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Abstract

When second-order Jahn-Teller couplings become strong slang "streambeds" on potential energy
surfaces, instability reflected in negative curvature slang a symmetry-Iowering distortion coordinate caD

take place. The point where such negative curvature sets in is usually not a transition stale because the
gradient of the potential is usually large there. In this paper, it is demonstrated how to use the local energy,

local gradient, local Hessian, and knowledge of how quickly the curvature for the symmetry-breaking
mode evolves slang the streambed (Le., the derivative of this curvature) to predict how far to move in

the symmetry-breaking mode in search of the desired transition stale. It is shown that the Hessian matrix
evaluated at the symmetry-broken geometry suggested by this analysis has only one negative eigenvalue.

Because this analysis is based on a local approximation to the potential, its predictions. ale, of course,

approximate. As such, they only "suggest" the proper direction and magnitude that one should "step" to
move toward a transitionstate. @ 1993 John Wiley & Sons, Inc.

I. Introduction

Mter years of experience [1] studyingpotential energy surfaces for a variety
of chemical reactions, we decided to explore in further detali the local topologies
of potential energy surfaces that are affected by second-order Jahn- Teller (SOJT)
instabilities [2]. We hilVefound it especially challenging to locate and characterize,
via local harmonie vibrational frequencies, true transition states in such situations. We
offer theapproach described in this paper as a tael for moving away from points when
SOJTinstability sets in and toward possible nearby transition states.

The partieular issue addressed in this paper caD be illustrated by considering a
potential energy surface V that is a function of twa types of internal molecular
coordinates-those denoted x that preserve the point-group symmetry and others
denoted y that alter the point-group symmetry. For example, when considering [H, 1n]
the C2v insertion of B+ joto H2, the distance R from B+ to the center of the H-'-H
band and r, the H-H band length compose x and the asymmetric stretch coordinate
of the B+H2 moiety is y (see Fig. 1).

It is common [1]* when exploring potential surfaces in search of transition states
. (Le., {>ointsat whieh the derivativesof V along all internal coordinates vanish and

* Many different approaches to the problem of finding transition states ale summarized in the selected

references in [3].

@ 1993 John Wiley & Sous, Inc. CCCO020- 7608/93/030211-08
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Figure 1. Coordinate system us,ed.to label C2v geometries for B+ + H2.

where anty one direction bas negative curvature) to use local information about V to
approximate its dependenceon x and y. Specificany, one often uses the local gradient
F and Hessian H to write

1 1
V(x,y) ==Fx8x + Fy8y + 28xHx8x + 28yHy8y + V(xo,Yo), (1)

where Xo,Yois the point at which the gradient and Hessian are computed. The cross,
terms Hxy = rPEjaxay vanish because the coordinates x and y are ofdifferent
symmetry. ,

When searchingfor transitionstates(TS),it is commonto "step" along a seriesof
geometries at which (i) the gradient along an but one internat Hessiari eigenmodet
coordinate(denotedxr) vanishes and (ii) an or an but one of the eigenvaluesof
the Hessianmatrix H arepositive.Fonowingsucha "streambed"awaytrom a local
minimum (at which an gradient elements vanish and an Hessian eigenvalues are
positive) isa popular strategy [1]* for finding transition states. In maDYcases, such
a strategy does indeed produce a series of points (referred to as "steps") along which
the gradientbas vanishingcomponentsalong an but one of the eigenvectorsof the
(local) Hessian and along which one of the Hessian eigenvalues evolves from positive
to negative at which time its eigenvector is paranel to the gradient. Such a "walk"
often converges to a TSwith the last change in geometry (Le., the last "step") being
(nearly) paranel to the negative Hessian eigenvalue's eigenvector.

II. The Appearance of SalT Instability

However, along such an exploration of a potential energy surface, another e1ectronic
state may approach the state whose surface V is being explored. If the other state's
spatial symmetry is different from that of the state of interest, the twa states caDbe
mixed (thereby lowering the energy of the lower state) if a nonsymmetry preserving

tThe 3N x 3N Hessian matrix (N is the number of atoms in the system) has six (for nonlinear molecules)

or five (for linear species) zero eigenvalues that correspond to translation or (infinitesimal) rotation of the
molecule. There are procedures (see, e.g., [4]) for removing these degrees of freedom and focusing on the

Hessian eigenvalues and eigenvectors corresponding to twe interna! motions. In this paper, we assume that

a separation has been effected, and we make reference only to the remaining 3N-6 or 3N-5 internal-motion
eignevalues.

* Many different approaches to the problem of finding transition states are summarized in the selected
references in [3]:
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distortion of the molecular structure takes place; this is the origin of so-called [2]
SOJTcoupling. .

For example, in the Al++ H2 C2v surfacediscussed above, the ground electronic
staLe bas lAl symmetry. Along the streambed shown in Figure 2, all Hessian
eigenvalues are positive until thepoint denoted A is reached; here, the eigenvalue
whose eigenvector is (nearly) paralleI to the gradient vector becomes negative.
Following this same streambed further .leads to a point (denoted B) at which the
Hessian eigenvalue corresponding to the asymmetric stretch a/so becomes negative.
Until reaching B, this eigenvalue is positive, as a result of which C2v symmetry is
preserved in the streambed walking strategy designed to move "uphill" along one
eigenmode while minimizing V along all other eigenmodes. The asymmetric stretch
eigenvalue evolves from positive to negative as point B is passed because an excited
staLe of IB2 symmetry (derived from the 3s13pl configuration of AI+) approaches
the lAl staLe c1osely. ODce the twa states have similar energies, a distortion of
Al X B2 = B2 symmetry causes Lbemto undergo an avoided crossing with the (lower)
lAl staLe pushed to lower energy. The asymmetric distortion bas B2 symmetry and
thus caD induce such SOJTinstability along this mode. .

What is perplexing about the above situation is that prior to'reaching the point of
onset of SOJTinstability, only one Hessian eigenvalue is negative and the streambed
exploration progresses normally, but suddenly a second Hessian eigenvalue becomes
negative. In Figure 3 we illustrate how the asymmetrk stretching mode's Hessian
eigenvalue changes rapidly in the onset region for SalT instability. The focus of this
paper is to identify the proper "next step" to take in such cases, because the point ot
onset ot salT instability is not a TSsince it bas twa directions of negative curvature.

o l 2 3 4 5

R

Figure 2. C2v symmetry contour plot of the eAl) ground-state energy:of Al+ + H2o The

R (distance of Al+ to the center of H-H) and r (H-H distance) axe~ are in A., and the
contours are spaced by 10.0 kcal/mol.
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Figure 3. The lAl surface in a region where the lB2 surface is v'ery cIose tailo At grid
points marked by the diamond shape, the b2mode's Hessian eigenvalue is negative; at the
other points, it is positive.

III. AD Extension oCthe Local Quadratic Potential Model

To this end, let us model, local to the point B, whose components we denote
(XB,oy = O),where SOJTinstability first sets in, the potential surface as

1 .

V ;= V(XB,OY = O) + Fox + 2oxHxOx + (xr - XrB)Ayol. (2)

The x coordinates at the point B are collectively XB,whereas the value of the "special"
coordinate along which steps are taking place and along which the gradient is strongly
nonzero is XrBat point B. For simplicity, we consider only a single symmetry-breaking
coordinate (oy); this is adequate to describe situations in which SOJTcoupling induces
aDYsymmetry breaking. In this expansion of V, the curvature alongthis oY coordinate
is modeled as Ay (xr - XrB), where Xr - XrB is the displacement along the "step
direction" Xr that leads to the point of SOJTinstability. In the Al+ + H2 example, just
prior to reaching XB,the curvature along oY is positive, and upaD moving (slight1y)
through XB,the curvature becomes negfitive. In general, if moving to larger Xr values
causes the oy curvature to move from negative to positive, then Ay is positive; if
moving to larger x, causes this curvature to move from positive to negative, then
Ay is negative.*

A. The Total Gradient oj V Vanishes at a TS

The above parameterization for the curvature along oy is based upaD knowledge
about how this curvature undergoes a sign change as the onset point for SOJTinstability

*In the Al+ + H2 example, if we denote Xr = O as the Al+ + H2 asymptote, the~ one is moving to
larger Xr as point B is approached and eventually traversed. Therefore, Ay is negative. Because V increases
as one moves from smalI Xr to larger Xr, in like manner, Fr = (iJV)/(iJxr) is positive.
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is reached. Clearly, this information represents partial knowledge of third-order
derivatives of V (Le., Ay = (a3V/ axr a2y». Let us naw explore the implications of the
sign change in the 8y curvature by seeking conditions under which this approximate§
V exhibits a stationary point at which al! first-order derivatives vanish:

av" 2
0= - = Fi + L.,Hij8Xj+ 8irAy8y

aXi J

av
O= - = 28y(xr - xrB)Ay.ay

(3a)

(3b)

These conditions are those that characterize a TS,which is precisely what such surface
walking strategies are designed to locate.

B. The Newton-Raphson Solution Is Not Useful

There are twa options to pursue as solutions to Eqs. (3). If 8y = O, then all of the
{8xj} must ober the Newton-Raphson condition 8xj = - Li HJilFi. This "step"is
not acceptable; it simply causes the walk to proceed along the same direction that it bad
been moving, thus progressing even furthel' into the region of negative 8y curvature
where the curvature along Xr remains negative in the Al+ + H2 example above.

C. Breaking Symmetry Is Useful

The second optiori is more fruitful. Taking Xr = XrB,8y = :!:.~-Fr/Ay,and
8xj = - Li HJil Fi fór j =1=r causes

(i) Newton-Raphson steps along all x coordinates except the direction Xr along
which the-streambed lies (this simply causes these directions to be constrained
to minima, therebyremainirig at the bottom ofthe streambed).

(ii) No movement along the streambed direction (Le., Xr - XrB= O).

(iii) Transverse movemerit ineither the '3..8ydirection witn magnitude ~-Fr/Ay.
It is interesting to note that'knowledge of how the 8y curvature varies along Xr [Le.,
(a(a2y/a2y)laxr)] is, qecause of the analytic nature of V, equivalent to knowledge
of how the gradient along Xr varies with 8y [Le., a2(av/axr)/ay2)]. It is for this
reason that Ay, evaluated by detecting the evolution of the 8y curvature, CaDbe used
to locate where the gradientalongXr vanishes.

D. The Hessian at the Symmetry-broken Geometry Has Only One Negative Eigenvalue-

At the point recommended by the above analysis, al! elementsof the gradient vanish
and the Hessian matrix bas the following elements: ..

§This entire derivation is based on the loeal approximation to V given in Eq. (2). As sueh, eonclusions

drawn must be viewed as approximations that represent the bestthat ean be made given the loeal energy
and .Ioeal derivative data that are available.
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a2v
-=0

. . ay2
a2v ~~,= 2ByA =::t: -FrA'

ayaxr y y

. a2v .
'-=0

aJaX;

a2v
-=H;j.
aX;aXj

The coupling between the By and Xr directions causes the Hessian evaluated at

(xr = xrB,By = ::t:~-Fr/Ay, Bxj = - L; HjjIF;; j"* r) to be identical to the
Hessian evaluated at the SOJTinstable point(xr = XrB,By = O, Bxj = O,j "* r)
exceptJor the coupling tenns (a2V)/(ayaxr) = ::t:2.J-FrAy. The uncoupled Hessian
that applies at the SOJTpoint bas one zero eigenvalue (for the Bycoordinate),
one negative eigenvalue (along the Xr coordinate), and positive eigenvalues for the.
remaining coordinates. Therefore, the Hessian thathas the coupling presentmust have
one negative eigenvalue. willi all of the remaining being positive; Le., the zero and
the one negative eigenvalue of the uncoupled Hessian are coupled by the :t2J- FrAy
tenns and "repel" one another, thereby producing one eigenvalue larger than zero and
the second more negative than that of the uncoupled Hessian.

In the situation where Dx bas no negative eigenvalues in the region where SOJT
instability sets in, a similar analysis can be perfonned. In this case, (a2V)/(ay2) =
O, (a2V)/(ayaxr) = 2ByAy = ::t:2.J-FrAy, and (a2V)/(ayax;) = O for i "* r stilI
.hold. However, the coupling (a2V)/(oyaxr) now causes the. zero eigenvalue of the
uncoupled Hessian to be shifted to a low~r (i.e., negative) vahie and the remaining
(positive) eigenvalues of Dx>on average, to be shifted upward. The net resu1t is that
again there is one negative eigenvalue and all the fest are positive"

In the latter case, the negative eigenvalue's eigenvector willlie primarily along the
By direc~ion because this eigenvalue derives from the (assumed smalI) shift of the
By curvature to a negativevalue. In the first case treated above, the By curvature
shifts upward to apositive' value, and the one negative eigenvalue of Dx shifts to an
even more negative value, in which case the eigenvector belonging to the negative
curvature direction will lie primarily along the Xr direction.

(4a)

(4b)

fori"*r (4c)

(4d)

-p'

IV. Overview

To summarize, at the onset of SOJTinstability, knowledge of how the cur-
vature along' the symmetry:breaking coordinate' varies along the streambed walk
[(a2V)/(aXroy2)] allows one to locate a point (xr = XrB,Bx; = - Lj H;} lFj, i "* r,

By = ::t:~-Fr/Ay) at which VV = O and at which there exists only one direction
of negativecurvature.The directionof negativecurvatureat this new point will lie
primarilyalong By if Dx bas no negative eigenvalues;it will lie primarilyalong
Xr if Dx bas one negativeeigenvalue.The point describedabove is thereforea TS!
The energyVTSat this TSis predictedto be identicalto that at the point of onset of
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salT instability VSOJT,which ean be demonstrated by simply substituting Xr = XrB,

8y = -:!) - Fr/ Ay 8Xi =- Lj Hi-;tFj, i -4=r into Eq. (2).
In [5a], Valtazanos and Ruedenberg provide an analysis close to that deseribed

here, in particular for situations when the twa states involved in the saJT interaetion
are of different symmetry. Also, Quapp [5b] examined bifureations of model two-
dimensional surfaees in same detail. In the farmer development, the potential V is
modeled as also eontaining a term A48y4; no eubie term of the type A38y3 is included
beeause the pIane of symmetry under which 8y -+ - 8y is assumedllto be a symmetry

pIane of the moleeule prior to onset of saJT instability. If the 8y = '2:)- Fr/ Ay
displaeement obtained in aur analysis is large, it would be neeessary to use a more
eomplieated expression for V analogous to that given in [5a]:

1 2 4
V = VSOJT + F8x + -8xHx8x + (xr - xrB)Ay8y + A48y .2

Requiring thegradient of this V to vanish produees equations analogous to Eqs. (3),
but the solutions no longer give Xr - XrB = O, but are more eomplieated; a step
involving eomponents along both 8y and Xr is naw required.

We will not explore this more eomplex approximation further here. We prefer to
stop at the more straightforward analysis provided earlier beeause this suggests a step
away from the onset point fo..rsalT instability that ean be I.I:ndertakengiven only the
knowledge that is already available 'whim the potential surfaee walK eneounters the
saJTdiffieultyVSOJT, the gradientVV, and the HessianH and how the 8y eurvature
varies along Xr (as embodied in Ay). To use Eq. (5), one would also need to obtain,
either from analytieal derivatives of V or by pointwise analyzing the y dependenee of
a2V/ ay2, the A4 eoeffieient. The approaeh advoeated here is based uran the analyticity
of the potential energy surfaee asa funetion of nuclear positions, whieh implies
that knowledge of Ay= [a(a2v/a2y)]j(aXr), obtainedby monitoringhow the 8y
eurvature evolves along xn is equivalent to knowledge of the 8y dependenee of
the orf-diagonal Hessian matrix elements eoupling.xr and 8y: [a(a2v/ayaXr)]j(ay),
which is also equivalent to knowing the seeond-órder derivatives along 8y of the
gradient along Xr: [a2(av/aXr)]j(ay2). It is knowledge of sueh matrix elernents that
allows liS, in this wark, to obtain information about how far to "step" in the 8y
direetion to eause the gradient (aV)/(axr) along Xr to vanish.

The findings deseribed in this paper show how to move past geometries at whieh
salT instability begins (and whieh are not TSS)and move to nearby lower-symmetry
geometries that are possible TSs.Even though VTS= VSOJT, the geometriesand loeal
harmonie vibrational frequencies of the TS are not the same as those of the saJT
point. It is therefore essential to find the TSgeometries and use these geometries and
frequencies to eompute, e.g., ehemical reaetion rate eoefficients via TSor variational

(5)

IIIt is possible that two states of the same symmetry approach one another along a streambed on, e.g.,
the lower-energy surface. In such cases, the degree of freedom transverse to the gradient needs not contain

aDY components that alter the molecule's symmetry. Thus, the assumption that V is an even function of
oy would not be valid in such cases, and it would be appropriate to use a term of form A30y3 as the
lowest-order correction to OUTEq. (2).
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TS formulae [6]. The methods used to derive the resuIts given here can also be used
to analyze potential energy surfaces in regions of conical intersections [7].
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