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Abstract

Al! algorithm for locating stationary points corresponding to lociu minima and transition states on
potential energy surfaces is further analyzed. This method utilizes local gradient and Hessian (Le., fust

and second energy derivative) information to generate a series of "steps" that are folIowed to the desired

stationary point. By designing the step sequence to move energetically downhill in all coordinates, local

minima can be found. By stepping uphill along one local eigenmode of the Hessian wIDIe minimizing

the energy along all other modes, one )ocates transition states. Key elements of this development are
moce efficient parameterization of the step vector in terms of quantities that permit the direction (Le.,

uphill or downhill), and length ofthe step to ,be carefully controlled, and implementation ofthe ability
to explore "side channels" as attractive options occur. ,"4)

Introduction

Locating stationarypoints on energy surfaces, given knowledge ofthe 10ca1gra~
dierits andcurvatures,represents a challenging and important problem in com-
putational chemistry [1]. Such points correspond to geometries at which all gradients
(first derivatives with respect to coordinates) vanish. They inc1ude minima, where
all eigenvalues ofthe second derivative or Hessian matrix are positive, and transition
states, where the Hessian bas one negative eigenvalue. There are, of course, stationary
points at whieh maTe than one Hessian matrix eigenvalue is negative; they eorre-
spand to "mountain tops" and are usually not of as much importance in chemistry.
An algorithm that efficient1ylocates the desired stationary points would be or great
utility. .

In eatlier publications [2a-2d,2h], we described the development and imple-
mentation oCsueh an algorithm. It is the purpose of this wark to build upon this
earlier wark and provide enhaneements that we have found to produce improved
behavior.

In this artic1e,we describea procedure for locating minima and transition states -

and for walking in the streambeds connecting lbem. At each step, the method uses
the 10ca1slope ar gradient (F) vector and curvature or Hessian matrix (H) to
compute a step vector (x) which is added to thecurrent atomie coordinates (r o) to
obtain new coordinates (r) at which new F and H matrices are computed sa the
prócess can be continued. The Hessian matrix H may be evaluated using fulI an-
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alytical energy derivative information, or may be computed via update or finlte-
difference methods; the approach described here can be used in all of these cases.

Convergence to a desired stationary point is reached when the norm of F is less
than same specified tolerance, the num ber of negative eigenvalues of H is correct
(i.e., zero for a minimum and one for a transition state), and the energy change .

from step to step E-Eo is within same tolerance.
We include in the class of problems to be examined "walks" that lead to frag-

mentation. For such events, a true transition state may not be reached because the
potential energy surface only asymptotically approaches a point at which the forces
vanish. Moreover, upon fragmentation, additional zero eigenvalues appear in the
Hessian matrix * corresponding to the new translations and rotations that exist in
the fragments but were internal modes in the original molecule.

The Method

The Loca! Quadratic Approximation

We begin by writing a local quadratic approximation to the potentialenergy
surface in terms of the 3N cartesian components of the gradient, Hessian, and step
matrices:

E = Eo +xF + 1/2xHx. (1)

By assumption, we know the energy surface anty locally. Therefore, it is important
to constrain aur steps x to lie within aradius L for which the quadratic representation
in Eq. (l) is valid. The determination ofthis "trust radius"L in terms ofthe ability
of Eq. ( l ) to predict energy changes experienced for steps x within L is dealt with .
in alater section. In essence, the largest step length permitted is dynamically de-
termined by comparing the energy change predicted by the local quadratiC ap-
proximation and the actual energy change experienced when the predicted step x
is taken.

Partitioning Into Interna! and Externa! Degrees oj Freedom

If the energy surface E(x) pertains to a molecule in the gas phase for which
translational and rotational motions have no restoring forces, fiveor six coordinates
can be removed to yield F, H, and x in the 3N-5 or 3N-6 internal coordinates (in
practice, most ab initio electronic structure codes yield F and H in terms of 3N
cartesian coordinates). Wethen partition these matrices into external and internal
spaces by first constructing five orsix orthonormal unit vectors that span the trans-
lational and (infinitesimal) rotational [2d] spaces together with 3N-5 ar 3N-6

* For exampIe, in the H2CO - H2 + CO reaction, the reaction path plus three other modes are
formed that have zero gradients and zero Hessian eigenvaIues. In such cases, the walking algorithm must

properly identify such degrees of freedom and not be. "confused" by their presence (e.g., numericaI

precision Iimitations may cause the Hessian eigenvaIues corresponding to these modes to be smalI and
of arbitrary sign rather than identically zero). In particuIar, it is important that artifactuaI smalI negative

Hessian eigenvaIues not be confused with the physically reIevant negative eig~nvaIue beIonging to a
transition stale.
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otherorthonormal vectors that span the internat space. Projection orF and H anto
these spaces then provides internal gradient and Hessian matrices. The components
orF and H lying within the translational and rotational spaces can be ignored when
dealing with an isolated species for which E(x) is a function onty of the internal
coordinates.

Ifthere are degrees offreedom which, onthe basls ofsymmetry, have zero gradient
components, they can also be removed from immediate consideration. For example,
when examiningthe lAl stateofthe H2Omoleculein C2vgeometry,the component
of F along the bz-symmetry asymmetric distortion coordinate vanishes. The Hessian
eigenmodebelongingto this degreeof freedom may be removed from the "active .

space" if one desires to preserve C2v symmetry. At a later point in the potential
surface walk, one can restore this degree of freedom to active consideration (an
action that will become essential if the l A l state of H2O under study is crossed by
a state of l B2 symmetry).

Analysis in the Hessian Eigenmode Basis

Given F and H, the local quadratic energy expression can be rewritten in terms
of the eigenmodesof H: .

HVi = hivi , i = 1,2, . . .3N-5 or 3N-6 (2)

(or fewer if additional degrees of freedom have been eliminated) where it takes on
the form .

E = Eo + Fixi + 1/2x'thi. (3)

Here the Einstein summation convention is used, hi is the ith eigenvalue of the
Hessian (hl:$; h2 :$;h3' "), and Xi and Fi are the components of x and F along
the ith eigenmode ofH:

Xi = (xlVi) ,and

Fi = (FI Vi) .

(4a)

(4b)

Parameterization oJthe Step Vector

A primary element of the algorithm described hece is the introduction of steps
{Xi} parameterized as:

Xi = aFi(~ - hi)-l . (5)

The origin of this partjcular form of the step vector is detailed in Ref. [2h].
Briefly, the choice A = O, a = 1.0 corresponds to a Newton-Raphson (NR) step,
which may be acceptable if it is not too long and if the lócal Hessian eigenvalues
correspond to the stationary point being sought. For example, if all of the hi are
positive, the NR stepis not appropriate if one is searching for a transition state, but
may be acceptable if one is searching ror a minimum, because taking the NR step
moves one to an approximate stationary point where the Hessian eigenvalues retain
their original values.
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The introduction of values of Aand of a different erom Oand 1.0 caR be under-
stood as follows.When used,in the above quadratic energy expression, the postulated
step gives the folIowing first-order, second-order, .and total energy changes:

E - Eo = aFf(A - hi)-l + 1/2azhiFf(A - hi)-z (6a)

= aFf(A - hi)-Z{A- hi(l - a/2)}. (6b)

The parameter Ais used to permlt the step along the ith mode to either be opposite
in siga erom the corresponding gradient (if A < hi) or directed along the gradient
(if A > hi); ibis criterion relates to aur desire to controI whether the linear term
aFf(A - hi)-l in the IDcalquadratic prediction ofthe energy chaRge increases (in
which case the linear contribution xiFi should be positive) or decreases (for which
xiFi should be negative) along a particular mode.

The siga of the second-order energy change1 /2' hixf is determined entirely by
the siga of the Hessian eigenvalue hi; for positive hi values, it is an increasing
function of Xi, and for negative hi it is a decreasing function of Xi. The siga ofthe
total (first plus second order) energy chaRge along each mode is determined by the
siga of A - hi(1 - a/2); if ibis quantity is positive, the local quadratic energy
increases, otherwise it decreases. Choices for the a parameter different erom 1.0 are
made only in situations illustrated by the following case:

(i) Suppose that hl> O, and that hz/2 (which is algo > O) is less than hl.
(ii) Further suppose that one wishes to step uphill along the first eigenmode

while moving downhill along the second (and all higher) modes.
(iii) .ln ibis case, the desire to cause the linear and total energy along the first

mode to increase dictates that Abe chosen to obey: A>hl and A> hl (l -
a/2); the more restrictive ofthese iwo constraints is A> hl.

Jiv) The desire to move downhill along the second and higher modes requires
that: A< hz and A< hz(1 - a/2); the more restrictiveof these is A< hz
(1 - a/2); the choice a = 1.0 then gives A < 1/2 hz.

(v) If hz/2 lies below hI. the conditions on A imposed by the desire to move
uphill along the first mode (A> hl) and downhill along all others (A < hz/
2) are incompatible. .

(vi) In ibis case, choosing the largest value of a for which there exists a non-
vanishing region within which A caR be chosen gives a = 2(hz - hl)/ hz,
which then implies that A = hl. This particular choice produces a step lying
entirely along the first mode, and is thus unacceptable. In such. cases, a
smaller value of a musi be chosen; we take a = (hz - hl)/ hz, which then
gives hl < A < (hl + hz)/2 as a range within which A caR be selected to
"guide" the walk.

In summary, the a param eter is used only when hz/2lies below hl, and is used
to provide a nonvanishing range of choices for A that will permit the energy to
move uphill or downhill as desired.

Problems With "Stitching"-Short Steps are Better Than Long ,Steps

In aur earlier wark [2a-2d,2h], emphasis was placedprimarily on the total energy
chaRgealong each mode, rather than insisting that both the linear and total predicted
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energy ehanges be as desired. This point ofview ean Iead to step Iengths that "over-
shoot" the Ioeation of minima or are too Iong in the sense that they give displaee-
ments beyond the region where the IoeaI quadratie approximation is aeeurate.

To clarify these points, eonsider the eontribution to the Ioeal quadratie energy
surfaee along a partieular mode when one is near a IoeaI minimuJIl or transition
stale of interest:

t:..E= Ex + I/ 2x2h"l II li' (7)

If hj is positive, displacements Xj oeeur on an upward eurved parabola; if hj is
negative, Xj is on a downward eurved parabola. In either ease, a speeified desirable
energy ehange (t:..Epositive in the hj < Oease and t:..Enegative in the hj > Oease)
ean be realized either by: (i) Taking a smal! step along whieh the Iinear energy
ehange is of the desired sigo while the quadratie term is smalI and of opposite sigo
(n.b., in the ease eonsidered here, the sigo ofthe quadratie term is always opposite
to what one wants; if hj > O, the quadratie te~ is positive, and one is trying to
minimize the energy; if hj < O, the quadratie term is negative, and one is trying to
maximize the energy), or by (ii) Taking a larger step in the same direetion [i.e.,
with Xj having the same sigo as used above in (i)] along whieh the linear energy
ehange is much larger ret still ofthe desired sigo while thequadratie eontribution
is large and of opposite sigo.

We prefer to takethe smaller steps eharaeterized in (i) above. The longer steps
of (ii) suffer iwo drawbaeks: (1) Being longer, they are more likely to move the
eoordinates outside the region where the"loeal quadratie approximation used to
generale the step is valid (it is essential to keep in mind that the loeal quadratie
surfaee is not the real surfaee). (2) They generale steps whieh "stiteh"; that is, steps
that move baek and forth aeross the streambed along whieh the walk proeeeds. In
eontrast, the steps of (i) are found to undergo little stitehing.

The Form oJthe Step Elements

In aur earlier work on ibis subjeet [2a-2d,2h] , the form for the step elements
shown in Eq. (5) was shown to arise erom making the loeal quadratie energy fune-
tional ofEq. ( 1) stationary subjeet to the eonstraint (imposed by Lagrange multiplier
A)that the step be.of a speeified Iength. Here, instead of foeusing on the eonstraint
ofthe step length, we assume steps parameterized as in Eq. (5) and ask how Aand
a ean be determined to generale an optimal streambed walk, withA ehosen primarily
to guide the direction ofthe step and a used to guarantee that the Hessian eigenvalue
strueture will permit a step of the desired eharacter.

If a calcuIation then produees a trial step that is too long, in thesense that it
yields an energy ehange that was not aceurateIy predicted by the loeal quadratie
approximation, ibis step tan be further redueed in Iength. It is straightforward to
see that doing so will not ehange the fact that the IoeaI quadratie approximation -

yields energy changes ofthe desired signs along all modes (beeause both the Iinear
and total energies are required to be of the eorreet sign).

Asan altemative to aur strategy, one may introduee a proeedure in whieh:
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The choice a = 1causes A~ Oto be a stationary point corresponding to a minimum
(d2 E IdA2 is positive) if hl is positive; This means that a Newton-Raphson step
[2a] (i.e., the step with A = Oand a = 1) is optimal as long as hl > Oand as long
as ibis unscaled step is within the so-called trust radius L.

If the Newton-Raphson step is too long (i.e., if it exceeds L), any choice of
h l > A > O will algOgenerate too long a. step (Xi = Fi(A - hi) -l) because the
magnitude of (A - hir l will be larger than for A = O.Therefore,a value of A< O
musi be chosen. In the range A < O for hl> O, dEI dA is negative; d2EldA2 is
positive for -hi!2 <: A < O. Therefore, the most negative change in E will be
realized for Aas large as possible. Choosing Atoo close to zero generates an unscaled
step length that is very large, as a result of which a musi be chosen to redlice the
step length, which then reduces the magnitude of (E - Eo). In this case, the best
choice orA is the value that yields the maximum acceptable step length L. Therefore,
we simply pick A(A < O) by solving F7(A - ha-2 = L2, after which a-scaling is
unnecessary. As long as the foTcealong the hl mode is nonnegligible, we can ap-
proximate the solution ofthis equation (which, in general, wesolve iteratively) by
A = hl - IFI IL Ibecause Ais closest to hl than to any other hj. On the other band,
if FI is very small (e.g., if the hl mode is a symmetry-breaking mode or if one is
near to.a stationary point along h l), an approximation to the solution of the above
equation that is even more conservative can be written as A = hl - IFI IL, where
IFI is the norm of the fulI gradient. With either choice of A,a step that isapprox-
imately L in length is obtained (the step formed using this Avalue is actually scaled
subsequently to be exactly of length L).

If One is Not Near a Minimum (hl < O). On the other band, if hl is negative,
the Newton-Raphson step A = O is unacceptable because it violates tbeenergy-
lowering condition A< hl determined earlier. In the range A< hl , dE IdAis negative
and d2E I dA2 is negatlve. Therefore, the most negative change in E will again be
realized for Aas large as possible(i.e., as close to h l aspossible). Once again, we
pick Aby solving FT(A - hd-2 = L 2, after whicha-scaling is unnecessary,

In summary, to perform energy minimization walks, we choose Aand a as follows:

(J) If hl> O, we take the Newton-Raphson step (A = O) ifits length is within
L, and we set a equal to 1.0.

(2) If hl> O, but the Newton-Raphson step length exceeds L, we deterrnine
A(A < O) by requiring FJ(A - hj)-2 = L2 (or IF12/(A - hl)2 = L2 to be
more conservative) to be obeyed. This yields A = hl - IFi! L I (or, more
conservatively, A = hl - IFil L). Again,we take a = 1.0.

(3) If hl < O,we determine A(A< hd by requiring FJ(A - hj)-2 ::;:: L2 to be
obeyed (A ::;:: hl - IFi! L I) and a is once again set to 1.0.

In both (2) and ( 3), the step is formed with the specifi.edvalue of A,which yields
a total step length near L (which can then be rescaled to be exactly of length L).

Transition-State Walks

Walks up the Lowest Eigenmode. Moving "uphill" along the lowest Hessian ei-
genmode while remaining at minima along the other eigenmodes generates a
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(i) The loeal quadratie energy funetion is minimized along all modes but one
using the Newton-Raphson or sealed NR step.

(ii) The energy is maximized along a single mode (the direetion along whieh
one wishes to move uphill).

The diffieulties with implementing sueh an approaeh ale:

(i) If the loeal Hessian eigenvalue belonging to the mode along whieh one is
stepping uphill is positive, the lask of maximizing the energy along ibis
mode is ill defined; one needs to speeify the maximum step length along the
uphill mode, and to then take ibis maximum step.

(ii) Even ance the Hessian eigenvalue along the mode one is following uphill -
beeomesnegative, one is faeed with eontrolling the step length along tbis
direetion and separate!y along the other modes. In essenee, one musi intro-
duee twa inaximum step lengths beeause one bas separated the problem
into twa problems: minimization along aUmodes but one, and maximization
along one.

This proeedure is eertainly one whieh makessense; however, we haveehosen,
artel eonsiderable experimentation with both approaehes, to follow the strategy
detailed in this artiele. .

Walks to Minima and to Transition States

Minimization Wa!ks

As displayed in Eq. (6), steps for whieh both A< hi and A< hi( l - a/2) yield
negative linear (FjXi) and negative tata! energy ehanges along the ith mode. This
is, ot eourse, a property that a walk to a minimum along the ith mode should
possess. If the lowest Hessian eigenvalue hl is positive (this is eharaeteristie of
regions near loeal minima) A< hl( 1- a/2) is the mate restrietive eonstraint; a A
that obeys ibis will also obeYA < hi(1 - a/2) for all other modes beeause the hi
ale arranged in inereasing order. If, on the other band, hl is negative (this is ehar-
aeteristie of regions near transition states), A< h l is the mate restrietive eonstraint.
Again, if A obeys tbis eondition, it will automatieally also obey A < hi and A <
hi( 1 - a/2) for the other modes, independent ofwhether the other hi are positive
or negative.

If One is Near a Minimum (hl> O). Thus, for positive hl, one waDis A <
hl (1 - a/2) and for negative hl one needs A< hl. Although these statements limit
A,they do not determine the optimal value of A.To do sa, we examine the depen-
denee of the quadratie energy funetional on Afor values of Athat obey the above
eonditions. Differentiation of the quadratie energy funetional to seek a value of A
for wmeh it is stationary yields:

dE/dA = -,.aft(A - hj)-3{A - hi(1 - a)}, and
d2 E/dA 2 = 2aFt(A - hi)-4{A- hj(1- 3a/2)} .
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"streambed walk" along ibis lowest mode. As explained earlier, steps for which
A < h2 and A < h2( l - a/2) produce linearand total energy lowering along all
modesother than the first. To generale linear a:ad total energy increases'along the
hl mode requires that A > hl and A> hl(l - a/2).

IIOne is Not Near a Transition State (hl> O). If hl and h2 are both positive
(which is characteristic of geometries near local minima), these constraints redlice
to hl < A< h2( 1 - a/2). If h2/2 is less than hl, the choice a = 1(which corresponds
to an unscaled step) caD not be used becauseno value OfA obeys hl < A < h2/2.
It is in such. circumstances that the a-parameter is used; it allows us to generale a
nonzero range for selecting theA-parameter to achieve a step with the desired
characteristics.

The largest value of a (i.e., the least scaling of the step) that givesrise to a nOnzero
ninge forchoosing Aisa = 2(h2 -hd/h2. This particulara gives h2( 1- a/2)=
hl, as a.result of which Xis bounded to hl < A < hl. The choice A= hl generates
a step lying entirely along the hl eigenmode; ibis step bas no ability to incorporate
movement along the other modes, and is therefore unacceptable (because unless
aU Ej = O for j > 1, these other modes are not at their optimal positions). To
maintain a distinct range within which AcaDbe chosen, we choose to take an even
smallerstep and select a =(h2 - hl )h2 as thescaling param eter. This then restricts
A to the range hl < A < ( hl + h2)/2, within which we choose the midpoint A=
(hl + (hl + h2)/2)/2. Using these values ofa and A,the step Xi= aFi(A - hi)-l
is evaluated. If the length of ibis x is less than L, it is taken; if the step length
exceeds L, Xiis further scaled back to yield a total step length equal to L.

If, in contrast to theabove situation, h2/2 exceeds h" the choice a = 1.0 is
acceptable, in which case we choose A as the midpoint of the twa bounds: A =
(hl + h2/2 )/2. Again, ifthe step Xiobtained using ibis Avalue and a = 1.0 exceeds
L, it is further scaled back to L.

II One is Near a Transition State (hl < O). If hl is negative, the appropriate
constraints hl(1 - a/2) < A< h2(1 - a/2) caD be met with a = 1. In ibis case,
we again choose A as the midpoil1t ofthisrange: A = (h2 + hd/4, and we further
scale back the Xi if the total step length obtained with ibis A,a combination ex-
ceedsL. .

In summary, to walk uphill along the streambed belonging to the lowest Hessian
eigenvalue, we:

(1) Take a = 1.0 atld A =:(hl + h2/2)/2 if hl is positive and h2/2 exceeds hl.
(2) Take a = (h2 - hd/ h2 and A = (hl + (hl + h2)/2)/2 if hl is positive but

h2/2 does not exceed hl.
(3) Take a = 1.0 and A = (h2 + hl)/4 if hl is negative.

In all three cases, the step elements Xi = aFi(A - hi)-l are further scaled back if
their totallength exceeds L. A step obtained by scaling back a step that bas linear
and total energy changes of the desired sigo will also have linear and total energy
changes of the proper sigo (because the quadratic energy change is always of the
"wrong" sigo, and cutting Xj back reduces the magnitude of 1/:2 hjxJ more than
that of EjXj).
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Walks up Other Eigenmodes.
The Extra Difficultiesfor Modes Other Than the Lowest. To walk uphill along

a streambed that be10ngsto one of the other Hessian eigenmodes requires additional
care. Choosing Ato ober A> h2 and A> h2(1 - a I 2) will certainly generate a step
that, within the local quadratic approximation, bas positive linear and total energy
changes aIong the h2mode. However, this choice will algOcause the step to increase
in energy aIong the hl mode. Such behavior is not characteristic of the desired
streambed walk; the energy is supposed to be minimized for aIl modes except the
one (h2) aIong which uphill movement occurs.

Coordinate Scaling to "Stretch" the Potential Energy Surface. The ker to being
able to walk uphill along eigenmodes that are not the lowest using the step vector
parameterizationadvocated here is to "scale" the coordinate aIong the mode of
interest to "stretch" the quadratic energy surface aIong this direction. By so doing,
one makes this direction appear to have the smallest curvature.

In particular, we express the step component aIong the mode (hk in general) to
be folIowed as:

Xk ..; (3Yk .

. In terms of step components {XI, X2, . . .Xk-I, Yb Xk+l, . . .X3N-6 OT3N-S}' the

local quadratic energy functional becomes:

E = Eo + Fixi + 112hix; + {Fkf3)Yk + r/2(hkf32)y~,

where the sum over i runs over 1,2, . . .k - 1, k + I, . . .3N-6 or 3N-5.
When viewedas a function ofthe step components {x" X2, . . .Xk-" Yk, . . .

X3N-60T3N-S},this local quadfatic energy surfaceappears to have a Hessian eigenvalue
of (32hkwhere the original surface bad hb and to have a gradient (3Fkwhere the
originalsurface bad Fk'. .

By choosing (3such that (32hklies below hl/2 (so that the new lowest Hessian
eigenvalue (32hkis less than 112 the new second lowest eigenvalue so that AcaD be
chosen in the range (32hk< A < hIl2), one caD then employ the transition-state
walking strategy appropriate to the lowest eigenmode direction as detailed above.
In each such step, however, it is essential to keep in mind that one is generating
step components {x" X2, ... Xk-" Yb ... X3N-6 OT3N-s}; the Yk component
must then be multiplied by (3to obtain Xk. ODcethe {XI, X2, . . 'Xk-" Xk, . ..
X3N-6OT 3N-S} are in pand, transformation to cartesian or tointemal coordinate
displacements caD be performed. .

When implementing the above coordinate-scaling method for walking up higher
eigenmodes, it is important to uriderstand that the maximum step length L appro-
priate for the walk in the {x" X2, . . .Xk-I, Yk, X3N-6 OT3N-S} space is not ..

necessarily the same as that for the {XI, X2, . . .Xk-I, Xb . . .X3N-6 OT3N-S} space.

This caDbe understood by considering the length of the {XI, X2, . . .Xk-J, Yb
. . .X3N-6OT3N-S} vector and of the resulting coordinate step vector. If {XI, X2,
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. . .Xk-l, Yk, . . . X3N-6or 3N-S} is constructed tobe of length L', then {XI, Xl,

. . .Xk-l, Xk, . . .X3N-6or3N-S} will be oflength L, where

(L)2 = (L')z + «(:3z~ l)y~.

Because the step {Xl> Xl, . . .Xk-l, yk, . . .X3N-6or3N-s} is constructed to have
a significant or even dominant Yk component, Y~ will often be close to (L')z, in
which case (L)z will approach (:32(l/)Z. Therefore, to achieve a coordinate step
{Xl> X2, . . .Xk-I, Xk, . . .X3N-6or3N-s}within L, one should restrict the scaled-
step {Xl> Xl, .. 'Xk-l, Yk, .. 'X3N-6or 3N-S} to lie within L' = (:3-IL > L.
In practice, we do not so expand the maximum step length thus opting for a
mate "conservative" walk (as ,a result, OUt steps in {Xl, Xl, .. 'Xk-I, Xk, ...
X3N-6or)N-S}--spaceare usually short).

Perspective

Thus far, we have covered the following aspects of out walkingstrategy:

(l) How to walk to local minima using steps that lie within aspecified length
L.

(2) Howto walkuphillalongthe softest(h I )eigenmodein searchof a transition
stale, again using steps that lie within L.

( 3) How to use coordinate scaling to distort the local quadratic energy surface
so that a higher eigenmode becomes the lowest, thereby allowing one to
walk uphill along higher eigenmodes using the same strategy.

What to Do When Eigenmodes Cross

When carrying out a walk directed toward a local minimum, the A-parameter is
always chosen less than the lowest Hessian eigenvalue or less than one-half of ibis
eigenvalue. This condition remains in effect eveh ifthe eigenvalues undergo crossings
as one steps along the potential surface. Hence, eigenvalue crossings do not adversely
affect the behavior of walks to minima.

In contrast, when walking toward a transition stale, such crossings give rise to
qualitatively important changes in the step if the crossing involves the mode (e.g.,
hd along which uphill movement bas been directed. For example, when following
hl uphill, hz may decrease (or hl increase) until the twa cross. Whenever such
crossings occur, a decision must be maJe. One can choose to follow the physical
direction of the streambed along which one bad been stepping, or one can begin
to move along the eigenmode that bas just crossed. Neither decision is right or
wrong; both represent reasonable choices, and either (or neither) may lead to a
transition stale. In principle, both should eventually be "explored." It is the purpose
of this section to specify how one can effect these twa choices.

Tracking tbe Original Streambed. To continue along the direction that the walk
bad been following prior to the eigenmode crossing, one must implement a so-
called "tracking" method. We use an eigenvector tracking method in wbich the
scalar produet of the Hessian eigenvector (Vk) corresponding to the "uphill" mode
is computed from step to step. The quantity < Vk( step n) IVk(step n + 1) > should,
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be approximately 1.0 at each step. This allows the desired eigenvector Vk(step n +
l) to be properly identified even as its eigenvalue is crossed by other eigenvalues.

af course, if one desires to track as described above, it is important to realize
that one is naw following an eigenmode whose position in the order h l < h2 <
h3 < . . . bas changed. Consider for example, the situation in which one bad been
following and wishes tocontinue to track the physical direction ofthe hl eigenmode
uphill even artel the h2 mode crosses and moves below the previous hl mode. In
ibis case, the above scalar product technique caD identify the eigenvalue crossing
and specify that one shouldnow followthe new h2direction. To do sa, the coordinate
scaling device described earlier musi be invoked. Therefore, to properly track a
specified direction one bas to use the tracking and coordinate' scaling devices in
concert.

Moving to Another Mode by Not Tracking. When the Hessian eigenvalue be-
longing to the mode being followed is crossed by another, it is possible to move
from the streambed that one was pursuingto explore the direction ofthe eigenvalue
that bas just crossed. In the example considered in the preceding paragraph, artel
the"h2 mode moves belowand crosses the hl mode, one caDchoose to not track on
the direction specified bythe previous hl mode, but to follow uphill the new lowest
mocie (the previous h2direction which is naw the hl direction). Such a decision is
effected by not invoking a tracking device and simply allowing the walking algorithm
to continue stepping uphill along the hl direction while keeping to minima along
directions other than hl.

Summary

This completes aur description of how the stepping algorithm decides what di-
rection to move in, given a maximum step lerigth L within which the step is con-
strained. The procedure generates a step that may be taken to generate the next
position about which a new local quadratic approximation to the energysurface
will be formed. However, there are circumstances under which the step pul forth
fo.r consideration musi not be taken but, rather, replaced by an alternative{.shorter)
step. That is, there ale circumstances under which the maximum step length L
musi be shortened. It is ibis aspect ofthe algorithmto which we naw tum attention.

Step Length Control

The Maximum Step Size L

In the algorithm outlined in the previous section,. each step is constructed' to
have atotal length less than or equal to a preassigned maximum length L. The
choice of Lis very much a matter oftaste and of"commonsense." We prefer to
generate walks that smoothly trace out the locus of points characterizing streambeds;
therefore, we usually choose rather conservative L values (e.g., L lessthan 0.05 A~

per cartesian displacement in the molecule). Clearly, L musi be less than the dy-
namie lange over which the true potential energy surface changes its features by
amounts that ale deemed important. For chemical bonds, changes of a rew tenths
of an Ausually correspond to appreciable energy changes.
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Choosing L smalI requires maDYsteps in the walk, thereby increasing the com-
putationaI expense. Choices of L that are Iarge are less harmfuI than they might
seem at first glance because of the step-size reduction strategy detailed helowo In a
nutshell, aDYstep for which the true energy realized at the displaced geometry is
in sharp disagreement with the Iocal quadratic prediction ofthe energy must undergo
further step-size reduction. Of course, this reduction process entaiIs computational
expense, so one would Iike to use an L value that would not ofteli necessitate such
action. In essence, L should be chosen with a good deal of common sense.

Step-Szze Reductzon

The procedure for generating step sequences described in the previous section
may produce a step that moves beyond the region where ihe IocaI quadratic ap-
proximation to the true potential energy surface is valid. Insuch a case, the step
must be further reduced until it lies within this range. Since we do not a priori
know the true energy surface except at the point around which the local quadratic
expansion is carried out (where the energy is Eo), we must allow the step generated
by the algorithm detailed in the last section to be taken (on a trial basis) so that
the true (Er) energy:;1tT = To + x caDbe evaluated. Ifthe quadratic prediction

E - Eo = Fixi + 1/2hiXT

accurately reproduces the true energy difference Er - Eo then the step caD confi-
dently be taken. On the other band, if Fixi + 112 hixT does not agree well with
Er - Eo then the step {Xi} must be reduced in length.

It rerhains to state what it means for the twa energies to agree well. In aur im-
plementation, we insist that the predicted energy difference E - Eo = Fixi +
112 hixT and the energy difference Er - Eo observed ance the step is taken (on a
triaI basis):

( 1) Be oj the same sign-we do not want the predicted energy to direct the walk
uphill only to find that the step actually moves downhill (this is indicative
of a step for which the quadratic energy change, which is always undesirable
in sign, bas overcome the f~tvorablelinear term),

(2) Be equal within some range in the sense that Min( IE - Eo I, IEr - Eo I)1
Max( IE - Eo I, IEr - Eo I) be equal to unity within a specified tolerance.

In this most straightforward implementation ofthe concept, ifagreement between
-Er - Eo and E - Eo is not met, the L value is set equal to one-half the Iength of
the step just tested, and a new step is computed (as above) using this smaller L
value. This process is continued untiI the local quadratic approximation to the true
surface is valid (in the sense described above) at which time the step is taken. It
should be noted that generating such a series of step reductions does not require
the evaluation of new gradient and Hessian matrices; the most time consuming
element is the evaluation of Er at each ofthe "trial steps." ,

Once a step to a new geometry is rea1izedand new F and Hmatrices are computed,
the stepping aIgorithm begins again. Each successive step is restricted by this al-
gorithm to:
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( l) Have a totallength less'than same specified maximum step size L, and
(2) Have its length further reduced to guarantee that the quadratic energy change

accurately represents the true (observed) energy change for that step.

Overview and Summary

In this article, we have presented an algonthm that permits the location and
charactenzation (via the nature of the Hessian eigenvalues) of local minima and
transition states on potential energy surfaces. This method bas the following char-
actenstic features:

( l) It uses local gradient and Hessian information.
(2) It generates steps that produce the desired behavior (Le., uphill or downhill)

in both the linear and total quadratic energy changes along each Hessian
eigenmode.

(3) It permits rotations and translations (and non-symmetry-preserving motions)
to be removed from consideration.

(4) Through use of a maximum step size and a step-reduction strategy, it controls
the steplength to keep each step within a region where the local quadratic
energy approximation is valid. .

(5) It controls the step direction in a manner that is guaranteed to move either
downhill in all Hessian eigenmode directions (when searching for minima)
or uphill along one eigenmode and downhill along all others (when searching
for transition states). .

(6) It permits streambeds along any eigenmode OLthe Hessian to be explored
by introducing a coordinate scaling device.

(7) It allows one to "track" on a particular eigenmode direction and follow it
even ifthis eigenvalue is crossed by other eigenvalues dunng the walk (i.e.,
even if directions transverse to the stepping direction acquire smaller uphill.
curvature as the walk proceeds).. .

(8) Altematively, it {)eimits one to followa paiticulaf eigenvalue's direction
throughout a walk; as other eigenvalues move relative to the mode being
followed, one can adjust and "switch" to the new mode. This strategy allows
one to move to a new direction if one of smaller uphill curvature appears
along the walk.

This walking algonthm is implemented and routinely used in aur highly modular
Utah MESSKITelectronic structures codes. Its pnmary elements can be summarized
as follows (with the step components in the Hessian eigenmode basis given as Xj =
exF}/(A- hj»:

To perform energy minimization. walks, we choose Aand exas follows:

( l) If hl > O, we take the Newton-Raphson step (A = O) if its length iswithin
L, and we set exequal to 1.0.

(2) If hl > O, but the Newton-Raphson step length exceeds L, we determine
A(A < O) by requinng FJ(A - hj)-2 = L2 (or IFI2/(A - hl)2 = L2 to be
more conservative) to be obeyed. This yields A = hl - IFI / L I( ar, more
conservatively, A = hl - IFI/L). Again,we take ex= 1.0.
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(3) Jf hl < O, we determine A(A < hd by requiring FJ(A - hj)-2 = L2 to be
obeyed (A = hl - IFI/LI) and et:is ance again set to 1.0.

'To walk uphill along the streambed belonging to the (current) lowest Hessian
eigenvalue, we:

(l) Take et:= 1.0 and A = (hl + h2/2)/2 if hl is positive and h2/2 exceeds hl.
(2) Take et:= (h2 - hd/ h2and A= (hl + (hl + h2)/2)/2 if hl is positivebut

h2/2 does not exceed hl.
(3) Take et:= 1.0 and A= (h2 + hd/4 if hl is negative.

To walk uphill along a streambed belonging to another (current) Hessian eigen-
value (say hk), we:

( l) Scale hk by {li to produce an effectiveeigenvalue, of {l2hk, and scale Fk
by {l;

(2) Choose {l such that {l2hk lies below hl/2;
(3) Use the conventional walking algorithm but with the kth mode scaled as

described here. After computing a step (Yd with the scaling ofthe kth mode
operative, the true step along Xk is computed as Xk = {lYk.

To continue to foliowa particular direction even as other eigenvalues cross the
eigenvalue corresponding to the direction being pursued, we invoke the eigenvector
tracking device involving the quantity <Vk(step n) IVk(step n + l) >.

Alternatively, we can choose not to track on the direction f the eigenmode that
had beenfollowedby simply noting when another eigenvalue crosses theeigenvalue
of the mode that bad been pursued and switching to the new mode at that time.
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