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Abstract

When viewed as asquare two-indexed matrix, the array of atomic orbital-based, two-electron integrals

(ijlkl) is a positive semidefinite array. Beebe and Linderberg showed, in 1977, that actual or near linear
dependencies often exist within the typesof atomie orbital basis sets employed in conventional quantum

chemical calculations. In fact, large (Le., higher quality) bases were shown to be substantially more redun-

danI than smaller or more spatially separated bases. In situations where there exists significant basis near

redund~cy, the Tank (r) of the (ijlkl) "" VI.I matrix of integrals will be significantly smaller .than' the ma-.
trix dimension M. When Ibis occurs, it proves computationally tractable to decompose the M-dimensional
matrix V into components L (V = LLT) which contain all of the information needed to form the full V

matrix. The Cholesky algorithm allows.such a decomposition to be carried out and forms the basis of the

work described here. The method is found to be highly successful inreducing Jhe mimber of integrals and
integral derivatives that musI actually be calculated. In particular, results on the C2 molecule indicate that

the algorithm can be superiorto traditional methods of integral derivative generation if the orbital basis is
large enough to contain appreciable near redtindancy. In contrast, results on benzene with a more spatially

delocalized. basis show that conventional methods are preferred whenever substantial basis (near) redun-
dancy is not present.

I. Introduction and Methods

Analytical energy and wave function derivative methods in quantum chem!stry
have been in use since the late 1960sbut arestill the object of intense research. Di-
rect ca1culationof energy and property derivatives has major advantages over the use
of finite difference methods: increased numerical precision and increased comI>uta-
tional efficiency. There is, however, at Ieast one drawback to analytical derivative
methods: the very long lists of two-electron integral derivatives that must be com:
puted, stored on disk, and perhaps even transfonned to same moIecular orbita! basis.
One advantage of using the method advocated here is that the computational, storage,
and transfonnation costs of such lists are substantially reduced.

The idea of using the Cholesky procedure for generating two-electron integrais
was put forth by Beebe and Linderberg in 1977 [1]. Linear dependencies caused by
either basis set redundance or symmetry give the matrix Wlki) a true rank (r) smaller
than the apparent rank (Le., its dimension M). In applying the method to integral
derivatives as described below, additional dependencies caD arise. The geometrical
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deriva!ive of an integral involving Gausshm-type; c>rbiiaIs'(CtTqsY"~aQ:QecT~xpressedas
a difference betweenintegrals over GTOSwilli angl.lIar'mbirient11I1'{"quantuni'numbers

, "" ',;"~",;~",,

one higherand one lower than that of the differentiated9T().Thus".ifa~yery,flexible. " ,. ., ];"""",~k 'c,

basis set is used, one might reasonably expect that many of theintegraIderivatives
(Le., those involving GToswith smaller angular momentum) couid6~';te2iij'i~ssed as
linear combinations of two-electron integrals themselves, in which case redundaricy
would occur in the combinedlist of integraIs and integraI derivatives.

, In the next two,subse~tions we describe how we implement the decomposition of
the integral and integral derivative array and how we have computed those subsets of
integrals and integral derivatives that the Cholesky algorithm requires. In Section II
we present and analyze the results of our calculations on C2 and on benzene.

Proeedure

Consider the atomie orbital basis {<I>k(r)},(k= l,... ,N), where N is the number
of basis functions. The two-electronintegrals form a matrix V defined as

~J = Vij,kI = (ijlki)

=
..

rr <I>:(l)<I>/l)~<I>:
.

(2)<1>/(2)dr1dr2
JJ rl2'

(1).

. ,

To siinplify n()tation; weuse a capital index to denote the two indices occurring in
the orbital products I = ij, l = kl. The range of I and l is then from 1 to M,where
M = N(N +1)/2,

The,matrix of twocelectron integrals isc1early positive semidefinite as llr12 is a
positive definite weighting factor willi the volume elements (drl dr2)' It can be de-
composed via' the Cholesky algorithm to form a lower triangular matrjx L' Buchthat

V = LLT (2)

As long asV is positive definite,L always exists, and it bas been shown that the
Cholesky algorithm is numerically stable [2].

The. algorithm utilized to decompose V into LLT can be detailed as follows. For
l =1,2,. .!,M, we compute

[

J-I

]

112

Lu = Vu - 2: L;'k
k=\

and, for each l, we evaluate

[
. J-I,

]
1

LI.J= ~,J- 2:L1,kLJ,k L
_, forI,=l+ 1,...,M

k=\ J,J

Ii carried through to completion, in which case L would have the same dimension
as V itself, this process would require the evaluation of M square roots, M(M - 1) x
(M \" 4)/6 multiplicatiohsor divisions,andM(M - 1) (M + 2)/6 additionsor sub-
tractions. It would algo necessitate the calculation of each of the elements of the

original V array, and would therefore not produce any savings. In fact, since M =
N(N + 1)/2, this process, if carried to completion, leads to on the order of N6/l2

(3a)

(31'»
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arithmetic steps, in which case the deeomposition of V intoL \vould be maTe time
consuming than the evaluation of the full V matrix by conventional means. .

The ker to implementing the above algonthm in a manner which ean overcome
this N6 dependence lies in processing the matrix elements in a war which allows the
(potential) reduced rank of V to be exploited. We emphasize that Jt is the physical
content (Le., near redundaney and saturation) of the basis,which givesnse to the
t'ank reduetion and aUows the proeess we desenbe here to sueceed, rather than the'
proeess itself. To perform the Cholesky deeompositiQn in an order which exploits
rank reduetion, we proceed as follows:

(1) We fmt ealeulate aU of the diagonal elements. VI,I using conventional integral
evaluation methods, and we sort these diagonal VJ,Jjoto a noninereasing order, keep-
ing a record of the onginal order.

(2) For J = 1,2,... ,M, we set LJ,J= V;J, and we then (for eaehJ)
(3) Calculate the eolumn of integrals VI,!, for 1 = J + l, , Musing eonven-

tional means.. .

(4) We then (for each J) set LI,J = [VI,! - ~/k-:.lILI,kLI,dl/Lu, for 1 =
J+ 1,...,M. ..'

(5) Finally, we modify the diagonal elements according to
2 .

~,l = ~,l - Ll,b I=J+ 1,...,M.

This is equivalent to the procedure given in Eqs. {3a) and (3b). However, at any point
in the calculation (say the Jth step), VI,I is the largest remaining element in the matrix
V. If the matrix elements are known or needed on1yto a given numencal accuraey 8,
then when VJ,J:S 8 the calculation CaDbe stopped willi no numeriealloss. If the de-
eomposition is stopped at point J, then in the reformation of theV matrix as 'Le, all
elements formed in steps l to J are exact (to maehine precision), and elements
formed in steps J + 1 to M are in erraT by lessthan 8. Clearly the ker question is
whether, for reasonable values of 8 (e.g;;8 = 10-9), the decomposition proeess CaD
be stopped (at J = r) early enough to make this decomposition less time eonsuming
than the evaluation af the fulI m~trix by conventional means. The process itself will
not succeed unIess, for a given cutoff 8, the rank r of V grows slower than the
dimension M of V; that is, the (near) redundancy in the basis function space 1s what
CaDmake the proeess succeed.' "

In expanding the method to incIude fIrSt integraI denvatives, the matrix V is re-
defined, but the machinery ofthe decomposition given above is unchanged. When
dealing withthe integrals;'a row (or column) of V is labeled by the functions
Uj} = {(M'(1)<I>il),i= I,N;j = l,i}. To incIudethe integral denvativecase, this
set of functions is expanded to be Uj} = {<I>1(l)<I>j(1),(d/dx)«I>1(l)<I>j(1»},where x
labeis the atomie displacements whose integral derivatives are to be incIuded. If the
denvative function is zero, the corresponding hj is deleted from the set.

Integral Evaluation Methods

As was stated before, the Cholesky decomposition takes advantage of (near) re-
dundancies in the matrix of two-electron integrals. The manner of formation of
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the integrals or even the type of integral"d5>~§,
Gaussian-type orbitais were chosen in this,implerrien
Eq. (l) take the form .' , ft,!:21'2?(.!>.~

cp(l,m, n, a, R) = (.i'-.X)/(y -, Y)m(z"- z)ne -aR2. " ,
The use of GTOSis widespread in quaIltum chemical ca1culations becallse'ofth~:r~la-",' " ,. '" "" '. '", ..""""."""'.
tive ease with which, electron repulsionintegrals, can.,he ca1culated compared' with
other basis set types such as Slater-type orbitals. '.'" , " ,

The Rys polynomial method of two-electron integral and integral derivative evalu-
ation is used [3]. This method was, chosenb~di\.ise6fthe easeand efficien2y with
which integrais over high angular momentum" functions caD be ca1culated. In this
method, a Gaussian transform of the Coulomb operator in Eq. (1) is performed

l 2
f

oc ~ .
- = ~;- ,exp(-u2ri;)du., (4)
rl2 v 1r o' "

This allows a separation of variabies for the thi-ee cartesian coordinates so that, the
two-electron integral caDbe rewritten as

WlkI)=~J; L>i~~)~i(U?:i(U)du.
(5)

I~, I;, and I i are two-dimensional integrals over the respective cartesian coordinates
of the twa electrons. With a change of variabies

t2 =~2/(P'+ U2)

=.1/Yl-t2I;"..,.".,
, "',"

(6a)

(6b)

(6c)p = (a + fi) (y + 8)/(a

the two-electronintegraltakes the form

WlkI) = 2...[§ f'I;«()/;(t)t(i)lii

f
I J'h ,. . 22

== "PL(t );~-P~Q t dt. o., '",. .'

where PL(t) is an Lth degree polynomial in t2, L =
are functions of the Gaussian exponents and positions:

When one differentiates the expression in Eq. '(7)with respect to position on one
nuc1eus,the derivative passes through the)ntegral,'The integrand is then an L+ l th
polynomial in t2 and may be evaluated using,the Rys quadrature.

aWlkI)~ 2~p

f
IIa

,,

;~(t)';
ax 1r _x /y (t)/z (t) at

a O a a

= fp ~+I(t)e _pPQ2~2at

(7)

lj + lk + l/, and P and Q

= ~ alAta) / (t )/ (t )W*L.J :>x y a z a a'
a=1 U z

n' > L + l
2

(8)
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The recursion relationship given in Ref.)c has been differentiated togive the quan-
tity [alx(ta)]!aXa directly. .,'

The integral derivative could have been expressed as a difference of integrals over
higher and laweT angular momentum functions, but, as Fular has pointed out [4], the
relative efficiency of the twa methods 'is questionable. The current implementation
was judged to be maTe easily computer coded and,was choseh for that reason,

II. Results

The Test Calculatians
,', ,'..

As the major test of this procedure, a series of calculations was dane on diatoinic
carbon with 22 separate, fully uncontracted, even-tempered basis sets varying in size
from 10 (2s1p) to 72 (18s6p) functions. This large range of basis sizes was studied to
explore the effects of increasing basis near redundancJo

In each test' ca1culation, the Cholesky decomposition was allowed to proceed to
tolerance (8) ofzero, As the process advanced, intermediate Tankreduction informa-
tion(Le., r a~'J;function of 8) and cpu timing data were saved. This was dane first
on the list of two-electron integrals and then for"the list of integrals and integral
derivatives (with respect to the 'C-C band length coordinate). Tables I-IV summa-

TABLEL Rank reduction at cutoff tolerances of 10-3, 10-6. 10-9. 10-12.and 10-15for
C2 two-electron integraIs.

No. of biisis
Rank at

Fuli
Basis set functions rank 10-3 10-6 10-9 10-12 10-15

2s1p .' 10 55 25 31 32 32 32

, 3s1p 12 78 30 45 46 46 46

4s1p 14 105 34 60 63 64 64

5s1p 16 136 37 72 80 81 82

5s2p 22 ' 253 60 106 134 166 145

6s2p 24 300 58 123 165 174 179

7s2p 26 351 64 133 185 198 208

8s2p 28 406 66 138 196 214 232

8s3p 34 595 87 170 257 308 328

9s3p '36 666 91 182 278 334 360

lOs3p '38 741 91 187 288 353 396

l1s3p 820 98 194 295 385 424

11s4p 46 1081 f11 230 356 472 541

12s4p 48 1176 116 234 360 481 558

13s4p 50 1275 115 240 364 491 564

14s4p . 52 1378 114 244 375 505 603

14s5p' 58 1711 130 276 422 580 684

15s5p ,60 1830 13l 275 423 585 732

16s5p 62 1953 134 280 432 598 739 -

17s5p 64 ,2080 134 285 448 603 766

17s6p. 2485 148 319 481 670 850

18s6p 72 2628 149 324 495 674 863
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TABLElI. Rank reduction at cutofftolerances of 10-3,10-6,10-9, 1O-12,and,-
integrais and derivatives. ' '

rize the rank reduction data realized in these ca1culations at fi tolerance values of
10-3, 10-6, 10-9, 10-12,and 10-15(in most quantum chemistry codes, integrals and in-
tegral derivatives arecomputedto a precision of approximately 10-11a.u.). Graphical
representations of this data are shown in Figures 1-4.

All calculations shown here were done on pur FPS-l64 array processor butdidnot
make use of its matrix accelerator (MAX) board. For the purposes of testing the
Cholesky algorithm, all integrals which were not zero by symmetry were explicitly.
calculated, although this should not be necessary in production runs. '

Analysis oj Findings

As the data of Tables I and II show, the rank r of the matrices is much smaller than
the dimension M even for tight cutoff tolerances and increases slowly as the dimen-
sion increases. As M continues to increase, the rank seems to approach an asymptotic
value (see Figs. 3 and 4), after which addftion ,of basis functions does no5 incr:ease
the ranko At this point, the basis set is complete to within the cutoff tolerance. To
analyze the potential cpu andJor storage advantages of the Cholesky process applied

No. of basis Fuli
Basis set functions rank' 10-3 10-6 10-9

2s1p 10 110 47 54 55 55 "-'?,i'f5W\';1'"

3slp 12 156 58 77 79 79
l;'r'F ,'o4s1p' 14 210 67 99 103 104

5slp 16 272 69 112 122 124 12s' .
5s2p 22 506 104 159 188 222 203

6s2p 24 600 103 181 227 237

7s2p 26 702 111 195 251 265

- 8s2p 28 812 114 203 264 284
o,

8s3p 34 1190 156 258 356 408
9s3p 36 1332 156 269 373 433

1Os:1p 38 1482 157 280 390 459
11s3p 40 1640 169 287 399 492
11s4p 46 2162 202 361 500 619

12s4p 48 2352 203 358 496 624

13s4p 50 2550 201 355 493 627

14s4p 52 2756 205 363 511 645

14s5p 58 3422 223 407 574 -738

15s5p 60 660 235 415 585 ,.755

16s5p 62 3906 236 418 593

17s5p 64 4160 226 420 610

17s6p 70 4970 255 477 o 669

18s6p 72 5256 258 482 685

'Includes orbita! products {cPicPj}and derivatives {(d/dR) cPicPj}'
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TABLE III. Fraction of apparent ranie at cutoff tolerances of 10-3, 10-6, 10-9, 10-12, and 10-15 for C2 two-electron integrais.
?

Fraction of rank at
No. of basis Fuli

Basis set functions rank 10-3 10-6 10-9 10-12 10-15

2s1p 10 . 55 0.45454 0.56363 0.58181 0.58181 0.58181 Q
3s1p 12 78 0.38461 0.57692 0.58974 Q.58974 0.58974 O

4s1p 14 105 0.32381 0.57142 O.60000 0.60952 0.60952

5s1p 16 136 0.27205 0.52941 0.58823 0.59558 0.60294
5s2p 22 253 0.23715 0.41897 0.52964 0.65612 0.57312

6s2p 24 300 , 0.19333 0.41000 0.55000 0.58000 0.59666

7s2p 26 351 0.18233 0.37891 0.52706 0.56410 0.59259

8s2p 28 406 0.16256 0.33990 0.48275 0.52709 0.57142

8s3p 34 595 0.14621 0.28571 0.43193 0.51764 \ 0.55126

9s3p 36 666 0.13663 0.27327 0.41741 0.50150 0.54054

IOs3p 38 741 0.12280 0.25236 0.38866 0.47638 0.53441

I1s3p 40 820 0.1l951 0.23658 0.35975 0.46951 0.51707

I1s4p 46 1081 0.10268 , 0.21276 0.32932 0.43663 0.50046

12s4p 48 1176 0.09863 0.19898 0.30612 .0.40901 0.47449 tn
13s4p 50 1275 0.09019 0.18823 0.28549 0.38509 . 0.44235

14s4p 52 1378 0.08272 0.17706 0.27213 0.36647 0.43759

14s5p 58 1711 0.07597 0.16130 0.24663 0.33898 0.39976

15s5p 60 1830 0.07158 0.15027 0.23114 0.31967 0.40000

16s5p 62 1953 0.06861 0.14336 0.22119 0.30619 0.37839

17s5p 64 2080 0.06442 . 0.13701 0.21538 0.28990 0.36826

17s6p 70 2485 0.05955 0.12837 0.19356 0.26961 0.34205

18s6p 72 2628 0.05669 I 0.12328 0.18835 0.25646 0.32838

\O



0\
00
O

TARLEIV. Fraction of apparent rank at cutoff tolerances of 1O3, 10-6, 10-9, 10-12.and 10-15for C2 two-electron integrals and derivatives.

Fraction of rank at
No. of basis Fuli

Basis set functions ranka 10-3 10-6 1O9 10-12 10-15

2slp lO 110 0.42727 0.49091 0.50000 0.50000

3slp 12 156 0.37179 0.49359 0.50641 0.50641

4slp 14 210 , 0.31905 0:47142 0.49048 0.49524

5slp 16 272 0.25368 0.41176 0.44853 0.45588

5s2p 22 506 0.20553 0.31423 0.37154 0.43874

6s2p 24 600 0.17167 0.30167 0.37833 0.39500

7s2p 26 702 0.15812 0.27778 0.35755 0.37749

8s2p 28 812 0.14039 0.25000 0.32512 0.34975

§s3p 34 1190 0.13109 0.21681 0.29916 0.34286

9s3p 36 1332 0.11712 0.20195 0.28003 0.32508

lOs3p 38 1482 0.10594 0.18893 0.26316 0.30972

IIs3p 40 1640 0.10305 0.17500 0.24329 0.30000

IIs4p 46 2162 0.09343 0.16698 0.23127 0.28631

12s4p 48 2352 0.08631 0.15221 0.21088 0.26531

13s4p 50 2550 0.07882 0.13922 0.19333 0.24588

i4s4p 52 2756 !0.07438 0.13171 0.18541 0.23403

l4s5p 58 3422 0.06517 0.11894 0.16774 0.21566

15s5p 60 3660 Q 0.06421 0.11339 0.15984 0.20628'

16s5p 62 3906 0.06042 0.10701 0.15182 0.19636.
17s5p 64 4160 0.05433 0.10096 0.14663 0.18510i

17s6p 70 4970 0.05131 0.09598 0.13461 0.17445'

18s6p 72 5256 ' 0.04909 0.09170 0.13033 0.16591:t..

alncludes orbital products {pi'M and derivatives {(d/dR) PiPj}



x 600
'C

"O

:::;;:

'O 400
.Y
C

~ 300

900

800

700

200

100

05 15 25 .35 45 55 65 75
Number of Orbita I Basis Functions

Figure I. Rank reduction for diatomic . carbon two-electron integrals with even-tempered
basis sets at to1erances of 10-3.10-6, IQ-9. 10-12. and 10-15.

to the integrals and integral derivatives, we wanted to rit the "data" obtained in our
c;l1culatiousto a reasonable functional fonn. / ,.

In choosing a functional fonn tó fit the M dependence of r, we required that.the .
function have an asymptotic limit as the above analysis indicates and a slope of ap-
proximately 1 for smalI values of Mbecause r ~M in this limie We therefore model
the variation of r with M as atanh(,BMY). Forthis function, theasymptotic (as
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Figure 2. Rank reduction for diatomic carbon two-electron integrals and derivatives with
even-tempered basis sets at to1erances of 10-3. 10-6. 10-9. 10-12. and 10-15.
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M - 00)limit is a and, if the optima1 value of (3 is approximately l/a, the. slope is
approximatelyl for'sma11M. -

~esults of least squares fits of the above functiona1form to OUTr(M) "data" for the
two-el~ctron integrals for diatomic carbon are given in Table V and for two-electron
integrals and derivatives in Table VI for the five cutoff tolerances examined.
Figures 5 and 6 show the resulting optimalleasts squares curves for the two-electron
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TABLEV. Least squares optimal values of ex, (3, and 'Y forthe function r = ex
tanh({3M"') at cutofftolerances of 10-3,10-6,10-9,10-12, and 10-15

Cór C2 two-electron integrals.

Tolerance ex {3 'Y

10-3

10-6

10-9
10-12

10-15

1.063459

1.173166

1.454537
1.679749

1.761226

TABLEVI.. Least squares optimal values of ex, (3, and 'Y for thefunction r = ex
tanh({3M"')at cutoff tolerances of 10-3, 10-:6, 10-9, 10-12, and 10-15

for C2 two-electron in!egrals and derivatives.

Tolerance {3 'Y

10-3

10-6

10-9
10-12

10-15

1.027928
1.143445
1.360329
1.551929
1.616605

integrals and for the integrals and denvatives, respectively. In the two-electron inte-
gral case, the a values range from 186 to 1012 with {3values between 0.01140 and
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Figure 5. Least squares fit to actual data for diatomic cilrbontwo-electron integrals with
even-tempered basis sets at tolerances of 10-3, 10-6, 10-9, 10-12,and 10-15.
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Figure 6. Least squares fit to a~tuaI data for diatoniic"C'ai-b6n tw'o-electron integrals and de-
rivatives for even-tempered basis sets at tolerances of 10-3, 10-6, 10-9, 10-12; and 10-15.

0.00066 and "Yvalues between 1.063 and 1.761. For the two-electron"integrals and
derivatives, a ranges from 326 to 1324, f3 from !J.01304 to 0.00110, and "Yfrom
1.028 to 1.617. One notes here that the values of f3 are approximately l/a for each
case, satisfying the initial slope requirement (Le. ,the fil to the actual "data" is quite
good as M ~ O). The result that a values are less than 2500 is of cruCial importance
as we now illustrate (corresponding to basis set sizes near 50 because M ==N2)., "

Potential Numerical Advantage oj the Method

"Analysisof the algorithm described in Section I shows that the Cholesky decompo-
sition process requires (1) arithmetic operations (additions or multiplications) whose
numbers scale as (3M - 2r + l)(r - l)r/3 as M (and r) increases and (2) integral
or integral derivativeevaluations whose number varies as Mr - r(r - 0/2. In con-
trast, the conventional treatment requires M(M + 1)/2 integrals to be evaluated. If
the cpu time required for a floating point addition or multiplication is denoted A and
the (average) time required to evaluate a single two-electron integral or derivative is
denoted B, the rafio of the Cholesky to conventional computer time requirements
should vary as

/T =" A (3M - 2r + 1) (r - l)r/3 + B(Mr - r(r - 1)/2)
C BM(M + 1)/2

This ratio most be less iban 1 for the Cholesky process to be computationally advan-
tageous. On ourFPS-I64 array processor using non~vectorized code, a floating point
multiplication takes 0.540 JLsec(with an addition being a factor of three less) and a
two-electron integralor integral derivative evaluation requires 503 JLsecusing the
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highly optimized ARGOS integral evaluation program [6]. Thus for the following
analysis, we set A = 0.540, and B = 503.

Figures 7 and 8 show C/T for the diatomic carbon data for integrals and integral
plus derivatives, respectively. For the integrals, the ratio C/T is less than l for all but
the tightest cutoff tolerance and is a decreasing function of M as M increases. For IDe
integrals and derivatives, the result is maTepronoul1cedwith"C/T being less than (f4
for all values of M and decreasing to below 0.1 for M ;:: 1000. Thus, the Cholesky
decomposition process showsmuch promise for decreasing computation times for in-
tegral and (especially) integral and derivative evaluation.

Disk storage requirements may also be. greatly reduced by the Cholesky process.
The conventional algorithms stare on.the order of M2 integrals~The Cholesky algo-
rithmdescribed inSection I stores M(r + 1) - r(r + 1)/2 integrals. The ratio of the
Cholesky to conventional storage requirements is less than unity for all M and for
large M (as r approaches its asymptotic constant a) decreases as a/M. Saving sub-
stantially on storage also leads to increased program performance through reduced
I/O. With large maip memories characteristic of modem computers, it is possible that
all of'_~e requi~iteintegrals can be kept in-the high-speed memory of the machine.

.In addition to savings in integral evaluation time and storage, the Cholesky pro-
cess, if advantageous, can give major savingswhen atomic orbital-based, two-electron
integrals ulik/) must be transformed to the molecular. orbital (MO)basis. Because
each integral (those given exactly and those approximately) is expressed .In the
Cholesky procedure as ~,J = 2.~=lLI.kLk,J'IDetransformation of IDel and J indices

0.0 o 400 800 1200 1600 2000 24002800

M (number of basis functions squared)

Figure 7. Ratio of cpu time-weighted arithmetic operations [integral evaluation time

(503 }losec) and floating point multiplication (0.540 }losec)are included in these timings (see
text)] fór Cholesky algorithm to conventional methods for diatomic carbon two-electron in-

tegralswith even-tempered basis sets at tolerances 10-3.10-6, 10-9. 10-12. and 10-15.
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Figure 8. Ratio of cpu time,weighted arithmetic operations [integral evaluation time
(503 /Lsec) and floatiIig point multiplication (0.540 /Lsec) are included in these timings (see.

text)] for Cholesky algorithm to conventiona1 methods for diatomic carbon two~electron in-

tegrals and derivatives with even-tempered basis sets at tolerances of 10-3, 10-6,10-9,
JO-12, and lO-ls.

to the MO basis set caD be realizedby transforming the first (I) index of the (L/,k)

array to the MObasis:

'L Lij,k Cia Cjb =;; Lab.k= LA,k
ij '.

(9)

where the {Cia}are the LCAO-MOexpansion coefficients. This two-index transforrna-
tion would be carried out for all k = l,..., r, but the k index itself neednot be
transformed. Thus, the requisite transforrnation process involves rN(N + 1) steps to
obtain{VAk};the conventional transforrnation of VIJto VABrequires 4N5 steps.

Other Tests

As a check on the generality of OUTfindings on C2 using the above bases, two
other sets of ca1culations were performed with substantially different basis sets.
A Dunning lOs6p primitive set [7] and an uncontracted 6-311G set [8] (lls5p primi-
tives) were used for both integral and integral plus integral derivative ca1culations.
Table VII summarizes the results for these calculations: Comparing these results with
those using similarly sized even-tempered basis sets shows that the results are very
similar. We therefore feel it is likely that integral and derivative evaluations within
aDYreasonably wen optimized moderate- to large-size basis set will benefit from the
Cholesky decomposition.

An additional calculation was done on the benzene mo1ecule to judge the perfor-
mance of the Cholesky decomposition on a polyatomie system for whieh maDYinte-
grals vanish due to large spatial separation between atomie centers and for which



TABLEVII. Fraction of rank atcutoff tolerances of 10-3, 10-6, 10-'9, 10-12, and 10-15 for

C2 twO"electron integrals and integrals plus derjv"atives for the Dunning and 6-311g basis sets.

TABLEVIII. Fractionofrank a(cutofftolerances of 10-3, 10-6, 10-9, 10-12, and 10-15 for"

benzene two-electron integraIs and integr~ls plus derivatives with an sTO-3G basis.

Type of
Cale.

No., of basis
functions

Integrals
Integrals +

derivatives

36
36

.tj
tI1
8
~'1:1
Oen
::;
O
Z

0'100
'"'

Fraction of Tank at
No. of basis Fuli

Basis set function Tank 10-3 10-6 10-9 10-12

Dunning 28 406 0.15517 0.34236 0.50985 0.56897 0.58128

integrals
3516-3l1g 26 0.19088 0.36752 0.45014 0.47009 0.48718

integrals
Dunning 28 812 0.14039 0.25123 0.33867 036823 0.37438

integrals +
derivatives

6-311g 26 702 0.16524 0.25783 0.31624 0.31197 0.32051

iniegrals +
derivatives

Fraction of Tank at
Fuli
Tank 10-3 10-6 10-9 10-12 10-15

666 0.14414 0.31081 0.46547 0.58859 0.63814
1332 0.15165 0.31081 0.46547 0.58859 0.63814
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basis set saturation was not anticipated. The 36 funetion sTo-3G basisof Hehre,
Stewart, and PopIe [9] was used in this ealeulation and the integral derivatives wece
taken willi respect to one C-C hond distanee. AIthough the Tankreduetion is still
signifieant, the results(Table VIII) show a marked decline in the advantage 'of the
Cholesky proeess. This is primarlly due tothe smaller basis set size and large spatial
separations among the orbitals in the molecule. Willi this much less flexible basis,
there will be fewer near dependencies in the basis, and the Cholesky proeess is
not advantageous.

III. Summary

The Cholesky deeomposition method bas been shown to be effective in redueing
the number of integrals and integral derivatives that need to be ea1culated, stored, and
transformed to the moleeular orbital basis for atomie orbita! basis sets whieh eontain
substantial near reduildancy. The saturation of the atomie orbital basis, not the
Cholesky proeess itself, eauses this procedure to sueeeed. As analytieal energy and
wave funetion derivative methods are applied to larger moleeular systems, the num-
ber of requisite integrals and integral derivatives grow very rapidly. The incorpora-
tion of OUTmethod into existing analytical derivative program suites should therefore
allow cpu and disk storag'erequirements to growat a much slower pace and thereby
allow ea1culationson much larger systemsthan is thought eurrently praetical.
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