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Abstract

When second-order Jahn-Teller couplings become strong along “streambeds” on potential energy
surfaces, instability reflected in negative curvature along a symmetry-lowering distortion coordinate can
take place. The point where such negative curvature sets in is usually not a transition state because the
gradient of the potential is usually large there. In this paper, it is demonstrated how to use the local energy,
local gradient, local Hessian, and knowledge of how quickly the curvature for the symmetry-breaking
mode evolves along the streambed (i.e., the derivative of this curvature) to predict how far to move in
the symmetry-breaking mode in search of the desired transition state. It is shown that the Hessian matrix
evaluated at the symmetry-broken geometry suggested by this analysis has only one negative eigenvalue.
Because this analysis is based on a local approximation to the potential, its predictions are, of course,
approximate. As such, they only “suggest” the proper direction and magnitude that one should “step” to
move toward a transition state. © 1993 John Wiley & Sons, Inc.

L. Introduction

After years of experience [1] studying potential energy surfaces for a variety
of chemical reactions, we decided to explore in further detail the local topologies
of potential energy surfaces that are affected by second-order Jahn—Teller (S0IT)
instabilities [2]. We have found it especially challenging to locate and characterize,
via local harmonic vibrational frequencies, true transition states in such situations. We
offer the approach described in this paper as a tool for moving away from points when
SOIT instability sets in and toward possible nearby transition states.

The particular issue addressed in this paper can be illustrated by considering a
potential energy surface V that is a function of two types of internal molecular
coordinates—those denoted x that preserve the point-group symmetry and others
denoted y that alter the point-group symmetry. For example, when considering [1f, 1n]
the C,, insertion of B into Hj, the distance R from B* to the center of the H—H
bond and r, the H—H bond length compose x and the asymmetric stretch coordinate
of the B*H, moiety is y (see Fig. 1). :

It is common [1]* when exploring potential surfaces in search of transition states
(i.e., points at which the derivatives of V along all internal coordinates vanish and

*Many different approaches to the problem of finding transition states are summarized in the selected
references in [3].
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Figure 1. Coordinate system used to label C, geometries for B* + H..

where only one direction has negative curvature) to use local information about V' to
approximate its dependence on x and y. Specifically, one often uses the local gradient
F and Hessian H to write

V(x,y) = F,6x + F,6y + %6,‘11,‘31: + %3yH,5y + V(xo,Yo)» (€))
where Xo, Yo is the point at which the gradient and Hessian are computed. The cross .
terms Hyy = 82E/3dxdy vanish because the coordinates x and y are of different
symmetry.

When searching for transition states (Ts), it is common to “step” along a series of
geometries at which (i) the gradient along all but one internal Hessian eigenmode’
coordinate (denoted x,) vanishes and (i) all or all but one of the eigenvalues of
the Hessian matrix H are positive. Following such a “streambed” away from a local
minimum (at which all gradient elements vanish and all Hessian eigenvalues are
positive) is a popular strategy [1]* for finding transition states. In many cases, such
a strategy does indeed produce a series of points (referred to as “steps”) along which
the gradient has vanishing components along all but one of the eigenvectors of the
(local) Hessian and along which one of the Hessian eigenvalues evolves from positive
to negative at which time its eigenvector is parallel to the gradient. Such a “walk”
often converges to a TS with the last change in geometry (i.e., the last “step”) being
(nearly) parallel to the negative Hessian eigenvalue’s eigenvector.

IL. The Appearance of soJT Instability

However, along such an exploration of a potential energy surface, another electronic
state may approach the state whose surface V is being explored. If the other state’s
spatial symmetry is different from that of the state of interest, the two states can be
mixed (thereby lowering the energy of the lower state) if a nonsymmetry preserving

1The 3N X 3N Hessian matrix (N is the number of atoms in the system) has six (for nonlinear molecules)
or five (for linear species) zero eigenvalues that correspond to translation or (infinitesimal) rotation of the
molecule. There are procedures (see, e.g., [4]) for removing these degrees of freedom and focusing on the
Hessian eigenvalues and eigenvectors corresponding to true internal motions. In this paper, we assume that
a separation has been effected, and we make reference only to the remaining 3N-6 or 3N-5 internal-motion
eignevalues.

* Many different approaches to the problem of finding transition states are summarized in the selected
references in [3].
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distortion of the molecular structure takes place; this is the origin of so-called [2]
soIT coupling. :

For example, in the Al* + H, C,, surface discussed above, the ground electronic
state has 'A; symmetry. Along the streambed shown in Figure 2, all Hessian
eigenvalues are positive until the point denoted A is reached; here, the eigenvalue
whose eigenvector is (nearly) parallel to the gradient vector becomes negative.
Following this same streambed further leads to a point (denoted B) at which the
Hessian eigenvalue corresponding to the asymmetric stretch also becomes negative.
Until reaching B, this eigenvalue is positive, as a result of which C;, symmetry is
preserved in the streambed walking strategy designed to move “uphill” along one
eigenmode while minimizing V along all other eigenmodes. The asymmetric stretch
eigenvalue evolves from positive to negative as point B is passed because an excited
state of !B, symmetry (derived from the 3s'3p! configuration of Al*) approaches
the 'A; state closely. Once the two states have similar energies, a distortion of
A; X B; = B; symmetry causes them to undergo an avoided crossing with the (lower)
'A; state pushed to lower energy. The asymmetric distortion has B, symmetry and
thus can induce such sSoJT instability along this mode. _

What is perplexing about the above situation is that prior to reaching the point of
onset of SOJT instability, only one Hessian eigenvalue is negative and the streambed
exploration progresses normally, but suddenly a second Hessian eigenvalue becomes
negative. In Figure 3 we illustrate how the asymmetric stretching mode’s Hessian
eigenvalue changes rapidly in the onset region for soIT instability. The focus of this
paper is to identify the proper “next step” to take in such cases, because the point of
onset of S0JT instability is not a TS since it has two directions of negative curvature.
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Figure 2. Ci, symmetry contour plot of the (!A;) ground-state energy. of Al* + Ha. The
R (distance of Al” to the center of H—H) and r (H—H distance) axes are in A, and the
contours are spaced by 10.0 kcal/mol.



214 SIMONS

100

50

Figure 3. The 'A; surface in a region where the !B; surface is very close to it. At grid
points marked by the diamond shape, the by mode’s Hessian eigenvalue is negative; at the
other points, it is positive.

ITII. An Extension of the Local Quadratic Potential Model

To this end, let us model, local to the point B, whose components we denote
(xp, 8y = 0), where soIT instability first sets in, the potential surface as

Vi Viap, By =0) # Fix + é—axH,ax Py Vi

The x coordinates at the point B are collectively xp, whereas the value of the “special”
coordinate along which steps are taking place and along which the gradient is strongly
~ nonzero is x,p at point B. For simplicity, we consider only a single symmetry-breaking
coordinate (§y); this is adequate to describe situations in which soIT coupling induces
any symmetry breaking. In this expansion of V, the curvature along this 8y coordinate
is modeled as Ay (x, — x,), where x, — x,5 is the displacement along the “step
direction” x, that leads to the point of SOIT instability. In the Al* + H, example, just
prior to reaching xg, the curvature along &y is positive, and upon moving (slightly)
through xp, the curvature becomes negative. In general, if moving to larger x, values
causes the 8y curvature to move from negative to positive, then A, is positive; if
moving to larger x, causes this curvature to move from positive to negative, then
A, is negative.}

A. The Total Gradient of V Vanishes at a TS

The above parameterization for the curvature along 8y is based upon knowledge
about how this curvature undergoes a sign change as the onset point for SOJT instability

#In the Al* + Hz example, if we denote x, = 0 as the Al* + H> asymptote, then one is moving to
larger x, as point B is approached and eventually traversed. Therefore, A, is negative. Because V increases
as one moves from small x, to larger x,, in like manner, F, = (8V)/(8x,) is positive.
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is reached. Clearly, this information represents partial knowledge of third-order
derivatives of V (i.e., A, = (83V/dx,8%y)). Let us now explore the implications of the
sign change in the 8y curvature by seeking conditions under which this approximate®
V exhibits a stationary point at which all first-order derivatives vanish:

oV

0= TR Z; H;;8x; + 8i;A, 8> _ (3a)
v ' :
0= %;- = 28y(x, — x.8)A,. (3b)

These conditions are those that characterize a TS, which is precisely what such surface
walking strategies are designed to locate.

B. The Newton—Raphson Solution Is Not Useful

There are two options to pursue as solutions to Egs. (3). If 8y = 0, then all of the
{8x;} must obey the Newton—Raphson condition §x; = —3; HEIF ;. This “step” is
not acceptable; it simply causes the walk to proceed along the same direction that it had
been moving, thus progressing even further into the region of negative 8y curvature
where the curvature along x, remains negative in the Al* + H, example above.

C. Breaking Symmetry Is Useful

" The second option is more fruitful. Taking x, = x,3, 6y = IJ—F,/A,, and
8xj = — Y ;Hj'F; for j # r causes

(i) Newton—Raphson steps along all x coordinates except the direction x, along
which the streambed lies (this simply causes these directions to be constrained
to minima, thereby remaining at the bottom of the streambed).

(ii) No movement along the streambed direction (i.e., x, — x,53 = 0).

(iii) Transverse movement in either the *48y direction with magnitude /—F,/A,.
It is interesting to note that knowledge of how the 8y curvature varies along x, [i.e.,
(3(8%V/a%y)/ax,)] is, because of the analytic nature of V, equivalent to knowledge
of how the gradient along x, varies with 8y [i.e., 82(3V/dx,)/dy?)]. It is for this
reason that A,, evaluated by detecting the evolution of the 8y curvature, can be used
to locate where the gradient along x, vanishes.

D. The Hessian at the Symmetry—broken Geometry Has Only One Negative Eigenvalue

At the point recommended by the above analysis, all elements of the gradient vanish
and the Hessian matrix has the following elements:

$This entire derivation is based on the local approximation to V given in Eq. (2). As such, conclusions
drawn must be viewed as approximations that represent the best that can be made given the local energy
and-local derivative data that are available.
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55 =0 (4a)
afa‘; =254, = +2[=F, A, (4b)
af;; =0 (40)
2 - . 4d)

The coupling between the 8y and x, directions causes the Hessian evaluated at
(x, = x;3,8y = x[—F,/A,, oxj = - HﬁlF,v; J # r) to be identical to the
Hessian evaluated at the SOJT instable point (x, = x5, 6y =0, éx; =0, j # r)
except for the coupling terms (3%V)/(dydx,) = +2,/=F,A,. The uncoupled Hessian
that applies at the SOIT point has one zero eigenvalue (for the 8y coordinate),
one negative eigenvalue (along the x, coordinate), and positive eigenvalues for the
remaining coordinates. Therefore, the Hessian that has the coupling present must have
one negative eigenvalue with all of the remaining being positive; i.e., the zero and
the one negative eigenvalue of the uncoupled Hessian are coupled by the £2,/—F A,
terms and “repel” one another, thereby producing one eigenvalue larger than zero and
the second more negative than that of the uncoupled Hessian.

In the situation where H, has no negative eigenvalues in the region where SoIT
instability sets in, a similar analysis can be performed. In this case, (82V)/(dy?) =
0, (82V)/(3ydx,) = 28yA, = *2./=F,A,, and (8?V)/(dyax;) = 0 for i # r still
hold. However, the coupling (82V)/(3ydx,) now causes the zero eigenvalue of the
uncoupled Hessian to be shifted to a lower (i.e., negative) value and the remaining
(positive) eigenvalues of H;, on average, to be shifted upward. The net result is that
~ again there is one negative eigenvalue and all the rest are positive.

In the latter case, the negative eigenvalue’s eigenvector will lie primarily along the
8y direction because this eigenvalue derives from the (assumed small) shift of the
8y curvature to a negative value. In the first case treated above, the 8y curvature
shifts upward to a positive value, and the one negative eigenvalue of H, shifts to an
even more negative value, in which case the eigenvector belonging to the negative
curvature direction will lie primarily along the x, direction.

IV. Overview

To summarize, at the onset of SOIT instability, knowledge of how the cur-
vature along the symmetry-breaking coordinate varies along the streambed walk
[(82V)/(8x,8y?)] allows one to locate a point (x, = x,3, §x; = — Z; H,-}IF_,-, i#r,

8y = *,/—F,/A;) at which VV = 0 and at which there exists only one direction
of negative curvature. The direction of negative curvature at this new point will lie
primarily along 8y if H, has no negative eigenvalues; it will lie primarily along
x, if H, has one negative eigenvalue. The point described above is therefore a TS!
The energy Vis at this TS is predicted to be identical to that at the point of onset of
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SoIT instability Vsoyr, which can be demonstrated by simply substituting x, = x.z,
8y = *,/=F,/A, 6x; = =3 H;'F;, i # r into Eq. (2).

In [5a], Valtazanos and Ruedenberg provide an analysis close to that described
here, in particular for situations when the two states involved in the SOJT interaction
are of different symmetry. Also, Quapp [5b] examined bifurcations of model two-
dimensional surfaces in some detail. In the former development, the potential V' is
modeled as also containing a term A48y%; no cubic term of the type A;8y is included
because the plane of symmetry under which 8y — — 8y is assumed! to be a symmetr
plane of the molecule prior to onset of soIT instability. If the 8y = *,/—F,/A,
displacement obtained in our analysis is large, it would be necessary to use a more
complicated expression for V analogous to that given in [5a]:

: ;
V = Ve + Féx + —é-SxHxax + (x, — x:8)A, 8y + AsdY*. )

Requiring the gradient of this V to vanish produces equations analogous to Egs. (3),
but the solutions no longer give x, — x,z = 0, but are more complicated; a step
involving components along both 8y and x, is now required.

We will not explore this more complex approximation further here. We prefer to
stop at the more straightforward analysis provided earlier because this suggests a step
away from the onset point for soJT instability that can be undertaken given only the
knowledge that is already available when the potential surface walk encounters the
sosT difficulty Vsoyr, the gradient VV, and the Hessian H and how the 8y curvature
varies along x, (as embodied in A,). To use Eq. (5), one would also need to obtain,
either from analytical derivatives of V or by pointwise analyzing the y dependence of
32V /ay?, the A4 coefficient. The approach advocated here is based upon the analyticity
of the potential energy surface as a function of nuclear positions, which implies
that knowledge of A, = [8(3%V/3%y)l/(8x,), obtained by monitoring how the Jy
curvature evolves along x,, is equivalent to knowledge of the 8y dependence of
the off-diagonal Hessian matrix elements coupling x, and 8y: [8(8%V/ayax, )]/ (ay).
which is also equivalent to knowing the second-order derivatives along 8y of the
gradient along x,: [3%(8V/dx,)]/(3y?). It is knowledge of such matrix elements that
allows us, in this work, to obtain information about how far to “step” in the 8y
direction to cause the gradient (4V)/(dx,) along x, to vanish.

The findings described in this paper show how to move past geometries at which
SoIT instability begins (and which are not Tss) and move to nearby lower-symmetry
geometries that are possible Tss. Even though Vs = Vsour, the geometries and local
harmonic vibrational frequencies of the TS are not the same as those of the sOIT
point. It is therefore essential to find the TS geometries and use these geometries and
frequencies to compute, e.g., chemical reaction rate coefficients via Ts or variational

It is possible that two states of the same symmetry approach one another along a streambed on, €.g.,
the lower-energy surface. In such cases, the degree of freedom transverse to the gradient needs not contain
any components that alter the molecule’s symmetry. Thus, the assumption that V is an even function of
8y would not be valid in such cases, and it would be appropriate to use a term of form A38y? as the
lowest-order correction to our Eq. (2).
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Ts formulae [6]. The methods used to derive the results given here can also be used
to analyze potential energy surfaces in regions of conical intersections [7].
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