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We have formulated and implemented a direct atomic integral driven method for the 
calculation of frequency-dependent response properties at the self-consistent-field level. By 
avoiding the integral transformation step, as well as the storing and retrieving of atomic- 
orbital-based integrals, we are able to use large basis sets. The practicality of the approach is 
illustrated and calibrated by performing a series of calculations on cyclopropenone employing 
up to 232 basis orbitals. We examined the scaling of the dipole polarizability (a) with the size 
of the system for paranitroaniline and its dimer. Except for a small positive enhancement of the 
component along the molecular axis, we find little effect of size on a for this system. However, 
if the -NN- linkage of the dimer is replaced by a -CC- linkage, thus more effectively 
extending the r-orbital conjugation by making the dimer planar, we find a large, frequency- 
dependent increase in the polarizability relative to twice that of the monomer (factors varying 
from 3 to 18, depending on frequency). This makes the -CC- linked polymer a potential 
candidate for achieving nonlinear chain length dependence of properties that depend on a. 

I. INTRODUCTION 

Dielectric properties of materials are determined by the 
polarization of the medium. This macroscopic property is 
given, for example, by the Clausius-Mossotti relation, in 
terms of the polarizability tensors a(E) of the individual 
molecules. It is important to emphasize that a(E) is a fre- 
quency-dependent tensorial property. Therefore, when de- 
vising computational schemes for evaluating a(E), it is wise 
to consider methods which (i) can treat all six components 
of this tensor in a manner whose effort is not 6 times the 
effort to compute one component, and (ii) can properly han- 
dle the frequency dependence for a wide range of energies. In 
particular, a method that can treat both the frequency-de- 
pendent and frequency-independent polarizability with 
equal accuracy is to be preferred. Although these require- 
ments may seem obvious, they do not characterize the so- 
called ‘finite field’ methods’ that are widely used to evaluate 
molecular polarizabilities.’ 

In this work, we advocate the use of response function 
methods,3-5 which are often termed polarization propagator 
methods, because they possess the advantageous properties’ 
outlined earlier. In addition to yielding the polarizability 
a(E), these methods also allow one to extract electronic 
excitation energies. The accuracy of these energies com- 
pared to experimental data provides a valuable measure of 
the accuracy of the computed a(E). 

From the relatively few ab initio calculated frequency- 
dependent polarizability results’-” that are available at var- 
ious levels of electron correlation, it appears that a(E) can 
be well represented at the self-consistent-field (SCF) level of 
treatment if the electronic state of the system is reasonably 
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noncorrelated (e.g., as for a closed-shell molecule or atom 
with no low-energy excited orbitals) and the energy E is not 
too close to an electronic resonance (i.e., excitation energy) 
of the system. Close to such resonances, first-order methods 
do not provide an accurate representation of a(E) . There- 
fore, it is important to have a priori knowledge of the reso- 
nance positions. Methods such as those used here are capa- 
ble of providing this information from the eigenspectrum of 
the response matrix described later. 

The treatment in which the electronic state, whose 
a(E) is to be computed, is treated at the SCF level and re- 
sponse function theory is used to generate a(E), is known as 
the time-dependent Hartree-Fock (TDHF) or random- 
phase approximation (RPA). Although the treatment of 
a(E) for closed-shell species far from electronic excitation 
resonances may be carried out within the TDHF level, 
choosing an atomic-orbital basis set for such calculations is 
far from trivial. It has been found by many workers that 
reasonably accurate polarizability calculations requires the 
use of large, flexible, basis sets with diffuse functions and 
higher angular momentum functions. More than 100 basis 
functions may be required even for a ‘small’ molecule such as 
the cyclopropenone system examined here. Because the re- 
sponse theories’ analytical expressions for a(E) are given in 
terms of SCF orbital energies and two-electron integrals 
among the SCF molecular orbitals (MO’s), the very time 
consuming two-electron integral transformation step that 
plagues most electronic structure calculations has limited 
finite-field and TDHF calculations of a(E) to small atoms 
and molecules. 

In the present work, we demonstrate how to avoid the 
integral transformation step within the framework of the 
TDHF approximation. As a result, we are able to use the 
DISCO (Ref. 12) package to evaluate two-electron integrals 
over atomic orbitals (AO’s) and to compute, “on the fly” 
and without major data storage needs, the contributions of 
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each such integral to the matrices that are required by the 
TDHF procedure. No MO-based integrals are needed, and 
the AO-based integrals can be discarded as soon as their 
contributions are evaluated. 

Much experience with direct AO-based SCF calcula- 
tions indicates that the number of nonzero two-electron inte- 
grals within conventional A0 bases of M orbitals varies as 
approximately M 2.3 for large systems. Spatial separation of 
orbitals on distant atoms results in this reduction from the 
expected M4 factor; for large bases and small molecules in 
which internuclear separations are not large, a dependence 
closer to M4 is expected. In either event, the AO-based pro- 
cedure demonstrated here uses CPU time that varies consid- 
erably less strongly than the integral transformation step 
mentioned earlier, which scales as M 5. Moreover, because 
the AO-based integrals do not have to be stored on disk, this 
method permits work stations having modest amounts of 
memory to be used to examine much larger species with larg- 
er A0 basis sets. 

To demonstrate the implementation advocated here and 
to examine potential nonadditivity of a(E) for highly delo- 
calized n-orbital networks, we calculate a(E) for the follow- 
ing. 

(i) Cyclopropenone using a series of basis sets contain- 
ing up to 232 AO’s. These calculations allowed us to choose 
a modestly large basis set that is capable of reproducing the 
polarizability at the SCF level of theory within f 10% of 
the values obtained in our largest basis. The compromise 
basis, which contains 106 Gaussian functions, is labeled 
{2P} in Table I where this and other bases are described and 
their energies, dipole moments, and polarizabilities given. 
This basis calibration then allowed us to move on to examine 
larger molecules. 

(ii) The p-nitroaniline (pNA) monomer (with bases 
having up to 272 contracted AO’s) and dimer (with up to 
294 AO’s). The goals of this study were to demonstrate the 
computational power of the method and to look for possible 
nonlinearities in the computed values ofa as functions of 
the number of atoms (or electrons) in the system and of 
energy E. 

(iii) A “dime? molecule formed by linking nitro- 

benzene and aniline via a -CC- linkage to form 
0, N-C, H, -CC-C, H, -NH, using the same bases contain- 
ing up to 294 AO’s. This species is viewed as related to the 
dimer 0, N-C,H,-NN-C,H,-NH, of pNA in which the 
-NN- linkage is replaced by the -CC- linkage. Replacing 
-NN- by -CC- was explored because the -NN- moiety 
“breaks” the VT delocalization between the phenyl rings. In 
contrast, the -CC- linkage allows the two rings to retain 
conjugation, and thus may be expected to give rise to larger 
in-plane a delocalization and, hence, a larger polarizability 
component along the long axis of the dimer. 

II. FORMULATION OF THE WORKING EQUATIONS 
A. Response formulation of polar&ability 

The ab initio calculation of frequency-independent and 
frequency-dependent polarizabilities of atoms and mole- 
cules, a and a(E), can be accomplished via a response func- 
tion theory. Such approaches express the nine Cartesian 
components of the tensor a(E) in terms of (i) matrix ele- 
ments, within a space to be detailed later, of the three Carte- 
sian component electric dipole vector operator r with ele- 
ments {r,,} and (ii) elements within this same space of two 
second rank matrices A and B whose elements are denoted as 
AmoGnb and Bmoinb. The expression for a(E) is usually written 
as3 

a(E) = - 2(r -r) 
E-A -B* 

-B -E-A* >-‘U 

B. The TDHF approximation 
Within the most elementary response function theory 

known as the time-dependent Hartree-Fock or random- 
phase-approximation model, the space within which the rmll, 
Amoinb, and Bmanb are evaluated is called the space of parti- 
cle-hole excitations. Within such a theory, the electronic 
state of the system whose polarizability is sought is treated at 
the Hartree-Fock self-consistent-field single Slater determi- 
nant wave-function level: 

Y= 1~1(1)~2(2)...9,(a)...~6(b)...~,(N)I. 
Here the {4,) denote the set ofN SCF spin orbitals (orbitals 

TABLE I. Energies, dipole moments, and polarizabilities (all numbers given in atomic units) for cyclopropen- 
one within different bases. 

Basis 

6-31 G**’ 
KPD ’ 
OPd 
IPC 
2Pf 
4P' 

Energy A axx %Y a22 f&v a 

- 189.536 1.873 31.37 13.30 36.54 27.07 
- 189.481 1.972 33.89 20.48 41.35 31.91 
- 188.573 1.735 32.68 14.99 38.26 28.64 
- 189.128 1.968 32.32 18.92 41.51 31.25 
- 189.167 2.015 34.79 22.97 42.93 33.56 
- 189.610 1.958 35.06 23.03 42.72 33.60 

‘a*, = j(% + a, + a,). 
b(10,4,1/4,1) [3,2,1/2,1], seeRef. 16. 
‘(9,5,1/4,1) [3,2,1/2,1],seeRef. 9. 
d (6,3/3) [ 4,3/3], see text for a complete description. 
’ ( 7,4/4,1) [ 4,3/3,1], see text for a complete description. 
’ (8,5,1/5,1) [ 5,4,1/4,1], see text for a complete description. 
L (15,10,4/10,4) [ 7,6,4/6,4], see text for a complete description. 
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multiplied by a or ,@ that are occupied in this Slater deter- 
minant. The spin orbitals {#, } that are not occupied in Y are 
called unoccupied or virtual spin orbitals or “particles.” An 
operator expressed in terms of spin-orbital creation Cm+} 
and destruction {a} operators, 

B. Problems with large particle-hole spaces 
Another difficulty lies in computing, storing, and even- 

tually obtaining the inverse of the matrix 

4 t,, = m+a, 
that acts on Y to replace the occupied spin-orbital 4, by a 
virtual spin-orbital 4, , is called a “particle-hole” excitation 
operator because it creates a hole in a spin orbital that ap- 
pears in Y and a particle in a previously unoccupied spin 
orbital. 

As shown in Ref. 3, within this space of particle-hole 
operators and taking a single Slater determinant to describe 
the electronic state of interest, the elements of the r vector 
are given as integrals of the dipole operator r among the 
unoccupied and occupied SCF molecular orbitals 

E-A -B* 
-B -E-A* > 

when its dimension is quite large. The dimension of this ma- 
trix is twice the dimension of the particle-hole space. When 
large A0 bases are used, the number of virtual orbitals is 
quite large. For example, in the calculation whose results are 
presented here, 294 AO’s were employed and gave rise to 62 
occupied MO’s and 232 virtual MO’s, and to a particle-hole 
space of dimension 232 X 62 = 14 384. 

r In0 = (4, IrMo >. 
In this expression and in all others to follow, the spins of the 
orbitals are absent because the working expressions obtained 
in Ref. 3 were derived for closed-shell singlet Y’s and for 
singlet excitation operators qt,, . 

In the present work, we present a reformulation of the 
above single Slater determinant based, response function 
formulation of a(E) that does not require the two-electron 
integrals in the MO basis and does not involve explicit inver- 
sion of the large matrix shown earlier. In particular, we com- 
pute 

E-A 
-B -;!*A*)-‘( :,> 

As also shown in Ref. 3, the elements of the A and B 
arrays are given in terms of orbital energies and two-electron 
integrals over these same MO’s as 

by employing iterative matrix-times-vector methods to solve 
the set of linear equations 

Amainb = Smn6bo (E, - E, 1 - (mnlba) + Wnalbn), 
Bmoinb = (anlbm) - 2(amlbn). 

E-A -B* 
-B 

Here, Mulliken notation is used for the two-electron inte- 
grals 

Given a converged solution vector (c ), the polarizability 
a(E) is then computed as 

Z 
a(E) = -2(r -r) y . 0 

(mnlba) = s ~*,(l)~,(1)~1/~12~~~(2)~,(2)d7,d7,, 

and the canonical SCF orbital energies are denoted E, for 
virtual orbitals and Ed for occupied orbitals. 

C. Solving large linear equation sets 

III. OVERCOMING DIFFICULTIES WITH TWO- 
ELECTRON INTEGRALS IN THE MOLECULAR- 
ORBITAL BASIS AND LARGE PARTICLE-HOLE 
SPACES 

The implementation of such iterative methods requires 
that a set of basis vectors { ($ ) } be generated, after which 
the solution vector (t ) is expanded in terms of these basis 
vectors: 

A. The bottleneck of two-electron integrals in the MO 
basis 

The expansion coefficients CD,} are found by solving the set 
of ‘reduced’ linear equations 

T CZ”W(E~; -,“;*)(;:)Ds = WW( :J One primary difficulty with calculating a(E) in the 
manner outlined earlier lies in the fact that the A and B 
matrix elements are expressed in terms of two-electron inte- 
grals over the canonical MO’s. The evaluation of these inte- 
grals requires transforming the integrals from the atomic- 
orbital basis where they are denoted (ijl kl) to the MO basis ZSfl 

as, for example, ( > yr+ 1 

(mnlba) = CC~iC~jC~,C~,(~lkl), 
ijkl 

that result by substituting the above expansion for (; ) into 
the full set of linear equations. 

Within such methods, successive members 

using the linear combination atomic-orbital-molecular-or- 
bital (LCAO-MO) coefficients CC,,} that relate the SCF 
MO’s to the original AO’s. This integral transformation step 
requires CPU time proportional to the fifth power of the 
basis set size, which presents a well known bottleneck to 
many ab initio quantum chemistry calculations. 

of the vector space are formed in a process that requires 
multiplying the sth vector in this space ($ ) by the matrix 

E-A -B* 
-B -E--A* = > 

X. 

To begin this process, an initial vector ($) must be avail- 
able. In our implementation, this ‘seed’ vector is formed with 
elements 
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W - e, + G >z”,, = r,,, 
(E+E, -E,)% =r,,. 

That is, the first member of the vector space is formed with 
Z” and Y() elements obtained by solving the linear equations 
neglecting all of the two-electron integral contributions. 

This ansatz, as well as the algorithm employed to gener- 
ate subsequent vectors (t: ) is derived from a linearization of 
the full linear equation set 

x(:)=(r)? 
based on decomposing the full X matrix into its (presumed) 
dominant diagonal parts, 

E-E, +E, 0 
x, = 

0 > -E-E, +~a ’ 
and its off-diagonal and remaining diagonal parts 
X FCnl = X - X,. In this way, one generates a “new” solution 
vector 

Z “=W 
( ) Y”,, 

from a “current” vector (> ), 

This new vector is then orthogonalized to the preceeding 
members of the vector space and defined as ($ ). This ortho- 
gonalization process removes the (X, ) - ’ (‘- r ) component 
of this vector because this component is equal to ($ ). For 
this reason, it is possible to use 

(pJ= w’( -Km(~~)] 
to generate the new member of the vector space ($ ). 

The two vectors ($) and ($ ) are then used to form a 
2x2 

reduced matrix and two elements of the 

(ZW( _‘J 

reduced right-hand side array. The above set of reduced lin- 
ear equations are then solved to produce CD,) = {D,,D,} 
values, which define a new 

(3 = *z.,43 
to be used to generate a new (2:: ). 

As mentioned earlier in practice, it is found useful to 
Schmidt orthogonalize newly formed vectors at the sth iter- 
ation of this process ($1: ) to all earlier vectors C(z); 
j = 1,2,..., s} and to normalize the new vector. As the vector 
space reaches saturation, it becomes difficult to carry out 
such orthonormalization; this is a sign that the space is large 
enough to accurately represent the full solution vector. The 

key to an efficient implementation of such an algorithm lies 
in the method for computing the matrix-vector products 
x,, ($1. 

D. Expressing the matrix-vector products in terms of 
A0 integrals 

The task of forming the aforementioned matrix-times- 
vector products reduces to forming matrix-vector products 
of the form (E-A)Z-BY and -BZ-(E+A)Y, 
where these Z and Y vectors represent the sth member of the 
basis vector space discussed earlier. The essence of the ap- 
proach developed and implemented in this work involves 
recasting these two products in a manner that does not re- 
quire access to the two-electron integrals within the MO ba- 
sis. A similar approach was sketched by Bacskay13 and later 
discussed in more detail by Jensen et ~1.‘~ in a more general 
treatment that does not require the MO’s to be of the canoni- 
cal Hat-tree-Fock type. Moreover, Bouman et ~1.‘~~ have, in 
many elegant examples, shown how to solve the large linear 
equations that arise in the RPA solution in the “direct” ap- 
proach advocated here (but in the MO rather than the A0 
basis). However, the only implementation of the procedure 
is that of Parkinson and Zemer’5b within a semiempirical 
framework where the treatment of the two-electron integrals 
is considerably simpler. To illustrate how the aforemen- 
tioned two matrix-vector products can be so rewritten, let us 
examine the first of these products in further detail. 

When written out in terms of the orbital energies and 
MO-based integrals, and after the MO-based integrals are 
expressed, using the MO-to-A0 transformation defined ear- 
lier, the (E - A )Z - BY product is seen to be 

[(E--AZ-BYI,, = (E-e,,, -tea)&,,, 

+ C C Cim Cjn ckb C/a 
nb ijkl 

{[ (ijlkl) - 2(il Ikj) ]Z,, -I- [2(lilkj) - (Ijlki) ]Ynb}. 
An analogous expression can be written for 
l--Z- (E+A)Yl,,; rather than doing so now, the 
expression for [ (E - A)Z - BY ] ma will be further devel- 
oped into final working form at which time the correspond- 
ing working expression for [ - BZ - (E + A)Y] mo will be 
given. 

Introducing the following definitions 

z qnCkbZnb = zjks c qnckbynb = Yjk, 

Ai/dk = 2(iZ Ikj) - (ij/kYi, 

Bi/gk = - 2(li(kj) + (IjJki), 
allows the aforementioned matrix-vector product to be re- 
written as 
1 (E - A)Z - BY],, 

= (E---E, +e,)Z,, 

- p c/a CAi/;ik zjk + Bi/;ikYjk 1. 

The corresponding expression for the other matrix-vector 
product is 
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t--Z- (E+A)Yl,, 
=(--E--E, +e,)Y,, 

- PC, CBi/gkZjk + Ai~~kYjkI* 

IV. COMPUTER IMPLEMENTATION OF WORKING 
EQUATIONS 

are evaluated in CPU times proportional to 
M ‘N,, + MN, Nh . This completes the steps needed to evalu- 
ate the two-electron integral contributions to X,, ($ ). 
Keeping in mind that X,, contains all of the two-electron 
integrals’ contribution to X, it becomes clear that 

The aforementioned expressions allow the two matrix- 
vector products to be carried out entirely in terms of AO- 
bases two-electron integrals. In our approach, the following 
steps are carried out. 

L@= -(i)* 

where the elements of P and Q are P,,,, and Q,, , respective- 
ly- 

( 4) Having formed X,, ($ ) , the algorithm 

( 1) Given the solution vector ($ ) resulting from solv- 
ing the reduced linear equations within the space of dimen- 
sion s, the LCAO-MO coefficients are used to transform the 
elements of the Z” and Y” vectors from the MO to the A0 
basis using 

yj” CkbZfib = zi;, 

and 

(;:I)= W’( -L(;:)] 

CCjn c,, Y& = Y;k. 
nb 

This two-indexed transformation requires CPU time pro- 
portional to M ‘N,, + MN, Nh , where M is the number of 
contracted AO’s in the basis set, Np is the number of virtual 
MO’s, and Nh is the number of occupied orbitals. This pair 
{ZTk} and { Yjck} of two-indexed arrays (each of dimension 
M 2, is stored in the computer’s main memory. 

(2) Two arrays {Q,,] and {Pi,,} are initialized (i.e., 
their elements are set equal to zero). The DISCO program is 
then allowed to generate Gaussian AO-based integrals 
(ij)kZ) during which contributions to the sums 

Qi, = CCBil;ikZjCk + Ail$kYTk> 
ki 

and 

can be used to determine the next member ($1: ) of the 
vector space. Of course, this vector is then Schmidt ortho- 
gonalizedtoall{($);j= 1,2,3,...,s}.Consideringtheform 
of X,, it is straightforward to write the elements of ($1: ) as 

z,, =Pms(E--e, t-e,)-‘, 

Y,, =Q,,( -E---E, +~a)-‘. 
(5) With a new member of the vector space in hand, the 

matrix 

can be formed for one higher dimension, as can the 

(zw”)( ‘,> 

array, and the reduced linear equations of one higher dimen- 
sion can be solved for new {D,} elements. This, in turn, 
defines a new approximation to the solution vector 

ZC ( ) =u=&+lDu “,: y= . ( > 
Pi* = CCAitdk ZTk + Bi[.Jk Y$ ) 

kj 

whose elements ZC,,, and Y’,, can be used to begin a new 
iteration. 

are accumulated. In practice, the index permutational sym- 
metry of the two-electron integrals involving real Gaussian 
functions (e.g., (ij(kl) = (jijkl) = (kl Iii)) canbeexploited 
to form the Q, and Pi, arrays in a manner somewhat more 
efficient that described earlier. 

V. CALCULATIONS AND RESULTS 
A. Basis calibration calculations on cyclopropenone 

Upon the completion of the AO-integral generation 
steps, the {Q,} and {Pi,} arrays contain the aforementioned 
sums; the {ZTk,) and {Y$) arrays can now be discarded to 
save memory. The AO-based integrals are never stored on 
disk; their contributions to the {Q,} and {Pi,) arrays are 
accumulated “on the fly” and the integrals are subsequently 
discarded. This part of the program requires CPU time pro- 
portional to M 2.3 to M4 since only symmetry-allowed non- 
zero AO-based integrals must be evaluated. 

(3) Once the IQ,> and {Pi,) are computed, the sums 

& Cirn C,a Q, = Qmo 

and 

The cyclopropenone (CP) molecule C,H,O (see Fig. 
1) is used in this work to develop an atomic-orbital basis set 
for subsequent use on the target paranitroaniline (pNA) 
molecule and its dimer. CP is thought to be a reasonable 
“basis calibration” molecule because, like pNA, it contains a 
delocalized r-orbital network involving heteroatoms. How- 
ever, because it contains only four “heavy” (i.e., non-hydro- 
gen) atoms, it is possible to explore A0 basis sets that are 

FIG. 1. Cyclopropenone. 
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TABLE II. Exponent optimization for the 2P basis for cyclopropenone (all numbers given in atomic units). 

5(d) t(P) Energy P. a, aYY a a” 

0.76 0.76 - 189.256 1.932 34.05 19.15 42.41 32.07 
0.76 0.60 - 189.255 1.932 34.09 19.90 42.46 32.15 
0.76 0.50 - 189.254 1.932 34.10 20.05 42.49 32.21 
0.76 0.40 - 189.253 1.932 34.08 20.27 42.50 32.28 
0.76 0.30 - 189.251 1.932 33.99 20.58 42.48 32.35 
0.76 0.20 - 189.249 1.929 33.87 20.93 42.33 32.38 
0.76 0.10 - 189.249 1.929 33.99 20.90 42.18 32.36 
0.60 0.20 - 189.244 1.930 34.09 21.22 42.39 32.57 
0.50 0.20 - 189.235 1.931 34.27 21.50 42.49 32.75 
0.40 0.20 - 189.221 1.935 34.49 21.87 42.65 33.00 
0.30 0.20 - 189.199 1.953 34.69 22.35 42.88 33.31 
0.20 0.20 - 189.167 2.015 34.79 22.97 42.93 33.56 
0.10 0.20 - 189.149 1.993 34.84 22.37 43.67 33.63 

large enough to yield c~ (E) data accurate to within f 10% 
compared to the SCF limit (i.e., ignoring electron correla- 
tion effects). Such basis exploration is carried out in search 
of an A0 basis that is capable of providing a + 10% level 
description of a(E) that is computationally feasible for use 
on the pNA monomer and dimer. To obtain a geometry for 
CP at which to carry out the aforementioned test calcula- 
tions, we performed a full geometry optimization using an 
atomic-orbital basis set from Ref. 17 of [6, 3 1 3, 21 quality 
for non-hydrogen atoms and [ 3 121 quality for the hydrogen 
atoms. This geometry is available upon request. 

In Table I are the results [total SCF energies, dipole 
moments, the three principal components of the a(E = 0) 
tensor, and aav = i(a, + ayy + a, ) ] for the CP molecule 
obtained using a series of basis sets. Here, the molecule is 
situated with its natural dipole moment along the z axis and 
the P orbitals aligned with the y axis. The first bases, 6-3 1 
G** (Ref. 16) are listed to give an indication of the demands 
of a basis when computing polarizabilities. While the total 
energy is quite good for this basis, the dipole moment and 
polarizabilities are inaccurate due to the lack of diffuse flexi- 
bility of the basis. The second basis refers to that used by 
Kama, Prasad, and Dupuis’ who, in their excellent study of 
the pNA monomer, developed this basis by adding diffuse 
and polarization functions to a Dunning-Hay (DH) con- 
tracted Gaussian basis. 

The sixth basis listed (denoted as 4P), was constructed 
from a van Duijneveldt” ( 13,8/8) primitive set contracted 

to [ 2,1/l ] using the AG’s obtained from a SCF calculation 
of the neutral atoms. Additionally, the outermost functions 
were uncontracted, giving the set [ 5,4/4]. Diffuse fuctions 
were added to this set by multiplying the outermost expo- 
nents by a factor of 0.4 giving the set [ 7,6/6]. Four uncon- 
tracted polarization functions were added. The exponents 
for the d functions on the heavy atoms were 3.0, 1.2, 0.48, 
and 0.192. The exponents for thep functions added to the 
hydrogens were 1.7, 0.68, 0.272, and 0.1088. The final set 
used for the calculations was thus (15,10,4/10,4) 
[7,6,4/6,41. 

The fifth basis was derived to reproduce the results of 
the (4P) basis. The set denoted as (2P) was obtained from 
adding a (2,2/2) diffuse set along with a single polarization 
set to the van Duijneveldt primitive set (6,3/3) and con- 
tracting in the same manner described for the (4P) set, giv- 
ing the set (8,5,1/5,1) [ 5,4,1/4,1]. The polarization expo- 
nents were optimized (see Table II), obtaining the values of 
0.2 for both thep and d functions. 

Table III demonstrates the effects of removing the po- 
larization functions from the (2P) and (4P) bases on the 
total energy, dipole moment, and polarizability components 
of CP. For both bases, the d polarization function on the 
heavy atoms has a substantially greater effect on the polariz- 
ability, particularly in the y direction. Nevertheless, it ap- 
pears possible to qualitatively predict polarizabilities to 
f 20% by excluding both thep and d polarization functions 

from the bases. This could be advantageous for polarizability 

TABLE III. Energies, dipole moments, and polarizabilities (all numbers given in atomic units) for cyclopro- 
penone for modified 2P and 4P bases. 

Basis 

(2P)-SP/S 
(2P)-SP/SP 
(2P)-SPD/S 
(2P)-SPD/SP 
(4P)-SP/S 
(4P)-SP/SP 
(4P)-SPD/S 
(4P)-SPD/SP 

Energy 

- 189.133 1.990 33.17 
- 189.137 2.000 33.06 
- 189.164 2.016 34.49 
- 189.167 2.015 34.79 
- 189.500 2.022 33.21 
- 189.513 2.03 1 33.51 
- 189.605 1.956 34.98 
- 189.610 1.958 35.06 

aJY 

18.08 
19.91 
22.97 
22.97 
18.13 
20.22 
22.70 
23.03 

43.00 31.42 
43.10 32.02 
42.95 33.47 
42.93 33.60 
43.08 31.47 
43.44 32.39 
42.66 33.45 
42.72 33.60 
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FIG. 2. pNA monomer 0, N-C, H, -NH,. 

studies of larger systems, where the inclusion of polarization 
functions would be computationally prohibitive. The third 
and fourth bases in Table I were constructed for such stud- 
ies. The set ( 1P) was obtained by removing the contracted 
set [i,l,l/l,O] from the (2P) set, giving (7,4/4,1) 
[4,3/3,1]. The basis (OP) was constructed from the van 
Duijneveldt (5,2/2) set, adding (1,1/l) diffuse functions, 
and contracting as before for the set (6,3/3) [4,3/3]. Table I 
clearly shows that significant reductions in all a components 
accompany either change in basis, especially when polariza- 
tion functions are removed from the hydrogen atoms and 
especially along the out-of-planey direction. For this reason, 
the OP and 1 P basis results can not be used as f 10% repre- 
sentations of the SCF limit values. However, it is likely that 
a values at the 2P basis level for the pNA dimer can be 
estimated by scaling the OP basis results (i.e., aav ) by ratios 
obtained for CP a values within the 2P, lP, and OP bases; 
these ratios are 1.00:0.92:0.85, respectively, for the 2P:lP:OP 
bases. 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 

Frequency (a.~.) 
l DH A OP . 1P 0 2P 

FIG. 3. Frequency-dependant polarizability of pNA for various basis sets. 

6. The pNA monomer and dimer 
The geometry used in all of the pNA calculations was 

taken from Ref. 9 where its optimization is described. For 
the following calculations on the pNA dimer as well as on its 
-CC- linked dimer, we performed full geometry optimiz- 

TABLE IV. Energies, dipole moments, and polarizabilities for pNA. 

Basis Freq.” Energy Pz a,, % a22 aa, 

KPD 

OP 

1P 

2P 

o.ooo cl00 - 489.127 
0.028 838 
0.077 358 
0.109 809 
0.150 380 
0.164 713 
o.cQo occl - 486.750 
0.028 838 
0.077 358 
0.109 809 
0.150 380 
0.164 713 
o.ooo ooo - 488.208 
0.028 838 
0.077 358 
0.109 809 
0.150 380 
0.164 713 
o.ooo ooo - 488.281 
0.028 838 
0.077 358 
0.109 809 
0.150 380 
0.164713 

3.108 

2.901 

3.140 

3.158 

91.1 48.7 137.7 92.5 
97.5 48.8 138.6 95.0 

101.2 49.4 150.4 100.3 
105.2 50.1 167.0 107.4 
115.9 51.4 234.9 133.9 
122.0 52.0 325.6 166.5 
90.7 37.0 121.3 83.0 
91.1 37.1 122.5 83.6 
94.1 37.6 130.4 87.4 
98.1 38.1 142.8 93.0 

107.3 39.3 182.6 109.7 
112.6 39.9 219.7 124.1 
94.6 46.3 130.3 90.4 
95.0 46.4 131.7 91.0 
98.3 47.1 141.8 95.7 

102.8 48.0 158.4 103.1 
113.2 49.7 221.7 128.3 
119.4 50.8 301.8 157.3 
98.7 53.6 141.3 97.9 
99.2 53.7 142.8 98.6 

102.6 54.7 153.9 102.6 
107.4 55.8 172.7 112.0 
118.4 58.3 248.8 141.8 
125.0 59.6 360.9 181.8 

“Frequency in atomic units. 
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FIG. 5. -CC- linked dimer 0, N-C, H,-CC-C, H,-NH, . 
FIG. 4. -NN- linked dimer 0, N-C, H+-NN-C,H,-NH,. 

ation using an atomic-orbital basis set from Ref. 17 of [ 6,3 ] 
3,2] quality for non-hydrogen atoms and [ 3 ) 21 quality for 
the hydrogen atoms. Our optimized geometries are available 
upon request. 

Having calibrated the quality of the a values obtained 
within the 2P, lP, and OP bases at this SCF response theory 
level, we undertook the considerably more challenging task 
of calculating a(E) for the pNA monomer and dimer. These 
species contain, respectively, 10 and 18 heavy atoms and 6 
and 10 hydrogen atoms. Using the 2P basis, these species 
would require 338 and 602 primitive Gaussian AO’s. 

The pNA monomer (see Fig. 2) results obtained in this 
study for a(E), for selected frequencies hv = E reported in 
Ref. 9, are displayed in Table IV and in Fig. 3. The first set of 
results contained in Table IV are those of Ref. 9; clearly, the 
A0 basis used by these earlier workers is energetically supe- 
rior to our own. This is due to the sparseness of primitive 
functions with large exponents needed to accurately describe 
the cusp of the core orbitals. However, our 2P basis pro- 
duces, as it did for the CP calibration molecule, somewhat 
larger a values. Our 1 P and OP bases produce a values that 
are within * 20%, yet systemmatically smaller than those 
of our 2P basis or those of Ref. 9. The ratios of aav values for 
the pNA monomer within the 2P:lP:OP bases are 
1.00:0.91:0.83, which are very nearly the same as the ratios 
observed for the CP species. Our 2P and 1P basis results 
seem to bracket those of Ref. 9 at all frequencies reported in 
Table IV. 

The pNA dimer (see Fig. 4) a values obtained in the 1P 
and OP bases are shown in Table V. Corresponding a values 
for the 2P basis are estimated by multiplying the IP results 
by the scale factor 1 &O/O.9 1 = 1.10 observed to hold for the 
pNA monomer. The results of both the 1P and 2P bases 
show slight positive nonadditivity in the a’, (along the long 
axis of the molecule) principal component of a and negative 
deviations from additivity in the a, (the in-plane axis per- 
pendicular to the long axis) and auu (the out-of-plane axis) 
components of a. We had expected that arr for the dimer 
would be considerably more than twice aZZ for the monomer 

because of the high degree of q-electron delocalization along 
the z axis and the presence of low-energy charge transfer (of 
the type 0, N-R-NH, to - 0, N-R-N + H, ) and because 
simple models predict the polarizability to be proportional 
to the third power of the length of the system.18 

C. The -CC- linked pNA dimer 

After finding that au seems to scale nearly linearly with 
the size of the molecule for the pNA monomer and dimer, we 
examined the dimer in which the -NN- linkage is replaced 
by a -CC- linkage (see Fig. 5). The fact that -N=N- in- 
volves sp’ N atoms causes the two phenyl rings linked by this 
-N=N- group to become noncoplanar. In contrast, the 
-CC- moiety involves sp hybridized C atoms, as a result of 
which the two phenyl rings linked through -CC- can remain 
coplanar. Based on these geometrical considerations, we be- 
lieved that -CC- linked pNA dimer would have a, values 
substantially more than twice that of the pNA monomer. 

The results obtained for the -CC- linked pNA dimer are 
shown in Table VI. Unlike the -NN- linked dimer, the-CC- 
linked dimer shows a static a, value that is considerably 
more than twice (in fact, 2.8 times) that of the monomer. At 
higher frequencies, this ratio is even larger; at E = 0.1647, 
the ratio is greater than 18. The other two components aXX 
and ay,, of the -CC- linked species are similar to those of the 
-NN- dimer. It seems, therefore, that the -CC- linked poly- 
mers may be better candidates for achieving highly nonlin- 
ear (with regard to chain length dependence of molecular 
properties) behavior of properties that depend on a(E) . Of 
course, the propensity of such chains to stack in a manner 
that may destroy long-range delocalization of the 7~ orbitals 
may limit the practicality of such a proposal. 

D. CPU time requirements 
The IBM 309Ovf600 times needed to carry out the 

TDHF calculations (including all integral evaluation, linear 
equation solution, etc. ), as well as the times needed to obtain 
converged SCF molecular orbitals for the pNA monomer, 

TABLE V. Energies, dipole moments, and static polarizabilities for -NN- linked pNA dimer. 

Basis Energy P. a xx auv a, 

OP - 823.473 3.068 160.9 76.4 254.6 164.0 
1P - 825.906 3.281 166.1 92.1 262.6 173.6 
2P 183 101 288 191 

’ Estimated using the scaling factor for bases 2P: 1 Pas described in the text. 
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TABLE VI. Energies, dipole moments, and polarizabilities for -CC- linked pNA dimer. 

Basis Freq. Energy A axa aYY a, aav 

OP 

1P 
2P" 

o.ooo ooo - 790.548 3.435 162.0 70.0 337.9 190.0 
0.028 838 162.8 70.1 342.9 191.9 
0.017 358 168.1 71.0 380.8 206.6 
0.109 809 175.4 72.0 451.6 233.0 
0.150 380 192.4 74.2 897.1 381.9 
0.164 713 202.7 75.3 3994.7 1424.2 
o.ooo ooo - 792.871 3.686 167.1 86.0 350.8 201.3 
o.ooo ooo 203 94 461 253 

D. Estimated using the scaling factor for bases 2P: 1 Pas described in the text. 

and dimers within the OP, 1 P, and 2P bases are given in Table 
VII. Here, the sizes of the atomic-orbital bases used for each 
such calculation are also listed. 

VI. SUMMARY AND CONCLUSIONS 
We have put forth and demonstrated the practicality of 

a method for direct calculation of frequency-dependent po- 
larizabilities at the SCF level based on the DISCO program. It 
is A0 integral driven so the M 5 integral transformation step 
is avoided. The method thus scales at worst as M4, the time it 
takes to compute the A0 integrals. The rest of the steps in 
the procedure scale as M *. 

The method is formulated within the framework of re- 
sponse theory which means that we can evaluate both static 
and frequency-dependent polarizabilities and that the com- 
putational effort of the method does not vary with the num- 
ber of components of a. This paper thus describes an AO- 
based time-dependent Hartree-Fock (TDHF) method 
(often referred to as the random-phase approximation). The 
TDHF equations are solved using an iterative reduced linear 
equation” technique as described in Sec. III C, thereby cir- 
cumventing the problem of finding the inverse of a large 
matrix. 

The first step in the application of this method is to 

choose a suitable one-election A0 basis set. The cyclopro- 
penone calculations show that for an accuracy of about 
f. 10% in a(E), one needs to include both diffuse and po- 

larization functions in the basis set (the 4P set). One polar- 
ization function on each atom is not sufficient (the 2Pset) to 
achieve this accuracy. However, calculations on both cyclo- 
propenone and the pNA monomer show that there seems to 
be nearly fixed ratios between a(E) computed in the OP, 1 P, 
and 2P bases. We have thus been able to scale values of a(E) 
computed in smaller bases to estimate values for larger bases. 

We have investigated the variation of a(E) with the size 
of system in two cases: (i) pNA and its dimer and (ii) a 
dimer where the -NN- linkage of pNA-pNA is replaced by a 
-CC- linkage. In case (i) we find only a small positive non- 
additivity in a for the component along the intermolecular 
axis and negative deviations for the two other directions. For 
the -CC- linked dimer, a, is much larger for the dimer than 
twice that of the monomer, illustrating the effect of the en- 
hanced conjugation of this planar system relative to the non- 
planar pNA dimer. This nonlinearity is a strong function of 
frequency (see, for example, Tables IV and VI ) . 

The essential requirement for the formulation of the 
AO-driven construction of a(E) as outlined in the present 
work is that the requisite matrix-times-vector products only 
involve one two-electron integral at a time and never prod- 

TABLE VII. Total time (CPU time in hours for DISCO on an IBM3090vf6CO) to compute polarizabilities. 

Basis Freq. PN A Dimer (-NN-) Dimer (-CC-) 

OP 

1P 

2P 

o.ooo ooo 1.4’ 18.2b 10.6’ 
0.028 838 3.0 29.1 
0.164 713 4.0 48.1 
o.ooo CKJO 4.ld 74.7’ 34.8’ 
0.028 838 7.2 
0.164 713 9.3 
o.ooo ooo 23.5s 
0.028 838 41.5 
0.164 713 52.9 

a 148 basis orbitals are used in this calculation. 
b264 basis orbitals are used in this calculation. 
’ 264 basis orbitals are used in this calculation. 
d 166 basis orbitals are used in this calculation. 
’ 294 basis orbitals are used in this calculation. 
‘294 basis orbitals are used in this calculation. 
* 272 basis orbitals are used in this calculation. 
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ucts of two or more two-electron integrals. This requirement 
is also met for response calculations of frequency-dependent 
first hyperpolarizabilities p (Refs. 20 and 2 I), and work on 
the evaluation ofpalong the same lines as for a is underway. 
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