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Abstract

The first-order geometrical response equations for a state-averaged multiconfigurational self-
consistent field (sa-McscF) calculation are derived. This derivation is carried through from first
principles to final working equations suited for computer implementation. The final equations
are expressed such that the energies and wave functions must be known only for the internal
sa-McscrF states. In the derivation, the special but important case where two or more internal states
have equal weighting factors is treated in a manner fully consistent with all other cases. Except
for introducing extra equations that are straightforward to solve, the case where two or more in-
ternal states have equal weighting factors introduces no new complications.

I. Introduction

The idea of having one set of orbitals that are optimized to minimize the
weighted average energy of two or more multiconfigurational self-consistent field
(McscF) states simultaneously was first introduced by Docken and Hinze [1].
Docken and Hinze used this concept, which now is known as state-averaged (sA)
MCSCF, as a means to prevent the problem of rootflipping when excited states are
calculated. Besides providing a means for preventing rootflipping during calcula-
tions of excited states, the sa-McscrF approach, due to its common set of orthonor-
mal orbitals for all states, is also used to facilitate the computation of transition
properties. Earlier approaches to the problem of optimizing sa-MCsCF energies
are described in Refs. 2-7.

In the last decade, much attention in electronic structure theory has been
given to the task of calculating responses arising from distortions of the nuclear
framework. These responses are especially used [8-13] for evaluating the geo-
metrical Hessian that is used to characterize potential energy surfaces and for
walking toward stationary points on these surfaces.

Within the concept of sa-McscF, the primary work that precedes this manu-
script on response equations is contained in a series of papers by Lengsfield,
Saxe, Yarkony, and Jensen [14-18] on nonadiabatic couplings. In these papers,
the sa-mMcscr wave functions and their responses are used to enable a convenient
way for evaluating nonadiabatic couplings for sa-mcscr wave functions, as well as
for configuration interaction (c1) wave functions based on the orthonormal
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orbitals from an sa-mcscF calculation. The theory on the response equations for
sA-MCsCF calculations published in this series of papers [14-18] is rather brief.
One purpose of our work is to provide a more comprehensive derivation of the
first-order response equations for a set of sa-Mcscr wave functions. Our deriva-
tion is sufficiently extensive that it is self-contained with all expressions derived
at a level that allows computer implementation. Moreover, the derivation does
not require that any but the weighted states be calculated.

When using sa-Mcscr as a remedy for rootflipping during calculations of ex-
cited states, the weights used for the different wave functions are naturally bi-
ased such that the weight for the excited state is large and weights on other states
are small. On the other hand, when the sa-mMcscrF concept is used to provide tran-
sition properties, the states for which these properties are desired are naturally
weighted equally. In the case where two or more states are equally weighted, a
special difficulty occurs [14]. Our work provides a complete derivation allowing
equal weighting of two or more states in a computationally tractable manner.

SA-MCSCF theory is closely related to usual Mcscr theory, which is described in
a variety of notations. In this work, we have chosen to use a notation similar to
that used by Hoffmann et al. [19]. Part of the derivation is also parallel to deriva-
tions in [19] and a previous paper of Osamura et al. [20].

Our conventions and definitions are stated in Section II. The Generalized
Brillouin Theorem (GBT) valid for an sa calculation is derived in Section III. In
Section IV, quantities at infinitesimally displaced geometries are expressed as
power series of the quantities at the undisplaced geometries and identities aris-
ing from orthonormality constraints on the states and orbitals are derived. Also
in this section, the two conditions from which the response equations are
derived are explicitly stated. The first condition relies on the BT, and the equa-
tions emerging from this are derived in Section V. Similarly, the equations aris-
ing from the second condition are derived in Section VI. Section VII describes

“how the response equations are naturally combined and transformed to a form
that is amenable for efficient implementation. A final discussion of the equations
obtained is left for Section VIII, and the conclusions are in Section IX.

II. Conventions and Definitions

Consider a system of atoms in an electronic space spanned by a set of M
atomic orbital (a0), or symmetry-adapted orbital (so), basis functions, {X,|un =
1,2,..., M}. From these basis functions, a set of M orthonormal molecular or-
bitals (M0’s) are created, {;|i = 1,2,..., M}, by the relation

M
o = 2 KiX,, ¢y
n

which defines the Mo coefficients K.

For a given symmetry, a subset of all symmetry-adapted configuration-state
functions (csr’s) is created from the mo’s, {®;| I = 1,2, ... N}; that is, the number
of csF’s in the subset is taken to be N. The subset of csF’s again serves as a basis
for generating N orthonormal states of the given symmetry, {¥,, |4 =12,...; N}
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The generating relation is written as
N
= ZCi, @)

where the C7"s are the ci-coefficients.

In a state-averaged calculation, the N states are dmded into two sets, one
which consists of {2 so-called internal states and one which consists of A so-called
external states. Note that N = Q + A. Each of the internal states is assigned a
weighting factor wg, which has to be larger than zero but less than or equal to
one. The weighting factors must sum to unity. The weighting factors are the
weights of the states in the sa-McscF energy functional, which is defined as the
weighted sum of energies Ey for the set of internal states:

0 ]
E* = % w3<‘PR|H|‘lPR) = ; (!.IRER : (3)

In this work, we assume that states and orbitals are real and that the orbitals
and internal-state ci-coefficients are variationally optimized for the functional in
Eq. (3), which also can be written as

1
= 2 wr L CICFHy, )
R i
where
Hy = 2 Yujkx_r o+ 2 qual'(‘j | kf)— (5)

The symbols v/ and I'}; denote the one- and two-particle coupling coefficients,
respectively, and h; and (ij | k/) denote the one- and two-electron integrals; the
(i | kI) are written in Mulliken notation.

In line with the notation used in this section, throughout this paper we will
use

Yu,p,o to denote AO’s or sO’s,

i, j,k,l,m,n,0,p r " MO,

LKL " T ool

A,B,D " "  states in general,
R,S,T,U " " internal states,
PQ " " external states.

III. The Generalized Brillouin Theorem (GBT) for an sa-Mcscr Calculation

The purpose of this section is to derive the GBT for an sa calculation, such that
this theorem can be utilized in deriving the response equations.

An infinitesimal variation of the orbital ¢; will lead to a new orbital ¢; + 8¢,
which can be described in the space spanned by all of the orbitals:

@i £ 8@; v 2 Og‘q‘.}j. (6)
i
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Now considering a simultaneous change of all orbitals and requiring that they
remain orthonormal, we find that the elements O; must define a unitary matrix;
that is, we can write Oy as

= [exp(X)};,
=8+ X, += EXka, (7
where
X = —X;. ®

According to Egs. (4)—(6), the sa energy for the set of infinitesimally varied
orbitals then reads

E*=} (‘}'u ZhuO.x O.rf) 17 E( % 2 (mn|0p)0in O, O;wO;p), )
mnop

‘J'

where we have defined the one- and two-particle sa density matrices as

= Ewnn. } (10a)
0
1 = 2 Rrx)k!s (lob)

R

and the one- and two-particle density matrices for each of the internal states as

k= Ey’CRC;, (11a)
rf,‘gisg Lcich : (11b)

Stationary points in the orbital space (energy minima and saddle points) are
characterized by the condition
9E*
aan

=0, (12)

where m # n. Using Eq. (8) to reduce the number of variables to the
(M(M — 1)/2) independent variables (remember that M denotes the number of
orbitals), the differentiation of Eq. (9) with respect to an arbitrary X,,, form = n
gives:

oE*
X, mn

=22 (Ymhnj = Vi hmy) + 42 (Comia(nj | kl) = Tojalmj | kD). (13)
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To derive Eq. (13), we have exploited the following symmetries:

Y=, (14a)
,,k; l",.;,, = I‘H,;, (14b)
hy = hy, (14¢)
(| kl) = (ji|kl) = (Kl| ji). (14d)

Now defining the sa Lagrangian as
et = gy,-i*h,-k + 2;‘, Tjim(ik | Im), (15)

Egs. (12) and (13) give
el —egf =0, (16)

which is the Generalized Brillouin Theorem for an sa calculation, which must be
fulfilled for all stationary points in the orbital space.

IV. Quantities at an Infinitesimally Displaced Geometry

We consider a situation where the internal sa-mcscr wave functions have been
converged for a chosen nuclear configuration, specified by the coordinates of
each nucleus. Then, one of these coordinates, say the a coordinate, is infinitesi-
mally distorted from x to x + A. At this distorted geometry, the quantities are
expressed as power series expansions around the same quantities of the original
nuclear configuration. Denoting the coordinates at the displaced geometry by
x + A, and using the convention of not explicitly writing the geometry depen-
dence for quantities that are evaluated at the undisplaced geometry, we find to
first order in A:

H(x + f\}u = H” + I\‘a_;".l‘*{{ E, 2 (173)
(4]
e ,\"‘a—E“ i (17b)
A
ot iieci it (17c)
da
oh,
W+ Ny = hy + ASL 4 (17d)
(4]

i | KD sny = (U|k1) A

a(ij | kI )
= (17¢)
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Using Eq. (1) and the orthonormality of the Mo’s gives the following identity:

s Kol + > & el X.) + 53,

0=3

N

where we have defined

sp= Sk ki XXel X
e da

The term

a l
2
.

can, of course, be expressed as a linear combination of M0’s

aK!
2 aHX _EU}I(Pjs
m

which, for real orbitals, defines

Uf=3

I

aK:.

(X |@;)-

Equation (18) can then be compactly expressed as
_ 0=U§+U§+ S;.
Using this notation, we can rewrite (0h;)/(da) and [8(ij | kI)]/(3c) as

ohy
o = hi + SWahy + Ugha),
o k
and
a(:J;LkI) = |kl + 3 Us(mj| k) + Ug(im | kI)
+ Un(ij | ml) + Uni(ij | km)),
where

h§= ZK:: K{"ah_ﬂ“‘,
- d
Gilkr = 3 Kikiksk, 22100,
npo da

Similarly, using Eq. (2) and the orthonormality of states gives

A
0= 2 ig_c; ZCA GC;

I

(18)

(19)

(20)

(21)

(22)

(23a)

(23b)

(24a)

(24b)

(25)
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Since a change of a c1 vector must be expressible in the space of all c1 vectors, we
have -

aCA N
a—a' = gm P (26)

which can be inserted in Eq. (25) to give
0=Vh+Vi. (27)

Since the one- and two-particle coupling coefficients both are independent of
nuclear geometry (as long as the nuclear framework. belongs to the point group
chosen for the calculation), using Egs. (17c) and (26), the density matrices at the
displaced geometry are given to first order in A as

N ;
yx + Nf = yf + AZVE S CFCIvl + v + ..., (28a)
A i
! N
T+ Nfa =T+ AZVE D CRCHTH + Th) + ... (28b)
A i

Notice that if one wishes to include distortions that reduce the symmetry of the
nuclear framework, one has to evaluate the coupling coefficients in the lower
symmetry group. In general, if all possible distortions are required, the calcula-
tion has to be carried out without use of point-group symmetry.

Now that we have evaluated how different quantities at an infinitesimally dis-
placed geometry are expressed to first order in A, and have shown in Egs. (22)
and (27) how the orthonormality conditions of the orbitals and states reduce the
number of independent variables, we are ready to derive the response equations
for the set of sa wave functions. To obtain these equations, one has to take ad-
vantage of the two conditions that must be fulfilled for converged sA-MCSCF wave
functions at all nuclear geometries:

(A) the sa-GBT condition expressed in Eq. (16) that states that the orbitals are
optimized in a weighted sa manner, and

(B) the c1 coefficients for each of the sa-McscF internal states have to be varia-
tionally optimized in the chosen space of csF’s; that is,

drsEgr = 2, CFCIHy, (29)
I

has to be valid for all a1 coefficients of the internal states.

In the next section, we derive the equations that arise from the GBT condition;
the equations that arise from Eq. (29) will be evaluated in Section VI.

V. First-Order Responses Arising from the BT

Imposing the sa-GBT to be fulfilled at the infinitesimally displaced geometry,
we can use Egs. (10), (14), (15), (17d), (17¢), (23), and (28) in Egq. (16) to give
us this GBT condition in powers of A. Collecting first-order terms generates the
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equation
(4] N
0=c"— el + Dwr 2VEA 2DCHTE - T
R A J
+ Ek Unilbuen — Bnen + Yiar — Yiul, : (30) -

with the new quantities defined as

i = S hivk + 23 (k| Im) T, b
kim

T = Zc:[Z R + Vi + 2 3 (Tham + Thi) ik [Im) |, (31)

Yitx = hinyit + 2 Z{(in|Im)Cjtm + @l |nm) (Cjin + D). (G10)

. The unknown variables in Eq. (30) are the sets of V£, and Uy%. To eliminate re-
dundant variables, and at the same time guarantee that the orbitals and states at
the infinitesimally displaced geometry are orthonormal, we use Egs. (22) and
(27) to rewrite Eq. (30) as

0= sl?ﬂ i 5}: ==k 2 2 VRP“’RZC TJR)

+ 2 2 VEis &JREC}S‘(T"R = T‘m) - “JSEC§(T;;S T;{S

§>R

+ 2 D UMY — Yink — Yign + Yitn + Sucesy — Spest — 8insht + 8nelt]

n k<n
— 2 2 SulYin = Yitn + Sinel] — Sjnell]
n k<n 3
1 a sA SA SA
o '5' ZSRR[YI}'HH 7% Y;’inn + ainenj = ;nem] (32)

By making the matrix definitions of Egs. (33), Eq. (32) can be expressed as a set
of linear equations for the unknowns Uy and VEg;:

Al = Yo — Yok — Yia + Yt + 8uel — 8uel) — el + 8pel,  (332)
A¥re = 0r 2 CH(THF — TIF); (33b)
J
Als = (g — ws) S CI TR — TH, (33¢)
J

2 2 Sﬂk[ ijkn — jlkn aF atﬂskj e a_me.f?:]

n k<n

: |
+5 S SalVE — Yiu + Busy — Busl] - o + o~ (33d)
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The linear equations that result from Eq. (32) can be written in shorthand nota-
tion as

- T4 Q Q=
x kZA&.lnk Ug + % g ireVEp + % SE A.,- rsVRs = B}; (34)
n <n =R

In accordance with the definitions in Section II, ) is the number of internal
states, and A, the number of external states. The A is defined as the number of
pairs of different internal states with equal weighting factors, and the notation
Q # A, appearing in the limit for the last sum in Eq. (34), is'used to denote the
sum S > R running only over S and R being internal states with unequal weight-
ing factors.

In principle, Eq. (34) represents M? equations for i and j forming all possible
combinations of orbital indices. However, from the definitions in Egs. (33), we
see that

Axf rk=e “J‘i}lnk i (35a)
A:J,RP 5] A;; RP> (35b)
A‘iafns = - -;}5,333, ; (35¢)

Bj=-B}; - - (35d)

that is, the number of nonredundant and nonzero equations is (M(M — 1)/2).
These equations, which can be labeled i > j, represent the first-order response
equations arising from the sA-GBT.

VI. First-Order Responses from Requiring the Internal States to be
Variationally Optimized

Equation (29) represents the requirement that the internal sa-Mcscr states be
variationally optimized within the chosen csF space. Using 8zs = Z,CfC7 in
Eq. (29) together with Egs. (17a), (17b), (17¢), and (26), this condition can be ex-
pressed at the infinitesimally displaced geometry in powers of A. Defining the
molecular gradient elements,

5 :
Ep=22 (36)
da
and collecting first-order terms in A, gives the following equation:
a a R BHU
Edre + (Er — Es)ViRs — ZC O e 5 =0. (37)

Using Egs. (14a), (14b), (23a), and (23b) and the definition of Hy, in Eq. (5) to
evaluate (3Hy)/(da), we obtain

oHy

e = Hj + E U,;{Z (‘J’,-k T 'Yj'f)hfk + 2%(R’ﬁm ,k:m)(lk“m)] (38)
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with the so-called derivative Hamiltonian defined as
Hf= X yihi + 2 TG | kD) (39)
ij ijkl
When Eq. (38) is inserted into Eq. (37), we obtain

E%8rs + (Er — Es)V&s — %C?C}’Hﬁ * Ek U:kzjicf T =0. (40)
As in Eq. (30), the variables in Eq. (40) are the sets Uy and Vgp. According to
Egs. (22) and (27), some of these variables are redundant. By using Eq. (22), we
can exploit the redundancies in the Ug; set to reduce the sum over n and k to a
sum for which k < n. This will also guarantee the orbitals at the displaced ge-
ometry to be orthonormal. Equation (40) then reads:

E%drs + (Er — EslVis — 2 CICTHf —
i

2 2UaYCHTE —TH +

R k<n - J

S IsaZCITh + 5 SSa3CITh = 0. (@)
n k<n J n J

In Eq. (41), R can take all () values, and B, all N values; that is, Eq. (41) repre-
sents, in principle, )N equations. However, for B belonging to the internal
states, it can be seen that the individual terms in the sum on the left-hand side of
Eq. (41) are unaltered when the R and B indices are interchanged. That means
that we have (2({2 — 1)/2) redundant equations that can be removed by only
_considering the equations for which B = R.

To be able to conveniently couple these nonredundant equations to the equa-
tions in Eq. (34), we split the equations represented in Eq. (41) into three sets
that are slightly modified.

The first equation set is chosen to involve the A equations for which the
B index refers to external states, and these equations are subsequently multiplied
by the weighting factor wy of the internal R state. The second set involves equa-
tions where the B index refers to internal states with weighting factors, wg's, dif-
ferent from the weighting factor wx of the internal R state. This set of equations
is subsequently multiplied by (wz — ws), which is unambiguous since wgz # ws.
With the number of pairs of different internal states with equal weighting fac-
tors previously defined as A, the number of equations in the second set is
(Q(Q2 — 1)/2 — A). The third equation set consists of the remaining equations.
For these, the B index refers to internal states for which the weighting factor wp
equals the weighting factor wg of the internal R state. This last set of ({2 + A)
equations includes the equations for which B = R.

For the first set of equations, the B designation is changed to the P designa-
tion, since B is in the external space. The first set of equations obtained from
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Eq. (41) then reads:

n A
S AR US + § %A%,SQ V& = Bkp, (42)

n k<n

with the definitions:

ABom = 0 2 CITER - TR, : (43a)
J
AReso = Brsdrowr(Ep — Ex), . (43b)
Bip = NRECJ’( SCRHS + DD LY 5 - ES Tﬂ) . (43¢)
J n k<n 3

For the second set of equations, B belongs to the internal states, and, hence,
the B designation is changed to an S designation. The second set of equations
derived from Eq. (41) then reads:

X kgéils.nk Us + % ij::ff%.m Vv = Bis, (44)

where
Al = (wr = w3) SCHTE - TIH), ' (452)
A1y = Srrdsu(wr — ws)(Es — Eg), (45b)

Bis = (wr - ws)gcx( ZCRHU + P T SnTh

n k<n
+ -2- S sg rf:) . (@)

In Eq. (44), the limit ) # A is used consistent with the definition stated in con-
nection with Eq. (34). '

In the last set of equations obtained from Eq. (41), B belongs to the internal
states. Hence, the B designation is changed to an § designation and the equa-
tions are written as

S S ARsuUs + (Es — ExWVis = Bis, (46)
n k<n
with
Rs,n.t = EC nk i iﬁ), (47a)

Bis = E2bgs + ?CJ( ZCIHH £ 2.3 Sai) ES“ Tm) (47b)

n k<n
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In summary, the response equations arising from requiring the internal
SA-MCSCF states to be variationally optimized are written in Egs. (42), (44), and
(46) and they represent in their totality (QA + Q(Q + 1)/2) equations.

VII. Strategy for Solving the Response Equations in the csF Basis

The response equations derived in the previous sections consist of the four
sets of linear equations given in Egs. (34), (42), (44), and (46). The purpose of
this section is to rewrite these equations in a more compact form and to trans-
form parts of the equations such that the ci-vectors for the external states do not
need to be calculated.

The first three sets of equations [Egs. (34), (42), and (44)] are already derived
such that they are easily combined to form one set of linear equations with as
many variables as equations. However, since the last set [eq. (46)] is the only set
that contains the Vg5 elements for which the weighting factors of the internal R
and S states are equal, this set of equations also has to be solved. In the following
treatment, we first consider the equations that arise from combining Egs. (34),
(42), and (44). Then, assuming that these equations have been solved, we go on
and show how to solve the remaining part of the problem by treating the equa-
tions arising from Eq. (46). e :

A. First Part of the Response Equations
We begin by defining the following matrices and vectors:
(;11 At AR
;&21 AR 0.1, (48a)
\331 0 A*®
[ U
V9L, : (48b)
\Vnin

>t
]|

<0
n

(]
L

B : (48c)
where V% and V#" are the vectors of the V§p elements and the Vs elements,
respectively. Whereas R and P in Vip, respectively, denote internal and external
states, the R and S in V& denote internal states with different weighting factors.
The response equations represented in Eqgs. (34), (42), and (44) can then com-
pactly be written as

AV = B. 49)
To evaluate the A, A2, and B? blocks, it appears [see Egs. (43a—c)] to be nec-
essary to know both the c1 vectors and energies for all external states. This

requirement, however, can be removed by making a suitable unitary transforma-
tion with a matrix constructed from the c1 vectors. Before performing the trans-
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formation, Eq. (49) has to be modified by introducing extra “dummy” equations,
such that the dimension of the A* block is extended to QN x QN and the row
dimensions of A”, V**, and B’ are extended to QN. In particular, by defining
the following elements:

A Alzéd,nk for A within the external states,
ARA,RA: — i (503)
0 for A within the internal states,
Z” = A%«,s& for A and B both within the external states,
e drsdapwrz  otherwise (z is an arbitrary but nonzero constant),
(50b)
= o2 ST
B2, = By forA w%thfn the f.zxtemaf states, (50c)
0 for A within the internal states,
and the matrices:
[An ;zv A :
A=[A" 32 o |, (51a)
331 0 333
2y
V= |V, (51b)
vaiu
ﬁl
B = | B?|, (51c)
\B>
the extended set of response equations can be written as
AV = B. - (52)

The solution vector V arising from this new matrix equation can be shown to
contain the original responses of Eq. (49) as well as additional elements that
identically vanish:

U = U” (53a)
= Ve for A within the external states,
i —
{ 0 for A within the internal states, oo
‘-;a:'n — vcl'.n. (53C)

Equation (52) can be subjected to a unitary transformation that eliminates the
need to know the c1 vectors of any but the infernal states. To do so, we first de-
fine a matrix with elements

Ukio ™ B5sCh (54)
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This matrix is easily shown to be unitary:

00 =1, (55)
and the larger matrix defined as
Sk lmnl 0 0
u=10"0"0) (56)
03015

with 1., and 1;, being identity matrices with the dimensions of A" and 333, re-
spectively, and, therefore, also unitary. Note that this unitary matrix has earlier
been used by Lengsfield [5] in deriving second-order Mcscr theory for sa wave
functions. Using the matrix to perform a unitary transformation on Eq. (52)
gives

UAU'UV = 0B. (57)
Defining
A = UAUD, (58a)
V=0V, (58b)
B = UB, (58¢)
Eq. (57) reads
' AV =B. (59)

The A matrix and the V and B vectors are naturally written in subblocks:

All 1&21+ A31"'
A=[a" A2 o |, (60a)
ASI 0 A33

v =|v2], (60b)

B =|B?|, (60c)

where the elements of the blocks are easily evaluated. Using the following two
definitions,

4]
Ly= Y CRCF, (61a)
R

My=éy—- Ly, (61b)
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which also result in the following equation:
A
My = 2 Cfo, (62)
B

the final working expressions for the elements obtained are

Al = Yiou = Ying = Yian + Yiia + Bues — Opeil — Suntij + Sjntid » (63a)

ARKn.k = Wg ZMKJ(T;{J; g Tizfﬁ), (63b)
7 - : ; /
Akks = wRSSR(EMmMJLHn — My Eg + ZLKL) z (63c)
I
AR = (0 — 05) 2CHTR = TH), (63d)
7
AR v = Srrdsu(wr — ws)(Es — Eg), - (63¢)
Bj=2X kE SalYitn — Yiin + Sunel) — Sneit]
n <n
1 .
* = S Sa[Yin = Yim + 8inell — 8,e2] — 3%+ 22, (63f)
Bi = CURZMH( ECRHKJ+ > zsfmTf: +—25 T?:‘ﬁ), (63g)
I n k<n
Bis = (@ —-ws)gcf( EC.'HH + X kZ SETHR
+13sars), )
Ve = Uk, - (631)
TSR - :
Vii=— - 2 VisCi s : (63))
da
Vis = Vis. (63k)

Solving the first part of the response equations [i.e., Eq. (59)] gives the solution
vector V, which consists of the three parts V', VZ and V. As shown in Egs. (63),
V! gives the set of Ug’s [i.e., all responses concerning orbitals are recovered
from solving Eq. (59)]. The V? gives the set of

R .n
(& - VﬁsC?)
s

da

elements for R belonging to the internal states and I belonging to the set of active
csF’s; that is, V2 contains information about c1 responses arising from internal-
external rotations. The last part, V?, gives the set of V&’s for R and S both be-
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longing to internal states with different weighting factors. This is the c1 response
information for internal-internal rotations, but only for internal states with dif-
ferent weighting factors. The only remaining response information concerns the
ci-response arising from rotations among pairs of internal states that have equal
weighting factors. This remaining information is gained from the second part of
the response equations, which we now detail.

B. Second Part of the Response Equations

For nondegenerate states, Eq. (46) can be rewritten such that the responses for
different internal states R and S with equal weighting factors reads

V§S=(ES"'ER)_IECJ{ ECfHu-i-—ZS TR
J

+ 3 kE [TRS% + (TR - THU } (64)
(this result can be inferred from eq. (2.13a) in Ref. 14).

Assuming that Eq. (59) has been solved, the orbital responses U’s are known
and the response information about internal-internal c1 rotations for all pairs
of different states that have equal weighting factors are easily resolved from
Eq. (64). Notice that the case in which two degenerate states occur with equal
weighting is not resolved by our derivation; it will be the subject of future work.

When both response Egs. (59) and (64) have been solved, all first-order re-
sponse information is contained in the two vectors V and V*, where V* is defined
as the vector of the solutions Vg in Eq. (64). The cI responses contained in the
V?and V? parts of V can then be used with V* to evaluate the responses of the cr
coefficients for internal states as

BC,r

P VR; + E VRs‘C; (65)

The results of solving the response equations thus give us the vector V' of or-
bital responses Ui and the set of c1 responses (dCT)/(da) for all internal states.

VIII. Discussion

In the previous section, we have shown that first-order responses, for all inter-
nal sa wave functions, are analytically evaluated by solving the two sets of equa-
tions in Egs. (59) and (64). The matrix A appearing in Eq. (59) is seen to be
symmetric.

With the earlier definitions of M, N, (), and A in Sections II and V, the number
of linear equations in Eq. (59) is (M(M - 1)/2) + (QON) + (Q(Q2 — 1)/2 — A). If
the calculation is carried out with the use of point-group symmetry, this number
is reduced because only rotations among orbitals, or, respectively, cse’s, of
the same symmetries have to be considered. However, except where the active
CSF space consists of one csF, this potentially reduced set of equations will still
contain a number of redundancies. These redundancies arise because some of
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the orbital rotations result in a new set of csF’s that is a unitary transformation of
the original set of csF’s. In the case of a complete active space (cas) calculation,
only rotations among core orbitals and valence orbitals, among core orbitals and
virtual orbitals, and among valence orbitals and virtual orbitals are nonredun-
dant; that is, in a cAS sA-MCSCF calculation with no use of spatial symmetry, if the
number of core orbitals is MCo, the number of valence orbitals is MVa, and the
number of virtual orbitals is M Vi, the linear set of nonredundant equations rep-
resented in Eq. (59) has the dimension (MCoMVa + MCoMVi + MVaMVi) +
(QON) + (Q(Q - 1)/2 — A).

Note that for an sa calculation where all internal statés have been assigned dif-
ferent weighting factors, Eq. (64) vanishes and only Eq. (59) has to be solved.
This situation occurs in the special case where the sa-Mcscr calculation is a usual
MCsCF calculation (i.e., in the case where we have only one internal state). In this
case, the linear response equations in Eq. (59) are similar, but not identical, to
the response equations derived for Mcscr wave functions by Osamura et al. [20]
and Hoffmann et al. [19]. The difference is due to the way we extend the A and
B matrices to the A and B matrices, which is different from the equivalent ex-
tension made in Refs. 19 and 20. The most pronounced difference between the
resulting sets of equations is that the molecular gradient elements E § appear in
the equations of Refs. 19 and 20, but does not appear in the equations derived in
this work. However, it should be mentioned that the molecular gradient ele-
ments for each internal state can be evaluated if desired, in our approach, from
the following equation derived from Eq. (41):

Eﬁ=ZC‘}{ECi‘H;‘} I3 surs
£ i I

+ 2 X (T - T - T;:‘:S:k]}, (66)
n =n
which contains only terms that also are needed for the response equations.-

We end this discussion by mentioning that the responses for sa wave func-
tions, obtained as described in this work, can be used for the calculation of non-
adiabatic coupling elements between the internal sa wave functions, as shown by
Lengsfield et al. [14,16].

IX. Conclusions

In this work, we have derived first-order geometrical response equations valid
for an sa-mMcscF calculation. The derivation is carried through from first prin-
ciples, and the terms in the resulting working equations are expressed such that
computer implementation from the formulas is straightforward. The energy gra-
dients of each of the states involved in the sa-McscF energy functional are also
given in computationally tractable form. The final results are given such that
only the energies and wave functions for the internal states must be known.

The case in which the weighting factors for two or more nondegenerate inter-
nal states are chosen to be equal is treated in a fashion consistent with situations
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where this is not true. This treatment of internal states with equal weighting fac-
tors results in an extra set of equations that has to be solved after the first set of
response equations has been solved.
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