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Guided ion beam kinetic energy thresholds in the ion-molecule reactions M+ + H, + MH+ + H, 
where M+=B+, Al+, and Ga+ exceed by 0.4--5 eV the thermodynamic energy requirements 
or theoretically computed barrier heights of these reactions. In addition, the formation of MD+ 
occurs at a significantly lower threshold than MH+ when Mf reacts with HD. Moreover, the 
measured reaction cross sections for production of MH+ product ions are very small ( 10-17- 
10B2’ cm2). These facts suggest that a “dynamical bottleneck” may be operative in these 
reactions. In this work, the eigenvalues of the mass-weighted Hessian matrix, which provide 
local normal-mode frequencies, are used to identify locations on the ground-state MH: poten- 
tial energy surfaces where collisional-to-internal energy transfer can readily take place. In par- 
ticular, the potential energies at geometries where eigenvalues corresponding to interfragment 
and to internal motions undergo avoided crossings are related to the kinetic energies of apparent 
reaction thresholds. This near-resonance energy transfer model, applied to M+ + HD reactions, 
displays the experimentally observed preference to form MD+ at lower collision energies than 
MHf as well as the fact that reaction thresholds may greatly exceed thermodynamic energy 
requirements. This model explains the small reaction cross sections in terms of high energy 
content and subsequent dissociation of nascent MHf (or MD+) ions. Although the mass- 
weighted Hessian matrix is used as a tool in this analysis, the model put forth here is not 
equivalent to a reaction-path Hamiltonian dynamics approach. 

1. INTRODUCTION 

Guided ion beam measurements’ of cross sections for 
reactions of closed-shell ‘5 B+, Al+, and Ga+ ions with 
closed-shell ‘ZZg H,, D,, and ‘B+HD have shown features 
that require interpretation. 

(i) The apparent thresholds (i.e., the collision energies 
where product MH+ or MD+ ions are first formed) ex- 
ceed the minimum thermodynamic energy requirements by 
significant amounts (e.g., by up to 5 eV for Ga+ ) . 

(ii) In experiments with HD, MD+ formation displays 
a lower energy threshold than MH+. 

(iii) The cross sections are small ( 10-‘7-10-20 cm2) 
and are smallest for Ga+ and largest for Bf. 

In the present work, we report findings that relate to 
these experiments and which allow an interpretation of 
much of the data in terms of features of the Mf +H2 po- 
tential energy surfaces in regions of strong mode coupling. 

In particular, a mass-weighted Hessian analysis of the 
Iocal natural frequencies for intrafragment and interfrag- 
ment motions in regions of strong repulsive interactions 
shows that energy transfer may be the rate limiting step in 
these reactions. The collision energies needed to access ge- 
ometries where such dynamical resonances occur are cor- 
related with observed reaction thresholds. Moreover, for 
M+ +HD collisions, energy transfer that results in MD+ 
formation is shown to occur at lower energy than that 
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producing MHf which involves a higher-energy reso- 
nance. 

In all cases, the electronic energies in such regions of 
strong coupling approach (for B+) or even exceed (for 
Al+ and Ga+ ) the dissociation energy of H2. As a result, 
collisions that access such regions produce MH+ or MD+ 
with a large amount of internal vibrational energy. In fact, 
these product ions are likely to possess enough internal 
energy to fragment, thereby reducing the MH+ (MD+> 
yield and the measured reaction cross section (least so for 
Bf and most so for Ga+). 

The present use of eigenmodes of the mass-weighted 
Hessian matrix differs from that embodied in the so-called 
reaction path Hamiltonian approach. In our model, the 
critical geometries need not lie on or even in close proximity 
to a reaction path, and have energies far in excess of such a 
path or of corresponding first-order saddle points (i.e., 
transition states). Our critical geometries relate more 
closely to those that are realized in the experiments’ very 
nonequilibrium high-energy ion-molecule bimolecular col- 
lisions in which the reagents possess little internal energy. 

In Sec. II, we describe the computational methods 
used to compute the potential energy surfaces, gradient 
vectors, and mass-weighted Hessian matrices use in this 
work. In Sec. III, we present and discuss our potential 
energy surfaces and the reaction energetics they imply, and 
in Sec. IV, we introduce a dynamical model to simulate the 
early stages of the M+ + H2 ( D2 or HD) collisions. Section 
V describes our primary findings and their relation to the 
experimental data, and in Sec. VI, we summarize. 
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II. COMPUTATIONAL METHODS 

A. Basis sets 

MP4 energies were computed using the GAUSSIAN 92 
program.g 

For the B+ +H2 and Al+ +H2 calculations, the H 
atom basis was Dunning’s augmented correlation consis- 
tent (cc) polarized valence triple-zeta (P-VW 
(5~2pldl3s2pld) set of functions.’ For the B+ ion, the 
Dunning ( lOs5p2dj 4s3p2d) augmented cc p-VTZ basis 
set3 was used, and a total of 55 contracted Gaussian-type 
basis functions resulted for BH$. For the Al+ ion, the 
McLean-Chandler ( 12~9~ 16~5~) basis set4 augmented 
with one 3d polarization function (exponent 0.4) was used, 
and total of 57 contracted Gaussian-type basis functions 
resulted for AlH$. In the case of Ga+, the so-called 
Stevens-Basch-Krauss (SBK) psuedopotential,5 which 
treats Is, 2s, and 2p orbitals implicitly and 3s, 3p, 3d, 4s, 
and 4p orbitals explicitly, was used with a (8 L,6d I4L,3d) 
basis. For GaH,f , a 6-3 1 lG** basis6 was employed for 
each H atom, thus giving a total of 46 explicit atomic 
orbitals. 

Ill. REACTION ENERGETICS 

A. Potential energy surfaces 

7. C, surfaces 

In Figs. 1 (a)-1 (c) are shown contour potential energy 
surfaces for the CAS-MCSCF ground electronic states 
(which have singlet spin and totally symmetric spatial 
symmetry) of the three M+ +H2 reactions considered here 
within C,, symmetry. The axes in the graphs are R the 
distance in Angstroms from the M nucleus to the midpoint 
of the H-H moiety, and r the distance between the two H 
nuclei (see Fig. 2). The similarities among the three sur- 
faces are striking, with the primary differences being re- 
sults of (i) B+ being smaller than Al+ and Ga+; and (ii) 
the H-B-H bonds being stronger than the H-Al-H bonds 
which are a bit stronger than the H-Ga-H bonds. 

In each of these surfaces, four regions are noteworthy: 
(i) the asymptotic region (R > 3 A and r near 0.7 A), 

B. Electronic configurations and wave functions 

In generating the potential energy surfaces, optimal 
geometries, and local harmonic vibrational frequencies re- 
ported here, the complete active space (CAS) -based mul- 
ticonfigurational self-consistent field (MCSCF) method 
was used to treat correlations among the valence electrons 
of the MHH+ system. The six valence orbitals are all those 
derived from the metal ns, np, and the two H 1s orbitals. 
The final electronic energies at critical (i.e., optimal) ge- 
ometries were evaluated at the quadratic configuration in- 
teraction including single, double, and approximate triple 
excitations [QCISD(T)] level to obtain more quantitative 
estimates of thermodynamic data. In a few situations, con- 
vergence difficulties arose in implementing the QCISD (T) 
calculations, so we resorted to fourth order Marller-Plesset 
perturbation theory (MP4) for computing our most accu- 
rate energies. 

where a narrow entrance channel governs the approach of 
M+ to H, and where the energy variation along the r 
coordinate is essentially that of an isolated H-H bond, 
while that along R is rather weakly increasing as R de- 
creases; 

(ii) the H-M-H+ linear-ion region near R = 0 pertain- 
ing to the locally stable ‘E$ ion (for HAl+H and HGa+H, 
this ion is me&&able with respect to H2+Al+ or H2 
+Ga+; for HBH+, the ion lies below H,+B+ ); 

(iii) the “barrier” connecting the entrance channel 
and the linear-ion minimum (the barrier regions are 
marked by X in Figs. 1; we refer to them as barriers rather 
than transition states because, as discussed later, they are 
second-order saddle points on these surfaces); 

As discussed in our earlier work on BH,f , no single 
electronic configuration can describe even the ground state 
of these systems throughout C,,, C, “, or C’ reaction paths. 
For this reason, multiconfigurational methods were re- 
quired. In the MCSCF calculations, the four valence elec- 
trons were distributed, in all ways consistent with overall 
spatial and spin symmetry, among the six valence orbitals. 
This process generated 41 electronic configurations of ‘A, 
symmetry in the C2, point group and 65 electronic config- 
urations of ‘A’ symmetry in the C, point group; it yielded 
41 configurations in the C,, group. 

(iv) the region of strong interaction where both R and 
r are relatively small as a result of which the couplings 
among the internal modes are strong (see the regions 
marked by Y in Figs. 1). 

2. Collinear approach surface 

The above MCSCF calculations on BH$ and AlHz 
were employed, along with our Utah MESSKit7’a’ analyt- 
ical energy derivative and potential energy surface “walk- 
ing” algorithms7(b) to find and characterize (via geometry 
and local harmonic vibrational frequencies) the local min- 
ima, transition states, and reaction paths discussed below. 
For GaH,f , we used the GAMESS program suite,’ which 
uses finite-difference methods to compute the Hessian ma- 
trix from analytical energy gradients. The QCISD (T) and 

In Fig. 3 is shown a potential energy contour surface 
(as a function of the distance r,, between the metal and 
the closest H atom and r) for the collinear approach of B+ 
to H-H; the collinear surfaces for Al+ and Ga+ display 
similar features. We found that as r,, decreases from its 
asymptotic value, the bending vibrational frequency at 
such collinear geometries is imaginary and its magnitude 
increases as rMu decreases. Of course, as the angle between 
the H-H axis and the vector connecting M to the center of 
the H-H moiety changes from 0” to 90” (i.e., from collinear 
to C2, geometry), the frequency corresponding to this mo- 
tion becomes real, reflecting the stability of the C,, regions 
of the surfaces. The negative curvature along the bending 
coordinate is caused by the presence of low-lying 2p, or- 
bitals on B? which, upon bending away from collinear 
geometry, mix with and lower the energies of occupied 
valence orbitals thereby lowering the total energy. 
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FIG. 2. The coordinate system used to label C,, geometries. 
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FIG. 1. (a) G, symmetry contour plot of the (‘A,) ground state energy 
of B+ + Hz. The R (thqdistance of B+ to the center of H-H) and r (H-H 
distance) axes are in Angstroms, and the contours are spaced by 10.0 
kcal/mol. (b) Ca, symmetry contour plot of the (‘A,) ground state en- 
ergy of Al+ + Hz. The R (the distance of AI+ to the center of H-H) and 
r (H-H distance) axes are in hgstroms, and the contours are spaced by 
10.6 kcal/mol. (c) C,, symmetry contour plot of the (‘A,) ground state 
energy of Ga+ +H,. The R (distance of Ga+ to the canter of H-H) and 
r (H-H distance) axes are in Angstroms, and the contours are spaced by 
10.4 kcal/mol. In (a)-(c), the symbol X is used to denote the location of 
the barrier, and Y is used to denote the region of strong mode mixing (see 
the text). 

that linear or near-linear orientations play important roles 
in the Mf+H2-+MHf+H reactions even though there-is 
no barrier along such paths in excess of the thermody- 
namic energy difference (calculated here to be 61, 91, and 
94 kcal/mol for B+, Al+, and Ga+, respectively). It is for 
this reason that we focus the majority of our study and 
analysis on the C,, (and near) pathways, although these 
paths do experience barriers in excess of thermodynamic 
requirements. 

B. Reaction thermochemistry 

In Tables I( A)-I( C) are displayed our QCISD(T) 
calculated (and, where known, the experimental) values 
for the relative energies of the reactant M+ (~~3;‘s) +H,, 
excited-state reactant M+ (ns~~p;~“P) + H,, and product 
MHf +H and HMH+ species. In all cases, the energies 
are derived from electronic energies; no zero-point correc- 
tions are included. 

The lowest excited 3P and ‘P states of M+ are listed 
because they give rise to excited 3P1B2, 3.1A1, and 3P1B1 
states of C,, MHZ which, in turn, affect the ground-state 
reaction dynamics via second-order Jahn-Teller coupling” 
to or intersections with the ground ‘A, state as described 
later in this paper. It is essential that our calculations place 
these excited states reasonably accurately if our inferences 
about the ground-state dynamics are to be reliable. 

An important point to note about these data is that the 
experimental thresholds for producing MH( D) + + H( D) 
do not correlate with the thermodynamic energy differences 

5 

4 
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The fact that the potential surface becomes more and 
more unstable to rotating the H-H bond axis away from 
the M+ ion as r,, decreases means that flux incident to- 
ward such collinear approaches will be moved, by forces 
directed away from linear geometries, toward the “inser- 
tive” C,, type geometries. For this reason, it is unlikely 

1 2 3 4 5 

r (MH) 

FIG. 3. Contour plot of the (‘A,) ground state energy of B++H, for 
collinear geometries. The r(MH) (distance of B+ to the nearest H atom) 
and r (H-H distance) axes are in b;ngstroms, and the contours are spaced 
by 6.3 kcal/mol. 
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TABLE I. Electronic states energies (kcal/mol) measured with respect 
to (A) B+(‘S)+Ha(%~); (B) Al+(‘S)+H,(‘Z$); and (C) Ga’(‘S) 
+H,(‘x$). 

(A) 

UN 

Species” This workb Experiment* 

B+(‘S)+H&+,+) 0.0 0.0 
B+(‘S)+2H(‘S) 109 110 
B+(3p)+H~(‘~$:g+) 107 107 
B+(‘P)+H,(‘X;) 215 210 
BH+(%:)+H &amno=61 61 
HBH+(‘X;) -60 
B+-..Ha barrier 73 

Species” This workb Experiment” 

Al+(‘S) +Ha(‘X;) 0.0 0.0 
Al+(%) +2H(*S) 109 110 
.eU+(3P) +Hs(‘Z,f) 105 107 
Al+(‘P)+H,(‘Z+) 8 180 171 
AlH+ (‘2) +H ~&mno=91 
HAlH+(‘Z+) 
Alf..*Hz bsarrier 

12 
104 

(0 Species” This workb Experimenta 

Ga+(‘S)+Hs(‘X~) 0.0 0.0 
Ga+(‘S) +ZH(*S) 109 110 
Gaf(3P) +H2(‘B+) 
Ga+(‘P) +H,(‘$) 

123 137 
196 202 

GaH+ (‘2) +H AE 
HGaH+ ( ‘X,’ ) %=g4 
Ga+ .*-Hz barrier 105 

V. E. Moore, TabIes of Atomic Energy Levels (Natl. Stand. Ref. Data 
Serial, Natl. Bur. Stand., 35/V.I, 1971); K. P. Huber, G. Herzberg, 
Molecular Spectra and Molecular Structure, IV; Constants of Diatomic 
Molecules (Van Nostrand-Reinhold, New York, 1979). 

bBased on QCISD(T) data except for the ‘Pstate where projected fourth- 
order Mdller-Plesset (PMP4) perturbation theory was used due to dii- 
ficulties in the QCISD(T) convergence. 

AE t~mm,=~M-UD)+l +ECH(D)I -WM+> 
-E[H2(D2 or HD)] 

which appear in the fifth rows of Table I. Nor do these 
thresholds agree with the locations of the “barriers” on the 
potential energy surfaces shown in Fig. 1 and listed in the 
seventh rows of Table I. These facts make it clear that a 
“dynamical” rather than energetic constraint must be op- 
erative in determining the experimental thresholds which 
exceed by from -0.4 eV (for BD+ formation) to as much 
as 5 eV (for GaD+ formation), the thermodynamic energy 
requirements. It is for this reason that we must now turn 
our attention to the dynamics of the M+ + H-H collision. 

IV. DYNAMICS 

A. Experimental conditions and their implications 

1. initial conditions 
The guided ion beam experiments of Armentrout and 

co-workers’ involve collisions in which the H, (D, or HD) 
and M+ reagents’ internal (vibrational, rotational, and 
electronic) degrees of freedom usually exist in or close to 
thermal equilibrium near room temperature. Therefore, 
nuclear motions along these degrees of freedom are re- 

stricted, in the early stages of the ion-molecule collision, to 
narrow ranges approximately characterized by the corre- 
sponding classical turning points. As a result, the most 
important areas of the potential energy surface in the en- 
trance channel region are those for which such internal 
modes do not deviate greatly from their most probable 
values. 

In contrast, the relative kinetic energy between the Mf 
ion and its H, (or D, or HD) collision partner is very large 
in comparison with thermal energies. This collision energy, 
and its associated momentum, has components along three 
directions: (i) the M-to-H (or D) axis (rIvM); (ii) the 
other M-to-H (or D) axis (YIP); and (iii) the out-of- 
molecular plane angular coordinate (p. Explicitly, the clas- 
sical collisional kinetic energy in an M+ +A-B encounter 
is 

where-the kinetic energy of the M+ ion as measured (and 
experimentally controlled) in a lab-fixed coordinate system 
is 

mM dY = 
h=, x . 

( ) 
Here, mM, mA, and mB represent the masses of the three 
particles, and Y the separation of M+ to the center of mass 
of the A-B pair. The collisional kinetic energy can be de- 
composed into components describing motion of M+ along 
the rM and rMB axes as follows: 

TM = Tlab 
mA 

mA+mM 
z Tmllision mA 

mA+mB 

where the second equalities are only approximate because 
they assume mM$ mA + mB . 

2. Role of kinetic energy along collision degrees of 
freedom 

The above decomposition of the collision energy has 
been used’ to rationalize the occurrence of different energy 
thresholds for production of MH+ and MD+ in M’ + HD 
reactions, the idea being that there is more energy along 
the r&o-, axis (2/3 Tcollision) than along the rMn axis (l/3 
T collision), SO MD+ cm be formed at lower total collision 
energies. However, this model predicts that the ditference 
in thresholds for MH+ and MD+ should differ by a factor 
of 2 (with the MD+ threshold occurring at one-half the 
collision energy of MH+), and that for M++H, or M+ 
+D,, where there are l/2 Tcollision and 2/4 Tcollision along 
the r,, and rMc axes, the thresholds should be even dif- 
ferent than in the HD case. These quantitative details are 
not observed’ in the experimental data, although there are 
significant differences (much more than zero-point ener- 
gies can account for) in the HD, HZ, and D2 thresholds. 
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The primary difficulty with using this fractional colli- 
sion energy TMB concept is that it ignores how the poten- 
tial energy V depends on the two independent rMn and rMn 
axes. If V were a strong function of one of these coordi- 
nates (e.g., of the distance from M+ to the nearest H or D 
center), and depended weakly, if at all, on the other dis- 
tance, then this decomposition of Tcollision would make 
more sense. When the kinetic energy along the “impor- 
tant” M-to-H (or D) coordinate was adequate to over- 
come any barrier in V along this same coordinate, reaction 
could take place. However, for the reactions at hand, V 
depends on the two r,, and rMnf (or rMD) distances in a 
symmetrical fashion; i.e., the electronic energy remains the 
same if r&n.r and rMnr are interchanged. Moreover, V is a 
strong function of both distances, at least within the en- 
trance channel where the collision-to-internal energy trans- 
fer iS initiated. As a result, kinetic energy along both rMn 
and rMn’ is required to access regions of the potential 
where reaction can occur; neither TMH nor TMHf alone is 
adequate. It is for these reasons that consideration of the 
kinetic energy alone does not adequately explain the iso- 
tope effects on thresholds. 

Nevertheless, the different masses of the H and D iso- 
topes do, in fact, have important effects on the thresholds 
for MD+ and MH+ formation, but not because of the 
reasons outlined above. The hydrogenic masses mA and 
?ng , as well as the H-D, Hz, or D2 reduced mass cl, appear 
in the kinetic energy, approximately (see Sec. IV G for 
more detail) as 

As discussed later in this paper, so-called mass-weighted 
coordinates r’ = & r, r&D = & rMDt and r&I 
= & rMn can be introduced after which the total energy 
H= T+ V is expressed as 

In this form, isotopic differences disappear from T and 
appear only in the different dependence of V on rh, 
rhB, and r’. Although V depends on rMA and rMB in a 
SynUIIetriCal manner, its dependence on rb and rhB may 
be asymmetric and reflects the A and B masses. It is these 
mass dependencies that produce isotope effects in the local 
normal-mode frequencies derived from such a Hamil- 
tonian, and it is these mass effects that we think more 
correctly explains the isotope effects on reaction thresh- 
olds. 

B. Entrance-channel reaction dynamics 

The potential energy function along the relative-motion 
degrees of freedom is slowly varying as the collision begins 
(i.e., at large R and small r) . As the collision progresses, 
these three degrees of freedom evolve in a manner that 
produces significant forces (i.e., changes in potential) 
along rMn and rMn’. Keeping in mind that essentially all of 
the initial momentum is directed along these “soft modes,” 

and recalling that restoring forces strive to preserve C2, 
symmetry, we direct attention to flux moving with high 
initial energy and velocity along both rMn and rMnl and 
little energy along the r axis (because of the low vibrational 
energy of the Hz reagents). 

C. Entering the region of strong interaction 

As flux progresses up the entrance channel to higher 
potential energy, the radial kinetic energy and momenta 
along rMn and rMnI decrease, but lack of coupling between 
the R and r directions [i.e., (a2E/aRar) ~0 as illustrated 
clearly in Fig. l] makes energy (and momentum) transfer 
from the relative-motion modes to the transverse 
r-dominated mode very ineffective. 

However, as flux moves to even smaller R values, a 
region of space is reached where energy transfer can occur. 
This region is characterized not only by existence of off- 
diagonal a2E/dRar coupling on the potential energy sur- 
faces as shown in Fig. 1, but also by near degeneracies in 
the eigenvalues of the mass-weighted Hessian (MWH) 
matrix (see below) evaluated at such geometries. 

These statements now need to be justified by introduc- 
ing and using the MWH matrix as a device for analyzing 
the dynamical resonances that permit energy transfer and 
subsequent chemical reaction to occur. 

D. The Hessian as a local approximation to the 
potential energy 

The Hessian matrix, evaluated at a geometry in the 
region of strong interaction (denoted {xi]) and expressed 
in terms of the 3N Cartesian coordinates {XI;) of the N 
atoms is 

The gradient vector 

F;= (aE/axk),O 
k 

evaluated at this same point gives the slope of the energy 
along the Cartesian directions xk . Of course, the values of 
this matrix and vector depend strongly on where these 
derivatives are evaluated; at a point {xi) in the strong 
interaction region, {Fi} has large components along the 
interfragment coordinates. 

These constructs allow the potential energy surface 
v(xk> to be approximated to the point {x”,] as a Taylor 
series 

v(x,> = v( {X>> + 2 FpXk+ 1/~&,~~,,6x~~, , 
k 

where 6xk means the deviation of xk from the value xi. 

E. The kinetic energy in mass-weighted coordinates 

Of course, the kinetic energy T can also be written in 
terms of the 3N Cartesian displacement coordinates {6xk). 
However, if so-called mass-weighted coordinates 

Yk= Jmkxk 
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are introduced, where mk is the mass of the nucleus to 
which the coordinate xk pertains, the kinetic energy can be 
written as a sum 

T= ; imk(%)‘= : ; (2)’ 
of 3N terms each of which has the same (unit) mass factor. 
In this form, the matrix representation of T within the 
&) coordinate basis is l/2 times the unit matrix; T,, 
= l/2&, . By so treating the kinetic energy in a manner 
that assigns equal mass to all 3N degrees of freedom, the 
potential energy function alone governs the natural fre- 
quencies of motion of the system. 

constrain the interfragment coordinates at large separa- 
tions. The model potential produces harmonic oscillatory 
motion even along the interfragment degrees of freedom, 
although they really undergo collisions with a single close 
encounter between the fragments. Nevertheless, as shown 
below, the description of interfragment degrees of freedom 
(i.e., rMn and rMn’) provided by these equations of motion 
is useful in analyzing the dynamics local to the points {xok) 
of strong interaction and for the short duration of the col- 
lision. 

1. The MWH eigenmode basis 

F. The mass-weighted Hessian 

In terms of these bk) coordinates, the local quadratic 
approximation to the potential energy is given by 

a. Eigenmodes of the fuiI MWH. To make further 
progress, we now introduce, for reasons that will soon be- 
come clear, the (unitary) matrix uk,j that diagonalizes the 
full 3NX3N dimensional MWH matrix {Hk,&j- 

v(yk) = ; -FksYk+ 112 c Hk,m~YkSYm > 
km 

where Fk is the gradient 

C Hk,mUrn,j=~~Uk,j 2 
-m 

Fk= (aE/aY,>,;= (mk)-1’2(aE/aXk)x; 

of the electronic energy along the yk coordinate, Hk,m is the 
matrix of second derivatives with respect to theyk variables 

Hk,m= (a2E/dyxaym)~~=H~m(mkm,)-1’2, 

and 6yk is the displacement along the yk coordinate from 
the point at which the derivative is evaluated. The matrix 
{Hk,m) is called the mass-weighted Hessian matrix 

(MWH), and {Fk3 is the gradient vector in mass-weighted 
coordinates. Notice that Hk,m has units of sw2 because C?yk 
has units of gm”2 cm; therefore, the eigenvalues of {Hkm3 
introduced in the next section have units of sm2, or fre- 
quency squared. 

and we denote the nonzero eigenvalues by CD; (i 
= 1,2,...,3N-5 or 3N-6). The MWH matrix will also have 
five or six eigenvalues and corresponding eigenvectors be- 
longing to the translation and rotation of the entire 
MHH+ species. Using well-known techniques,2 these five 
or six modes (whose components we denote t,,&; k= 1, 
2,...5, or 6) can be removed explicitly from consideration 
by projecting them from the MWH matrix. 

G. The classical equations of motion 

A classical Hamiltonian 

H=T+V 

Fksykf l/2 c Hk,,n~YksYin 
km 

treatment can be used to describe the (local) motion of the 
3N degrees of freedom. The Newton equations of motion 
then read 

b. Relation to bases used in reaction path Hamiltonian 
approaches. In the reaction path Hamiltonian treatment 
of dynamics and in so-called gradient extremal” methods, 
one defines a “path,” usually embodied in a series of finite 
“steps” connecting a transition state to reactant and prod- 
uct local minima. For the species under study, such paths 
would lie in the narrow entrance channels shown in Fig. 1 
and would proceed smoothly up this valley to the “barri- 
ers” shown in these figures, subsequently passing down to 
the H-M-H+ linear-molecule minimum geometries. The 
ideas underlying introducing such a path include the as- 
sumptions (i) that dynamical motions transverse to the 
path may be treated as undergoing bound, approximately 
harmonic movement, and (ii) that movement along the 
path cannot be so treated because there is no barrier or 
restoring force at large inter-fragment distances. As a re- 
sult, it is common to approximate the full dynamics in 
terms of interfragment scattering along the reaction path 
coupled to approximately harmonic motion transverse to 
the path. 

d26Yk -=-Fk- c H,+,&, . 
d? m 

The linear-plus-quadratic form of the potential is a 
reasonable representation of the potential along internal 
degrees of freedom that undergo small-amplitude motions 
about their equilibrium positions. However, this is an un- 
reasonable global representation for the potential along in- 
terfragment degrees of freedom. The latter coordinates are 
not bounded by the potential at large R, whereas the qua- 
dratic terms above, if {Hk,m) is positive definite, would 

In generating algorithms to follow such paths, both 
methods choose the direction u” (a unit vector whose 3N 
components are denoted {z&> along which the gradient 
lies to define one “special” direction. Within the 3N-7 (or 
3N-6) dimensional space that is orthogonal to the gradient 
and to the five or six translation and rotation vectors {t,,k) 
a set of unit vectors {up) forp= 1,2,..., 3N-7 or 3N-6 (each 
having 3N components {upk; k= 1,2,...,3N)) is then intro- 
duced. 

In the reaction path approach,2 the vectors {Up) are 
chosen to diagonalize the MWH within the 3N-7 or 3N-6 
dimensional space they span 
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2 H~mu,/ = w;~u$’ ; p= 1,2,...3N-7 or 3N-6. 
m 

The component of Hk,m lying along the gradient 
Z~,~u”fl~,,&=@, together with the magnitude F of the 
gradient is used to approximate the %hape” of the poten- 
tial V along the u” direction (whose displacement is de- 
noted ds), and the transverse local harmonic frequencies 
(~$3 are used to approximate V along the (up) directions 
(whose displacements are denoted {‘3>, 

V+‘ds+ l&C?@+ l/2 c CO;” 1 Qp 1 2. 
P 

As one then steps along this reaction path, one evaluates 
the gradient and MWH at each successive geometry and 
uses the “current” values to define the terms in the above 
approximation to V. For this reason, Hc, {w;}, F, and 
{Qp) all depend on the current position (s) along the re- 
action path coordinate and thus evolve as one moves along 
the path. 

In contrast, when employing the gradient extremal 
method” to define a reaction path, one first seeks that 
geometry, along a constant energy contour [which one im- 
poses via the Lagrange multiplier condition 24 (V 
-const.)], at which the magnitude of the gradient is an 
extremum. This condition is expressed by setting to zero 
the derivatives of 

IVV12-2d( V-const.) 

with respect to each of the 3N yk coordinates. Doing so 
produces 

a2v av 
r------ -=a dv 
m aydy, ay, ayk ’ 

which shows that at the point along the contour where the 
gradient’s length is extremized, the gradient vector itself 
must be an eigenvalue of the MWH. In fact, the minimum 
of the gradient norm occurs when the gradient lies along 
the lowest (nonzero) eigenmode of the MWH; this is the 
direction most often used” in defining the gradient ex- 
tremal reaction path. 

The two reaction paths outlined above differ even 
though they both focus on the gradient direction. In the 
latter,” the gradient direction u” is itself an eigenmode 
direction of the full MWH. As a result, the elements of the 
MWH connecting u” to the remaining 3n-7 or 3N-6 
“internal” mode directions {Up) vanish explicitly 

c u”~,,&d; = 0. 
km 

If (Up) are chosen as eigenvalues of the MWH within the 
space they span 

c Hk,&L< = ti;‘dk, 
m  

then each of the vectors u” and {Up) are eigenvectors of the 
fuI1 MWH having nonzero eigenvalues because the cou- 
pling terms Z~+4~~~,~u$ vanish. In the reaction path 

Hamiltonian approach, these off-diagonal coupling ele- 
ments do not vanish, but are ignored in building the local 
approximation to the potential V. 

In our approach to the energy transfer bottleneck 
problem, neither the reaction pa@ Hamiltonian’s path nor 
the gradient extremal path are appropriate to introduce. 
The large radial kinetic energies produced in the guided 
ion beam experiments cause Mf +HH trajectories to ac- 
cess geometries far from either path. In particular, such 
trajectories evolve to much smaller R values and have r 
values constrained closer to the equilibrium bond length of 
H, than characterize ‘either reaction path. Therefore; the 
gradient at any point accessed by such high kinetic energy 
trajectories cannot be expected to lie along or even near the 
direction that characterizes a reaction path. Ari eiamina- 
tion of the gradients along the paths used in our study 
(chosen to represent high energy collisions) show they can 
have substantial components along both, (i) the interfrag- 
ment coordinates and (ii) the intrafragment modes that 
might be approximated well in a local harmonic manner. 
For this reason, we believe’it i’s inappropriate, in our case, 
to introduce any decomp=ositioh of,the inter- and intrafrag- 
ment dynamics that uses the gradient to define a “special” 
direction that is treated differently than others. Hence, in 
the development pursued below, we do not decompose the 
3N-6 or 3N-5 dimensions of the MWH into one special 
direction and 3N-7 or 3N-6 in others; we work with the full 
MWH matrix. 

c. Classical Newton equations of motion. Returning 
now to the issue of expressing the dynamics of motion on 
an approximate potential energy surface given in terms of 
the local gradient and MWH, the Gk) basis Newton equa- 
tions are multiplied by Usj and summed over k to obtain 
equations of motion 

for the components 6A, of&k along the normalized eigen- 
modes of the MWH 

6Aj= C Uk,j&k* 
k 

Here, f j is the projection of the (Fk) force vector along the 
jth eigenmode of the MWH 

fj= T Uk,jFkv 

2. The M WH model dynamical system for bimolecular 
dynamics 

The equations derived above 

d2SAj 
-= -fj-~;~Aj 

dt2 

specify the time evolution of a model dynamical system 
containing 3N-5 or 3N-6 modes that undergo sinusoidal 
motions (if ~7s are positive) 

SAi(t) =SAj(eq) +Aj(t=O)cos(ojt) 
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at frequencies oi (s-l) about equilibrium positions 

-fj 
GAJeq) =2 wj * 

Here, SAi(t=O) is the amplitude of motion along thefih 
normal mode, which is, in turn, related to the total energy 
Ei contained in that mode 

1 &Uj 2 1 
Ej=z x +Zw316Aj--6Aj(eq) 1” 

I I 

SO 

Let us now examine how this model dynamics relates to 
the M+ +A-B collision dynamics under study. 

a. Internal modes. In the example at hand, forces 
along internaZ modes of the ion or its collision partner (i.e., 
the r-dominant H-H vibration) are small in the early 
stages of the collision because of the small excursions ex- 
perienced by these degrees of freedom,‘so oscillatory mo- 
tion does indeed take place about the equilibrium position. 
Also, the energy content of these modes is small, so the 
corresponding amplitudes Aj( t=O) will be small and can 
be estimated as 

where kT is the thermal energy. For these modes, the 
picture provided by the MWH model is appropriate and 
easily understood. 

b. Relative-motion modes. In contrast, the MWH pic- 
ture of the interfragment motions (i.e., the modes arising 
from rMH and rMH’) requires further examination. At 
points {xok) on the potential energy surface where strong 
coupling between the rMH or rMH’ and internal (r) modes 
are likely, the forces fj along inter-fragment coordinates 
will be large and repulsive (see Fig. 1) . The curvature of 
the potential surface along these directions, as reflected in 
the corresponding eigenvalues of the MWH, will be posi- 
tive (see later) and substantial. 

The MWH dynamical model treats these interfrag- 
ment degrees of freedom as also undergoing harmonic mo- 
tion, but about a minimum that is far removed (by an 
amount - fj/W$) from the point {x”,).and which lies f;/ 
2w,? in energy below its value at {x9. Clearly, this descrip- 
tion of the inter-fragment motion is not globally correct 
because the true collisional dynamics involves a single en- 
counter between the fragments, not a sinusoidal series of 
such encounters. Nevertheless, if used only for the brief 
time interval during which strong mode coupling is real- 
ized, this does give a useful local model of the true dynam- 
ics because 

(i) it describes adequately the potential surface (i.e., 
the forces and local natural frequencies of motion) near 
points {x:3, where mode coupling is strongest; and 

(ii) it includes the correct relative kinetic energies 
along all modes. 

For these reasons, the approximate MWH Newton 
equations can be used to obtain the time evolution of the 
system for the (brief) duration of the collision during 
which the M+ ion resides in this repulsive region of the 
potential surface and during which energy transfer is pos- 
sible. 

H. Avoided crossings of MWH eigenvalues 

At geometries where a (local) relative-motion MWH 
eigenvalue w, and an internal-mode eigenvalue mint un- 
dergoan avoided crossing, there is enhanced probability of 
enerm transfer from the collision coordinate to the mode 
associated with Oint. In such cases, one can think of the 
dynamics of two coupled oscillators having frequencies w, 
and Wint, whose coordinates obey 

d2SA, 
-= dt2 - f s--wt6A,-filn6Ai, 3 

d2SAi,t 
-=-fint-w~~tSAint--~As, dt2 

where fi (with units of sm2> denotes the coupling between 
the two coordinates. In the absence of coupling, these two 
coordinates would undergo simple sinusoidal motions 
about their own equilibrium positions and at their own 
frequencies. 

However, as shown in many elementary classical me- 
chanics texts,12 when coupling is present, the time evolu- 
tion involves two new characteristic frequencies w* . In the 
limit where W~~~int~Oo (i.e., when the two natural fre- 
quencies would cross if coupling were absent), the two new 
frequencies are given by 

co,- WOfW, -F 
which reduces to 

R 

w*=oof2wo 
if I Sz I <& as it is for the cases considered below. 

If energy E is deposited initially into the collision mode 
s, then the two modes will evolve in time as 

6A,(t) --SA,(eq) = 

For short times t, the 6AJt) mode contains much energy 
and its coordinate oscillates at frequency wo. As time 
evolves, the GAi,t (t) mode gains amplitude, and once 

clt rr -=- 
2wo 2’ 
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this mode has acquired all of the amplitude (and hence 
energy) that the &4,(t) mode originally had. One thus says 
that in a time interval T= (rao)/fi the energy transfer 
takes place; alternatively, the rate of energy transfer is 

s1 
rate=-. 

r*0 

This result would be most relevant if the coupling fi 
were operative as detailed above throughout the entire 
sinusoidal motions of the two oscillators. However, to 
model the situation at hand, it is more proper to allow Icz to 
act only for the narrow range of interfragment distances 
AR, where the two modes undergo their avoided crossing. 
A modification of the above rate expression that allows fi 
to act only for that fraction f of an oscillation [of sin( mot)] 
that the collision resides within AR is given as follows: 

f-2 0 AR fiAR 
rate=% f=,o,oo=- 

ml * 

Here (AR)/v is the residence time of the trajectory with 
speed v in the range AR, and w. is the inverse of the time 
it takes to make one oscillation. Of course, the speed v can 
be expressed in terms of the energy E in the s mode, and 
the potential Vat the geometry where the avoided crossing 
occurs. 

A substantial body of experience in the classical dy- 
namics of multimode systems13 has shown that when the 
(local) natural frequencies of two degrees of freedom be- 
come nearly equal ( w,E~+~~ =wo), energy transfer between 
these modes is most likely. Within a quantum dynamics 
treatment, energy transfer is facile when two modes have 
equal or nearly equal energy spacings. The classical and 
quantum points of view are easily seen to be consistent 
when, as here, a local quadratic treatment (which incor- 
porates the true local forces and curvatures) is used for the 
potential. In such a case, the resultant harmonic frequen- 
cies w, and Wint give both the natural frequencies of the 
corresponding periodic motions and the frequency spacings 
between neighboring quantum states that differ by a unit 
quantum number. Thus the resonance condition discussed 
above can be viewed either as near equality between two 
natural periodic oscillation times or as near equality be- 
tween two quantum-state energy spacings. 

It is also known that movement through regions of 
such near degeneracy must have a “contact” or “resi- 
dence” time (AR)/v long enough to permit the coupling 
between the two modes that undergo the avoided crossing 
to effect a transition. If movement through this region is 
extremely fast, energy transfer is unlikely. In the following 
section, such avoided crossings are used to explore under 
what conditions such energy transfer can readily occur. 

V. FINDINGS AND RELATION TO EXPERIMENTS 

A. Avoided crossings 

We show the eigenvalues of the locally calculated 
MWH for M+=B+, Al+, and Ga+ in Figs. 4(a)-4(c) 
and, in each case, results for all three isotopes (H, HD, and 
DD) are shown. In Fig. 4(d), the eigenvalues of the MWH 

are shown for the collinear approach path for comparison. 
In all cases, the distance r between the two hydrogenic 
centers was held fixed at the equilibrium value in H, 0.755 
A. This was done because the geometries that play critical 
roles in determining where energy transfer occurs are not 
those in which all nuclear coordinates are relaxed, but 
those that would be realized during high-energy ion- 
molecule collisions such as those taking place in the guided 
ion beam experiments. At least in the early stage of such 
collisions, before energy transfer has taken place, the H-H 
(or H-D or D-D) distance deviates only slightly from 
0.755 A. 

In all of Fig. 4, the relative-motion eigenvalues are very 
small at large R, where the forces between M+ and H2 (or 
D, or HD) are quite weak, and the internal-mode eigen- 
value is large. As R decreases, the former eigenvalues in- 
crease because the inter-fragment forces increase, and even- 
tually one or more avoided crossings (or actual crossing 
for the H, and D, cases in which the asymmetric stretching 
mode is uncoupled by symmetry from the two a, modes) 
take place. 

The energy transfer ideas reviewed above imply that 
facile energy (and momentum) transfer from the (soft) 
rMH and rMHP collision eigenmodes into the r-dominated 
internal mode can occur near an avoided crossing if a col- 
lision has enough kinetic energy to access these avoided 
crossing regions. From Fig. 4(d), which pertains to the 
collinear geometry case, we note that avoided crossings do 
not occur at all, at least within the energy range studied. 
This combines with the bending mode’s geometric instabil- 
ity of the linear structures to further emphasize the impor- 
tance of near-C,, geometries relative to near-collinear ge- 
ometries. 

B. Relation to reaction thresholds 

For all of the species considered here, as shown in Figs. 
4(a)-4(c), the avoided crossings occur at geometries 
where the potential energy is considerably in excess of ei- 
ther the thermodynamic threshold or the barrier on the C,, 
potential surface. In Table II, the interfragment distances 
(R) at which the avoided crossings occur (i.e., where the 
splitting between interacting MWH eigenvalues are small- 
est) are listed as are the potential energies at these geom- 
etries. The experimental thresholds for formation of MH+ 
and MD+, where known, are also listed. 

It should be noted that the interactions among modes 
that gives rise to the avoided crossings do not exist only at 
the R values listed in Table II. Such interactions are 
present over a significant range of interfragment distances, 
and certainly develop significant strength somewhat before 
reaching the R values listed. For this reason, we specify 
lower bounds to the critical interaction distances when we 
quote geometries where the MWH eigenvalues come clos- 
est. Moreover, because the potential energy surfaces are 
quite “steep” and repulsive in these regions, the energies 
derived at our quoted R values represent upper bounds to 
the minimum energies needed to effect reaction. 

Having made these qualifying remarks, the model dy- 
namics provided by the MWH eigenmode analysis explains 
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the reaction threshoIds in, terms of the avoided crossings. 
When the kinetic energy of collision Tcollision is large 
enough to access geometries where the MWH eigenvalues 
undergo avoided crossings, energy transfer to the internal 
mode (r) induces reaction. As interfragment collisional 
kinetic energy is lost, energy is deposited into the internal 
mode, thereby causing the H-H (D-D or H-D) bond to 
lengthen and to eventually rupture. The geometries at 
which these avoided crossings occur are typified by strong 
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repulsive forces along both rMu and rMH’ (or rMD) axes. 
Therefore collisions that access these regions must have 
high kinetic energies along both of these axes. For this 
reason, it is the total kinetic energy, not Tw or TMB, that 
is the key collision energy parameter. 

The data summarized in Table II clearly show, e.g., 
that thresholds for B+, Al+, and Ga+ reacting with D2 
should occur - 1.3, 2.5, and 3.3 eV above their respective 
endothermicities. Although our predicted thresholds dis- 
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FIG. 4. Avoided crossings of eigenvalues of the mass-weighted Fessian matrix for (a) B+ +H,, D,, and HD; (b) Al+ +H2, 9, and HD; and (c) 
Gaf +H2, D, , and HD. In (a)-(c) , the horizontal axis is R (b Angstroms) and the vertical axis is o (cm -‘). For large R, the highest frequency mode 
is the HH, DD, or HD stretching vibration, and the lower two are the relative-motio_n modes. (d) The plot of eigenvalues of the mass-weighted Hessian 
matrix for Bf +H,, D2, and HD in collinear geometries with the H-H stretch, interfragment, and bending vibrations labeled. The horizontal axis is R 
(Angstroms) and the vertical axis is o (cm-‘). 
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play trends much like the experimental findings (see Table 
II), the energies where the avoided crossings are strongest 
tend to systematically exceed the experimental thresholds 
by - 1 eV (see comments above about upper bounds). 
This is likely a result of the steeply repulsive nature of the 
potentials (e.g., the energies drop by more than 1 eV over 
a 0.05 b; range of R in these regions for all three species) 
at such geometries and the fact that significant mode cou- 
pling develops at longer R values than where the avoided 
crossing is strongest.- In addition, the thermal motions of 
Hz, Ds, or HD are nonzero and tend to make the apparent 
experimental thresholds lower than the true thresholds. 

C. isotope effects for HD 

In the HD cases, the two relative-motion modes have 
different natural frequencies; the mode dominated by rMu 
motion has higher frequency than that dominated by TMD. 
As a result, the former mode undergoes an avoided cross- 
ing with the internal (r-dominated) mode at larger R, and 
hence at lower energy. Energy that is thus transferred from 
the r,, motion to the internal mode decreases the relative 
velocity along TMH, but not (as much) along rMu. The 
differential velocity that thus develops between rMu and 
r,, causes the M-to-D distance to shorten more rapidly 
than the M-to-H distance, while the H-to-D distance is 
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growing (since energy is being put into this mode to break 
the H-D bond). As these movements propagate in time, 
MD+ is formed and H is eliminated. 

The important point is that the lower-energy avoided 
crossing involves coupling energy out of the rMn mode and 
production of MD+ +H. Likewise, the higher-energy 
avoided crossing, which involves the rm-dominated mode 
coupling to the H-D motion, produces MH+ +D. The dif- 
ference in thresholds for MD+ and MH+ formation is 
explained by differences in the energies at which the r,, 
and rMu avoided crossings occur. 

D. Coupling strengths 

The avoided crossing graphs also provide information 
about the strength of coupling between the relative-motion 
and internal modes. When the eigenvalues w’, that “avoid” 
one another are viewed as solutions of a 2X2 matrix ei- 
genvalue problem, the difference (w: -WC ) between them 
can be related to the off-diagonal element of the matrix 
(which we denote a and which has units of sW2) 

fl= 
bJ”+ -& 

2 * 

In Table II, we also report these coupling strengths fi (in 
cm-’ units) for all of the cases considered here. Thus far, 
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we have not made a direct connection between these cou- 
pling strengths and experimental findings. Clearly, they 
relate to the magnitude of energy flow between the relative- 
motion and internal modes near the avoided crossing, but 
their magnitudes do not seem to correlate with ion yield or 
branching ratio [e.g., R is larger for coupling to the rMn 
mode than to the rMD mode, although the yield (of MD+) 
from the former is smaller than for the latter]. Of course, 
the observed ion yields are not direct measures of the initial 
rate of formation of MD+ or MHf because nascent ions 
may undergo decomposition before being detected, and the 
fraction that decomposes depends on the collision energy 
E. 

E. Long interaction times are required 

Not only must a “trajectory” access the avoided cross- 
ing geometry, it must spend enough time there to permit 
the couplings to effect energy transfer. The time (7) spent 
in this region can be estimated in terms of the initial col- 
lision energy Ecoll, the range of R values over which the 
coupling takes place AR, the electronic potential energy 
near the avoided crossing V,,,, as well as the reduced mass 
p of the M+ +A-B pair 

mABfmM AR 
Pu= 

mAB+mM' 

The time needed to effect energy transfer is related to 
the strength of coupling between the two modes undergo- 
ing the avoided crossing. As shown earlier, this coupling 
(n in s-2) can be extracted from the avoided crossing 
graphs as one-half the “splitting” between the two eigen- 
values at their closest approach sZ= (w”+ -0%)/2. So, if 

1 &/G&F&i 

-I- n=z ,k-%,,,- ~,,,)~P d- -% 1, 

energy transfer can be facile. This implies that collisions 
with incident kinetic energies slightly in excess of V,,,, will 
be most effective in transferring energy into the 
r-dominated degrees of freedom, and that collisions with 

- 

much higher kinetic energy should be less effective. For the 
cases considered here, as shown in Table II, 
l/a ,/v ranges from -952 to 1953 cm-’ (i.e., 
corresponding to frequencies of 3-6~ 1013 s-l) and AR 
ranges from 0.05 to -0.2 A. Therefore, one expects colli- 
sions passing through the avoided crossing region at 
w 104-10’ cm s-l or slower to be quite effective. This 
means that collisions with kinetic energy along the colli- 
sion mode to which r is coupled much in excess of the 
potential at the avoided crossing will be ineffective. 

F. The fate of collisions that result in energy transfer 

Those collisions that access geometries where energy 
transfer from a relative-motion coordinate to an internal 
mode can occur have a chance to evolve to produce MH+ 
(or MD+) product ions. In doing so, the H-H (D-D or 
H-D) bond breaks, a new M-H (or M-D) bond is 
formed, and an H (or D) is eliminated. 

In the picture provided by the MWH eigenmode 
model, once enough energy and momentum are transferred 
to the r coordinate, tlux can evolve toward larger r values. 
Such flux will move toward the barrier regions of the po- 
tential energy surfaces shown in Fig. 1, although the total 
energy exceeds the barrier energy (of 3.2, 4.5, and 4.6 eV 
for B’, Al+, and Ga’, respectively) by more than 1 eV in 
all cases. 

However, as flux so evolves, our analysis of the three 
potential surfaces in Fig. 1 shows that a region on the ‘A, 
potential surface is reached within which either (i) the 
asymmetric stretch motion of b2 symmetry becomes unsta- 
ble (i.e., develops a negative MWH eigenvalue) due to 
second-order Jahn-Teller coupling with the nearby ‘B, ex- 
cited state or (ii) the * B2 excited state intersects and passes 
below the ‘A, surface. In either case, flux can move, with 
no restoring forces, away from C,, symmetry. It is this step 
that permits the asymmetric rupture of the MHZ species to 
produce the observed MH+ (or MD+) +H (or D). In 
Tables III are shown the geometries at which the ‘B, state 
has its own minimum because it is near such geometries 

TABLE II. Geometry, energy, and coupling strength in the region of avoided crossing of mass-weighted 
Hessian eigenvalues and experimental reaction thresholds. 

Species 
R at 

crossing (A) 
E at crossing 

(kcal/mol; eV) 

Coupling 
strength 

$5 (cm-‘) 

Experimental 
thresholdsa (eV) 
to form (MA+) 

B++HH 
B++DD 
B++HD 

AlffHH 
Al+ +DD 
Al++HD 

Ga+ +HH 
Ga+ + DD 
Ga++HD 

> 1.05 2.6 
> 1.05 
> 1.00 (rhd 
> 1.05 (r& 
> 1.22 3.9 
> 1.22 
> 1.16 (r& 
> 1.22 (rhlH) 
> 1.21 4.1 
> 1.21 
> 1.15 (r& 
> 1.25 (rMH) 

<89; 3.9 1953 
<89; 3.9 1302 

<107; 4.6 1121 
<89; 3.9 1502 

<148; 6.4 1352 
< 148; 6.4 952 
-c 177; 7.7 1070 
<148; 6.4 1121 
< 170; 7.4 1881 
< 170; 7.4 1323 
<206; 9.0 1120 
< 145; 6.3 1483 

3.3*0.1 
3.3*0.1 
4.0*0.2 (BH+) 
3.OAO.2 (BD+) 
6.6hO.2 
6.6*0.1 
6.7kO.l (AlH+) 
4.7aO.l (AID+) 
Not available 
8.510.5 (GaD+) 
Not available 

aReference 1 as well as P. B. Armentrout (private communication). 
bNot zero-point corrected, so independent of isotopic masses. 
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TABLE HI. Total and relative energies, geometries, and vibrational frequencies for species relating to (A) 
the B++Hz-BH++H, HBH+ reactions; (B) the Al++H,dAlH++H, HAlH+ reactions; and (C!) the 
Ga+ +H,-GaH++H, HGaH+ reactions. 

(A) Species 

Electronic 
energies 

(hartrees) 

Optimized 
internuclear 
distances (A) 

Vibrational 
frequenciesb/ 
zero point 
energies 
(cm-r) 

Relative 
energies 

(kcal/mol)’ 

B+(‘S)+H 2 -25.446 250 
-25.468 830 

BH+(‘H) +H -25.351 313 
-25.372 139 

HBH+(‘X:) -25.520 364 
-25.564 074 

r=0.755 

rBH= 1.199 

r=2.374 

4224/2112 0.0 
0.0 
60 
61 

-41 
-60 

2582/1291 

2.594 (a,), 
2880 (W, 
932 (bend)/3669 
45121’ (a,), 
1279 (a,), 
3424i (b2) 
10% (u,), 
2173 (9h 
2083 (a,)/2641 

Vibrational 
frequenciesb/ 
zero point 
energies 
(cm-‘) 

B+**.Hz barrier -25.322 621 
-25.352 085 

BH: (‘&I -25.328 460 
minimum -25.399 644 

r= 1.396 
R= 1.226 

r= 1.614 
R=0.996 

78 
73 

14 
43 

(B) Species 

Electronic Optimized 
energies internuclear 

(hartrees) distances (A) 

Relative 
energies 

( kcal/moHa 

Al+(‘S) +H 2 -242.856 705 
-242.819 646 

AIH+ (2X) +H -242.717 076 
-242.735 419 

HAlH+(‘Z+) 8 -242.804 625 
-242.860 414 

Al+***H, barrier -242.692 731 
-242.713 641 

r=0.155 4224/2112 

rAIH= 1.658 1424/712 

0.0 
0.0 
88 
91 
33 
12 

103 
104 

r=3.103 1940 (a,), 
2055 (b,), 
513(bend)/2511 
2362i (a,) 
19421 (9) 
996 (al) 
8% (a,), 
1307 (&J, 
1637 (a,)/1900 

Vibrational 
frequenciesb/ 
zero point 
energies 
(cm-‘) 

r= 1.852 
R= 1.587 

AW(‘W -242.685 868 r= 1.729 
minimum -242.740 915 R=1.429 

107 
87 

(Cl Species 

Electronic Optimized 
energies’ internuclear 

(hartrees) distances (A) 

Relative 
energies 

( kcal/moH8 

Ga+(‘S)+H 2 -258.119 452 
- 1 924.206 695 

GaH+@) +H -257.967 714 
- 1924.056 193 

HGaH+ ( ‘Xg’ ) -258.069 058 
-1924.174511 

r=0.157 4224/2112 

902/45 1 

2003 (u,), 
2139 (61)~ 
628 (bend)/2699 
Not availabled 

0.0 
0.0 
83 
94 
32 
20 

105 

rGaH= 1.147 
roan= 1.65 
r= 3.09.6 

Gaf***H2 barrier 

GaH: (IS,) 
minimum 

-257.909 068 
- 1923.991427 

r=2.0 
R= 1.75 
r= 1.886 
R= 1.390 

132 
135 

*In all cases, the energies are given relative to the B+ +H, reactants in (A), the Al+ +H, reactants in (B) 
and the Ga++H, reactants in (C). These are electronic energies, and thus do not include zero-point 
corrections. In each case, and for the column giving total energies in hartrees, the first number is based on 
our CAS-MCSCF calculations, and the second is based on our QCISD(T) data. 

‘These local harmonic frequencies were obtained from the analytical second derivatives of the MCSCF 
energy at the MCSCF geometries. 

‘The MCSCF calculations used a pseudopotential, but the QCISD(T) data involve all electrons. 
dThe finite difference routines used in GAMES.8 were not able to produce a reliable Hessian matrix in this 
case. 
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that the second-order Jahn-Teller couplings or surface in- 
tersections are most likely. Also shown in Tables III are 
the eigenvalues of the MWH at the barrier geometry; in all 
cases, one notes an imaginary frequency for the b2 mode, 
which reflects the geometrical instability of these regions to 
asymmetric distortion. 

Because the regions of avoided crossings of MWH ei- 
genvalues occur high above the barrier regions, the MHf 
(or MD+) product ions are likely to be formed with a 
large amount of internal (vibration/rotation) and transla- 
tional energy. Because the M-H+ bond strengths are 
rather weak (48, 18, and 15 kcal/mol for BH+, AlH+, and 
GaH+, respectively), such internal energy can cause the 
nascent MHf species to fragment before reaching the ex- 
periment’s detector. Hence, fragmentation of the product 
ions can contribute to the unusually small cross sections* 
found for these reactions, although another cause is likely 
to be the severe “steric” requirments imposed by reaching 
the region of strong mode coupling and the inefficient 
relative-motion to internal-motion energy flow. 

VI. SUMMARY 

Energies at which the local natural frequencies corre- 
sponding to interfragment and to internal motions (ob- 
tained as eigenvalues of the full 3N-6 or 3N-5 dimensional 
MWH matrix) undergo avoided crossings are related to 
kinetic energy thresholds in the ion-molecule reactions 
M++H2+MH++H, for M+=B+, Al+, and Ga+ and 
deuterium substituted analogs. At collision energies sub- 
stantially in excess of the avoided crossings, there may not 
be adequate “contact time” to permit energy transfer to 
occur; at collision energies much below the avoided cross- 
ing, the resonance condition is not met, and energy cannot 
flow. This model predicts that it is the total kinetic energy 
of collision Tafi&n, not its components Tm and TMB 
along the two M-to-H (or D) axes, that is important in 
determining the reaction threshold because it is this energy 
that governs whether a collision can access the regions of 
the potential surface where avoided crossings occur. 

subsequent dissociation. This is one of the likely causes for 
the measured cross sections for MHf (or MD’) forma- 
tion being small (smallest for Gaf and largest for B+>. 

Preference to form MD+ at lower collision energies 
than MH+ when HD reacts with M+ is consistent with the 
avoided-crossing frequency-resonance picture introduced 
here. The higher frequency M-H mode (which leads to 
MD+ products) couples to the high frequency internal 
motion (H-D) mode at larger R values (and hence lower 
energy) than the lower frequency M-D mode. 

Although the MWH matrix is used as a tool in this 
analysis, the model put forth here is not equivalent to a 
reaction path Hamiltonian’ dynamics model, which also 
employs the MWH. The latter as well as the gradient ex- 
tremal method” use the gradient itself to define the “spe- 
cial” direction of the reaction path connecting a transition 
state (i.e., a first-order saddle point on the energy surface) 
to the reagent geometry. The critical geometries of our 
approach (those where avoided crossings of MWH eigen- 
values occur) can have energies much in excess of the 
nearest first-order saddle points, and they need not even be 
close to the usual minimum-energy2 or gradient extremal” 
path. At points we consider, the gradient often has large 
components along both inter- and intrafragment degrees of 
freedom, unlike the case for reaction paths. The geometries 
along the path we use relate to trajectories that would be 
realized in high-energy ion-molecule collisions in which 
the reagents have little internal energy. 
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Although systematic differences exist between the ap- 
parent experimental thresholds and our (upper bound) 
predictions, the trends seem to be in agreement. Moreover, 
the fact that thresholds exceed thermodynamic require- 
ments is reproduced by our model, as is the propensity to 
produce MD+ at lower collision energy than MH+. 

The primary assumption in making correlations be- 
tween reaction thresholds and avoided crossings of the 
MWH eigenvalues is that energy transfer in such mode- 
coupling collisions is the rate determining step in forming 
MH+ products. Such a model was introduced because the 
experimentally observed reaction thresholds exceed by 0.4 
to - 5 eV the thermodynamic energy requirements or com- 
puted barrier heights of these reactions and because the 
measured cross sections are very small. This is, of course, 
not true for all ion-molecule reactions, but is for the “im- 
pulsive” reactions considered here. 

The fact that the avoided crossings occur high above 
the thermodynamic thresholds leads to large internal en- 
ergies in the MH+ (or MD+) product ions and to likely 
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