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Abstract

An algorithm for locating stationary points corresponding to local minima and transition states on
potential energy surfaces is further analyzed. This method utilizes local gradient and Hessian (i.e., first
and second energy derivative ) information to generate a series of “steps™ that are followed to the desired
stationary point. By designing the step sequence to move energetically downhill in all coordinates, local
minima can be found. By stepping uphill along one local eigenmode of the Hessian while minimizing
the energy along all other modes, one locates transition states. Key elements of this development are
more efficient parameterization of the step vector in terms of quantities that permit the direction (i.e.,
uphill or downhill), and length of the step to be carefully controlled, and implementation of the ability
to explore “side channels” as attractive options occur.

Introduction

Locating stationary points on energy surfaces, given knowledge of the local gra-
dients and curvatures, represents a challenging and important problem in com-
putational chemistry [1]. Such points correspond to geometries at which all gradients
(first derivatives with respect to coordinates) vanish. They include minima, where
all eigenvalues of the second derivative or Hessian matrix are positive, and transition
states, where the Hessian has one negative eigenvalue. There are, of course, stationary
points at which more than one Hessian matrix eigenvalue is negative; they corre-
spond to “mountain tops” and are usually not of as much importance in chemistry.
An algorithm that efficiently locates the desired stationary points would be of great
utility.

In earlier publications [2a-2d,2h], we described the development and imple-
mentation of such an algorithm. It is the purpose of this work to build upon this
earlier work and provide enhancements that we have found to produce improved
behavior.

~In this article, we describe a procedure for locating minima and transition states
and for walking in the streambeds connecting them. At each step, the method uses
the local slope or gradient (F) vector and curvature or Hessian matrix (H) to
compute a step vector (x) which is added to the current atomic coordinates (r,) to
obtain new coordinates (r) at which new F and H matrices are computed so the
process can be continued. The Hessian matrix H may be evaluated using full an-
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alytical energy derivative information, or may be computed via update or finite-
difference methods; the approach described here can be used in all of these cases.

Convergence to a desired stationary point is reached when the norm of F is less
than some specified tolerance, the number of negative eigenvalues of H is correct
(i.e., zero for a minimum and one for a transition state), and the energy change
from step to step E-E, is within some tolerance.

We include in the class of problems to be examined “walks” that lead to frag-
mentation. For such events, a true transition state may not be reached because the
potential energy surface only asymptotically approaches a point at which the forces
vanish. Moreover, upon fragmentation, additional zero eigenvalues appear in the
Hessian matrix* corresponding to the new translations and rotations that exist in
the fragments but were internal modes in the original molecule.

The Method
The Local Quadratic Approximation

We begin by writing a local quadratic approximation to the potential energy
surface in terms of the 3N cartesian components of the gradient, Hessian, and step
matrices:

B Bk aFF 10Tk, - - 30

By assumption, we know the energy surface only locally. Therefore, it is important
to constrain our steps x to lie within a radius L for which the quadratic representation
in Eq. (1) is valid. The determination of this “trust radius™ L in terms of the ability
of Eq. (1) to predict energy changes experienced for steps x within L is dealt with
in a later section. In essence, the largest step length permitted is dynamically de-
termined by comparing the energy change predicted by the local quadratic ap-
proximation and the actual energy change experienced when the predicted step x
is taken.

Partitioning Into Internal and External Degrees of Freedom

If the energy surface E(x) pertains to a molecule in the gas phase for which
translational and rotational motions have no restoring forces, five or six coordinates
can be removed to yield F, H, and x in the 3N-5 or 3N-6 internal coordinates (in
practice, most ab initio electronic structure codes yield F and H in terms of 3N
cartesian coordinates). We then partition these matrices into external and internal
spaces by first constructing five or six orthonormal unit vectors that span the trans-
lational and (infinitesimal) rotational [2d] spaces together with 3N-5 or 3N-6

* For example, in the H,CO = H; + CO reaction, the reaction path plus three other modes are
formed that have zero gradients and zero Hessian eigenvalues. In such cases, the walking algorithm must
properly identify such degrees of freedom and not be “confused” by their presence (e.g., numerical
precision limitations may cause the Hessian eigenvalues corresponding to these modes to be small and
of arbitrary sign rather than identically zero). In particular, it is important that artifactual small negative
Hessian eigenvalues not be confused with the physically relevant negative eigenvalue belonging to a
transition state.
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other orthonormal vectors that span the internal space. Projection of F and H onto
these spaces then provides internal gradient and Hessian matrices. The components
of F and H lying within the translational and rotational spaces can be ignored when
dealing with an isolated species for which E(x) is a function only of the internal
coordinates.

If there are degrees of freedom which, on the basis of symmetry, have zero gradient
components, they can also be removed from immediate consideration. For example,
when examining the ' 4, state of the H,O molecule in C,, geometry, the component
of F along the b,-symmetry asymmetric distortion coordinate vanishes. The Hessian
eigenmode belonging to this degree of freedom may be removed from the “active
space” if one desires to preserve C;, symmetry. At a later point in the potential
surface walk, one can restore this degree of freedom to active consideration (an
action that will become essential if the ' 4, state of H,O under study is crossed by
a state of ! B, symmetry).

Analysis in the Hessian Eigenmode Basis

Given F and H, the local quadratic energy expression can be rewritten in terms
of the eigenmodes of H:

Hyv; = hyv; , i=1,2,+--+-3N-5 or 3N-6 (2)

(or fewer if additional degrees of freedom have been eliminated) where it takes on
the form

E=E,+ Fx;+ 1/2x%h; . (3)

Here the Einstein summation convention is used, 4; is the ith eigenvalue of the
Hessian (h, < hy < hs+ + +), and x; and F; are the components of x and F along
the ith eigenmode of H:

x; = (x|v;), and (4a)
Fi=(F|v). (4b)

Parameterization of the Step Vector

A primary element of the algorithm described here is the introduction of steps
{x;} parameterized as:

x; = aFi{h— h)™". (5)

The origin of this particular form of the step vector is detailed in Ref. [2h].
Briefly, the choice A = 0, @ = 1.0 corresponds to a Newton-Raphson (NR) step,
which may be acceptable if it is not too long and if the local Hessian eigenvalues
correspond to the stationary point being sought. For example, if all of the &; are
positive, the NR step is not appropriate if one is searching for a transition state, but
may be acceptable if one is searching for a minimum, because taking the NR step
moves one to an approximate stationary point where the Hessian eigenvalues retain
their original values.
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The introduction of values of A and of « different from 0 and 1.0 can be under-
stood as follows. When used in the above quadratic energy expression, the postulated
step gives the following first-order, second-order, and total energy changes:

E—Ey=aF}(A— h)™' + 1/2?hF} (A — h;)™2 (6a)
= aF}(A = )2 {A— h(l — a/2)} . (6b)

The parameter A is used to permit the step along the ith mode to either be opposite
in sign from the corresponding gradient (if A < 4;) or directed along the gradient
(if X > h;); this criterion relates to our desire to control whether the linear term

aF(\ — h;)"" in the local quadratic prediction of the energy change increases (in
which case the linear contribution x;F; should be positive) or decreases (for which

x;F; should be negative) along a particular mode.

The sign of the second-order energy change 1/2 h;x? is determined entirely by
the sign of the Hessian eigenvalue A;; for positive A; values, it is an increasing
function of x;, and for negative A; it is a decreasing function of x;. The sign of the
total ( first plus second order) energy change along each mode is determined by the
sign of A — h;(1 — a/2); if this quantity is positive, the local quadratic energy
increases, otherwise it decreases. Choices for the a parameter different from 1.0 are
made only in situations illustrated by the following case:

(i) Suppose that &, > 0, and that /,/2 (which is also > 0) is less than #,.
(ii) Further suppose that one wishes to step uphill along the first eigenmode
while moving downhill along the second (and all higher) modes.

(iii) In this case, the desire to cause the linear and total energy along the first
mode to increase dictates that A be chosen to obey: A > h; and A > Ay (1 —
a/2); the more restrictive of these two constraints is A > h;.

(iv) The desire to move downhill along the second and higher modes requires
that: A < h; and X < A2(1 — a/2); the more restrictive of these is A < h;
(1 — a/2); the choice @ = 1.0 then gives A\ < 1/2 h;.

(v) If hy/2 lies below A, the conditions on A imposed by the desire to move
uphill along the first mode (XA > #;) and downhill along all others (A < h,/
2) are incompatible.

(vi) In this case, choosing the largest value of « for which there exists a non-
vanishing region within which X can be chosen gives a = 2(hy — hy)/ha,
which then implies that A = A;. This particular choice produces a step lying
entirely along the first mode, and is thus unacceptable. In such cases, a
smaller value of & must be chosen; we take a = (h, — hy)/h,, which then
gives h; < A\ < (h; + hy)/2 as a range within which A can be selected to
“guide” the walk.

In summary, the a parameter is used only when A,/2 lies below #,, and is used
to provide a nonvanishing range of choices for A that will permit the energy to
move uphill or downhill as desired.

Problems With “Stitching”—Short Steps are Better Than Long Steps

In our earlier work [2a-2d,2h], emphasis was placed primarily on the total energy
change along each mode, rather than insisting that both the linear and total predicted
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energy changes be as desired. This point of view can lead to step lengths that “over-
shoot” the location of minima or are too long in the sense that they give displace-
ments beyond the region where the local quadratic approximation is accurate.

To clarify these points, consider the contribution to the local quadratic energy
surface along a particular mode when one is near a local minimum or transition
state of interest:

AE; = Fix; + 1/2x2h; . (7)

If h; is positive, displacements x; occur on an upward curved parabola; if 4; is
negative, x; is on a downward curved parabola. In either case, a specified desirable
energy change (AE positive in the 4; < 0 case and AFE negative in the A; > 0 case)
can be realized either by: (i) Taking a small step along which the linear energy
change is of the desired sign while the quadratic term is small and of opposite sign
(n.b., in the case considered here, the sign of the quadratic term is a/lways opposite
to what one wants; if 4; > 0, the quadratic term is positive, and one is trying to
minimize the energy; if 4; < 0, the quadratic term is negative, and one is trying to
maximize the energy), or by (ii) Taking a larger step in the same direction [i.e.,
with x; having the same sign as used above in (i)] along which the linear energy
change is much larger yet still of the desired sign while the quadratic contribution
is large and of opposite sign. :

We prefer to take the smaller steps characterized in (i) above. The longer steps
of (ii) suffer two drawbacks: (1) Being longer, they are more likely to move the
coordinates outside the region where the local quadratic approximation used to
generate the step is valid (it is essential to keep in mind that the local quadratic
surface is not the real surface). (2) They generate steps which “stitch™; that is, steps
that move back and forth across the streambed along which the walk proceeds In
contrast, the steps of (i) are found to undergo little stitching.

The Form of the Step Elements

In our earlier work on this subject [2a-2d,2h], the form for the step elements
shown in Eq. (5) was shown to arise from making the local quadratic energy func-
tional of Eq. (1) stationary subject to the constraint (imposed by Lagrange multiplier
A) that the step be of a specified length. Here, instead of focusing on the constraint
of the step length, we assume steps parameterized as in Eq. (5) and ask how A and
o can be determined to generate an optimal streambed walk, with A chosen primarily
to guide the direction of the step and « used to guarantee that the Hessian eigenvalue
structure will permit a step of the desired character.

If a calculation then produces a trial step that is too long, in the sense that it
yields an energy change that was not accurately predicted by the local quadratic
approximation, this step can be further reduced in length. It is straightforward to
see that doing so will not change the fact that the local quadratic approximation
yields energy changes of the desired signs along all modes (because both the linear
and total energies are required to be of the correct sign).

As an alternative to our strategy, one may introduce a procedure in which:
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The choice o = | causes A = 0 to be a stationary point corresponding to a minimum
(d>E/d\? is positive) if h, is positive. This means that a Newton-Raphson step
[2a] (i.e., the step with A = 0 and & = 1) is optimal as long as #; > 0 and as long
as this unscaled step is within the so-called trust radius L.

If the Newton-Raphson step is too long (i.e., if it exceeds L), any choice of
hy > X > 0 will also generate too long a step (x; = Fi(A — A;)~") because the
magnitude of (A — A;) ™" will be larger than for A = 0. Therefore, a value of A < 0
must be chosen. In the range A < 0 for 4, > 0, dE/d\ is negative; d*E/d\? is
positive for —Ah;/2 < A < 0. Therefore, the most negative change in E will be
realized for A as large as possible. Choosing A toa close to zero generates an unscaled
step length that is very large, as a result of which « must be chosen to reduce the
step length, which then reduces the magnitude of (E — E,). In this case, the best
choice of A is the value that yields the maximum acceptable step length L. Therefore,
we simply pick A (A < 0) by solving F?(A — h;)~2 = L?, after which a-scaling is
unnecessary. As long as the force along the #, mode is nonnegligible, we can ap-
proximate the solution of this equation (which, in general, we solve iteratively) by
A = h; — | F{/L| because X is closest to /4, than to any other 4;. On the other hand,
if F, is very small (e.g., if the A; mode is a symmetry-breaking mode or if one is
near to a stationary point along %, ), an approximation to the solution of the above
equation that is even more conservative can be written as A = h, — | F|/L, where
| F| is the norm of the full gradient. With either choice of \, a step that is approx-
imately L in length is obtained (the step formed using this \ value is actua[ly scaled
subsequently to be exactly of length L).

If One is Not Near a Minimum (A; < 0). On the other hand, if 4, is negative,
the Newton-Raphson step A = 0 is unacceptable because it violates the energy-
lowering condition A < A, determined earlier. In the range A < h,, dE/d\ is negative
and d?E/d\? is negative. Therefore, the most negative change in E will again be
realized for A as large as possible (i.e., as close to /, as possible). Once again, we
pick A by solving F #(N — hy)"% = L2, after which a-scaling is unnecessary.

In summary, to perform energy minimization walks, we choose A and « as follows:

(1) If Ay > 0, we take the Newton-Raphson step (A = 0) if its length is within
L, and we set « equal to 1.0.

(2) If Ay > 0, but the Newton-Raphson step length exceeds L, we determine
A(A < 0) by requiring F;(X\ — h;)™2 = L? (or | F|*/(\ — hy)*> = L* to be
more conservative) to be obeyed. This yields A = h; — | F;/L| (or, more
conservatively, A = h; — | F|/L). Again, we take « = 1.0.

(3) If hy < 0, we determine A(\ < &) by requiring F?(A — A;)~2 = L? to be
obeyed (A = h, — | F;/L|) and « is once again set to 1.0.

In both (2) and (3), the step is formed with the specified value of A, which yields
a total step length near L (which can then be rescaled to be exactly of length L).
Transition-State Walks

Walks up the Lowest Eigenmode. Moving “uphill” along the lowest Hessian ei-
genmode while remaining at minima along the other eigenmodes generates a
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(i) The local quadratic energy function is minimized along all modes but one
using the Newton—-Raphson or scaled NR step.

(ii) The energy is maximized along a single mode (the dJrecnon along which
one wishes to move uphill).

The difficulties with implementing such an approach are:

(i) If the local Hessian eigenvalue belonging to the mode along which one is
stepping uphill is positive, the task of maximizing the energy along this
mode is ill defined; one needs to specify the maximum step length along the
uphill mode, and to then take this maximum step.

(ii) Even once the Hessian eigenvalue along the mode one is following uphill
becomes negative, one is faced with controlling the step length along this
direction and separately along the other modes. In essence, one must intro-
duce two maximum step lengths because one has separated the problem
into two problems: minimization along all modes but one, and maximization
along one. :

This procedure is certainly one which makes sense; however, we have chosen,
after considerable experimentation with both approaches, to follow the strategy
detailed in this article.

Walks to Minima and to Transition States
Minimization Walks -

As displayed in Eq. (6), steps for which both A < k;and X < h;(1 — a/2) yield
negative linear (F;x;) and negative total energy changes along the ith mode. This
is, of course, a property that a walk to a minimum along the ith mode should
possess. If the lowest Hessian eigenvalue A, is positive (this is characteristic of
regions near local minima) A < ;(1 — «/2) is the more restrictive constraint; a A
that obeys this will also obey A < h;(1 — «a/2) for all other modes because the A;
are arranged in increasing order. If, on the other hand, 4, is negative (this is char-
acteristic of regions near transition states), A < A, is the more restrictive constraint.
Again, if A obeys this condition, it will automatically also obey A < h; and A <
h;(1 — a/2) for the other modes, independent of whether the other #; are positive
or negative.

If One is Near a Minimum (/&; > 0). Thus, for positive /;, one wants A <
hi(1 — a/2) and for negative 4, one needs A < k. Although these statements limit
), they do not determine the optimal value of A. To do so, we examine the depen-
dence of the quadratic energy functional on A for values of A that obey the above
conditions. Differentiation of the quadratic energy functional to seek a value of A
for which it is stationary yields:

dEJd\ = —aF*(A — h) 3 {A\ — h(1 —a)}, and
d?E/dN? = 2aF}(\ — h)™*{\ — hi(1.— 3a/2)} .
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“streambed walk™ along this lowest mode. As explained earlier, steps for which
A < hyand A < hy(1 — a/2) produce linear and total energy lowering along all
modes other than the first. To generate linear and total energy increases along the
h, mode requires that A > k; and A > A (1 — a/2).

If One is Not Near a Transition State (h; > 0). If h, and h, are both positive
( which is characteristic of geometries near local minima), these constraints reduce
toh; <A< hy(1 —af2).Ifhy/2isless than k,, the choice a = 1 (which corresponds
to an unscaled step) can not be used because no value of A obeys #; < A < hy/2.
It is in such circumstances that the o-parameter is used; it allows us to generate a
nonzero range for selecting the A-parameter to achieve a step with the desired
characteristics. ;

The largest value of a (i.e., the least scaling of the step) that gives rise to a nonzero
range for choosing A is & = 2(h; — hy)/h,. This particular o gives (1 — a/2) =
h,, as a result of which X is bounded to A; < A < h,. The choice A = h, generates
a step lying entirely along the &, eigenmode; this step has no ability to incorporate
movement along the other modes, and is therefore unacceptable (because unless
all F; = 0 for j > 1, these other modes are not at their optimal positions). To
maintain a distinct range within which X\ can be chosen, we choose to take an even
smaller step and select a = (A, — h, ), as the scaling parameter. This then restricts
A to the range h; < A < ( by + hy)/2, within which we choose the midpoint A-=
(hy + (hy + hy)/2)/2. Using these values of « and A, the step x; = aF;(A — h;) ™"
is evaluated. If the length of this x is less than L, it is taken; if the step length
exceeds L, x; is further scaled back to yield a total step length equal to L.

If, in contrast to the above situation, h,/2 exceeds h,, the choice a = 1.0 is
acceptable, in which case we choose A as the midpoint of the two bounds: A =
(hy + h2/2)/2. Again, if the step X; obtained using this A value and & = 1.0 exceeds
L, it is further scaled back to L.

If One is Near a Transition State (h; < 0). If h, is negative, the appropriate
constraints /(1 — a/2) < A < hy(1 — «/2) can be met with « = 1. In this case,
we again choose A as the midpoint of this range: A = (h, + h;)/4, and we further
scale back the x; if the total step length obtained with this A, combination ex-
ceeds L. :

In summary, to walk uphill along the streambed belonging to the lowest Hessian
eigenvalue, we:

(1) Take @ = 1.0 and A = (h, + hy/2)/2 if h, is positive and h,/2 exceeds h;.

(2) Take « = (h; — hy)/hy and A = (h; + (A + hy)/2)/2 if hy is positive but
h»/2 does not exceed A;.

(3) Take @ = 1.0 and A = (h, + h,)/4 if h, is negative.

In all three cases, the step elements x; = aF;(A — h;) ! are further scaled back if
their total length exceeds L. A step obtained by scaling back a step that has linear
and total energy changes of the desired sign will also have linear and total energy
changes of the proper sign (because the quadratic energy change is always of the
“wrong” sign, and cutting x; back reduces the magnitude of 1/2 h;x? more than
that of F;x;).
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Walks up Other Eigenmodes.

The Extra Difficulties for Modes Other Than the Lowest. To walk uphill along
a streambed that belongs to one of the other Hessian eigenmodes requires additional
care. Choosing A to obey A> A, and A > h;(1 — «/2) will certainly generate a step
that, within the local quadratic approximation, has positive linear and total energy
changes along the 4, mode. However, this choice will also cause the step to increase
in energy along the 4; mode. Such behavior is not characteristic of the desired
streambed walk; the energy is supposed to be minimized for all modes except the
one ( h;) along which uphill movement occurs.

Coordinate Scaling to “Stretch’ the Potential Energy Surface. The key to being
able to walk uphill along eigenmodes that are not the lowest using the step vector
parameterization advocated here is to “scale™ the coordinate along the mode of
interest to “stretch” the quadratic energy surface along this direction. By so doing,
one makes this direction appear to have the smallest curvature.

In particular, we express the step component along the mode (/4 in general) to
be followed as:

X = fByg. -

In terms of step components {X;, Xz, * * * Xi—1, Vk» Xkt1> * * * X38-6 or 385 } » the
local quadratic energy functional becomes:

E = Eo+ Fix; + 1/2hix? + (EB)ye + 1/2(mB?)yE,

where the sum over irunsover 1,2, - -+ k—1,k+ 1, + + + 3N-6 or 3N-5.

When viewed as a function of the step components { X, X2, * * * Xk—1, Vi, *
X3n-60r3n-s | » this local quadratic energy surface appears to have a Hessian eigenvalue
of 8%h; where the original surface had A, and to have a gradient 8F where the
original surface had Fy.

By choosing 8 such that 824 lies below A;/2 (so that the new lowest Hessian
eigenvalue 8%/ is less than 1/2 the new second lowest eigenvalue so that A can be
chosen in the range 8%k < A\ < h,/2), one can then employ the transition-state
walking strategy appropriate to the lowest eigenmode direction as detailed above.
In each such step, however, it is essential to keep in mind that one is generating
step components {xl, Ky maraXpe g Vo &40 Yoare: oe 3N_5}; the y; component
must then be multiplied by 8 to obtain x;. Once the {x;, X3, * * * Xg—1, Xk, * * *
X3n-6 or 38-5 ; are in hand, transformation to cartesian or to internal coordinate
displacements can be performed. '

When implementing the above coordinate-scaling method for walking up higher
eigenmodes, it is important to understand that the maximum step length L appro-
priate for the walk in the {x;, X2, * * * Xp—1, Vk» * * * X3nos or 3725} SPace is not
necessarily the same as that for the {x,, X2, * * * Xk—1, Xk, * * * X356 or 375 } SPace.
This can be understood by considering the length of the {x, x2, * * * Xk—y, Vi,
* « * X3n.6 or 3n-5 ; vector and of the resulting coordinate step vector. If {x;, x,,
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“** Xk-1, ks ** " X3n-6 or 38-5 ) 1S comstructed to be of length L', then {x;, x,,
*** Xko1, Xks * * * X3n-6 or 3n-5 } Will be of length L, where

(L) = (L) +(B* - 1)y},

Because the step {x;, X2, * * * Xi—1, Vk» * * * Xan_6or 3v-5 } 18 constructed to have
a significant or even dominant y, component, y7 will often be close to (L')2, in
which case (L)? will approach 8%(L')?. Therefore, to achieve a coordinate step
{x1, X2, * * * Xk=1, X, * * * X3n_6 or 3n-5 } Within L, one should restrict the scaled-
step {xl, Xay, " Xp—ts Vs " *X3NG or 3;\;_5} to lie within L' = ﬁ_]L e 0
In practice, we do not so expand the maximum step length thus opting for a
more ‘“‘conservative” walk (as a result, our steps in {X;, Xp, * * * Xk, Xk, * *
X3no6 or 38-5 } -Space are usually short).

Perspective ;
Thus far, we have covered the following aspects of our walking strategy:

(1) How to walk to local minima using steps that lie within a specified length
i

(2) How to walk uphill along the softest (4, ) eigenmode in search of a transition
state, again using steps that lie within L.

(3) How to use coordinate scaling to distort the local quadratic energy surface
so that a higher eigenmode becomes the lowest, thereby allowing one to
walk uphill along higher eigenmodes using the same strategy.

What to Do When Eigenmodes Cross

When carrying out a walk directed toward a local minimum, the A-parameter is
always chosen less than the lowest Hessian eigenvalue or less than one-half of this
eigenvalue. This condition remains in effect even if the eigenvalues undergo crossings
as one steps along the potential surface. Hence, eigenvalue crossings do not adversely
affect the behavior of walks to minima.

In contrast, when walking toward a transition state, such crossings give rise to
qualitatively important changes in the step if the crossing involves the mode (e.g.,
hyi) along which uphill movement has been directed. For example, when following
h, uphill, A, may decrease (or h; increase) until the two cross. Whenever such
crossings occur, a decision must be made. One can choose to follow the physical
direction of the streambed along which one had been stepping, or one can begin
to move along the eigenmode that has just crossed. Neither decision is right or
wrong; both represent reasonable choices, and either (or neither) may lead to a
transition state. In principle, both should eventually be “explored.” It is the purpose
of this section to specify how one can effect these two choices.

Tracking the Original Streambed. To continue along the direction that the walk
had been following prior to the eigenmode crossing, one must implement a so-
called “tracking” method. We use an eigenvector tracking method in which the
scalar product of the Hessian eigenvector (v, ) corresponding to the “uphill” mode
is computed from step to step. The quantity (vk(step n)|vi(step n + 1)) should
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be approximately 1.0 at each step. This allows the desired eigenvector v(step n +
1) to be properly identified even as its eigenvalue is crossed by other eigenvalues.
Of course, if one desires to track as described above, it is important to realize
that one is now following an eigenmode whose position in the order A, < Ay <
h3 < - -+ has changed. Consider for example, the situation in which one had been
following and wishes to continue to track the physical direction of the 4, eigenmode
uphill even after the h; mode crosses and moves below the previous #; mode. In
this case, the above scalar product technique can identify the eigenvalue crossing
and specify that one should now follow the new A, direction. To do so, the coordinate
scaling device described earlier must be invoked. Therefore, to properly track a
_specified direction one has to use the tracking and coordinate scaling devices in
concert.

Moving to Another Mode by Not Tracking. When the Hessian eigenvalue be-

- longing to the mode being followed is crossed by another, it is possible to move
from the streambed that one was pursuing to explore the direction of the eigenvalue
that has just crossed. In the example considered in the preceding paragraph, after
the 4, mode moves below and crosses the 4; mode, one can choose to not track on
the direction specified bythe previous 4, mode, but to follow uphill the new lowest
mode (the previous A, direction which is now the A, direction). Such a decision is
effected by not invoking a tracking device and simply allowing the walking algorithm
to continue stepping uphill along the 4, direction while keeping to minima along
directions other than 4,.

Summary

This completes our description of how the stepping algorithm decides what di-
rection to move in, given a maximum step length L within which the step is con-
strained. The procedure generates a step that may be taken to generate the next
position about which a new local quadratic approximation to the energy surface
will be formed. However, there are circumstances under which the step put forth
Jor consideration must not be taken but, rather, replaced by an alternative {shorter)
step. That is, there are circumstances under which the maximum step length L
must be shortened. It is this aspect of the algorithm to which we now turn attention.

Step Length Control
The Maximum Step Size L '

In the algorithm outlined in the previous section, each step is constructed to
have a total length less than or equal to a preassigned maximum length L. The
choice of L is very much a matter of taste and of “common sense.” We prefer to
generate walks that smoothly trace out the locus of points characterizing streambeds;
therefore, we usually choose rather conservative L values (e.g., L less than 0.05 A
per cartesian displacement in the molecule). Clearly, L must be less than the dy-
namic range over which the true potential energy surface changes its features by
amounts that are deemed important. For chemical bonds, changes of a few tenths
of an A usually correspond to appreciable energy changes.
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Choosing L small requires many steps in the walk, thereby increasing the com-
putational expense. Choices of L that are large are less harmful than they might
seem at first glance because of the step-size reduction strategy detailed below. In a
nutshell, any step for which the true energy realized at the displaced geometry is
in sharp disagreement with the local quadratic prediction of the energy must undergo
further step-size reduction. Of course, this reduction process entails computational
expense, so one would like to use an L value that would not often necessitate such
action. In essence, L should be chosen with a good deal of common sense.

Step-Size Reduction

The procedure for generating step sequences described in the previous section
may produce a step that moves beyond the region where the local quadratic ap-
proximation to the true potential energy surface is valid. In such a case, the step
must be further reduced until it lies within this range. Since we do not a priori
know the true energy surface except at the point around which the local quadratic
expansion is carried out (where the energy is E,), we must allow the step generated
by the algorithm detailed in the last section to be taken (on a trial basis) so that
the true (E7) energy atr = r, + X can be evaluated. If the quadratic prediction

E—E,=Fx;+ 1/2hix?.

accurately reproduces the true energy difference Er — E, then the step can confi-
dently be taken. On the other hand, if Fix; + 1/2 h;x? does not agree well with
Er — E, then the step {x;} must be reduced in length.

It rernains to state what it means for the two energies to agree well. In our im-
plementation, we insist that the predicted energy difference E — E, = Fix; +
1/2 h;x? and the energy difference Er — E, observed once the step is taken (on a
trial basis):

(1) Be of the same sign—we do not want the predicted energy to direct the walk
uphill only to find that the step actually moves downhill (this is indicative
of a step for which the quadratic energy change, which is always undesirable
in sign, has overcome the favorable linear term),

(2) Be equal within some range in the sense that Min(| E — E,|, | Ex — Eo|)/
Max(| E — E,|, | Er — E,|) be equal to unity within a specified tolerance.

In this most straightforward implementation of the concept, if agreement between
Er — E, and E — E, is not met, the L value is set equal to one-half the length of
the step just tested, and a new step is computed (as above) using this smaller L
value. This process is continued until the local quadratic approximation to the true
surface is valid (in the sense described above) at which time the step is taken. It
should be noted that generating such a series of step reductions does not require
the evaluation of new gradient and Hessian matrices; the most time consuming
element is the evaluation of Er at each of the “trial steps.” '

Once a step to a new geometry is realized and new F and H matrices are computed,
the stepping algorithm begins again. Each successive step is restricted by this al-
gorithm to:
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(1) Have a total length less than some specified maximum step size L, and
(2) Have its length further reduced to guarantee that the quadratic energy change
accurately represents the true (observed) energy change for that step.

Overview and Summary

In this article, we have presented an algorithm that permits the location and
characterization (via the nature of the Hessian eigenvalues) of local minima and
transition states on potential energy surfaces. This method has the following char-
acteristic features:

(1) It uses local gradient and Hessian information.

(2) It generates steps that produce the desired behavior (i.e., uphill or downhill )
in both the linear and total quadratic energy changes along each Hessian
eigenmode.

(3) It permits rotations and translations (and non-symmetry-preserving motions)
to be removed from consideration.

(4) Through use of a maximum step size and a step-reduction strategy, it controls
the step length to keep each step within a region where the local quadranc
energy approximation is valid.

(5) It controls the step direction in a manner that is guaranteed to move either
downhill in all Hessian eigenmode directions (when searching for minima)
or uphill along one eigenmode and downhill along all others (when searching
for transition states). _

(6) It permits streambeds along any eigenmode of the Hessian to be explored
by introducing a coordinate scaling device.

(7) It allows one to “track” on a particular eigenmode direction and follow it
even if this eigenvalue is crossed by other eigenvalues during the walk (i.e.,
even if directions transverse to the stepping direction acquire smaller uphill
curvature as the walk proceeds).

(8) Alternatively, it permits one to follow a partlcular eigenvalue’s direction
throughout a walk; as other eigenvalues move relative to the mode being
followed, one can adjust and “switch” to the new mode. This strategy allows
one to move to a new direction if one of smaller uphill curvature appears
along the walk.

This walking algorithm is implemented and routinely used in our highly modular
Utah MESS KIT electronic structures codes. Its primary elements can be summarized
as follows (with the step components in the Hessian eigenmode basis given as x; =
aFy/(\ — h)):

To perform energy minimization walks, we choose A and « as follows:

(1) If h; > 0, we take the Newton-Raphson step (A = 0) if its length is within
L, and we set « equal to 1.0.

(2) If Ay > 0, but the Newton-Raphson step length exceeds L, we determine
A(A < 0) by requiring F} (X — h;)™2 = L? (or | F|*/(A — h;)*> = L’ to be
more conservative) to be obeyed. This yields A = h; — | F;/L| (or, more
conservatively, A = h; — | F|/L). Again, we take « = 1.0.
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(3) If h; < 0, we determine A(X < h;) by requiring F} (A — h))™2 = L? to be
obeyed (A = h, — | F;/L|) and « is once again set to 1.0.

"To walk uphill along the streambed belonging to the (current) lowest Hessian
eigenvalue, we:

(1) Take @ = 1.0 and A = (h; + hy/2)/2 if h, is positive and h,/2 exceeds A;.

(2) Take @ = (hy — hy)/hz and A = (hy + (h) + hy)/2)/2 if hy is positive but
h, /2 does not exceed A,.

(3) Take @ = 1.0 and A = (hy + h;)/4 if h; is negative.

To walk uphill along a streambed belonging to another (current) Hessian eigen-
value (say hy), we:

(1) Scale h; by 462 to produce an. etfective eigenvalue of B2k, and scale Fj
by B;

(2) Choose 8 such that 8%k, lies below h,/2;

(3) Use the conventional walking algorithm but with the kth mode scaled as
described here. After computing a step () with the scaling of the kth mode
operative, the true step along x; is_ _cornputed as xx = Byx..

To continue to follow a particular direction even as other eigenvalues cross the
eigenvalue corresponding to the direction being pursued, we invoke the eigenvector
tracking device involving the quantity (vi(step n)|vi(step n + 1)).

Alternatively, we can choose not to track on the direction f the eigenmode that
had been followed by simply noting when another eigenvalue crosses the eigenvalue
of the mode that had been pursued and switching to the new mode at that time.
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