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Abstract

The fiest-order geometrie al response equations for a state-averaged multieonfigurational self-
eonsistent field (SA.MCSCF)ealeulation ale derived. This derivation is earried through flam fiest
prineiples to final working equations suited for eomputer implementation. The final equations
ale expr~ssed sueh that the energies and wave funetions must be known' only for the internat
SA-MCSCFstates. In the derivation, the specjal but import ant ease where twa or moce internat states
have equal weighting faetors is treated in a manner fully eonsistent wit h all other eases. Exeept
for introducing extra equations that ale straightforward to solve, the ease where twa or moce in-
ternal states have equal weighting faetors introduees no new eomplieations.

I. Introduction

The idea of having one set of orbitais that are optimized to minimize the
weighted averageenergyof iwo or more multicorifigurationalself-consistentfield

,(MCSCF)states simultaneolisly was first introduced by Docken and Hinze [1].
Docken and Hinze used ibis concept, which now is kROWOas state-averaged(SA)
MCSCF,as a means to prevent the problemofrooiflipping when excited states are
calculated. Besidesproviding a means for preventing rootflipping during calcula-
tions of excited states, the SA"MCSCFapproach, due tDits,commonset of orthonor-
maiorbitais for all states, is algOused to facilitate the computation of transition
properties. Earlier approaches to the problem of optimizing SA-MCSCFenergies
are described in Refs. 2-7.

In the last decade, much attention in electronic structure theory bas been
given to the lask of calculating responses arising from distortions of the nuclear
framework. These responses are especially used [8-13] for evaluating the geo-
metrical Hessian that is used to characterize potential ene~gysurfaces and for
walking toward stationary pointson these surfaces.

Within the concept of SA-MCSCF,the primary work that precedes ibis manu-
script on response equations is contained in a series of papers by Lengsfield,
Saxe, Yarkony, and Jensen [14-18]on nonadiabatic couplings. In these papers"
the SA-MCSCFwave functions and their responses are used to enable a convenient
war for evaluating nonadiabatic couplingsfor SA.MCSCFwave functions, as well as
for configuration interaction (CI)wave functions based o~ the orthonormal
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orbitaIs tram an 'SA-MCSCFealeulation. The theory on the response equations for
SA-MCSCFealeulations published in this series of papers [14-18] is rather brief.
One purpose of onr wark is to provide a moce eomprehensive derivation of the
first-order response equations for a set of SA-MCSCFwave funetions. Onr deriva-
tion is sufficiently extensive that it is self-eontained with all expressions derived
at alevel that allows eomputer implementation. Moreover, the derivation does
not require that aDYbut the weighted states be ealeulated. .

When using SA-MCSCFas a remedy for rootflipping during ealeulatións of ex-
cited states, the weights used for the different wave funetions are naturally bi-
ased sueh that the weight for the excited stale is large and weights on other states
are smalI. On the other band, when the SA-MCSCFeoneept is used to provide tran-
sition properties, the states for which these properties are desired are naturally
weighted equally. In the ease where twa or moce states are equally weighted, a
specjal diffieUlty oeeurs [14]. aur wark providesa eomplete derivation allowing
equal weighting of twoor moce. states in a eomputationally traetable manner.

SA.-MCSCFtheory is c1oselyrelated to usual MCSCFtheory,which is deseribed in -
a variety of notations. In thiswork, we have ehosen to use a notation similar to
that used by Hoffmann et al. [19].Part of the derivation is also paralleI to deriva-
tionsJn- [19]and a previous paper of Osamura et al. [20].

aur eonventions and definitions.are stated in Seetion II. The Generalized
Brillouin Theorem (GBT)valid for an SAealeulation is derived in Seetion III. In
Section IV, quantities at infinitesimally displaeed geometries are expressed as
power series of the quantities at the undisplaeed geometries and identities aris-
ing tram orthonormality eonstraints on the states and orbitaIs are derived. Also

. in this section, the twa eondi~ions from. whieh the response equations are
derived are explicitlystated. The fiest eondition relies on the GBT,and the equa-
tionsemerging tram this are derived in Section V. Similarly,the equations aris-
ing from the seeond eondition are derived in Section VI. Section VII deseribes

. how the response equations are naturally eombined and transformed to a form
that is amenable for efficient_implementation.A final diseussionof the equations
obtained is left for Section VIII, and the eonc1usionsare in Section IX.

II. Conventions and Definitions

Consider a system of atoms in an electronie spaee spanned by a set of M
atomie orbital (AO),or symmetry-adaptedorbital (so), basis funetions, {XILIIL=
1,2,. .., M}. From these basis funetions, a set of M orthonormal moleeular or-
bitals (MO'S)are ereated, {'PiIi = 1,2,..., M}, by the relation

M

'Pi=2: K~XIL'
IL

(1)

whieh defines the MOeoefficients K~.
, For a given symmetry, a subset of all symmetry-adapted eonfiguration-state

funetions (CSF'S)is ereated tram the MO'S,{<PII1= 1,2,... N}; that is, the number
of ~F~~ in the subset is taken to be N. The subset of CSF'Sagain serves as a basis

. forge~eratingN orthonormal statesofthe givensymmetry,{'l'AlA =1,2,..., N}.
..
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The generating relation is written as
N

VA = L c1<1>l,
l

(2)

where the C1's are the cI-coefficients.
. In a state-averaged ca1c~lation,the N states are divided juto two sets, one

. which consistsof fi so-calIedintemai states and one wh~chconsists of A so-calIed
extemal stalego Note that N = fi + A. Each of the internal states is assigned a
.weightingfactor tUR, which bas to be larger than zero but less than or equal to
one. The weighting factors most sum to unity. The 'weighting factors are the
weights of the states in the SA-MCSCFenergy functional, which is defined as the
weighted sum of energies ER for the set of intemai states:

fi fi

ESA == L tUR(vRIHlvR)= -L tURER.
R R

(3)

In this work, we assume that states and orbitaIs are real and that the- orbitaIs
and internal-state cI-coefficients are variationa1ly optimized for the functiona1 in
Eq. (3),which also can be written as .

fi

ESA = LtURLCfcfHu,
R '11 .

(4)

where

- .

The symbols 'Yf!and rfftcl.de~otethe one- and twa-particie coupling coefficients,
respectively, and hii CUld(ij Iki) denote the one- and two-electron integrals; the
(ij Iki) are writte~in MulIiken notation.

. In line with the notationused in thissection, througn()utthis paperwe will
~e .

Hu = L 'Yf!hii + L rfftc/(ijIki).
ij iikJ

(5)

v,/.L,p,u
i, j,k, I,m, n,o,p
I,J,K,L
A,B,D
R, 5,T,U
P,Q

to denote AO'Sor so's,
" " MO'S,
" " CSF'S,
" " states in general,
" " internal states,
" " external stalego

III. The Generalized Brillouin Theorem (GBT)for an SA-MCSCFCalculation

The purpose of this section is to derive the GBTfor an SAcalculation, such that
this theorem can be utilized in deriving the response equations.

An infinitesimal variation ot the orbital 'Piwilllead to a new orbital 'Pi + 8'Pi,
which ca.I1__bedescribed in the space spanned by a1l of the orbita1s:

'Pi + 8'Pi= LOii'Pi.
i

(6)
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Nowconsidering a simultaneous change of all orbitals and requiring that they
remain orthonormal, we find that the elements Oijmusi define a unitary matrix;
that is, we caDwrite Oijas

Oij = [exp(X)1j,

, 1 ~

= 8ij +.Xij +2 tXikXk; + ..., (7)

where

Xii = -X;i. (8)

According to Eqs. (4)-(6), the SAenergy for the set of infinitesimally varied
orbitals then reads .

ESA= L. -(
')'tJ'L hklOikOjl

) + ? (
r;1 L (mn IOp)Oim Ojn Oko OIP

)
,

lJ .l:1 'ikl- mnop .
(9)

where we have defined the one- and iwo-particIe SAdensity matrices as '

" fi
SA-~ R

')'ij = ~ UJR')'ij,
R

(lOa)

fi

r SA - ~ rR
ijkl = ~ UJR ijkl,

R
(lOb)

and the one- and two-particIe density matrices for each of the internai states as

R - ~ l/ CR CR
')'ij = ~. ')'ij 1 /,

1/
(Ha)

rffkl==L rlkcfcf.
lJ .

(Hb)

Stationary points in the orbital space (energy minima and saddle points) are
characterized by the condition

dESA

dX = Omn '
(12)

wherem ;c n. Using Eq. (8) to redlice the mimber of variables to the
(M(M - 1)/2) independent variables (remember that M denotes the number of
orbitals), the differentiation of Eq. (9) with respect to an arbitrary Xmnfor m ;c n
gives:

d;SA = 2 L (')'~hnj - ')':ljhm;)+ 4 L (r~jkl(nj Iki) - r:ljkl(mj Iki)).
dAmn ; ;kl

(13)
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To derive Eq. (13), we have exploited the following symmetries:

"1ft = "Il,

kij = hji ,

(14a)

. (14b)

(14c)

(14d)

r~ = rtLe= rHij,

(ij IkI) = (ji IkI) = (kIl ji) .

Now defining the SALagrangian as

elf ==L "Ilthik + 2 L rJ,dm(ik 11m),
k klm

(15)

Eqs. (12) and (13) give

elf - elt = O, (16)

which is the Generalized Brillouin Theorem for an SAca1culation, which must be
fulfilled for all stationary points in the orbital space.

Iv. Quantities at an Infinitesimally DisplacedGeometry

We consider a situation where the internaI SA-MCSCFwave functions have been
converged for a chosen nuclear configuration, specified by the coordinates of
each nucleus.Then, one of these coordinates, say the a coordinate, is irifiriitesi-
mallydistorted from-x to x + A.At this distorted geometry, the quantities are
expressed as power series expansions ar.oundthe same quantities of the original
nuclear configuration. Denoting the coordinates at the displaced geometry by
x + A, and using the convention of not explicitly writing the geometry depen-
dence forqu'tmtities that are evaluated at the undisplaced geometry, we find to
first order in A: .-

aH/J o

H(x + A)IJ= H/J+ A- + ...,iJa (17a)

iJER 000

E(x + A)R= ER + A- + ...,iJa (17b)

A A o acJ .
C(X + Ah = CI + A- + .;.,

iJa
(17c)

o . ahij
h(x + A)ij = kij + ATa + .. . ,

(17d)

(ij IkI)(xH) = (ij IkI) + AiJ(i~~kI) + .... (17e)
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Using Eq. (1)and the orthonormality of the MO'Sgives the followingidentity:

oKi aKj
O = ~ 7(Xl'lepj) + ~ 7(ep;jXv) + Si},

I' ua v ua

where we have defined

Sij ==~Ki Kja(XI'IXv)I' v
I'V oa'

The term.

~ aK~X
~ aa I'

caD, of course, be expressed as alineat combination of MO'S

aKi
. ~ -2X = ~ Ulepi>~ 1'.I' oa ]

which, for realorbitais, defines

U; = ~ a;(Xl'lepj).

Equation (18) caD then be compactly expressed as

0= Ui} + U; + Si}'

Using this notation, we caD rewrite (ahiN(aa) and rafij IkI)]/(aa) as

ahij- h a ~ (ua h Ua h ),,- ij+~ kikj+ kjik,
ua k

and

a(ij IkI) = (ij IkI)a + ~ (U::li(mj IkI) + U::lj(im IkI)aa m

+ U::lkW ImI) + U::.lW Ikm»,

where

h!'. == ~ K i K jahl'V
I] ~ I' -

I'V v oa '

(ij IkW == ~ K~ KtK; K~ a(JLV Ipu ).
~ aa

Similady, using Eq. (2) and the orthonormality of statesgives

O- ~ ac1CB ~ CA oC!- ~- l + ~ l-.l oa l oa

(18)

(19)

(20)

(21)

(22) -

(23a)

(23b)

(24a)

(24b)

(25)
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Since a change of a CIvector musi be expressible in the space of all CIvectors, we
have

A N DacI = L VADCI ,
aa D

(26)

which can be inserted in Eqo (25) to give

O = VAB + VBA. (27)

Since the one- and two-particle coupling coefficients both ale independent of
nuclear geometry (as long as the nuclear framework. belongs to the point group
chosen for the calculation), using Eqs. (17c) and (26), the density matrices at the
displaced geometry ale given to. first order in A as

N

l'(x + A)fJ= l'ff+ AL VRAL cfc1(l'b' + l'GI)+ ...,
A IJ

(28a)

N

r(x + A)ffkl= rffkl + AL VRAL cfc1(rfftcl + rGil) + ....
A II

(28b)

Notice that if one wishes to include distortions that reduce the symmetry of the
nuclear framework, one bas to evaluate the coupling coefficients in the lower
symmetry group. In general, if all possible distortions ale required, the calcula~
tion bas to be carried out without use of point-group symmetry.

Now that we have evaluated how different quantities at an infinitesimally dis-
placed geometry ale expressed to first order in A, and have shown in Eqs. (22)
and (27) how the orthonormality conditions of the orbitais and states reduce the
numberof independent variabies, we ale ready to derive the response equations
for the-set of SAwave functions. To obtain these equations, ope bas to take ad-
vantage of the two conditions that must be fulfilled for converged SA-MCSCFwave
functions at aU nuclear geometries:

, ,

. (A) the SA-GliTcondition expressed inEq. (16),that states that the orbitalsare
optimized in a weighted SAmanner, and

(B) the CIcoefficients for each of the SA-MCSCFinternat states have to be varia-
tionally optimized in the chosen space of CSF'S;that is,

l)RBER= L cfc! BIJ,
II

(29)

bas to be valid for all CIcoefficients of the internat states.

In the next section, we derive the equations that arise from the GBTCondition;
the equations thatarise from Eq. (29) wIll be evaluated in Section VI.

V. First-Order Responses Arising erom the GBT

Imposing the SA-GBTto be fulfilled at the infinitesimally displaced geometry,
we can use Eqs. (lO), (14), (15), (17d), (17e), (23), and (28) in Eq. (16) to give
us this GBTcondition in powers of A. Collecting first-order tetms generates the
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equation
{} N

O = 6ija- 6lta + L lUR LVRAL ej (TtR- TtR)
R A I .

+ L U,M8ik6~; - 8jk6:.l;+ Yi~ - Yj~k],
nk .

wjth the new quantities defined as

6r ==L ht!cyjt + 2 L (ik Ilmtfltlm ,
k klm

TtR ==Le~
[

L(YJt + yff)hik + 2L(fJtlm + ff1u,.)(ik Ilm)
].
,

I k. - klm -

Yl!'nk==hinylt + 2 L {(in Ilm)f}dm + (iii nm)(fj~m + f}Amk)}.
Im

(30) .

(3ta)

(3tb)

(31c)

,The unknown variabIes in Eq; (30) are the sets of VRA and U::k.To eliminate re-
dundant variabIes, and at the same time guarantee that the orbitals and states at
the infinitesimally displaced geometry are orthonormaI, we use Eqs. (22) and
(27) to rewnte Eq. (30) as

fi A

0= 6:r - 6jta + L L VRPlURLCf(TtR - TtR)
R P I

+ f f VRS
[

lUR L ef(TtR- TtR) - lUs Lef{'I:J- Tf)
]R S>R I I

+ L L U::k[Yl!'nk- Yj~k - Y~n + Yj~n + 8ik6:.}- 8jke:.l; - 8ind;+ 8jn6~]
n k<n

- L L S~HY~n - Yfikn + 8in61cJ - 8jn6~]
n k<n . -

- ! L S::n[Yi~ - Yj~n + 8in6:.} - 8jne:.l;].
2 n

(32)

By making the matrix definitións of Eqs. (33), Eq. (32) caD be expressed as a set
of linear equations for the unknowns U::kand VRs:

Ab~nk ==Yifr,k- Yfink- ~n + Yj~n + 8ike:.}- 8jJce:.l;- 8in61cJ + 8jne~,

A-12 - ~ eP
(T

IR TIR
)ij,RP = lUR ~ I ij - ji ;-

I

Alf.RS ==(lUR- lUs)LCj(TtR - TtR),
I

sb ==L L S::k[Y~n- Yj~n + 8in61cJ - 8jn6~]
n k<n

. t ~ S a
[VSA YSA- '" SA . '" SA

] SAa SAa

+ '2 ~ rrn J. ijrrn - jinn + Uin6nj - Ujn6ni - Bij + eji .

(33a)

(33b)

(33c)

(33d)
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The linear equations that result from Eq. (32) caD be written in shorthand oota-
tion as

fi A fi fi..~

L L AgnkU;:k+ L LA~?RPYRP+ L L A~~RSvRs = B~,
,n k<n R P R, S>R

(34)

In accordance with the definitions in Section II, fi is the number of internat
states, and A, the number of external stalegoThe .:l is defined as the number of '

pairs of different internat states with equal weighting factors, and the notation
fi :;t:.:l, appearing in the limit for the lagi sum in Eq, (34), is 'used to denote the
sum S > R runoing only over S and R being internat states with unequal weight-
ing factors. ,

In principie, Eq. (34) represents M2 equations for i and j forming a11possible
combinations of orbital indices. However, from the definitions in Eqs. (33), we
see that '

A-n - A-n
ij,nk- - ji,nk,

A-12 - A-l2
ij,RP - - ji,RP,

A-13 - A-I~
ij,RS - - ji,RS,

B-~, = -131,.II II>

(35a)

(35b)

(35c)

(35d)

that is, the number of nonredundant and nonzero equations is (M(M - 1)/2).
These equations, which caD be labeled i > j, represent the first-order response
equations arising from the SA-GBT.

,VI. First-Order Responses erom Requiring the Interna! States to be
Variationally Optimized

i

Equation (29) represents .the requirement that the, internat SA-MCSCFstates be
variatibna11y optimized within the chosen CSF srace. Using 8RB = LICfcfio
Eq. (29) together with Eqs. (17a), (17b), (17c), and (26), this condition caD be ex-
pressed at the infinitesima11y displaced geometry in powers of A. Defining the
molecular gradient elements,

Ea = dERR-- da' (36)

and collecting first-order terms in A, gives the fo11owingequation:

E'R8RB+ (ER - EB)VRB - L CfCfdHIJ = o.
IJ da

(37)

Using Eqs. (14a), (14b), (23a), and (23b) and the definition of HIJ in Eq. (5) to
evaluate (dHIJ)/(da), we obtain

dHIJ= Hu + L m;
{
L (l'/f + l'fl)hik + 2 L (r/hm + rf.,[lm)(ikltm)

}
,

~ ij k ~
(38)
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with the so-called derivative Hamiltonian defined as

Hfj ==-Lyffhff+ L rfftcl(ijIkit.
Ij Ijkl

(39)

When Eq. (38)is inserted into Eq. (37), we obtain

E'RSRB+ (ER - EB)vi:B--LCfC!Hfj - LU::lcLC!TIJ= o.
/1 nk 1

(40)

As in Eq. (30), the variables in Eq. (40) are the sets U::lcand VRB. According to
Eqs. (ZZ)and (Z7), same of these variables are redundant. By using Eq. (ZZ),we
can exploit the redundancies in the U::lcset to reduce the sum over n and k to a
sum for which k < n. This will algOguarantee the orbitals at the displaced ge-
ometry to be orthonormai. Equation (40) then reads:

E'RSRB+ (ER - EB)Vi:B - L cfc! Hfj-
/1

L L U::k L C!(T~f - Tl~) +
n k<n .' 1

~~a'~BIR 1~a~BIR:";"
~ ~ Snk ~C1 Tkn + _Z ~ Snn ~C1 Tnn- O.
n k<n 1 n 1

(41)

In Eq. (41),R can take all .o values, and B, all N values; that is, Eq. (41)repre-
sents, in principie, ON equations. However, for B belongiI}.~to the internal
states, it canbe seen that the individual terms in the sum on the left-hand side of
Eq. (41)are unaltered when the R and B indices are interchanged. That means
that we have (.0(.0 - 1)/Z) redundant equations that can be removed by only

. consideringthe equations for which B ~ R.
To be able to conveniently couple these nonredundant equations to the equa-

tions in Eq. (34), we split the equations represented in Eq. (41) into three sets
that are slightiy modified.

The first equation set is chosen to involve the ,OA equations for which the
B index refers to external states, and these equations are subsequentiy multiplied
by the weighting factor wRof the internal R stare. The second set involves equa-
tions where the B index refers to internal states with weighting factors, wB'S,dif
ferent tram the weighting factor wR of the internal R stare. This set of equations
is subsequentiymultiplied by (WR- WB),which is unambiguous since WR ;t: WB.
With the number of pairs of different internal states. with equal weighting fac-
tors previously defined as A, the number of equations in the second set is
(.0(.0 - 1)/Z - A). The third equation set consists of the remaining equations.
For these, the B index refers to internal states for which the weighting factor et)B
equals the weighting factor WRof the internal R stare. This last set of (.o + A)
equations inciudes the equations for which B = R.

For the first set of equations, the B designation is changed to the P designa-
tion, since B is in the external space. The first set of equations obtained from
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Eq. (41) then reads:
fi A .

~ ~ Ai1>,nk U:lc + ~ ~Ai~.SQ VSQ = Eip,
n k<n S Q

(42)

wit h the definitions:

A-21 - ~ CP
(T

IR TIR
)RP.nk = WR ~ I nk - kn,

. I
(43a)

-22
ARP.SQ ==8Rs8PQwR(Ep - ER),

Eip ==WR~Cf
(
-~CfHu + ~ ~S::kTt~+ 21 ~S::"T~

)
,

. I I n k<n n

(43b)

(43e)

For the seeond set of equations, B belongs to the internal states, and, henee,
the B designation is ehanged to an S designation. The seeond set of equations
derived from Eq. (41) then reads:

fi n"A

~ ~ Ails.nkU:lc + ~ ~ AkhuVTu= Eks,
n k<n T U>T

(44)

where

A~~nk ==(WR - WS) ~ Cf(Tf,f - Tt~),
I

(45a)

-33
ARs,TU ==8RrBsu(WR - Ws) (Es - ER),

E~s ==(WR - Ws) ~Cf
(
- ~CfHu + ~ ~ S:lcTt~

I I n k<n

+ ~. ~ S::nT~~)'

In Eq. (44), the limit fi # Ais used eonsistent with the definition stated fueon-
neetion with Eq. (34). .

In the last set of equations obtained tram Eq. (41),JJbelongs to the interna!
stalegoHenee, the B designation is ehanged to an S designationand the equa-
tions are written as

(45b)

(45e)

~ ~Ak~,nkU:lc+ (Es- ER)VRs= Eks,
n k<n

(46)

with

A-41 - ~ CS
(T

JR TIR
)RS,nk = ~ I nk - kn,

I
(47a)

Eks==E'R8Rs+ ~Cf (- ~CfHu + ~ ~S:lcTt~+ 21 ~S::"T~).I I n k<n n
(47b)
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In summ ary, the response equations arising from requiring the internal
SA-MCSCFstates to be variationally optimized are written in Eqs. (42), (44), and
(46) and they represent in their totality (nA + n(n + 1)/2) equations.

VII. Strategy for Solving the Response Equations in the. CSFBasis

The response equations derived in the previous sections consist of the tour
- sets of linear equations given in Eqs. (34), (42), (44), and (46). The purpose of

this section is to rewrite these equations in a maTe compact form and to trans-
formparts of the equations such that the CI-vectors for the external states do not
need to be ca1culated.

The first three sets of equations [Eqs. (34), (42), and (44)] are already derived
such that they are easily combined to form one set of linear equations with as
maDYvariabies asequations. However, since the last.set [ego(46)] is the only set
that contains the. VJiselements for which the weighting factors of the internal R
and S states are equal, this set of equations also bas to be solved. In the following
treatment, we first consider the equations that arise tram combining Eqs. (34),
(42), and (44). Then, assuming that these equations have been solved, we go on
and show how to solve the remaining part of the problem by treating the equa-
tions arising tram Eq. (46). . .

Ao First Part ot the Response Equations

We begin by defining the following matrices and vectors:

-
(

~11 ~21+ A31+

)

A == A21 A22 O ,
A31 O A33

(48a)

v==

(

~:
)

,
v.am

h(H

(48b)

(48c)

where yaex and vain are thevectors of the VJipelements and the VJis elements,
respectively. Whereas R and P in VJip,respectively, denote internal and external
states, the R and S in VJisdenote interna l states with diJJerent weighting factors.
The response equations represented in Eqs. (34), (42), and (44) can then com-
pactly be written as -- -

AV = B. (49)

To evaluate the A21,A22,and 82 blocks, it appears [see Eqs. (43a-c)] to be nec-
essary to know both the CI vectors and energies for aU external states. This
requirement, however, caD be removed by ma:king a suitable unitary transforma-
tion with a matrix constructed from the CIvectors. Before performing the trans-
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formation, Eq. (49) bas to be modified by introducing extra "dummy" equations,
such that the dimension of the A22block is extended to fiN x fiN and the row
dimensions of A21,vaex, and B2 ale extended to ON. In particular, by defining
the following elements:

{

-21
ARA,nk:::21 =

ARA,nk - O

{
Ak~SB:::22 =

ARA,SB - l)RSl>AB(J)RZ

for A within the external states,
for A within the internal states,

for A and B both within the external states,

otherwise (z is an arbitrary but nonzero constant),

(50a)

(50b)

B:::2
{
B2

RA== ORA

for A within the external states,
for A within the internal states,

(50c)

and the matrices:

-
.

(

~1l ~21+

A== A21 A22

A31 O

;==
(
~:

)
, "

vam

B ~ (~),

~~1+

)
,

A33

(51a)

-(51b)

(51c)

the extended set of tesponse equations can be written as

AV=B. (52)

The solution vector Varising from this new matrix equation can be shown to
contain the originalresponsesof Eq. (49)as wen as additionalelementsthat
identically vanish:

ua = ua, (53a)

v~ex= {~~
::: . .
vam = vam.

for A within the external states,

for A within the internal states,
(53b)

(53c)

Equation(52) caDbe subjectedto a unitary transformation that eliminates the
need to know the CIvectors of aDYbut the internal states. To do sa, we first de-
fiDea matrix with elemeDts

URl,SA == l>RSc1. (54)
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This matrix is easily shown to be unitary:

U+U = l , (55)

and the larger matrix defined as

= -
(

lmol ~ O

)

U= O U O ,
O O lin

with lmoland lin being identity matrices with the dimensions of All and A33,re-
spectively,and, therefore, algo unitary. Note thatthis unitary matrix bas earlier
been used by Lengsfield [5] in deriving second-order MCSCFtheory for SAwave
functions. Using the matrix' to perform a unitary transformation on Eq. (52)
gives

(56)

'-'-""'"'- _.- - - - -
, UAU+UV= uii. . (57)'

Oefining --- -
A ==UAU+,

V ==UV,

B ==UB,

(58a)

(58b)

(58c)

. Eq. (57) reads

AV = B. (59)

The A matrix and the V and B vectors are naturally written in subblocks:,

(

All A21+

A= A21 A22

A31 O

A31+

)

O ,
A33

(60a)

, V =(~:),

B=(::).

(60b)

(60c)

where the elements of the blocks are easily evaluated. Using the followingtwa
definitions,

fi

LII == 2:Cfcf,
R

(6ta)

MIl ==8u - Lu, (6tb)
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which algo result in the following equation:
A

MIJ = Lcfcf,
p

(62)

the final working expressions for the elements obtained are

A u - Y SA Y SA Y SA + Y SA + ~ SA ~ SA ~ SA + ~ SA

ij. nk - ijnk - jink - ijkn jikn UikSnj - UjkSni -UinSkj UjnSki , (63a)

Ajk,nk = WRL Md.T~f- Tl~),
"I .

Ajk.sL = WRSSR( ~MKIMJLHIJ - MKLER + ZLKL) ,

(63b)

(63c)

A.~~.nk= (WR - Ws) L cJ(T~f - Tl~),
J

(63d)

A~hu = SRTSSU(WR - ws) (Es - ER),- .
(63e)

Bi} = L L S~HYi~n - Yj~n + SinSkf- SjnSm
n k<n

+ 1 '" S. a
[YSA Y SA + ~ SA .~ SA]

SAa + SAa

"2 -;;l .nn ijnn'- jinn UinSnj - UjnSni - Bij '. Sji,
(63f)

BjI = WRLMIJ
(
-LC~HKJ + L LSfnTl~ + 21 LS::nT~~

)
,

J K n k<n n

B~s = (WR-WS)LCJ
(

-LCfHIJ + L LSfnTl~
J I n k<n

+ ~ ~$::n T~~),

(63g)

(63h)

V~k = U::k,

2 acf ~ a SVRI= - - ~ VRSC1 ,
aa S

(63i)

(63j)

V~S= VNs. (63k)

Solving the first part of the response equations [Le., Eq. (59)] gives the solutlop
vector Y, which consists óf the threeparts Y1,y2, and y3. As shown in Eqs. (63),
yI gives the set of U::k's[Le., all responses conceming orbitais are recovered
from solving Eq. (59)]. The y2 gives the set of

(
aCf - ~ VNsCf

)aa s

elements for R belonging to the internat states and I belonging to the set of active
CSF'S;that is, y2 contains information about CI responses arising from internal-
external rotations. The lastpart, y3, gives the set of VNs's for R and S both be-
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longing to internal states with different weighting factors. This is the CIresponse
information for internal-internal rotations, but only for interna l states with dif-
tereni weighting factors. The Qnly remaining response information concerns the
cI-response arising flam rotations among pairs of internal states that have equal
weighting factors. This remaining information is gained from the second part of
the response equations, which we naw detail.

B. - Second Partol the Response Equations

For nondegeneiate states, Eq. (46) caD be rewritten such that the responses for
different interna l states R and S with equal weighting factors reads

VNs = (Es - ERr! LCJ
{
- LcfHJj + 21 LS::nT~~

J - I ..n.

+ L L [Ti~ S::k + (Ti~- T~nU-:k]
}n k<n

(this result caD be inferred tram eq. (2.13a) in, Ref. i4).
Assuming that Eq. (59) bas been solved, the orbital responses U::l,.'sale known

and the response information about internal-internal CI rotations for all pairs
of different states that have equal weighting factors ale easily resolved from
Eq. (64). Notice that the case in which twa degenerate states occur with equal
weighting is not resolved by OUTderivation; it will be the subject of future wark.

When both response Eqs. (59) and (64) have been solved,all first-order re-
sponse information is contained in the twa vectorsV and V4,where V4 is defined
as the vector O!the. solutions VNs in Eq. (64). The CI responses contained in the
V2 and V3 parts of V caD then be used with V4to evaluate the responsesof the CI
coefficients for internal states as -

iJCf
V 2 ~ a Sa = RI + ~ VRSC1 .a s.

(64)

(65)

The results of solving the response equations thus give us the vector V! of or-
bital responses U:k and the set of CIresponses (iJCf)/(iJa) for aU internal states.

VIII. Discussion

In the previous section, we have shown that first-order responses, for all inter-
nal SAwave functions, ale analytically evaluated by solving the twa sets of equa-
tions in Eqs. (59) and (64). The matrix A appearing in Eq. (59) is seen to be
symmetric.. -

With the earlier definitions of M, N, O, and ~ in Sections II and V, the number
of lint:ar equations in Eq.J59) is (M(M - 1)/2) + (ON) + (0(0 - 1)/2 - ~). li
the ca1culation is carriedout with the use of point-group symmetry, ibis number
is reduced because only rotations among orbitaIs, OT, respectively, csp's, of
the same symmetries have to be considered. However, except where the active
cSP space consists of one cSP, ibis potentially reduced set of equations will still
contain a number of redundancies. These redundancies arise because same of
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theorbitalrotations result in a new set of CSF'Sthat is a unitary transformation of
the original set of CSF'S.In the case of a complete active space (CAS)calculation,
only rotations among core orbitals and valence orbitals, among core orbitals and
virtual orbitaIs, and among valence orbit,als and virtual orbitals are nonredun-
daRl; that is, in a CASSA-MCSCFcalculation with no use of spadal symmetry, if the
number of core orbit aIs is MCo, the number of valence orbitaIs is MVa, and the
number of virtual orbit aIs is MVi, the linear set of nonredundant equations rep-
resented in Eq. (59) bas the dimension (MCoMVa + MCoMVi + MVaMVi) +
(ON) + (0(0 - 1)/2 - ~). .

Note that for an SAcalculation where all internal states have been assigned dif
ferent- weighting factors, Eq. (64) vanishes and only Eq. (59) bas to be solved.
This situation occurs in the special case where the SA-MCSCFcalculation is a usual
MCSCFcalculation (Le., in the case where we have oBly one internal stale). In this
case, the linear response equations in Eq. (59) are similar, but not identical, to
the response equations derived for MCSCFwave functions by Osamura et al. [20]
and Hoffmann et aj. [19]...The difference' is due to the way we extend the Aand
Bmatrices to the Aand Bmatrices, which is different tram the equivalent ex-
tension made in Refs. 19 and 20. The most pronounced difference between the
resulting sets of equations is that the molecular gradient elements E ~ appear in
the equations of Refs. 19 and 20, ~ut does not appear in the equations derived in
this wark. However, it should be mentioned thatthe molecular gradient ele-
ments for each interna! stale caD be evaluated if desired, in OUTapproach, tram
the following equation derived tram Eq. (41):

E~ = LCf
{

LCfHIi - 21 LS::nT~
J I n

+ L 2: [(T~~ - Ti~)U::k ~ Ti~S::k]
}

'
n k<n .

wbich contains only terms that algo are needed for the response equations..
We .end this discussion by mentioning that the responses for SAwave func-

tions, obtained as described in this wark, caD be used for the calculation of non-
adiabatic coupling elements between the internalsA wave functions, as shown by
Lengsfield et al. [14,16].

(66)

IX. Conc1usions

In this wark, we have derived first-order geometrical response equations valid'
for an SA-MCSCFcalculation. The derivation is carried through tram first prin-
ciples, and tbe terms in tbe resulting working equations are expressed soch tbat
computer implementation from the formulas is straightforward. The energy gra-
dients of each of the states involved in the SA.MCSCFenergy functional are algo
given in computationally tractable form. The final results are given soch that
only the energies and wave functions for the interna l states must be known.

The case in which the weighting factors for twa or maTe nondegenerate inter-
nal states are chosen to be equal is treated in a fashion consistent with situations
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where this is not true. This treatment of interna l states with equal weighting fac-
tors results in an extra set of equations that bas to be solved after the first set of
response equations bas been solved.
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