(3, 4) dr if a=8

-1 N
=135 D [ et D00, 2) ar

xf[akal]*(?’; 4)¢j(3, 4) dar if o - a,= B —Bm

_( 1)k+l+m+n <N 2) f ¢)¢(1 2) ﬁ B ](1 2) dr

X [ [aa,]%(3,4)9,(3, 4) dr
if oz--ozk—a,:B—Bm—B,l
=0 otherwise. (63)

The notation @ = B means that the two sets {as. . . ayt
and {B;... By} areidentical; a - a, = 8 - 8,, means
that the two sets differ only in the unequal indices «,
and B,,, theother indices inthe @ setbeing the same
as the other indices in the 8 set; and o -, - o,
=B - B, - B, means that the two sets differ in the
two indices a,, a; and B, B, only. If strongly or-
thogonal geminals® are used, all the integrals are
zero except in Eq. (61) and the third case in Eq.
(63). Since the spin geminals {¢;} can also be ex-
panded in terms of the spin-orbital set {a}, these
results can be expressed entirely in terms of the
expansion coefficients of Eq. (13), which are de-
termined by

(z‘]alaz):f [eya,]%¢, ar . (64)

It should be noted that only the coefficients with
a; < @y are required in Eq. (13). It is convenient
for the expressions we now want, and consistent
with Egs. (13) and (64), to allow either order with
(ilagey)= - ({laya,). The expressions for the inte-
grals can then be written

S oflal*e (8] dr=5;,6,s , (65)

J o¥la]” Pi3¢p,[8] ar

N R
=LV =212 X G apa)* (G apay)
k=3 a1=1 if Q= 3
R
=3(- 1)V -2)! Zl (@] Bu@)*(j | @ty
o=
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ifa-a,=B-8:

=0 otherwise, (66)

f ¢’:[0‘]* P13 Py ¢ (8] dr

_o\1 ~
<N22> 2 (ilakaz)*(]'lakaz)

kr<1=3
if a=8

-1
(-1)k""<N ;2> % i[Bn) (ot
1=3

i}

ifa-a,=8-8,

- -1
= (= 1)k bmen <N2 2) (i1BnBy)* (j |apary)

fa-0,-a;=8-8,-8,
=0 otherwise . (67)

These integrals provide all the information we
need to evaluate the elements of T. Because of
the large dimension of _’Ii it will be difficult, or at
least time consuming, to find the largest eigenval-
ue and the eigenvectors associated with it. Many
of the matrix elements are zero, but even though
the matrix is quite sparse it does not appear to
have any block structure which might aid in the
diagonalization.

The trace of f is of some interest. Since the
positive quantity p[¥] is expressed in Eq. (19) as
a potentially arbitrary weighted average of the ei-
genvalues of i , all the eigenvalues must be non-
negative, and 2,3 thus cannot exceed the trace of
f_. This quantity can be evaluated from the diag-
onal matrix element expressions included above.
It is found that the expansion coefficients occur
only in sums that can be put in the form

R
2| Glaa)

ay<ag=1

which is 1 if ¢; is normalized. The trace is thus
independent of the expansion coefficients. It is
TrT =2M(R-2)!/[NI(R-N)1] . (68)

We note that it is simply proportional to M, the
number of spin geminals in the set.

R . [R
If M=<2 >, then the trace is <N> .

We expect that in this case the eigenvalue 1 will
occur with

0
degeneracy IV

R ~_(R
It M<(2> then Tr_’g<<N>.
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We have noted previously that the number R of
spin orbitals {ai} may be very large or even, if
correlated geminals are used, infinite. It may
thus be necessary to truncate the set, using only
some smaller number R’. In addition, we may
find it a practical necessity to use only

RI
()

of the possible N -2 particle determinants made
up from these spin orbitals. Either of these trun-
cations will affect our estimation of  and also the
elements d;; which we ascribe to the optimally N-
representable density matrix.

As an initial step in the estimation of the conse-
quences of such truncations, we note that much of
what we have done above is in fact valid for any
choice of basis set. The particular choice {q;,
i=1--+R} is merely one which is convenient and is
capable of leading to optimum results. Equation
(7) defines u[¥] for any {x;}, and so long as these
functions are antisymmetric, the expression of
Eq. (10) follows. If the x; are expanded in terms
of some set of Slater determinants built up from
orthonormal spin orbitals, we can arrive at Eq.
(19) and the optimum expansion coefficients are
obtained from Eq. (20). The optimum density ma-
trix has d given by Eq. (24). None of this requires
that the set of spin orbitals be complete for the ex-
pansion of the spin geminals ¢; or that the sum
over the N —2 particle determinants include all
possible choices. If these conditions are not met,
we will not be able in general to attain the truly
optimum u or find the truly best d possible for the
given set {¢i}. This loss of complete optimization
may be offset by gains in convenience, however.
We will still be able to estimate the consequences
of only approximate N representability and thus to
decide in a given case if the results are good
enough.

In deciding which spin orbitals and which deter-
minants to include in the truncated sets we must
be guided by the following considerations: We
want the largest eigenvalue of 'f‘, Ao, to be close to
unity and its degeneracy (or the number of other
eigenvalues nearly degenerate with it) to be suffi-
ciently large to give good variational freedom, but
not so large as to return us effectively to the CI
problem. It is difficult to formulate specific cri-
teria in the general case. The fact that we are
trying to make ¥ as nearly antisymmetric as pos-
sible, together with the effect that various func-
tions have in attaining this goal as indicated by the
results above, suggests certain features of the
criteria, however. Those spin orbitals which fig-
ure significantly in the {¢,} must be included. For
a general set of spin orbitals {oz{ }, we can saythat
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@} and aj must be included in any truncated set if
| [o] aj]*¢, d7 is large for any k. Similarly, the
determinants which are most important to include
are those containing the greatest numbers of the
most important spin orbitals.

Let us consider finally the problem of using the
density matrices resulting from the above proce-
dures to calculate properties of our system. We
suppose that we have chosen not only the set of
spin geminals {q&i}, but also a set of spin orbitals
{a{, i=1++-R% and selected some S of the N -2
particle determinants made up from them. We
suppose that T has been formed and the q+1larg-
est eigenvalues, Xg,...,)\,, together with their
associated eigenvectors {C'/2¥, ¢=0,...,q,
a=1...6,} have been found. The 2-matrix is then
given by Eq. (2) with

[} ¢ O by
d“'-_ Z; Z Z; E Yat Y:u
o' =1 t,u=0 a=1 b=l
X C{t® clud*, (69)

The expectation value of a two-particle operator
G can be written as

1y7=

6)= (g) f:l 4;;Gji

¢ 5t Oy *
= Z; E E Ybquu,at Yat ’ (70)
tyu=0 a=1 b=l
with
Gu=J 671, 2)g1205(1, 2) dr, dr, (71)
or

_ M s
GCruyar = DD cuP* G chr | (72)
2 ) {71 a0m1

When our interest is in the energy of the system

we introduce the reduced Hamiltonian &, as in Sec.

III. We seek to make the value of E stationary,

subject to the normalization constraint of Eq. (26).

We obtain in the usual way an eigenvalue equation

[}
q
Z i Kbu,at Y =EYbu . (73)
t=0 a=1
The dimension of the matrix K which must be con-
sidered is the sum of the degeneracies of the ei-
genvalues which have been included:

q
dimension (K)=2_ 5, . (74)
t=0

The lowest eigenvalue in Eq. (73) is our approxi-
mation to the ground-state energy of the system.
Its associated normalized eigenvector can be sub-

stituted into Eq. (69) to determine an approxima-
tion to the 2-matrix for the system in its ground
state, and from this, other properties can be de-
termined. In the same way, higher eigenvalues
and their associated eigenvectors can be used to
approximate properties of excited states of the sys-
tem. We would expect the approximation to get
progressively worse as we go higher, and it is ob-
vious that to obtain a full description we would
have to work with a matrix of infinite dimension.

For the ground state, where our approximation
should be the best, we can calculate p from Eq.
(27) and bound | E - £ | by using Eq. (60). Since
E is an upper bound to the true ground-state energy,
this establishes a maximum on the extent to which
our estimate may fall below the true value, Of
course, if the {¢;} are poorly chosen or we have
too few linear variational parameters our value
may be far above the true value. This is common
to all variational calculations, however.

V. DISCUSSION OF RESULTS

We have proposed here a method whereby, given
some set of spin geminals, we can find the 2-ma-
trices expressible in terms of them which are as
nearly N representable as possible. We introduce
a family of wave functions, not necessarily anti-
symmetric, which lead to 2-matrices involving only
the given set of spin geminals., The norm of the
antisymmetric component of such a normalized
wave function is taken as a measure of the N rep-
resentability of the corresponding density matrix.
The wave functions are then varied to maximize
this quantity, and thus to obtain the most nearly N-
representable density matrix., The wave function
itself need not appear explicitly at any stage, how-
ever, The measure of N representability and the
density matrix are determined from the eigenval-
ues and eigenvectors of a matrix T . We have giv-
en explicit expressions for the elements of this
matrix,

I the largest eigenvalue of i is degenerate, then
variational parameters occur in the density ma-
trix. K there is no degeneracy, or if more param-
eters are desired, other large eigenvalues of T
may be included. Variational freedom is then
gained at the expense of N representability, Of
course, the spin geminals themselves can be var-
ied, but each change in the spin geminals requires
a reevaluation of N representability. We have al-
so investigated the N representability of a density
matrix for which both spin geminals and expansion
coefficients are given. The problem here is more
difficult and although a new restatement of the ex-
act N-representability problem results, it isdoubt-
ful that practical utility will be found in this case.
The treatment for a given density matrix is thus
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of interest primarily in relating the present treat-
ment to other attacks on the N-representability
problem, This is not a severelimitation, however,
since we are less interested in testing a given
density matrix than in obtaining density matrices
with embedded variational parameters, such that
exact or approximate N representability is main-
tained as the parameters are adjusted to minimize
the energy of the system.

Because the energy calculated from a non-N-
representable density matrix is not an upper bound
to the true ground-state energy of the system, it
is necessary to estimate the consequences for such
a calculation of having only approximate N repre-
sentability., We have obtained a bound on the dif-
ference between £, an energy determined from
the density matrix, and £, determined from an
antisymmetric wave function. Since Eisan upper
bound to the true energy, this establishes a limit
on how far E could possibly be below the true en-
ergy. The difference between these two energies
can be reduced in a systematic way by expanding
the basis set, and becomes zero as exact N repre-
sentability is approached.

The principal difficulty with our approach lies
in the large size of the matrix i 1t can be com-
parable in size to the full CI matrix for the prob-
lem of interest, for a basis set of a given size,
We have thus considered the possibility of truncat-
ing the set of spin orbitals and the set of N- 2 par-
ticle determinants which are used in estimating
N representability and in determining the optimum
density matrix. Such truncations are possible and
the calculation can be carried through, although
the optimum results potentially available for the
given spin geminal set will then not be obtained.

We have neglected the consequences of symme-
try, other than permutational, in the density ma-
trix or in the wave function, It is well known that
symmetry restrictions on the wave function lead
to certain limitations on N-representable density
matrices, %% These restrictions should proba-
bly be imposed if we want satisfactory descrip-
tions of the physical system of interest, We have
not included them in the present discussion be-
cause of the additional complications they would
add to an already difficult problem. The conse-
quences of symmetry should be further investi-
gated,

It is clear that the method proposed here cannot
be properly evaluated until an attempt has been
made to actually apply it to a calculation. We have
considered some model problems in an attempt to
investigate and illustrate the features of the meth-
od, but we find that if the model is simple enough
to be easily treated it does not fully reproduce the
interesting parts of the problem. We are contin-
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uing to investigate more extensive models, and
hope also to apply the method to an actual problem,
probably the lithium atom. When this has been
done we will be better able to assess the practical
utility of the method. Even if it should prove to

be comparable in difficulty to a conventional CI
calculation, however, we feel that the concept of
approximate N representability is a useful one,
and that this investigation has increased our under-
standing of the properties of reduced density ma-
trices.
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APPENDIX A: SPIN-ORBITAL EXPANSION OF
SPIN GEMINALS

The spin geminais with which we work are ortho-
normal and antisymmetric. Each such two-par-
ticle function can be expanded in terms of anortho-
normal set of spin orbitals as

7y ) .
$(1,2) = 2 Fi 27"
r<1=1

(el (1)Eh (2)- &1 (1EE(2)] .

There are well-known advantages to taking the

¢! to be eigenfunctions of the 1-matrix associated
with ¢;. They are the natural spin orbitals of ¢,
and the pseudo-natural-spin orbitals of the full
problem. The number of spin orbitals required,
7;. is the 1-rank of ¢; and may be infinite.

To choose a spin-orbital basis for the whole
problem we first form the space which is the union
of the spaces spanned by the spin orbitals associ-
ated with the various spin geminals, We then find
some orthonormal basis for this space. It might
be convenient to start with the {1} associated
with ¢, which we take to be the spin geminal we
expect to be most important in the final density
matrix. Any of the {£2} associated with the next
spin geminal which cannot be expanded in terms of
thé {£1} are then orthogonalized to all the {£1} and
added to the set. Any independent {£3} are then
orthogonalized and added to the set, and this pro-
cess continued until the set is sufficient to expand
all the {£{}. This final set will be labeled by {a; ,
i=1°-*R}. Clearly,

M
Rs 2 7,

i=1
and we expect that R will be much less than the
sum unless strongly orthogonal spin geminals are
used, in which case the equality holds. The ex-
pansion of Eq. (13) is clearly possible because of
the way in which the {@;} have been chosen.
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APPENDIX B: RELATIONSHIP BETWEEN 7 AND 7

We want to show that the operators

-1 “
(2’) 7 and T,

defined by Eqs. (9) and (18), respectively, have
the 'same matrix elements in the {¢; x;} basis.

The common constant factor

N -1
and the initial term 1 are clearly the same for

both operators. The second terms in 7 are of the
form P,; + P,; and have matrix elements

f ¢>: (12)Xt(3'“j”“N)[Plj'*Paf](Pi(l,Z)Xi (82+2je=*N) dry +d7y

:qu”‘:(l,g)x"; (22282 N) Py (1, 2)x; (j o2 +3¢« = N) drye+ od7y

+ [ ¢5(2,1)x% (oo 3 N) Pyy (2, 1)x; (G-

32+ N)dryedTy

=2f Bk (1,2) x ¥ (32 2je = N)Pyy & (1,2)x; (3 2joo=N)dryevodry .

The first transformation is obtained by relabeling
the dummy variables of integration, and the sec-
ond follows from the antisymmetry of ¢,, ¢;, X,
and Xi- There are N- 2 terms in the sum for

32 j< N, so the second terms of

-1 N
(2’) ¢ and T

are equivalent,
The third terms in 7 are of the form Py, Py,,

Jj <k, and have matrix elements

J &5, 2)x % (82 j, koo N) Py Py (1,2)x; (32 oj kr > * N) dmye o »dry

:f ¢*;(1’z)x*l‘(jvk"°3y4°BoN)P13P24¢)i(1,2)x1 (j,k'°°3,4‘°°N) d71'°°dTN
=/ ¢):(1,2)X7(3,4°°°f,k’“°N)P13Pz4¢4(1.2)Xi (8,4cccjkoe e N)drysoodry .

Use has again been made of relabeling and of the
antisymmetry of x, and ;. There are

()

terms in this sum, corresponding to j <% between
3 and N, The final terms in the two operators are
thus also equivalent,
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