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A coupled electron pair approximation is derived and illustrative calculations are presented.
The present approximation, which we refer to as the unitary coupled electron pair
approximation (UCEPA), provides multiconfigurational (MC) reference capability and is as
computationally tractable as multireference configuration interaction (MRCI). The method is
capable of yielding size-consistent energies if the MC reference function is of the complete
active space (CAS) variety. The coefficient matrix of the resultant set of simultaneous linear
equations is evaluated using internal/external orbital space partitioning within a unitary group
approach (UGA) treatment of the state space. We demonstrate the accuracy of the method on
several small benchmark molecules for which full CI results are known, and on nontrivial
studies on the singlet—triplet splitting in methylene and the electron affinity of the oxygen

atom.

|. INTRODUCTION

In the present paper, we develop and implement a meth-
od which is similar in structure to the highly successful sin-
gle-configuration based coupled electron pair approxima-
tion? (CEPA) but which admits multiconfigurational
(MC) reference functions and which is based on a unitary
ansatz. We call this our unitary CEPA (UCEPA ) method.
Although this development is by no means the first attempt
to include MC reference functions within CEPA-like meth-
ods,® we believe that the computational efficiency of our ap-
proach make it especially attractive. Our present develop-
ment expresses all computationally necessary quantities as
matrix elements of the Hamiltonian in the usual Gelfand—
Tsetlin basis utilized in unitary group approach (UGA)
configuration interaction (CI) calculations.*®

Section I1 details our theoretical developments, with the
Appendix providing the proof that our final energy expres-
sion is size consistent if the so-called MC reference function
is of the complete active space (CAS) type. In Sec. III, we
report the results of our calculations on several small mole-
cules which have been examined at the full-configuration
interaction (CI) level by Handy, Schaefer, and co-workers’;
in addition, we compare our results on the singlet—triplet
splitting in CH, with the benchmark results of Bauschlicher
and Taylor.! The UCEPA method is shown to yield quite
accurate energies even in cases in which strong configuration
mixing occurs. We also report the results of calculations
with the UCEPA method on the singlet—triplet splitting of
methylene using basis sets containing 48 and 71 contracted
Gaussian-type basis functions, and we examine the electron
affinity of the oxygen atom using a moderately large basis set
optimized for correlated studies. Section IV summarizes our
results.

*) Present address: Department of Chemistry, University of North Dakota,
Box 7185 University Station, Grand Forks, ND 58202.
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il. THEORY
A. The UCEPA ansatz

In our ansatz, corrections to the multiconfiguration ref-
erence function |®) are expressed in terms of the action of a
unitary operator exp(G) acting on |P)

|¢) =exp G |P) . (2.1)

The anti-Hermitian operator G'is, in turn, expressed in terms
of a set of state transfer operators® {|n) (®| — |®)(n|} and
corresponding amplitudes {7, }:

G=" 7,(|n)(®| — |®)(n]).

The summation over nin Eq. (2.2) runs, in principle, over all
CSFs which are external to the MCSCEF space (i.e., lying
outside the MCSCEF space) and over the orthogonal comple-
ment states within the MCSCF space (i.e., combinations of
the CSFs from which |®) is formed which are orthogonal to
|®) and to one another). Restriction of the operator mani-
fold in Eq. (2.2) to the so-called first-order interacting space
can clearly be effected if one desires to do so. Alternatively,
one may wish to allow a larger space (e.g., the so-called
second-order space: those CSFs which do not have more
than two electrons in the MCSCEF virtual orbital space and
more than two holes in the MCSCEF core orbital space) to be
included in the aforementioned summation. No particular
choice of configuration state function space is dictated by the
functional form of our theory. As within conventional mul-
tireference CI methods, the choice of configurations is left
up to the individual researcher. The wisdom of any particu-
lar choice must be verified through computational means.
Later, in Sec. III D, we illustrate this point by comparing the
effects of using first- and second-order spaces in an investiga-
tion of the singlet-triplet splitting in methylene.

Given a particular choice of MCSCEF reference function
|®) and the space of CSFs lying external and internal to the
MC reference space, the parameterization of |¢) provided in
Eq. (2.1) is no more flexible than that contained in the con-

(2.2)
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ventional configuration interaction (CI) wave function
expression |¢) = Co|®) + Z,C, |n). However, the particu-
lar parameterization introduced here allows us to:

(1) Expand the C, and C, amplitudes in terms of their
“starting” MCSCF-level values (C, = 1, C, = 0) plus “im-
provements” (6Cy,0C,, );

(2) Through the unitary nature of exp(G), maintain
normalization of |¢) without additional constraint equa-
tions being imposed;

(3) Achieve a final energy expression which is size con-
sistent if the MC reference function |®) is of the complete-
active-space (CAS) variety (i.e., if the CSFs used to form
|®) are constructed by distributing M electrons among V
valence orbitals in all possible ways consistent with the de-
sired spin and space symmetry).

Our strategy is to use a variational energy expression
(¢|H |¢) in which the variational parameters {, } are con-
tained in G, to expand (¢|H |¢) through second order in the
{7, } to focus on a solution close to |®) and its associated
energy E,, to then minimize the resultant second-order func-
tional with respect to the {7, }, and finally to use those “opti-
mal” {7} values to evaluate second-order energy correc-
tions to E,,.

Substitution of Eq. (2.2) into the expression for the en-
ergy

E = (®lexp( — G)H exp(G)|®)

followed by expansion of the exponential operators, gives®
E = [cos’tE, + 2 cos tSl—Itlt Y 7.{P|H |n)

in2
" s1n2 t (2.3)

> 1. {nlH |m)7T,,,
where 1?2 = 3, 72. Thus far, our Eq. (2.3) is entirely equiva-
lent to the variational energy expression for a configuration
interaction wave function in a configuration space which
spans the {|®), |»)} functions.

We now introduce approximations through the manner
by which we solve for the {7, } amplitudes whose values
characterize our wave function and in the manner in which
we estimate the energy of Eq. (2.3). Because the MCSCF
wave function, by assumption, contains all of the essential
configuration state functions (CSFs) and has energy-opti-
mized MCSCF orbitals and CSF amplitudes, all of the 7,
amplitudes should be small. We are therefore motivated to
seek solutions which lie close to the origin in 7 space (i.e.,
values of 7, near zero). To do so, we carry out a Taylor-
series expansion of E about =0 and keep terms through
second order in the {7, } parameter. Such an expansion of
Eq. (2.3) gives

E=E1 -—;ﬁ)u;rn@lmrz)

+ Z T, 7o {n|H|n') . (2.4)
Eq. (2.4) is easily recognized to be of the functional form
which appears in CEPA theory"?; it is our MC generaliza-
tion of the CEPA-like energy functional, and it forms the
basis of our further developments. We think of this expres-
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sion as providing a local (to T = 0) quadratic energy func-
tional [Eq. (2.4)], (i) which approximates the correct CI
energy of Eq. (2.3) through second order in the {r,}, (i)
whose minimization leads to a set of linear equations (see
below) for the {7, }, (iii) whose evaluation at the resultant
optimal {7, } values yields (see below) an expression for E
which contains only linear terms in the {7, } amplitudes and
which is size consistent if |®) is a CAS-type MCSCF wave
function (as shown in the Appendix).

B. UCEPA linear equations

Differentiating Eq. (2.4) with respect to the 7, ampli-
tudes and requiring this local quadratic energy to be station-
ary'” gives a set of simultaneous linear equations of the un-
known 7, amplitudes,

—(P|H |n) =3 1, (n|H|m) —6,,E)  (2.52)
or symbolically,
—B, =) A4unTm - (2.5b)

The energy functional of Eq. (2.4), when evaluated using
the values of {7, } which result from Eq. (2.5b), reduces to

E=E, 4+ 7,{®|H|n) . (2.5¢)
Because |®) has itself been variationally optimized in the
space spanned by |®) and those |7) in the orthogonal com-
plement space, off diagonal elements (7i|H |®) in the OCS
space vanish. Thus, only those 7, and (®|H |») which in-
volve states {|n)} in the external space contribute to E.

The energy expression of Eq. (2.5¢) and the form of the
equations which determine the 7, amplitudes deserve
further elaboration. First, we note that the constituents of
the matrices in Eq. (2.5) are identical to those required in a
CI calculation performed within the same configuration
state space, with the exception that the eigenvector and ener-
gy eigenvalue of the MCSCEF reference function |®) must be
known beforehand in the case of the UCEPA calculation.
We also note that, in the single-reference-configuration case,
Eq. (2.5a) is identical to the cluster amplitude equations
obtained in linearized coupled-cluster theory'~ (i.e., identi-
cal to the CEPA-0 equations). This further establishes a tie
to CEPA theory. Finally, we note that the total energy E
does not appear in Eq. (2.5a) which, because the CAS-
MCSCEF references energy E, is size extensive, allows the
proof given in the Appendix to show that the equations for
the 7, are decoupled when applied to noninteracting subsys-
tems. This, in turn, implies that the total energy expression
of Eq. (2.5¢) is additively separable and hence size consis-
tent.

A complication seems to arise in the implementation of
Eq. (2.5) due to the apparent need for the orthogonal com-
plement MCSCEF states. However, this can be circumvented
using the projection technique introduced by Lengsfield"'
within the content of MCSCF wave function optimization.
As a result, in the configuration state function (CSF) basis,
denoted by capital roman letters, the matrices A and B enter-
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ing into the simultaneous equations for the cluster ampli-
tudes become

A, ={I|H{J)—E,+ C,C,,

for I,J within the internal CSF space, (2.6a)
AI,J = <I |H |J) - CI(‘I |H|¢>,
for I internal and J external, (2.6b)

A, = |H|J) ~ Ey6,, forlandJ external,

(2.6¢c)

B, =0, forlinternal, (2.7a)
and

B, =(®|H|I), forlIexternal. (2.7b)

The notation “internal” denotes those CSFs used to form
|®), while “external” labels those CSFs which do not appear
in |®).

Solution of the set of simultaneous equations (i.e., — B;
=3,A,,7;) allows the local quadratic energy [cf. Eq.
(2.4)] to be written in the linear form analogous to Eq.
(2.5¢),

E=E,+ > 1 (®H|I), (2.8)
I

where the index I runs only over external CSFsbecause con-

tributions from the MCSCF orthogonal complement space

vanish. As shown in the Appendix, this energy expression is

size extensive if |®) is a CAS-type MCSCEF function.

C. Computational aspects

In the preceding section, the coefficients of the set of
simultaneous linear equations that define the amplitudes
were expressed in terms of Hamiltonian matrix elements in
the CSF basis modified by, at most, a simple product of (CSF
basis) vector components. It is perhaps obvious that large-
matrix techniques used efficaciously for the CI calculations
can be straightforwardly adapted to the present case. In par-
ticular, the coefficient matrix A is sufficiently diagonally
dominant that an iterative solution converges rapidly; more-
over, the A, coefficients are computationally simple enough
to allow for regeneration as needed.

We solve the set of simultaneous linear equations for the
amplitudes using a Galerkin, or reduced linear equation,
framework.'>'* Because this method has received consider-
able attention in the chemistry literature, our discussion will
be brief. The k th approximation to the solution vector, (¥,
is expanded in an orthonormal basis ‘"

k
PR = z a® ¢,

i=1

(2.9)

where the basis vectors (¢”, i = 1,k) are known. The coef-
ficients a; are determined through solution of the simulta-
neous linear equations induced by projection on the sub-
space,

— (B’¢(j)) — i alfk)(Ad)(i)’(b(j)) .

At this point, either ¥’ is accepted as the converged solu-
tion 7 or a new basis vector ¢'*+ ! is generated via Jacobi
prediction

(2.10)

U+ = D1k (2.11)

followed by Gram-Schmidt orthonormalization of ¢+ 1
to the extant $*> and to the MC solution vector C. In Eq.
(2.11), the matrix A is decomposed into diagonal D and off-
diagonal A parts, i.e., A= D + A. The next row and column
(i.e., kK + 1) of the reduced matrix [cf. Eq. (2.10)] is then
generated by matrix multiplication of the full coefficient ma-
trix and the new basis vector (i.e., A, followed by appropri-
ate inner products). In practice, the diagonal and off-diag-
onal matrix products are computed separately.

The use of orthonormal basis vectors ¢'? is advanta-
geous for two reasons: (1) the reduced coefficient matrix
[ie., (Ad”; &' )] remains nonsingular as convergence is
approached; and (2) the modifications to Ad‘” due to non-
Hamiltonian terms is minimal. In particular, no modifica-
tion is necessary for vector components in the external CSF
space,

(AdP)y =3 (E|H|T )P ; (2.12a)
while for the internal CSF space,
(A4, =2 I |H )¢
ext N
—ccap+3 c@lmingg).
J
(2.12b)

In Eq. (2.12), the prime on the summation indicates that
J=1I (or E) is to be excluded. Hence, the matrix-vector
products in UCEPA are identical to the matrix-vector prod-
ucts in CI, with the additional requirement that a small num-
ber of components need minor postmultiplication process-
ing.

The factorization of Hamiltonian matrix elements be-
tween CSFs with no more than two electrons in the virtual
orbital space into the product of an internal and external
contribution was first realized by Roos in 1972.'> Hence-
forth, many CI codes calculate and store only the internal
contributions to such Hamiltonian matrix elements, com-
pleting the external portions as needed on each construction
of a new correction vector ¢. Within the unitary group ap-
proach (UGA), such factorization was made possible with
Shavitt’s so-called segment values.'® As noted by Siegbahn
in the first direct CI (i.e., using internal/external partition-
ing) from a general MC reference,'’ very little evidence of
the particular method used to evaluate the internal Hamilto-
nian matrix elements is present in the iterative solution cycle
(i.e., the time-consuming step of the direct CI). Hence, we
choose to vary from the usual graphical implementation of
the unitary group approach (GUGA), and instead retain
the so-called step vector representation over internal por-
tions of the CSFs (see, e.g., the review by Shavitt, Ref. 5).
The use of step vectors facilitates the description of MC ref-
erence spaces of the generalized CAS (also called restricted
CI) variety (i.e., those CSF spaces in which specified
numbers of electrons are distributed among specified sets of
orbitals in all possible ways).

Evaluation of internal contributions to the off-diagonal
generator and generator product matrix elements occurs be-
fore the start of the iterative solution. External storage (e.g.,
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TABLE L. Results for water at various bond lengths.

TABLE III. Results for methylene in the (421/21) basis.

Energy (a.u.)

1.0R, 1.5R, 20R,
Mc* —76.062878  —75.924342  —75.827219
CISD 76155840 76012305  — 75.903264
UCEPA —176.158648  —76.015355  —75.905 610
FCI® — 76157866  — 76014521  — 75.905 247
MRLCCM* —76.15790 —76.01373 —75.904 15
uccd —76.156234  —76.013827  —75.905 141

*1a?2a2 162 (3a,4a,1b,2b,)".

°®Reference 7.

°The multireference linearized coupled-cluster results by Laidig and Bart-
lett (see Ref. 21).

9 The so-called unitary coupled-cluster theory result of Ref. 32, based on the
same MC reference function and orbital basis.

disk) of the so-called internal formula tape is not a limiting
factor. We utilized Payne’s 1982 segment values® for the in-
ternal contribution to matrix elements. We derived and im-
plemented external contributions which are consistent with
Payne; readers interested in greater detail are welcome to
contact the authors directly.

Construction of the requisite matrix elements for our
UCEPA theory and the solution of the (large) matrix prob-
lem have been shown to proceed analogously to the corre-
sponding CI problem. In particular, internal/external parti-
tioning in a UGA framework and a computational Galerkin
method are realized. Thus, in principle, any problem that is
computationally accessible to a modern CI program is also
computationally tractable by our UCEPA method. Of
course, the relative accuracy of UCEPA must be judged
from chemical studies as the following section attempts to
address.

lli. RESULTS

We performed illustrative calculations using our
UCEPA method on H,0, HF, NH,, and BH, using the same
basis sets and geometries as used in the benchmark full-CI
calculations of Handy, Schaefer, and co-workers.” We also

TABLE II. Results for boron hydride.

(Core + valence correlation)
Energy (a.u.)

(Valence correlation)?
Energy (a.u.)

E(®B)) E('4) A Error A

(a.u.) (a.u.) (kcal/mol)  (kcal/mol)
MC* — 38.927 947 — 38.907 660 12.73 0.76
CISD® —39.041 602 — 39.022 156 12.20 0.23
UCEPA —39.047 715 — 39.028 718 11.92 —0.05
FCI® —39.046 260 — 39.027 183 11.97 B

2SCF reference for 3B,: 1a32a*1b}3a,1b;; TCSCF reference for '4;:
142242163 (3a,15))>.
® Reference 8.

studied the singlet-triplet separation in CH, using the basis
sets and geometries of Bauschlicher and Taylor.® Our results
for H,0, BH, and CH, are summarized in Tables I-III, re-
spectively; our HF and NH, results are not reported here
because they were essentially identical, in their comparison
with the full-CI data, to those reported for H,O and BH.

To demonstrate the applicability of our UCEPA meth-
od to more realistic chemical studies, we also examined the
singlet-triplet separation in CH, using two larger atomic
basis sets, and we examined the electron affinity of the oxy-
gen atom, a well-known difficult system, '®-?° using a moder-
ately large unpublished basis of Taylor.'® The results of our
studies of methylene using the larger basis sets are presented
in Table IV and V. Table VI summarizes the results for the
oxygen atom.

A. Water

A double-zeta basis was used for calculations on the
lowest !4, state of H,O at three nuclear geometries. The
MCSCEF reference function is identical to that used by Laidig
and Bartlett?! in their multireference linearized coupled
cluster method (MR-LCCM) studies, and corresponds to
distributing four electrons among two a, orbitals and two b,
orbitals while keeping two a, orbitals and one b, orbital dou-
bly occupied in all configurations. This procedure yields 12
CSFs of '4, symmetry in the internal space. A full spin con-
figuration singles and doubles (i.e., second-order) space was
chosen for this example; this yields a total of 4141 CSFs. The
second-order space is somewhat larger than the approximate
singles and doubles interacting (or first-order) space used

TABLE 1V. Results for methylene in the (642/32) basis.

SCF — 25.125 260
McC* — 25.177 887
CISD —25.212910 —25.227092
UCEPA —25.213 632 —25.228 119
FCI —25.213 185 —25.227 627¢

*The canonical orbitals with the lowest and highest eigenvalues of the core
Fock operator were kept doubly occupied and unoccupied, respectively, in
these calculations.

®1a? (2a,3a,4a,1b,1b,)*.

¢ Reference 7.

ECB)) (an.)  E('4)) (au.) A(kcal/mol)
McC: — 38932792 — 38.914 999 11.16
CISD® — 39.062 945 — 39.046 041 10.61
UCEPA® —39.070540  — 39.053 845 10.48
CISD® —39.063 638 — 39.046 326 10.86
UCEPA® — 39.071 505 — 39.054 226 10.84

See footnote a of Table III.
® Calculation using first-order (i.e., interacting) space.
¢ Calculation using second-order space.
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TABLE V. Results for methylene in the (9621/52) basis.

ECB) (an)  E('4)) (auw) A(keal/mol)
' (0 —39.933 428 — 38,916 581 10.57
CISD® —39.071 183 — 39.056 013 9.52
UCEPA® — 39.079372 — 39.064 528 9.32
CISD* —39.072 036 — 39.056 337 9.85
UCEPA°® — 39.080 559 — 39.064 964 9.79
2 See footnote for Table IV.

®Same as footnote a.
¢ Same as footnote a.

by Laidig and Bartlett, which gives 3277 CSFs. However,
the energy difference due to the use of these two different
spaces in a CI calculation is less than 0.03 mhartree.

Examination of Table I reveals that our UCEPA meth-
od reproduces the full CI energy to within 0.5 kcal/mol for
all three geometries studied, although the UCEPA energy is
not truly variational (see Table I) once the exactly variation-
al energy function of Eq. (2.3) is expanded to second order
to obtain Eq. (2.4). The corresponding (i.e., singles and
doubles) CI calculations are only accurate to within 1.4
kcal/mol. The UCEPA energies also lie within 1 kcal/mol of
both the MR-LCCM energies of Ref. 21 and our UCC ener-
gies*? at all three geometries.

Gdanitz and Ahlrichs® studied H,O at these same geo-
metries using their multiconfiguration-based averaged cou-
pled-pair functional (ACPF) method. They employed a
double-zeta plus polarization basis, so a direct comparison
with their results is impossible. Within their basis, the FCI
energies are — 76.256 62, — 76.071 41, and — 75.952 27
hartrees; their ACPF energies lie below the FCI energies by
0.12 and 0.22 mhartree at R, and 1.5 R, and above the FCI
value by 0.18 mhartree at 2.0 R, when they use a 12-configu-
ration reference function. When they employ a 55-configu-
ration reference, their respective FCI deviations are — 0.40,

—0.79, and — 0.78 mhartree. Qur respective FCI devia-
tions are — 0.78, — 0.83, and — 0.36 mhartree.

Further assessment of the UCEPA method may be
made at the equilibrium bond length of water, where it is
appropriate to use a single configuration reference (i.e., the
dominant CSF in the 12 MC has an amplitude of 0.986).
Using a single configuration reference (i.e., SCF), there are
361 CSFs in both the first- and second-order spaces. We
obtain a UCEPA correlation energy (i.e., Eycgpa — Escr)
of 0.146 719 hartree, which may be compared to the full CI

TABLE VI. Results for oxygen.

E(O) (a.u.) E(O7) (au) EA (a.n.)
SCF* — 74.809 108 — 74,789 307 —0.019 802
CISD — 74.979 535 — 75.011 601 + 0.032 066
UCEPA — 74.987 371 — 75.029 218 + 0.041 847
FCI® — 74.985 694 — 75.028 584 + 0.042 890

* Degenerate SCF result (see the text for details).
bReference 18.

result’ of 0.148 028 hartree. The correlation energy results of
other approximation treatments include CISD: 0.140 177
hartree, SDTQ MBPT(4)*: 0.147 040 hartree, CCSD?**:
0.146 240 hartree, CPF**: 0.14502 hartree, UCC*%:
0.146 396 hartree and CISDTQ’: 0.147 765 hartree. The
UCEPA method appears to give substantial improvements
over the CISD results without increase in computational ef-
fort also in cases where a single reference configuration is
appropriate. ’

B. Boron hydride

For our study of BH, we used a double-zeta plus polar-
ization basis. An MCSCF calculation involving the valence
space (i.e., 25, 2p on boron, and 1son hydrogen) resultsin 19
internal CSFs of !4, symmetry (i.e., using the C,, point
group). Examination of the CSF amplitudes for the con-
verged MCSCF wave function shows that there are five sig-
nificant configurations: 2a33a3  (0.959), 2a}1b3%,
(—0.159),and 22} 3a; 1%, (0.092). We employed the full
19 CSF MCSCF wave functions in our studies of boron hy-
dride.

Harrison and Handy’ report two sets of calculations for
BH, one with all orbitals active in the expansion space and
one with the energetically lowest and highest lying orbitals
doubly occupied and unoccupied, respectively, for all expan-
sion CSFs; we likewise examine BH in both approximations.

The second-order space corresponding to including ex-
citations from the core and to the highest virtual orbital was
spanned by 7303 CSFs. A MRCI calculation in this space
gave a correlation energy (E — Escr) of 0.101 831 hartree,
compared to the full CI result’ of 0.102 367 hartree. Our
UCEPA method gives a correlation energy of 0.102 859 har-
tree. For this molecule then, the MRCI and UCEPA results
bracket the full CI answer, each being in error by about 0.3
kcal/mol.

Restricting the 1a, orbital to be doubly occupied and the
124, orbital to be unoccupied, as Ref. 7 also did, results in
912 CSFs in the second-order space. A MRCI calculation in
this space gives a correlation energy of 0.087 649 hartree,
and our UCEPA method gives a result of 0.088 371 hartree.
We had need to perform a new full CI calculation in this
case, since the calculation of Harrison and Handy used 1a,
and 124, orbitals from an SCF calculation. We obtained a
full CI (3036 CSFs) correlation energy of 0.087 925 hartree,
a value 0.161 mhartree less than the single-configuration or-
bitals result. Again the MRCI and UCEPA results are with-
in 0.3 kcal/mol of the FCI result; however, in this case, the
MRCI result is about 40% closer to the FCI than the
UCEPA result.

C. Methylene

The '4,-*B, splitting in methylene has been the subject
of considerable theoretical and experimental work for the
past two decades. Several excellent reviews?*~2¢ exist in the
literature. The question of the appropriateness of our
UCEPA method in obtaining chemically meaningful results
for this system is addressed in Sec. III D. In the present sec-
tion we compare the results of UCEPA calculations using a
modest basis set (DZP) with exact (full CI) results.
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Recently, Bauschlicher and Taylor® reported full CI re-
sults for the singlet—triplet splitting using a double-zeta po-
larization basis set, thereby providing a small, yet difficult,
mode] problem requiring uniform treatment of two qualita-
tively different states. Heuristically, the UCEPA method is
expected to work well when the gualitative chemistry is em-
bodied in the MC reference wave function. The preponder-
ance of theoretical work indicates that a single CSF suffices
in the zero-order description of the *B, state but that a two
configuration wave function, 1a32a? 153 (3a,15,)* must be
used to describe the '4, state. These choices of reference
wave functions lead to a second-order expansion space of
2232 CSFs for the 2B, and 1590 CSFs for the !4, state, where
the la, orbital has been kept doubly occupied in all CSFs as
in Bauschlicher and Taylor’s FCI work.

The singlet-triplet energy gap using the reference wave
functions (i.e., without additional correlation) is 0.020 287
hartree, a result 0.001 210 hartree, or 0.76 kcal/mol, larger
than the FCI result® 0of 0.019 077 hartree. Parenthetically we
note that the FCI result corresponds to 1a, orbitals obtained
from SCF calculations (and not from a *B; SCF and '4,
TCSCF calculation); Bauschlicher and Taylor have also
performed FCI calculations using CASSCF orbitals and re-
port® a change of less than 0.01 kcal/mol in the splitting;
thus the particular form of the 1a, orbital appears to be un-
important at the 2 0.01 kcal/mol level of accuracy. Our
UCEPA prediction of the energy splitting is 0.018 998 har-
tree, which is in error by less than 0.05 kcal/mol.

In comparison, the error in the gap, using a first-order
multireference CISD calculation® for the '4, state is
0.000 369 hartree, or 0.23 kcal/mol. Consideration of the
calculated separation using Davidson’s correction® (i.e.,
0.06 kcal/mol), to approximately account for disconnected
clusters, supports the reliability of the UCEPA splitting and
argues against a fortuitous result.

D. Methylene using larger basis sets

Accurate calculation of the '4,—B, splitting in CH, is
challenging because of the differential correlation and basis
set effects for the two states in question. Final (i.e., extrapo-
lated to basis set and correlation limits) theoretical predic-
tions for the singlet—triplet splitting in methylene were ob-
tainable because of smooth trends in both basis set size and
size of configuration state function expansion space in the CI
framework. A very valid question then for a new method,
such as our UCEPA, is whether systematic improvements
on a prediction can be made; this is an especially relevant
question for a theory such as UCEPA, which is not strictly
variational. In this section, we investigate the predicted sing-
let—triplet energy gap using two basis sets larger than the
DZP of the preceding section. The smaller of the two may be
designated (642/32) and would be in the “extended basis
plus polarization” (EBP) category of Ref. 24. The larger of
the two, (9621/52), falls in the *““very large” (VL) category
of Ref. 24, and so is comparable to the very largest basis sets
used to study methylene.

We pattern our investigation on the earlier work of
Werner and Reinsch.?” For the EBP study, the 11s primitive

Cbasis of Salez and Veillard®® was contracted as (521 111),
while the 6p primitive basis of Huzinaga®® was contracted as
(3111). Cartesian double polarization functions (d-type)
with exponents 1.3 and 0.4 were added to the carbon basis.?’
Huzinaga’s 65 primitive hydrogen basis*® was contracted ac-
cording to (321) and double p-type polarization functions
with exponents 1.0 and 0.25 were added.”’” In total, 48
CGTO’s were used. The geometry used by Taylor®® was
adopted (for the 3B, statee H=0, + 1.865798 61,
0.824 860 94; for the !4, state: H=0, + 1.62583828
1.330 733 21).

As in the benchmark CH, study with a DZP basis, a
single reference configuration was used to describe the B,
state and a two-configuration reference was used for the '4,
state. The calculated splitting using these (reference) wave
functions was 11.16 kcal/mol. Use of a second-order CSF
space in which to describe the dynamic correlation via our
UCEPA formalism reduces this value to 10.84 kcal/mol. A
CI calculation spanning the identical second-order space
gives a splitting of 10.86 kcal/mol. The second-order space
for the B, state has 9121 space- and spin-adapted CSFs,
while the corresponding space for the 4, state is spanned by
6327 CSFs.

An approximation to the full second-order space, (i.e.,
the state space spanned by all configurations with not more
than two holes in the core and two electrons in the virtual
orbital space) consists of those configurations in the second-
order space which interact in first order with the reference
wave function; i.e., those configuration state functions, |I ),
for which (®|H |I) #0. The use of such spaces has been a
most useful approximation in CI calculations. We are there-
fore interested in the ability of these so called first-order in-
teracting spaces to reproduce second-order results in the
context of our UCEPA method. A first-order interacting-
space®! UCEPA calculation on the singlet-triplet splitting in
methylene yields 10.48 kcal/mol, which is in disagreement
with the second-order calculation by 0.36 kcal/mol. 3458
CSFs were included in the approximate first-order space for
the *B, state while 4755 CSFs were used to describe the '4,
state. The equivalent first-order interacting-space CI calcu-
lation gives 10.61 kcal/mol, which is in disagreement with
the second-order result by 0.25 kcal/mol.

A yet larger study of the splitting in methylene was un-
dertaken to investigate whether the best theoretical predic-
tions of the splitting could be reproduced by our new
UCEPA method. For this, our largest study, we employed
the same 11s C primitive basis as before, but we only con-
tracted the three Gaussians with the largest exponents, giv-
ing nine s-type functions. The earlier 6p primitives of Huzin-
aga were replaced by the 7p primitives of Salez and
Veillard,”® of which only the tightest two were contracted.
The same first polarization functions were added, but now a
Cartesian second ( f~type) polarization function, with expo-
nent 0.65, was included.?” For hydrogen, the 6s primitive
basis of Huzinaga®® was replaced by his 7s, and only the first
three were contracted. p functions identical with the smaller
basis study were used. In total, 71 CGTOs were used to de-
scribe CH,. The geometries used are identical to those of
Werner and Reinsch?’
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(for °B,: H=0, + 1.867 341 84, 0.813 881 73;
for'd;: H=0,+ 1.628 12079, 1.318 42622) .

As before, the reference description of the B, state is a
single configuration, and the 'A4,; state is described by a
TCSCF reference wave function. The reference splitting
with the larger basis is reduced to 10.57 kcal/mol, a value
0.59 kcal/mol less than the result with the smaller basis set.
In this large basis, the second-order spaces grew to dimen-
sions of 21 319 and 14 637 for the *B, and '4, states, respec-
tively. The singlet—triplet splitting predicted by our UCEPA
method is 9.79 kcal/mol, in comparison with 9.85 kcal/mol
obtained from a CI calculation in the same CSF space. Cal-
culations in first-order interacting spaces®!' [7924 CSFs
(®B,) and 10 927 CSFs ('4,) ] yield results of 9.32 kcal/mol
for UCEPA and 9.52 kcal/mol for CI. Again the discrepan-
cies between first- and second-order calculations were simi-
lar for UCEPA and CI, 0.47 and 0.33 kcal/mol, respectively.

E. Electron affinity of the oxygen atom

Theoretical calculations of electron affinities (EAs)
within 0.1 eV of experimental results, especially for mole-
cules containing C, O, or F, require large basis sets (especial-
ly multiple higher polarization functions) and a description
of dynamic correlation beyond the singles and doubles level
in a balanced treatment of the neutral and the anion (see,
e.g., the review article by Simons and Jordan®). The goal of
our study here of the EA of the >P state of the oxygen atom is
not to obtain the definitive value, but rather to investigate
the ability of our new UCEPA method to reproduce the ex-
act (i.e., full CI) result using nontrivial basis sets. The re-
cently developed natural orbital based contraction proce-
dure of Almlof and Taylor®® can, in general, reproduce
correlated results which are obtained using much larger
numbers of standard CGTOs. We use in our study Taylor’s
(unpublished) oxygen atom and oxygen anion contrac-
tions'®from 14s9p6d 5/ to4s3p2d 1f. [ The (unpublished) full
CI results within these basis sets were also made available to
us by Taylor.!®] Symmetry combinations of d- and f-type
orbitals which produced s- and p-type orbitals, respectively,
were eliminated.

A single reference (i.e., SCF) wave function was used to
describe the 3P state of the neutral as well as the *P state of
the anion. Modifications of the molecular MCSCF pro-
grams available in this laboratory were made to ensure the
degeneracy of the orbitals, yielding a correct SCF wave func-
tion. Second-order spaces of dimensionality 2052 and 1780
for the neutral and anion, respectively, were used for the
correlated studies. As our UCEPA program can only make
use of the symmetry relations of nondegenerate point
groups, we restricted the correlated wave function to trans-
form as an irreducible representation of D,, . The oxygen ls
orbital was kept doubly occupied in all CSFs as it was in the
FCI study.

An EA of — 0.54 eV was computed using the reference
wave functions (i.e., the electron is not bound at the SCF
level). CI calculations in the state spaces given above yield
an EA of + 0.87 eV. The UCEPA result for the EA is
+ 1.14 eV; and the FCI result'®is + 1.17 V. The UCEPA

3677

method substantially improves the accuracy of the predicted
EA of the oxygen atom, a system in which size extensity is a
major concern.

IV. SUMMARY

A potentially size-consistent multiconfiguration-based
unitary coupled electron pair approximation (UCEPA ) was
introduced in this paper, and its usefulness was illustrated by
examining benchmark systems for which full CI calculations
are available and by realistic studies of two well known spe-
cies (e.g., CH, and O™ ). Formally, the present development
expresses the wave function in terms of a unitary exponential
operator exp(G) acting on the MCSCF reference function.
The state transfer operators which appear in G connect the
(MC) reference and an expanded state space {|n)}. Expan-
sion of the resulting variational energy expectation value
through second order in powers of the amplitudes {7,}
which appear in G results in a set of simultaneous linear
equations for the optimal {7, } with all requisite matrix ele-
ments given in the Gelfand-Tsetlin basis. This second-order
expansion also destroys the rigorous variational character of
the resulting energy expression. On the other hand, it allows
the final energy expression to be size consistent if the MC
reference wave function is of the CAS-type. We employ
modifications of computational techniques originally devel-
oped for large-scale CI, making our newly developed
UCEPA method as “open ended” (i.e., only limited by avail-
able CPU time) as large-scale CI techniques. Our UCEPA
method may be viewed as an MC extension of CEPA (0)?
compatible with the unitary group approach.

Application of UCEPA to the benchmark systems,
H,O0, BH, and CH, and to larger basis set studies of CH, and
O™, indicates that UCEPA calculations are at least as accu-
rate as CI calculations in the same space, and may be consid-
erably more accurate. We wish to emphasize that a UCEPA
calculation and a CI calculation in the same state space have
nearly identical computational requirements, although the
UCEPA energy can be size consistent if the MC reference
function is chosen to be of the CAS-MCSCEF variety.
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APPENDIX: SIZE EXTENSIVITY

The size extensivity of the energy expression given in
Egs. (2.5) or (2.8) can be demonstrated by considering an
example consisting of two isolated (noninteracting) mole-
cules which need not be chemically identical or in identical
electronic states. The CAS-MCSCEF reference wave function
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for such a system can be decomposed into a product of the
CAS-MCSCF wave functions for the individual molecules

©) =] 10 -

i=1

The orthogonal-complement-space functions {|7)} taken
together with |®) contain a/l CSFs which can be formed by
distributing the N, + N, = N electrons among all of the ac-
tive orbitals of the two-molecule system. The “charge trans-
fer” CSFs, which contain more than and less than N, elec-
trons on the ith molecule do not contribute to the wave
function |®) because Hamiltonian matrix elements which
couple them with the (dominant) “nonionic” CSFs, vanish
for the separated molecules.

As a result of being able to neglect such charge transfer
CSFs, we can think of the two-molecule CAS space as con-
sisting of direct products of CAS spaces, one for each mole-
cule. This implies that the orthogonal complement space for
the N-electron system {|7)} as well as the space of CSFs
external to the CAS space {|n)} (for which we can also
ignore charge transfer terms), can be labeled in terms of the
orthogonal complement functions {|7 )5 ) = 1,2} and exter-
nal CSFs {|r;); j = 1,2} for each of the molecules. For ex-
ample, |7,,7;) is a function within the orthogonal comple-
ment space (OCS) having molecules 1 and 2 “excited” out
of their ®’s into 7, and 7}, respectively; |n,,7,) is a member
of the external CSF space (because it does not contain only
®’s and #’s) with molecule 2 excited to OCS function 7, and
molecule 1 excited to external function n,.

Using this molecule-by-molecule labeling of the OCS
and external spaces, we can decompose the matrices
B,=(®|H|n) =H,, ,Hy,,(n|H |m) — Ef,,, =A,m,Asm>
and 4;,, and determine which elements are nonvanishing.
This information can then be used to analyze the size consis-
tency of the energy expansion of Eq. (2.5c) as well as Eqgs.
(2.5) which determine the 7, values entering into Eq.
(2.5¢).

All of the CAS-space B; values vanish because |P)
(and each of the |®; ) ) has been determined via the MCSCF
variational method; the matrix elements B, = (®|H |#) are
the CSF-space generalized Brillouin theorem elements,
which vanish. The B, values for |n) in the external CSF
space do not vanish. The linear equations [ Eq. (2.5) ] which
determine the 7, and 7, values can be partitioned and solved
for the 7;, and 7, to give

Z (Hmn

n

(A1)

- E05mn )

- z H,(H—-E, )r;l_ﬁlHim .= — B, (A2a)
and
Th = — > (H—E )3 Hyz, 7, (A2b)

Equation (A2a) determines the 7, amplitudes for the exter-
nal space, which are the only ones that contribute to the
energy of Eq. (2.5c). Let us now focus on the matrices B,,
and the partitioned matrix of Eq. (A2a) labeled by indices m
and n.

The conventional Slater—Condon rules, combined with
the ““direct product” nature of |®), {|#)}, and {|n)}, the
result (®|H |7) = Oand the fact thatintegrals over functions
on different molecules vanish, allow us to conclude that the
energy expression involves a sum over only external-space
terms 2, (®|H |n) 7,. Moreover, only those external-space
functions |n) in which a single molecule is excited (from its
|®;) toits |n;)) contribute directly. For these functions the
matrix elements reduce to {(®|H |n) = (®;|H |n;) and in-
volve one-molecule matrix elements® which can be ex-
pressed in terms of one-molecule integrals.

Given that only the 7, for |n) = |®n,) and |n,D,) are
needed to evaluate the energy, we now examine the equa-
tions which determine these particular 7,,’s. If we can show
that these equations yield values for these 7,’s which are
independent of the presence of the other molecule (and thus
are equal to the 7, ’s which one obtains in a calculation on a
single molecule), we can show that Eis size consistent. First,
we observe that for |n) = |®n,), H,,, — E,5,,, vanishes
unless |m) is also of the form |®,m,). Likewise if
|n) = |n,®,), |[m) must be |m,P,). These particular ele-
ments reduce to  (m;|H|n;) —6,,E, where
E; = (®,;|H |®,) isthe CAS-MCSCF energy of asingle mol-
ecule. External space functions which contain one molecule
(e.g.,j = 2) excited externally and the other molecule excit-
ed to an OCS function (e.g. |m) = |#,;m,)) do not couple
with the |n) = |®,n,) even if m, = n, because their cou-
pling matrix element H,,, = 6,,, {(#,|H|®,) vanishes be-
cause of the generalized Brillouin theorem for molecule 1.

Next, we observe that with |m) = |®,m,) or |m,D,),
the only H,, elements which are nonzero are those in which
|y = |®,7,) or |7, D,), respectively, and for these cases
H,; = (m;|H|m;). For |#) of this form, the matrix ele-
ments H.; — Ey8;; vanish unless |7) is of the same form, in
which case, Hs;, — Ebpy = (7 |H |7;) = E;55;,- Thefact
that the H;,; — Ey0;; matrix involves a “block” with /7 and
7 of the form described above, and that this block does not
couple with other |/71)’s means that the inverse matrix
[H — Eyl];; is the inverse of this particular block of
(H — E,l)5; each element of which (Hj,;,, — E;655 ) is a
single-molecule matrix element.

Thus far, we have concluded that if |m) is of the form
|®,m,) or |m,P,) then /7 and i must also be of this form. A
similar analysis of H;, requires |n) to also be of the form
|®,n,) or |n,®,), in which case H,,, = (7, |H |n;).

Assembling all of these observations into Eq. (A2a)
gives

Z [ (mj IH |nj) - E_'famjnj

- z<m,m|m,.>[H—mﬁ:,,-:,w,-mln,»]r,,, (A3)

= —(Q,|H|m;),

for j = 1 and for j = 2, separately. This equation gives the
amplitudes T, for the rwo-molecule external states of the
form |®,n,) and |n,®,). The matrix multiplying the {r, }
vector and the vector { — (®,|H |m;)} on the right-hand
side of Eq. (A3) involve only single-molecule integrals. They
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are exactly the same matrices which would arise if one were
studying the single ( jth) molecule.

We therefore conclude that for two noninteracting not
necessarily identical molecules:

(i) The 7, ’s which correspond to external excitations of
asingle molec(lle [the only amplitudes needed to evaluate E
via Eq. (2.5¢) ] are identical to those obtained in the absence
of the other molecule.

(ii) Since the CAS-MCSCF energy E, itself is size ex-
tensive, the energy expression of Eq. (2.5c¢) is also size exten-
sive becaue the sum 3,7, (®|H |n) reduces to 2}_, 2,7,
(®;|H |n;). Note that although the proof of size consistency
has been carried out using the {|®), |#), |n)} function
space, it remains equally valid in the CSF space because
these two function classes span exactly the same spaces.
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