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Students of chemistry are often bothered by the observa-
tion that molecules with sets of equivalent bonds display
vibrational frequencies that are distinct rather than iden-
tical. For example, H,0 has two equivalent bonds yet pro-
duces both symmetric and asymmetric stretching frequen-
cies in its infrared spectrum. However, CH, has four
equivalent bonds and produces only two distinet vibra-
tional frequencies in the C—H bond stretching region.

Students often ask

If there are four equivalent bonds in CH,, why are there not
four equal vibrational energies?

Analogous guestions arise when equivalent-bond or
lone-pair orbitals are discussed. HoO has two equivalent
O-H bonds and two equivalent nonbonding lone-pair orbit-
als. So why does its photoelectron spectrum display two
distinct peaks in the region of ionization of the lone-pair
orbitals and two more peaks in the O-H bond ionization
region? This paper addresses these issues by emphasizing
the difference between bonds or orbitals being equivalent
and being independent.

The Fundamental Question
The following fundamental question is addressed in this
paper.
In molecules that have N symmetry-equivalent bonds (e.g.,
H;0O with two identical OH bonds, NHy with three identical
bonds, and CH, with four identical bonds), why do photoelec-
tron spectroscopy experiments not yield N identical ionization
energies corresponding to N equal orbital energies?

The key to this question is to understand the difference
between bonds being equivalent (e.g., by symmetry) and
bonds being independent—and thus noninferacting.

Different orbital energies should be expected to arise
even when equivalent bonds are present. To show this I
give a parallel analysis of the vibrational frequencies that
occur for equivalent bonds. I begin by treating bond vibra-
tional motions using tools of classical mechanics because
these are more familiar to students of science. Then I use
the quantum mechanical Schridinger equation to study
bond-orbital energies, with familiarity in the former area
(1) helping introduce the latter.

I begin by carrying out a Lagrange equation classical dy-
namies (2) treatment of the stretching vibrations of two
equivalent bonds in H;O. Then I give the analogous
Schridinger equation treatment of the orbital energies of
two equivalent bonds or lone pairs. Then connections to
infrared and photoelectron spectroscopy are made, and ex-
tensions to more than two equivalent orbitals are dis-
cussed.

The Two Ditfferent Vibrational Frequencies
of the Two Identical Bonds in Hz0

Before examining the electronic orbital issue head on, let
us consider a similar situation that is quite familiar to stu-
dents of chemistry (I1)—the stretching vibrations of the
H:0 molecule. The question at hand is
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How can a molecule with two identical OH bonds have two
different vibrational frequencies for movement of these OH
bonds? :

In the analysis that follows, we use the coordinate system
shown below in Figure 1.

Figure 1. Coordinate system in which the two OH bond lengths of
H.O are defined.

Classical Mechanical Kinetic and Potential Energies

The classical kinetic energy (2) (T) for movement of the
two H atoms can be written in terms of time derivatives x
and y of the x and ¥ coordinates of these atoms, as shown
below. :
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Then the Cartesian coordinates are transformed to polar
coordinates, that are appropriate to the above coordinate

system.
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Thus, the kinetic energy can be rewritten in terms of
time rates of change or ry, ro, and 8.
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The potential energy V of the HoO molecule (i.e., the en-
ergy of the molecule as a function of its internal geometri-
cal coordinates) can be expanded as follows in a Taylor se-
ries around the equilibrium-geometry point (ry., ro., 0.) at
which V is a minimum.
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V has a minimum at (ry ., F2., 8.). Thus,
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Thus, the first nonvanishing terms in the Taylor expan-
sion, which presumably dominate for small vibrational dis-
placements, are the so-called harmonic terms. Such qua-
dratic approximations form the basis of much of the
interpretation of vibrational spectroscopy in terms of foree
constants (i.e., second-derivative matrix elements as seen
above) and atomic masses, which arise as shown below.,

Bond Lengths

We do not deal here with why HyQ has two bonds of equal
length. There is a fundamental physical framework (3) in
which one can examine such questions. For example, one
would need to determine whether, at the Co, geometry
whose stability is in question, the electronic ground-state
energy E of HyO has positive or negative curvature along
the asymmetric stretching mode @4. The evaluation of

PE_
Q"
can be expressed in terms of changes in the ground-state’s
electronic wavefunection
o
94
induced by asymmetric-mode distortion and second deriv-
atives of the electronic Hamiltonian.
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It turns out that contributions to
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are always positive, but contributions from

T

Q4
may be positive or negative. If the molecule has an excited
state whose symmetry is coupled to that of the ground
state by asymmetric-mode distortions, the contributions
from

L

N
can be negative. For H,O, the ground state has 'A, symme-

try in the C;, point group, and the asymmetric mode is of
b symmetry. Hence, a low-lying excited state of A x bo= Bs

symmetry would be needed to (possibly) eause the mole-
cule to be unstable along the asymmetric mode. For HzO,
there is no such low-lying B; electronic state. Thus, HyO is
stable at its symmetric geometry.

Classical Mechanical Hamilfonian and Lagrangian

We ignore the bending motion for now. Two different vi-
brational frequencies are still produced, so it will not qual-
itatively alter the conclusions drawn here.

Retaining only the harmonic parts of the potential, we
can write the following in matrix notation: the classical
Hamiltonian (2), which is defined as the sum of the kinetic
and potential energy, H = T + V; and the Lagrangian (2),
which is defined as the difference between the kinetic and
potential energies, L=T-V.
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As discussed above, the equilibrium values of both OH
bond lengths are identical (ry . = ro, = r.), giving the mole-
cule Cay symmetry. Thus, the diagonal elements of the sec-
ond derivative matrix are equal. (They will be denoted as

f)
a4 P 8 B f
ar)? | |are?
Because V is an analytical function of ry, re, and 8, the

off-diagonal elements are also equal. (The off-diagonal ele-
ment is called g.)
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Lagrange’s Equations of Motion for Vibrations

Clearly the motion of the two bonds are coupled by the g
elements of the potential. Thus, we say that these two
bonds are equivalent but not independent because the po-
tential energy’s dependence on each bond length varies as
a function of the other bond length. If this were not the
case, g would vanish and the two bonds' motions would not
be coupled. They are determined by the Lagrange equa-
tions of classical mechanics.

ﬂ=—"-.—--a£"--mHF&+ azv ltf*—-rh]
de ary 9y E

where k = 1 and k = 2 label the two bonds.
Simple harmonic motion would result.

1/2
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Mg
would be identical for both bonds.
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However, the “potential coupling” g does not vanish in
general. Thus, the motions of the two bonds, Ar; and Arg,
are coupled.

Uncoupling the Equations
by Forming Symmetry-Adapted Coordinates

To solve the coupled-bond problem, one needs to find two
combinations of Ary and Ary in terms of which the Hamilto-
nian and Lagrangian expressions will be “diagonal” (i.e.,
will contain no factors in which both coordinates appear).
The particular combinations

1
S= :E-{ﬂr] + Arg)
and
1
A I';|=2={ﬁr1 = Arg)

which describe the symmetric (S) and asymmetric (4)
movements of the two bonds, are the appropriate combina-
tions as we now demonstrate.

If we use the Lagrange equations

o) e
that are obeyed by Ary and Ary
mpAF | + fAr, + gars =10
myhr g+ fArg +gAr, =0
and if we use the above expressions for § and A in terms of
Ary and Ars , we can show that
myS =-(f+e)S
and
myA =-(f- 9A

The Symmetric and Asymmetric Mode Solutions

These equations for § and A are clearly uncoupled; the
equation for A does not contain S, and the equation for S
does not contain A. Moreover, the form of these two differ-
ential equations is of the simple sinusoidal type. Hence,
the symmetric-stretch and antisymmetric-stretch vari-
ables, S and A, undergo simple harmonic motion.

1/2
S(¢) = S(0) cos [[%E—J t ]
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They do so at different frequencies

If the bond-coupling term is g > 0, the symmetric stretch
frequency ws will exceed ws. When g < 0, the reverse is
true. For H:O the experimentally determined values are
wg = 3652 em™ and w, = 3756 cm™, s0 g < 0.

Summary

The two identical OH bonds in H;O are not independent;
They have coupling in their potential force fields. This
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causes the two resonant stretching-vibrational frequen-
cies of this system to be different. One frequency ws de-
scribes in-phase movement of the two bonds; the other wy
describes out-of-phase motion® (see Fig. 2 below).

N
-

Figure 2. Representation of the symmetrc ( top) and asymmetric
(bottom) vibrational modes of H,O.

Stated another way, the two vibrations of the two OH
bonds of the HyO can be viewed as independent only by
considering a symmetric motion and an independent
asymmetric motion; it is impossible to think of each OH
bond moving independently with a well-defined frequency.
As students of physical chemistry are aware (1), the infra-
red absorption spectrum of HyO clearly supports this pic-
ture; distinct symmetric and asymmetric stretching—vi-
brational frequencies are observed.

The Two Different Bonding Orbital Energies

The following question also requires an understanding
that the two O-H bonds are identical but not independent.

How can the OH bonding orbitals of HyO have different en-
ergies even though the bonds are equivalent?

Consider an electron moving in the region of space covered
by one of the O—H bonding orbitals. (We denote these orbit-
als by o, and o3, as shown in Figure 3. The corresponding
nonbonding lone-pair orbitals are labeled n; and ns.)

Oy

Figure 3. Representation of the two OH bonding orbitals of H;0, la-
beled o, and o, The two equivalent nonbonding lone-pair orbitals
are denoted by my, and ny.

This electron experiences a potential that is due to its
Coulombic interactions with the nuclei and electrons of the
other OH bond. This potential involves the other OH
bond’s electrons. As we now demonstrate, even within the
most elementary formulation of such electronic structure
issues, such couplings arise.

The Schrddinger Equation for the Orbitals

For example, within one-electron pictures of electronic
motion, the time-dependent Schridinger equation

il %}(r, )= Hirwir, £)

describes an electron's wave function v as a funetion of po-
gition r and time ¢. This equation can be solved approxi-

"It the molecule were not stable at the symmetric C,, geometry, the
frequency comesponding to asymmetric stretching motion would be
imaginary.



mately by expressing w as a combination of the two O-H
bond orbitals

wi(r, t) - Cy(t)oy(r) + Calt)oa(r)

where C; and C; are time-dependent amplitudes.

This expansion is inserted into the above Schridinger
equation, and the resulting equation is multiplied on the
left by o} (or o ). Then integration over the spatial coordi-
nate ;

r? (sin 0) dr do do
is performed, yielding a set of equations for the unknown

amplitudes.
W Ci _|Hun Hi||Cy
Cy| |Hy Hi||Cy
Here the elements

Hy= _[ ﬁ'l[rHI{r}nj{r}rz {sin 6) dr do d¢

are the matrix elements of the Hamiltonian between the
two O-H bond orbitals. The Hamiltonian operator H(r)
contains the kinetic energy T of the electron. It also con-
tains the electron’s Coulombic potential energies of attrac-
tion—to the oxygen and two hydrogen nuclei—and
repulsion—from the other electrons of the H;O molecule.

Notice that the structure of the above Schridinger-based
matrix equation is similar to that of classical Lagrangian-
based equations encountered in the previous section that
dealt with vibrational frequencies. Because the two O-H
bond orbitals are equivalent, Hy; is identical to Hs (In
analogy with the vibration case, we denote these elements
as f.) Thus,

Hyy=Hp=f

because the orbitals o, and o; are identical in every man-
ner except for their orientation in the x, y, z coordinate sys-
tem of the HyO molecule.

However, these two orbitals are not independent be-
cause, in general, the coupling element

Hiy=Hy =g
does not vanish.

?ymmerrfc and Asymmetric Orbital Combinations Are Used
o0 Find the Energies of the Orbitals

As in the bond-vibration case, the symmetry of the Ham-
iltonian matrix
=|fe
-/ 4]

suggests that symmetric and asymmetric combinations of
the C, and C; amplitudes may be useful in reducing the
two coupled equations to two separate, uncoupled equa-
tions. Hence, we define

§= ;}E(c, +Cy)

and

A=;.12-(cl-cgj

We can substitute these definitions into the matrix equa-
tion to generate the following equations for S and A.

K S=(f+g)8
ik A=(f-gA

As in the bond-vibration case, the symmetry-based com-
bination of orbitals obey uncoupled time-dependent equa-

tions. The solutions of these equations show how S and A
undergo simple sinusoidal motion.

S(t) = S(0) up[—%f.ﬁ g:t]

A =A©) anp[—{ff— sn]
However, the frequencies are different.

s

f'_
o=l

Summary

Clearly, the two equivalent OH bonds of H2O produce
two different energy levels :

es=f+g
ea=f-g

If g < 0, g5 belongs to the lower energy molecular orbital
(MO).

Jg = 31‘-2-‘(151 + I‘Jg]

Then g5 belongs to the higher energy MO.

a, - 712—(4.*:1 =)

If g > 0, the energy of o4 (£4) lies below that of og.

The physical nature of the o5 and o, MO's is described in
Figures 4a and 4b for the H;O molecule. The analogous
symmetric and asymmetric combinations of the two equiv-
alent nonbonding lone-pair orbitals n, and ny of HoO are
shown in Figure 4c.

Implications for Vibrational and Photoelectron
Spectroscopy

That equivalent bonds can produce different vibrational
frequencies and different orbital energies has direct exper-
imental ramifications. In particular, the infrared spectra of
molecules containing sets of N equivalent bonds display up
to N distinct peaks (for fundamental, overtone, and combi-

o5 =(2)"%[o; + 03
¥

ap=(2)"?[o; - )

(25" [m + el

(212 [ng - ]

Figure 4. Depiction of the symmetric (top) and asymmetric (middle)
combinations of the two equivalent OH bonding orbitals o, and o, of
H.0 and of the symmetric and asymmetric combinations of the non-
bonding lone-pair orbitals (bottom).
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H;O (n; and nz) do not produce
a single peak in the photoelec-
tron spectrum of H;O. Instead,
two peaks are observed. One
corresponds to the energy of
the symmetric combination of

the two orbitals.
QIE{"I + ng)

The other corresponds to the
energy of the odd combination.

1
:E{nz-w:;}

A portion of the photoelec-
tron spectrum of HsO(g) is
shown below in Figure 5. The
series of peaks near 13 eV cor-
responds to the removal of an

l i
13 15 17 19
lonization Energy (V)

2ll electron that has the electronic
binding energy expressed as
below.

Figure 5. ®hotoelectron spectrum of H;0(g). Interpretation of the three primary groups of peaks is pro- J nyHnyr*(sin 6) dr 46 dg

vided in the text.

nation transitions) due to motion of these bonds at up to N
distinet frequencies. Likewise, the photoelectron spectra of
these same molecules contain up to N peaks due to the
unique orbital binding energies.

Interpretation of Photoelectron Spectroscopy

In photoelectron spectroscopy (4), molecules are exposed
to the electromagnetic energy of a fixed-frequency (v) laser.
Usually the laser that is used will have a photon energy hv
that exceeds many of the molecule's orbital-ionization po-
tentials. The electrons ejected from the molecule are sub-
jected to kinetic energy (KE) analysis. Photoelectrons will
be detected that have kinetic energies in the range de-
seribed below that includes ionization events that convert
a neutral molecule in vibrational state v; (with energy E, )
in the ground electronic state (E,) to a eation in vibrational
state v; (with energy E, ) in electronic state (Eg,.

KE = hv - (Eg~ E, + E, - E,)

Thus, for each electronic state of the cation, a series of
peaks, one for each v; — vy vibrational transition, should be
observed. i

Within a given neutral-to-cation electronic transition,
and for a given vibrational state v; of the neutral species,
the spacings between peaks are energy spacings in the vi-
brational levels of that particular electronic state of the
cation. The relative intensities of such progressions of vi-
brational peaks depends on the population of the neutral-
molecule vibrational level v; and the socalled Franck-
Condon factors between vy and v;. The latter involves
squares of overlap integrals

| ¥, v, dg

between the neutral-molecule’s vibrational wavefunetion
and the cation’s vibrational wavefunction, that is between
¥, and '¥,,

The Equivalent OH Bonds and Lone Pairs of Hz0

Such results are observed when the ionization energies
of N equivalent lone-pair orbitals are examined. For exam-
ple, the two equivalent nonbonding lone-pair orbitals of
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- I n) Hnyr® (sin 8) dr d6 dy

Those peaks near 15 eV arise
when an electron with binding energy

[ niHn,r (sin 6) dr 48 dg + [ n} Hnyr® (sin 6) dr d6 do

is removed.
These binding energies are the energies that belong to
the following symmetric and odd MO's

QILTU"I + Ryl

and

Tz =)

These are shown in Figure 4.

That the two different orbital-ionization processes each
produce a set of peaks can be understood in terms of vibra-
tional excitation of the respective cation states. Each peak
in the range 12.5-13.2 eV belongs to a different v; — vy
transition, in which the cation is produced when one elec- -
tron is removed from the following higher energy MO.

1
na=ng =)

(This produces a *B; electronic state of the cation.) The
spacings between these peaks provide data about the vi-
brational energy levels of this B, state of the cation.
Each peak in the range 14.0-16.0 eV belongs to a differ-
ent v; = vy transition, in which the cation is produced
when one electron is removed from the following MO.

1
ng FTE'-‘\“2 + Rl}

(This produces a %A, electronic state of the cation.) Again,
the spacings between these peaks provide data about the
vibrational energies of this A, state of the cation.

The series of peaks in the 17.0-21.0 eV range arise from
various v; — vy transitions in which the cation has one elec-
tron ejected from the following OH bonding MO.

Oy = %(51 —Ga)
This pmduc-'es a 2B, cation.



The peaks belonging to the process in which an electron
is ejected from

1
dg= ;,2—{:!1 +0y)

are not present in Figure 5 because the corresponding ion-
ization energy €s lies beyond the 21-eV limit of this exper-
- imental apparatus.

Sym! Can Cause Photoelectron Spectra
To Contain Fewer Peaks Than Expected
Ammonia

There are situations in which NV equivalent lone-pair or-
bitals or N equivalent bonds produce fewer than N unigque
ionization thresholds in the photoelectron spectrum. In
such cases, the molecule’s symmetry causes certain
MO’s—those that result from combining the equivalent
but not independent orbitals—to have equal energy, that
is, to be degenerate. The NH; molecule’s photoelectron
spectrum shown in Figure 6 illustrates the point.

The series of peaks in the 10.5-12.0 eV range belong to a
vibrational progression (v; — vg) in which the cation has
one electron removed from the lone-pair orbital shown in
Figure 7a. The large set of peaks in the 14, 9-18.5 eV range
are due to vibrational progressions of two degenerate cat-
ion states: These two-cation states occur when an electron
is removed from either of the degenerate N-H bonding or-
bitals shown in Figures 7b and 7Tc. The peaks due to the
cation state formed when an electron is removed from the
totally symmetric N-H bonding orbital shown in Figure 7d
lie at higher energies. They are not shown in Figure 6,

Why do the three equivalent N-H bonds of NH; produce
two degenerate MO’s and one nondegenerate MO? The an-
swer lies in the structure of the 3 x 3 Hy matrix that is the
NH; analog of that considered for H2O in the previous sec-
tion on OH bonding orbitals with different energies. This
matrix has three equal diagonal elements because the
three N-H bond orbitals g,, g;, and a; are equivalent.

Hyy =Hgpo=Hy=f
It has all off-diagonal elements that are also equal be-

cause the distances and orientations of the three N-H o
bonds relative to one another are identical.

Hyy=Hy;3=Hyu=g

-t—n,,

HY /8™
H/

L A

(6) 2204 -0, -03] -

(3) [0y +02 +03]

Figure 7. Orbitals of NH4lg) whose lonizations appear in the photo-
electron spectrum. The nonbonding orbital of a8, symmetry (a), the
degenerate NH bond orbitals of & symmetry (b and c), and the bond
orbital of a, symmetry (d).

The three eigenvalues of this 3 x 3 matrix

lfgg}
=|g f&g
ggf
are

€, =f+2%
and

gug,=f-g

The following equations give the corresponding eigen-
vectors.

el & )

1 1
C«'=[“ Z :@]

These solutions, which are
depicted above in Figure Tb—
7d, are labeled by their Cy,
point group symmetry
names (5). The low-energy
orbital belongs to the a, irre-
ducible representation, and
the two degenerate orbitals
belong to the e representa-

: : . i ; = tion. :
This NH; example
11 13 15 17 19 illustrates how & molecule’s

lonization Energy (eV)

Figure 6. Photoelectron spectrum of NHy(g). Interpretation of the two primary groups of peaks is provided in

the text.

symmetry can cause a set of
N equivalent orbitals (bonds
or lone pairs) to produce N
MO's whose energies are not
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all distinet. If the MO’ belong to degenerate representa-
tions(5) (i.e., E, T, ete., representations) of the peint group,
then the photoelectron spectrum will have fewer than N
separate ionization thresholds.

Other Examples

The molecule’s symmetry is reflected in the N x N H
matrix that corresponds to the equivalent N orbitals. In a
such cases, the diagonal elements are equal for all i,

Hy=f

The relative values of the off-diagonal elements are de-
fined by the spatial symmetry relations among the N orig-
inal orbitals,
Further examples include the four CH bonds in CH, for
which
Hy=Hyp=Hy=Hy=Hy=Hy=g

due to the tetrahedral disposition of these four orbitals.
Another example is the six SF bonds in SF; for which all
off-diagonal Hy; are identical (=g) except those H;'s that
correspond to orbitals o; and o; that are trans (e.g., urrhlta]
pairs o, and o; in Figure 8).

In the former case, the four equivalent CH bond orbitals
produce one MO with a; symmetry of the tetrahedral (Ty)
point group (5) and three degenerate MO's of ¢; symmetry.
Thus, for CH, only two (not four) ionization thresholds are
expected in the CH bond region of the photoelectron spec-

1

|_P”“~ T ,,..-u.FJ':

o2 F

Figure 8. Sketch of the octahedral SF¢ molecule's six equivalent SF
bonds.

trum. In the SF; case, the six equivalent SF ¢ bond orbitals
vield one MO with a;; symmetry in the octahedral O point
group, a pair of degenerate MO's with e, symmetry, and a
set of three degenerate MO's with ¢, symmetry. Hence, for
this molecule, only three distinct ionization thresholds
inot six) are expected.

Conclusion
This paper provides a framework within which students
of chemistry can address the following question:

In molecules that have NV symmetry-equ.{valent orbitals
{e.g., HyO with two identical OH bonds, NH; with three equiv-

alent bonds, CH, with four equivalent bonds, and HyO with
two equivalent lone pairs), why de photoelectron spectroscopy
experiments not yield NN identical ionization energies corre-
sponding to N equal orbital energies?

The physical essence of the answer to this question is
summarized by the following statement.

Although the bond or lone-pair orbitals may be equivalent
(i.e., identical in all aspects but having spatial orientations
that differ in a manner dictated by the molecule's symmetry),
they are by no means independent of one another.

This same insight allows students to understand why
equivalent bonds such as the pair of OH bonds in H,O are
not be viewed as vibrating independently of one another.
They are more correctly viewed as undergoing symmetric
or asymmetric stretching motions (with different frequen-
cies).

The mathematical analyses of the classical Lagrange
equation treatment of vibrational motion and the quantum
Schridinger equation treatment of orbital energies both
give rise to matrix eigenvalue problems. The eigenvalues
of the matrix provide the molecule’s (harmonic) vibrational
frequencies in the former case and the molecular orbitals'
energies in the latter. The dimension N of the matrix is
equal to the number of equivalent bonds or equivalent or-
bitals (bonding or lone pair) in the respective cases. The
diagonal elements of the matrix are all equal; the off-diag-
onal elements depend upon the spatial distances and ori-
entations that exist among the N bonds or orbitals. The N
resultant eigenvalues may or may not be distincet. Molecu-
lar point group symmetry, which admits degenerate irre-
duecible representations, can cause two or more of the ener-
gies to be equal. As a result, the N equivalent bonds or
orbitals can give rise to up to N distinet vibrational or or-
bital energies. Several examples of these general conclu-
sions have been provided throughout this paper.
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European Workshop on Electrochemical Technology of Molten Salts

A Workshop on Eleetrochemical Technology of Molten Salts will be held March 14-17, 1993, in the Hotel Tivoli
Sintra, Sintra, Portugal. The workshop will consider the contribution of fundamental studies of molten salt chemistry
and electrochemistry to the improvement of industrial processes in two fields: Molten Salt Extractive Metallurgy
(chemical processes and electrowinning applied to aluminum, refractory metals, rare earths, and other noncommon
metals) and High Temperature Fuel Cells and Batteries, which are in a period of growth and development.

Authors are invited to submit titles of papers covering any of the above or related topies by August 31, 1992, They
should be sent to: C. A. C. Sequeira, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal. Program
details will be available form the same address after October 1992,
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