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Shapes of the potential energy surfaces (PES) of “floppy” molecules can be represented by 
graphs in which vertices denote global minima and edges connecting the vertices 
describe energetically accessible paths connecting such global minima. Such graphical 
representations of PESs are characterized by (i) the number of vertices; (ii) edges that connect 
(or do not) various vertices; and (iii) the symmetry of the PES, which may be obtained 
from the graphical figure. These characteristics are shown in this paper to be reflected in the 
vibration-rotation wave function’s symmetry. Such a symmetry analysis reduces to that 
provided by the conventional point group for rigid molecules, but provides a useful tool for 
characterizing vibrations of floppy molecules. In particular, it is shown that for so- 
called connected graphs, the nonrigid group of the molecule is its full permutation-inversion 
group. PESs with connected graphs having three and six global minima are examined 
as examples, and relevant character tables are provided. PESs with disconnected graphs (which 
characterize species containing some inaccessible barriers), are also considered. The 
flexible molecules ArH$, C2H$, CH$, and LiBH4 are considered as examples of the tools 
presented here. 

I. INTRODUCTION II. INTRODUCTORY EXAMPLES 

Decades of developments in computational quantum 
chemistry have produced many tools for carrying out 
rather precise studies of potential energy surfaces (PES) of 
nonrigid (i.e., “floppy”) molecules. However, quite often 
such efforts are restricted to searching for absolute or local 
minima or transition states on the PES and determining 
the geometries of these stationary points as well as the 
corresponding harmonic force constants. 

In the case of nonrigid molecules in particular, it is 
absolutely essential that not only the region of each mini- 
mum be known, but the minimum-energy paths connecting 
all absolute minima on the PES must also be characterized. 
Such information is also essential for determining the non- 
rigid molecular group of the molecule’-5 which, in turn, 
allows one to classify the molecule’s vibration/rotation lev- 
els taking into account the nuclear wave function’s delo- 
calization over all (or many) of the absolute minima. In 
addition, these data are required for designing nonrigid 
dynamical models of floppy molecules and their corre- 
sponding nonrigid Hamiltonian which play a central role 
in interpreting the results of high-resolution spectroscopy 
of such species. 

When studying rigid molecules, the point group sym- 
metry of minimum-energy geometries can be used to label 
electronic and vibration/rotation wave functions. How- 
ever, for floppy molecules, these point group symmetries 
are not useful. Instead, the kind of symmetry tools illus- 
trated in this paper must be used. The methods outline 
here apply to the symmetries of nuclear-motion wave func- 
tions that are delocalized over two or more equal-energy 
global minima; conversions among minima of different en- 
ergy are not treated. 

To introduce the focus of our considerations, let us 
now briefly examine two examples, the C2H$ cation and 
the LiBH, molecule, both of which recently attracted 
much attention because high-resolution spectroscopic ex- 
periments have been performed on them. The C2H$ cation 
will provide an example in which so-called connected 
graphs arise because all global minima can be reached from 
any one of these minima via energetically accessible paths. 
LiBH.+ provides an example in which disconnected graphs 
occur because some, but not all, global minima can be 
connected by energetically accessible paths. 

According to the best ab initio calculations,6 the C,H$ 
cation has a bridged global-minimum structure as shown in 
Fig. 1. However, because its potential energy surface 
(PES) is very flat, the vibrational levels are split due to 
tunneling of the nuclear density function from one global 
minimum to the others. In Fig. 1 each of the six equivalent 
global minima are represented by a vertex; the dots lying 
between the vertices are transition states, and the lines 
connecting vertices denote minimum energy paths. This 
connection of vertices by lines is the graph that can be 
used, following the methods described here, to characterize 
the symmetry of this ion’s potential energy surface. 

The vibration/rotation levels of this ion cannot be clas- 
sified according to the local symmetry group C,, of each 
global-minimum structure. Instead, one must use the non- 
rigid group G(12) which is isomorphic,7 in this case, with 
the D6h point group. Corresponding splittings of the rovi- 
brational levels have indeed been observed in gas-phase 
experiments’ on this species. 

As we can see in this case, flexible intramolecular re- 
arrangements connect all of the global minima on the PES. 
However, in many cases, nonrigid rearrangements may 
connect only a fraction of the global minima. For example, 
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FIG. 1. Graph representing the nonrigid intramolecular rearrangement 
of the C,Ht cation. 

in the LiBH, molecule, according to ab initio calculations,g 
the Lif cation moves with a small barrier around the BHT 
anion, although the anion is a quite stable autonomous unit 
with very high barriers to its own internal rearrangements. 
A graph representing the nonrigid intramolecular rear- 
rangements of this species is presented in Fig. 2. The fact 
that the energetically accessible paths do not connect all 
global minima on the PES of LiBH, is shown by the fact 

that the graph splits into two subgraphs which differ in the 
arrangement of the H atoms within the BH, moiety. The 
vibrational energy levels of this system will split due to 
tunneling of the nuclear density function from one mini- 
mum to the others, but the splitting pattern will be differ- 
ent than if the BHC anion were also floppy enough to 
permit the four H atoms to be exchanged by energetically 
accessible paths. Such splittings have not yet been found in 
recent experiments” on LiBH,, we believe that for analo- 
gous molecules in which the energy barriers are smaller 
(for example, LiA1H4 has lower barriers than LiBHJ, the 
tunneling splittings will be observable. 

Several important questions arise when considering the 
kind of multiminima structure of potential energy surfaces 
introduced above. The first question is how to calculate the 
number of equivalent global minima. The second is how to 
characterize the nonrigid symmetry. It is clear from the 
examples discussed above that this symmetry may be ob- 
tained from the graph describing the flexible intramolecu- 
lar rearrangement. The third question involves how to tind 
the symmetry when the graph describing the flexible rear- 
rangements is not connected but is split into two or more 
equivalent subgraphs. The number of ways a graph may 
split into subgraphs is also considered in this work. Let us 
now move on to introduce the group theoretical tools 
needed to effect the symmetry analysis motivated by the 
above example. 
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FIG. 2. Graph representing the nonrigid intramolecular rearrangement of the LiBH, molecule. 
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Ill. MULTIMINIMA STRUCTURE OF THE POTENTIAL 
ENERGY SURFACES OF POLYATOMIC 
MOLECULES 

Let us tirst consider why polyatomic molecules have 
many global minima and how to calculate the number (n) 
of such minima. Potential energy surfaces arise in the adi- 
abatic approximation to the full Schrtidinger equation of 
the nuclei and electrons when the motions of the nuclei and 
the electrons are separated. This point of view requires that 
all of the atomic nuclei are enumerated. Any rearrange- 
ment of identical nuclei leads to a new, energetically equiv- 
alent, global minimum that corresponds to a distinct geo- 
metrical configuration when viewed from this labeled- 
nuclei point of view. To count the number of such global 
minima, one has to enumerate the geometries using all 
permutations, inversions, and permutation-inversions of 
the equivalent nuclei, excluding those configurations which 
may be interconverted by either translation or rotation of a 
rigid geometrical configuration. 

For complex polyatomic molecules this is not a simple 
problem, but there is a very simple rule for counting the 
number of global minima on the PES of any molecule.1’y’2 
The number (n) of global minima on the PES is equal to 
the quotient obtained when the order (N) of the full 
permutation-inversion group of that molecule is divided by 
the order (g) of the point group of each rigid global- 
miniium configuration. The FPI group GtN) of the mol- 
ecule represented by the brutto formula AIB,Ck is a direct 
product of the permutation groups of the identical nuclei 
and the inversion group E (whose order is 2)) 

G’N’=S,cGm~Sk~~ , 

where SI, S,, S’, are the groups of permutations of the I, 
m, k, nuclei of types A, B, C, respectively. The order of the 
FPI is thus equal to Z! x m! x k! x 2. For example, for 

C6H6,6!x6!x2=1 036 8OO=n. 

The order of the point groups of the rigid global-minimum 
configurations of NHs, GH,, and C!,H6 are 6 (C’J, 
12 ( Dsd), and 24 ( Dhh), respectively. Hence, according to 
the rule stated above, it can be established that the mole- 
cules NHs, C2Hs, and C6H6 have 12/6=2, 2880/12=240, 
and 1036 800/24=43 200 energy-equivalent global min- 
ima on their PESs. 

These data form the first piece of information needed 
to implement the tools treated in this paper, the number of 
vertices (n) to draw in the graph. Whether a given vertex 
is connected to another vertex by a line segment depends 
on whether the corresponding minima can be intercon- 
verted via an energetically accessible path; this can only be 
known as a result of experimental spectroscopic or dynam- 
ical measurement or quantum chemistry calculation. 

IV. GRAPHICAL REPRESENTATIONS OF POTENTIAL 
ENERGYSURFACES 

Potential energy surfaces of polyatomic molecules are 
highly multidimensional. It is therefore very useful to find 
simple graphical representations of PES that take into ac- 
count all minima that can be connected by flexible in- 
tramolecular rearrangements. Graphs13 are the simplest 
way to present such attributes with the absolute minima 
denoted by vertices of the graph and the minimum-energy 
paths shown as the edges (if the energy barrier separating 
the two minima is too high to be accessible, there is no edge 
connecting these two minima). Such graphs can have high 
symmetry since all vertices have the same order (i.e., num- 
ber of edge lines leading to them), and equivalent minima 
have geometrical structures that differ only by numeration 
of the atoms. 

In this article, we will consider only cases in which one 
type of flexible rearrangement connecting equivalent struc- 
tures is available, although there do exist cases in which 
two or more accessible paths can interconnect equivalent 
structures. In our case, single lines can be used to connect 
pairs of vertices, and only two types of graphs are possible. 
The first is a connected graph describing rearrangements 
that can connect all global minima to all others; in these 
graphs all vertices can be reached by moving along edges to 
all other vertices. The second graphs are disconnected and 
are split into two or more disjoint subgraphs. In this case, 
some vertices cannot be reached from others by moving 
along edges. The latter apply when energetically accessible 
nonrigid rearrangements connect only a subset of the glo- 
bal minima on the potential energy surface. Let us consider 
these two cases separately. 
A. Potential energy surfaces with connected graphs 

If the graph representing a potential energy surface is 
connected, all of the equivalent global minima are accessi- 
ble from one another and hence, the nonrigid group of the 
molecule is its FPI group. Let us consider two examples: 
the PES of the flexible intramolecular rearrangements of 
ArH$ (Fig. 3) and of C2H$ (Fig. 1). 

1. ArHi 

From the literature,14 we know that ArH$ has C2, 
symmetry at its three equivalent global-minimum struc- 
tures, in which the Ar atom is coordinated to an edge of 
the Hz triangle. The saddle points connecting these three 
minima also have C,, symmetry with the Ar coordinated to 
a vertex of the H3f triangle. 14(a) The graph describing the 
flexible intramolecular rearrangement is shown in Fig. 3. 

We now demonstrate how to identify the applicable 
nonrigid symmetry group from Fig. 3 and the molecular 
formula ArH$ . All three minima have C,, local symmetry. 
Starting with the structure C,,, I in the first global mini- 
mum, we note that there are four elements in this C2, local 
symmetry group. These elements may be represented 
through the permutation-inversion operations as E, (23), 
p, and (23)*, where E is the identity operation, (ab) 
represents the pairwise intercharge of protons a and b, and 
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FIG. 3. Graph representing the nonrigid intramolecular rearrangement 
of the ArH$ cation. 

the * means also invert all particles through to origin. 
These elements form the first part of the nonrigid group. 
Next, we introduce the cyclic permutation ( 123) that leads 
from the structure C,,, I into the CzU, II structure and 
transfers the molecule from global minimum I into mini- 
mum II (see Fig. 3). Here ( 123) labels the cyclic permu- 
tation of the protons in the ArH$ cation. Next, E, (23), 
E*, and (23)” are multiplied by (123) to generate the 
second set of elements of the nonrigid group. Doing so 
gives four new elements (123), (12), (123)*, and (12)“. 

Similarly, (132) transfers structure C2, I into C,, III. 
Again, the direct product of E, (23), p, and (23)” with 
(132) gives four new elements: (132), (13), (132)*, and 
(13)“. The final twelve elements: E,E*, (12), (12)*, (13), 
(13)*, (23), (23)*, (123), (123)*, (132), and (132)” 
form the nonrigid group which describes the symmetry of 
this flexible potential energy surface. This is exactly the full 
permutation-inversion (FPI) group of the ArH,f cation, 
which is the direct product of S, o S, @ E and has order 
3!x l!x2=N (i.e., G(12)). This G(12) group is isomorphic 
to the D,, point group and the table of characters of this 
group is given in Table I. 

According to high level ab initio data, this molecule 
has a very low barrier (3.9 kcal/mol) for intramolecular 
rearrangement.‘4(a) The high symmetry G(12) of this floppy 
system should be observable due to tunneling of its nuclear 
wave function density from one minimum into another. 
Indeed, such experimental tunneling splittings in ArH$ 
and ArD3f have been observed by high resolution submil- 
limeter wave spectroscopy. 14(c)J4(d) 
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TABLE I. Table of characters of the nonrigid G”” group of the ArH$. 

G’ 12) E (123) (12) E* (123)* (12)* 

Order 1 2 3 1 2 3 

-4: 1 1 1 1 1 1 
-4: 1 1 -1 1 1 -1 
Ef 2 -1 0 2 -1 0 
Ai 1 1 1 -1 -1 -1 
4 1 1 -1 -1 -1 1 
E- 2 -1 0 -2 1 0 

We have already mentioned in Sec. I that the C,H$ 
cation has a bridged global-minimum structure and that its 
potential energy surface is very flat. The FPI group of this 
cation is the direct product of the permutational groups 
S2 8 S3 8 e, where S2 and S3 are the permutation groups of 
the carbons and hydrogens, respectively. The order of this 
group is 2! x 3! X 2=24. Therefore the number of global 
minima on the PES calculated according to the rule from 
the previous section is 24 (order of the FPI)/4 (order of 
C,,) = 6. 

The graph representing the flexible intramolecular re- 
arrangement of C2H$ is shown in Fig. 1. This graph is 
connected and therefore the FPI group is the nonrigid 
symmetry group of C2H3f (as well as the BqH, anion) 
which are known~s~” to be flexible molecular systems. The 
nonrigid group describing the symmetry of the vibration/ 
rotation states of qH$ may be obtained from the graph on 
Fig. 1 and the C2, local symmetry group. In this case, we 
have six local C,, groups. Starting from any global mini- 
mum structure [let us take the C,,, I structure with the 
four E, (23 ) (45 ) , EE and ( 23 ) (45 ) * elements of the local 
symmetry group], we multiply these four elements by 
( 13) * which connects C2, I and the structure C2,, II. Mov- 
ing along the graph in a manner analogous to that detailed 
above for ArH,f, we obtain 24 permutation-inversion ele- 
ments which form the nonrigid group of GHt. This group 
is exactly the FPI group of this cation and is isomorphic 
with the DGh point group; its table of characters is given in 
Table II [see Ref. 7 (a)]. 

6. Short cuts 

Based on the two examples treated above, one might 
wonder how the symmetry group of the graph detailing the 
n interconnected minima relates to the nonrigid symmetry 
group of the nonrigid molecule whose PES is represented 
by the graph. In these two cases above, the graphs Gr( 3,2) 
and Gr(6,2) (the tlrst integer is the number of connected 
global minima and the second is the number of minimal 
energy pathways leading to each minimum) have D, and 
D6 symmetry.‘3 The nonrigid symmetries of ArH$ and 
C,H$ are D3h and D6,,. Therefore, for molecules whose 
PES are represented by graphs with D, symmetry, the FPI 
group is the direct product of D,, and the inversion group: 
D, 8 E. The tables of characters of the resulting Dnh groups 
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TABLE II. Table of characters of the nonrigid GCz4’ group of the GH: cation. 

(123) (12) (123) (12) 
E (45) (123) (45) (12) (45) E* (45)* (123)* (45)* (12)* (45)* 

Order 

A$ 
“f 
‘Gil 
A:, 
E,’ 
Et? 
Alb 
Ai 
44 
4 
EF 
E; 

2 

1 
1 

-1 
-1 
-1 

1 
1 

-1 
-1 
-1 

2 

1 
1 

-1 
-1 

1 
1 
1 
1 

-1 
-1 

1 

1 
1 

-1 
-1 

2 
-2 

1 
1 

-1 
-1 

2 
-2 

3 

-1 

-1 
0 
0 
1 

-1 
1 

-1 
0 
0 

3 1 

1 1 
-1 1 
-1 1 

1 1 
0 2 
0 2 
1 -1 

-1 -1 
-1 -1 

1 -1 
0 -2 
0 -2 

2 

1 
1 

-1 
-1 
-1 

-1 
-1 

1 

-1 

-1 
-1 
-1 
-1 
-1 
-1 

-1 
-1 

2 
-2 
-1 
-1 

1 
1 

-2 
2 

3 

1 
-1 

-1 
0 
0 

-1 

-1 

0 
0 

3 

1 
-1 
-1 

0 
0 

-1 
1 
1 

-1 
0 
0 

are known and may be used for classification of the 
vibration/rotation states of such nonrigid species. 

Another type of graph whose symmetry generates the 
nonrigid group of the corresponding molecules is Gr(n,n 
- 1). From graph theory13 it is known that graphs of the 
form Gr (n,n - 1) have S, symmetry. However, molecules 
that have PES described by Gr( n,n - 1) graphs have 
higher symmetry that S,; in particular, the FPI groups of 
molecules having Gr( n,n- 1) graphs are direct products 
of S’,, and the inversion group: S, Q E. 

Although these shortcuts can be used for Gr (n,n - 1) 
and Gr(n,2), in a general case the group of the graph may 
not relate directly to the nonrigid group of the molecule. 
Therefore, the tools described above in Sets. IV A 1 and 
IV A 2 should be used to find all elements of the flexible 
group starting from the local symmetry elements of the 
global minimum structure and multiplying by 
permutation-inversion elements that transfer one structure 
into another. 

D. Potential energy surfaces with disconnected 
graphs 

If a graph is used to represent the PES of a species in 
which high barriers do not allow all of the minima to be 
reached from all other global minima (which is the most 
common case in floppy molecules), the graph splits into a 
number of subgraphs (all of which are equivalent). The 
symmetry obtained from the subgraph then is what deter- 
mines the symmetry of the vibration/rotation wave func- 
tions. 

One must know how to form and characterize such 
subgraphs. Graph theory can solve this problem if the ab- 
solute minimum and the transition states connecting them 
are known, since this information determines the degree of 
the graph vertices (all of which are equivalent). The order 
of the vertices is given by the number of minimum energy 
paths originating in a given absolute minimum and con- 
necting to neighboring minima. 

J. Chem. Phys., Vol. 98, No. 11, 1 June 1993 

For each graph Gr( n,v) where n is the number of 
vertices and v is the order of each vertex, one may deter- 
mine the number (k) of subgraphs the original graph can 
split into. For the initial graph Gr(n,v) to split into k 
equivalent subgraphs (each of which is characterized by nl 
vertices or order v), the following conditions have to be 
satisfied: 

n=kxnl, (1) 

v(n1- 1, (2) 

q is k-fold, (3) 
where q is the number of edges of the graph G(n,v). 

The first condition requires that the number of vertices 
in the initial graph Gr(n,v) and in the k subgraph 
Gr(nl,v) does not change after splitting; that is, there are 
n global minima whether they can or cannot be connected 
by energetically accessible paths. The second condition 
points to the fact that the order of the vertex can not be 
higher than the number of vertices minus 1; that is, each 
minimum is connected to no more than nl - 1 others. The 
third condition satisfies the Euler theorem for the subgraph 
Wfw), 

nl Xv=2q. (4) 
For small values of n and v, finding values of k and nl 

that satisfy conditions (l)-( 3) can be checked without 
utilizing computational devices, but for large values it is 
difficult, so we have developed a computer program that 
determines all possible splittings of a graph Gr (n,v) into k 
connected subgraphs Gr(nl,v) with nl vertices. Table III 
presents the results of the application of this program to 
graphs for n=6-30 and v=2,14. 

To help clarify, let us consider again the LiBH, mole- 
cule. This molecule was predicted more than 16 years9 ago 
to have a very flat potential energy surface with global 
minima of C,, symmetry (with the Li+ cation coordinated 
to a face of the BHr tetrahedron). This structure of the 
global minima was recently experimentally verified.” The 
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TABLE III. All possible splittings of the graphs Gr(n,u) into connected subgraphs, where n=6-30 and t~=2-14.~ 

Gr(6,2) split into 2 
Gr(3,2) 
Gr( 10,4) split into 2 
Gr(W) 

Gr( 14,2) split into 2 
Gr(72) 
Gr( 16,2) split into 2 
Gr(8,2) or 4 Gr(4,2) 
Gr( 16,7) split into 2 
Gr(8,7) 

Gr( 18,6) split into 2 
Gr(9,6) 

Gr(20,5) split into 2 
Gr( 10,5) 
Gr(21,2) split into 3 
Gr(7,2) or 7 Gr(3,2) 
Gr(22,6) split into 2 
Gr(11,6) 

Gr(24,4) split into 2 
Gr( 12,4) or 3 Gr(8,4) 
or 4 Gr(6,4) 
Gr(24,9) split into 2 
Gr( 12,9) 
Gr(26,2) split into 2 
Gr(13,2) 
Gr (26,12) split into 
2 Gr( 13,12) 
Gr(28,2) splits into 
2 Gr( 14,2) or 4 
Gr(7,2) or 7 Gr(4,2) 
Gr(28,7) split into 2 
Gr( 14,7) 
Gr(28,12) split into 
2 Gr( 14,12) 

Gr(30,5) split into 3 
Gr( 10,5) or 5 Gr(6,5) 

Gr(30,lO) split into 
2 Gr( 15,lO) 

Gr( 8,4) split into 2 
Gr(4,2) 
Gr( 12,2) split into 2 
Gr(6,2) or 3 Gr(4,2) 
or 4 Gr( 3,2) 
Gr( 14,4) split into 2 
GrU,4) 
Gr( 16,3) split into 2 
Gr(8,3) or 4 Gr(4,3) 
Gr( 18,2) split into 2 
Gr(9,2) or 3 Gr(6,2) 
or 6 Gr(3,2) 
Gr( 18,8) split into 2 
Gr(9,8) 

Gr(20,6) split into 2 
Gr( 10,6) 
Gr(21,4) split into 3 
Gr(7,4) 
Gr(22,8) split into 2 
Gr(11,8) 

Gr(24,5) split into 2 
Gr( 12,5) or 3 Gr(8,5) 
or 4 Gr(6,5) 
Gr(24,lO) split into 
2 Gr( 12,lO) 
Gr(26,4) split into 2 
Gr( 13,4) 
Gr(27,2) split into 3 
Gr(9,2) or 9 Gr(3,2) 
Gr(28,3) splits into 
2 Gr( 14,3) or 7 
Gr(43) 
Gr(28,8) split into 2 
Gr( 14,8) 
Gr(28,13) split into 
2 Gr( 14,13) 

Gr(30,6) split into 2 
Gr( 15,6) or 3 
‘3(W) 
Gr(30,12) split into 
2 Gr(15,12) 

Gr( 8,3) split into 2 
Gr(4,3) 
Gr( 12,3) split into 2 
Gr(6,3) or 3 Gr(4,3) 

Gr( 14,6) split into 2 
Gr(7,6) 
Gr( 16,4) split into 2 
WW) 
Gr( 18,3) split into 3 
Gr(6,3) 

Gr(20,2) split into 2 
Gr(10,2) or 4 Gr(5,2) 
or 5 Gr(4,2) 
Gr(20,7) split into 2 
Gr( 10,7) 
Gr(21,6) split into 3 
GrU,6) 
Gr(22,lO) split into 
2 Gr(ll,lO) 

Gr(24,6) split into 2 
Gr( 12,6) or 3 Gr(8,6) 

Gr( 24,ll) split into 
2 Gr(12,ll) 
Gr(26,6) split into 2 
Gr(l3,6) 
Gr(27,4) split into 3 
GrCW 
Gr(28,4) split into 2 
Gr( 14,4) or 4 Gr(7,4) 

Gr(28,9) split into 2 
Gr( 14,9) 
Gr(30,2) split into 2 
Gr( 15,2) or 3 
Gr( 10,2) or 5 Gr(6,2) 
or 6 Gr(5,2) or 10 
GrW) 
Gr(30,7) split into 3 
Gr( 10,7) 

Gr( 30,14) split into 
2 Gr( 15,14) 

Gr(9,3) split into 3 
GrW) 
Gr( 12,4) split into 2 
Gr(64) 

Gr( 15,2) split into 3 
Gr(5,2) or 5 Gr(3,2) 
Gr( 16,5) split into 2 
Gr(8,5) 
Gr( 18,4) split into 2 
Gr(9,4) or 3 Gr(6,4) 

Gr(20,3) split into 2 
Gr(10,3) or 5 Gr(4,3) 

Gr(20,8) split into 2 
Gr( 10,8) 
Gr(22,2) split into 2 
Gr( 11,2) 
Gr(24,2) split into 2 
Gr( 12,2) or 3 Gr(8,2) 
or 4 Gr(6,2) or 6 
Gr(4,2) or 8 Gr(3,2) 
Gr(24,7) split into 2 
Gr( 12,7) or 3 Gr(8,7) 

Gr(25,2) split into 5 
Gr(52) 
Gr(26,8) split into 2 
Gr( 13,8) 
Gr(27,6) split into 3 
GrW) 
Gr(28,5) split into 2 
Gr( 14,5) 

Gr(28,lO) split into 
2 Gr( 14,lO) 
Gr(30,3) split into 3 
Gr(10,3) or 5 Gr(6,3) 

Gr(30,8) split into 2 
Gr(15,8) or Gr(10,8) 

Gr( 142) split into 2 
Gr(5,2) 
Gr( 12,5) split into 2 
Gr(6,5) 

Gr( 15,4) split into 3 
WV) 
Gr( 16,6) split into 2 
GrOM) 
Gr( 18,5) split into 3 
WV) 

Gr(20,4) split into 2 
Gr( 10,4) or 4 Gr(5,4) 

Gr(20,9) split into 2 
Gr( 10,9) 
Gr(22,4) split into 2 
WlV) 
Gr(24,3) split into 2 
Gr( 12,3) or 3 Gr(8,3) 
or 4 Gr(6,3) or 6 
Gr(4,3) 
Gr(24,8) split into 2 
Gr(12,8) 

Gr(25,4) split into 5 
GrW) 
Gr(26,lO) split into 
2 Gr( 13,lO) 
Gr(27,8) split into 3 
Gr(W 
Gr(28,6) split into 2 
Gr( 14,6) or 4 Gr(7,6) 

Gr(28,ll) split into 
2 Gr(14,ll) 
Gr(30,4) split into 2 
Gr( 15,4) or 3 
Gr( 10,4) or 5 Gr(6,4) 
or 6 Gr(5,4) 

Gr(30,9) split into 3 
Gr( 10,9) 

‘Graphs which cannot be split into connected subgraphs are not shown. 

saddle points connecting these minima have C,, symmetry 
(with the Lif cation coordinated to an edge of the BHT 
tetrahedron). Therefore from every global minima, there 
exist three paths leading to three saddle points, so the order 
of each vertex is three. The FPI group of this molecule is 
Gc4*) and can be written as a direct product of 
S4eS1 es, 8 E. The order of this group is 48, and the 
order of the minimum-energy structure’s C,, point group is 
6. Therefore this molecule has 48/6 = 8 global minima on 
its PES. Because the symmetry of the saddle points is C,, 
(order 4), the number of saddle points is 48/4= 12. 
Ab initio studies of this molecule have shown only the Li+ 

cation movement around BH, to be flexible, while inter- 
conversion of the tetrahedral anion’s H atoms are forbid- 
den by high barriers-l6 Therefore, the FPI group of this 
molecule is not the proper group to use, and the Gr( 8,3) 
graph is hence, not proper to use either. 

The graph of this molecule which takes into account 
only the nonrigid movement of Li+ around the quasirigid 
BH; anion is presented in Fig. 2.16 We see that this graph 
consists of two equivalent subgraphs Gr (4,3 > , consistent 
with the predictions of Table III which shows that Gr (8,3) 
can split into two Gr(4,3) graphs. Because all operations 
that involve inversion of all nuclei are forbidden by large 
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energy barriers, the rovibrational levels of flexible mole- 
cules of this type should be classified according to G(24), 
which is isomorphic to the Td point group. While such 
splittings have not yet been observed experimentally, they 
have been predicted on the basis of numerical nonrigid 
Hamiltonian calculations. l7 

Trial calculations of the nonrigid vibrational levels of 
LiBH4, NaBH4, and LiCH$ with nonrigidity belonging to 
the subgraph Gr(4,3) (i.e., N1=4, v=3) have been per- 
formed by Baranov and Boldyrev. l7 In their calculations, a 
simple two-dimensional nonrigid model describes the L+ 
cation’s internal rotation around BHT or CH, with a fixed 
L+-MH4 radius. The analytical potential energy surface 
used for these studies had minima, saddle points, and max- 
ima with the L+ ion located at the centers of tetrahedral 
faces, at the middle of the edges, and at the apices of the 
tetrahedron MH,, respectively. The energy surface param- 
eters for this model were taken from ab initio calculations. 
Recently, Ohashi and Hougen’* and Hirota” considered 
the internal motion in LMX, species from a more general 
point of view. 

The eigenstates of these molecules computed in this 
model cannot be classified in accordance to the C’s, local 
symmetry of the global minima, because tunneling between 
the wells splits the states into components that correspond 
to flexible symmetry group G(24) (or Td). The calculated 
tunneling splittings increase rapidly when moving from the 
lowest states to higher states. Near and above the energy of 
the saddle point, the tunneling splittings become compara- 
ble to the transition frequencies, as result of which these 
levels may be described only in accordance with the non- 
rigid symmetry G(24). 

The correspondence between the three representations 
of the C,, group and those for Td are as follows: 

A,41+T2, 

E+E+Tl+T2. 

The calculated vibrational energy levels in Ref. 17 did in- 
deed follow patterns and degeneracy that should be for 
these symmetry labels. 

While LiBH, [Refs. 10(b) and 10(c)] and NaBH4 
[Ref.% lO( a) and lO( c)] have been studied in gas phase 
microwave spectra, the predicted tunneling splittings were 
not observed for either of these molecules. Hirota and co- 
workers”(b) pointed out that the tunneling barriers used in 
the dynamics calculations were too low (according to more 
sophisticated ab initio calculations, these barriers should be 
1.5-2.0 times as high as those used). This could then ex- 
plain why these splittings were not observed in the micro- 
wave experiments. However, for excited vibrational states 
of LiBH,, NaBH4 or LiCH$ as well as for similar mole- 
cules with lower barriers (e.g., LiAlH, and NaAlH4), such 
splittings may indeed be observed. 

Other examples with PES described by disconnected 
graphs are CH$ and BH4, which are Jahn-Teller unstable 
species. The local symmetry of the global minima are C,, 
for both according to the best theoretical calculations2’ and 

FIG. 4. Graph representing the nonrigid intramolecular rearrangement 
of the CH.$ and BH, molecules. 

to experimental studies.21 However, the barriers for the 
intramolecular rearrangements from one minimum to an- 
other, through local-symmetry C’, transition states, are not 
high (ca. 1 kcal/mol for CHz,20(a)*20(C) and 7 kcal/mol for 
BH4,20(d) including ZPE correction). 

The FPI group of the CH$ cation and BH, cation and 
BH4 molecule is the direct product of the permutation 
group S4 (permutations of protons), St (permutations of 
carbon or boron), and inversion: S4 8 St 8 E. The order of 
this group is 4! X l! X 2 = 48. According to the rules given in 
Sec. III, the number of global minima is 48 (order of the 
FPI group)/4 (order of the C,, group) = 12, and the num- 
ber of saddle points is 48 (order of FPI group)/2 (order of 
the C, group) =24. From every C2, global minimum, four 
minimal energy paths lead to other global minima through 
C, symmetry saddle points. According to ab initio calcula- 
tions, there are two types of saddle points of C, symmetry. 
The lower energy pathways proceed via transition struc- 
tures of C, symmetry which connect minima with the same 
chirality. Therefore, if we consider only rearrangements 
with the lowest barriers, the resulting graph of the in- 
tramolecular rearrangements has the form presented in 
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TABLE IV. Table of characters of the nonrigid Gtz4) group of the LiBH4 
molecule. 

G(X) E (123) (12) (1234) (12)W) 

Order 1 8 6 6 3 

4 1 1 1 1 1 
A2 1 1 -1 -1 1 
E 2 -1 0 0 2 
Tl 3 0 -1 1 -1 
T2 3 0 1 -1 -1 

vibrational motion about a global or local minimum on 
their potential energy surfaces. In these cases, the point 
group symmetry of the minimum-energy geometry can be 
used. Floppy molecules’ energy levels cannot be labeled by 
the point group symmetries of any one of their minimum- 
energy geometries because their vibrational wave functions 
may sample numerous such minima. 

Fig. 4 which appeared in an article by Paddon-Row 
et aL20Ca) The flexible group describing delocalization of 
such a molecule through six global minima according to 
the subgraph Gr( 6,4) may be found by starting from the 
c2v local symmetry group and multiplying by 
permutation-inversion elements that connect one global 
minima to another. The resulting nonrigid group G(24) has 
24 elements and its table of characters is presented in Table 
IV. This group is isomorphic to the T, point group.22 The 
order of G(24) is half that of the FPI group because we 
assumed that moving from minima with S chirality to min- 
ima with R chirality is forbidden by large barriers. 

In the above example, we have a graph that is not of 
the Gr(n,2) or Gr(n,n- 1) families. This is a case where 
the group of the graph Gr (6,4) does not describe the non- 
rigid symmetry of the CH$ or BH, molecule. In summary, 
when high energy barriers make some of the interconver- 
sions of n global minima impossible, the FPI group 
Gr(n,v) is inappopriate. The Gr(n,u) graph must be split 
into k subgraphs Gr(q,u) after which the nonrigid group 
obtained from the Gr(nr,v) graph can be used to label the 
vibration/rotation energy levels of the molecule. 

Our development is based on describing the potential 
energy surface of a floppy molecule in terms of n, the num- 
ber of equivalent global minima, as well as u, the number of 
other global minima which can be reached via energetically 
accessible paths from any one minimum. A graph with n 
vertices and u lines connecting each vertex to u other ver- 
tices is used to generate the permutation-inversion symme- 
try group required to label the vibration/rotation energy 
levels of the molecule. The ArH$ and C2H3f cations are 
used as illustrative examples. 

In species such as Li+BHc and CH$not all of the 
global minima can be interconverted via energetically ac- 
cessible paths. In such cases, the graph connecting the n 
minima spZits into two or more equivalent subgraphs each 
describing energetically accessible interconversions among 
subsets of the n minima. The permutation-inversion group 
obtained according to these subgraphs can be used to label 
the vibration/rotation energy levels in these cases. Table 
III lists, for species having 6 to 30 minimum-energy struc- 
tures, how graphs for n minima can split into k subgraphs 
for the sets of n/k minima that are interconvertible. 
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