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In this paper, we discuss the validity of our earlier derivation of a theory of molecular electron affinities and
ionization potentials. We show how one can improve upon our original derivation, which was not entirely consistent,
by iteratively calculating both the jon and neutral molecule wavefunctions. Most importantly, we demonstrate that
the electron affinities and ionization potentials which are obtained by using our original theory are correct through
third order, even though the derivation of this theory contains an inconsistency.

1. Introduction

In recent publications [1, 2], we demonstrated
how an approximate solution of the Heisenberg
equation of motion [3] (EOM), which has previously
been used to calculate molecular electronic excitation
energies and oscillator strengths [4—10], could be em-
ployed to compute molecular electron affinities, ion-
ization potentials, and first-order density matrices. In
these papers we made the assumption that the ground-
state wavefunction |g) of the neutral molecule could
be adequately approximated by using first-order
Rayleigh—Schrodinger (RS) perturbation theory [11]#.
We felt that, although the RS wavefunction might not
yield a very accurate energy for the neutral molecule,
its use in the calculation of ion—neutral energy dif-
ferences was strongly supported by McKoy’s success
in employing such wavefunctions in his calculations of
electronic excitation energies. As McKoy and others
have pointed out, the success of these direct-calcula-
tion methods is linked to the fact that the full com-

1 Alfred P. Sloan Foundation Fellow.

# Because we have not allowed for the possibility of singly
excited configurations in |g}, we are restricted to closed-
shell ground states.
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plexity of |g) is neither displayed nor required in the
computed energy difference. With these reasons in
mind, the RS function was chosen as a well-defined
and computationally tractable first approximation to
|g). Of course, it is very natural and important to ask
whether we could devise a scheme for obtaining an
“improved” approximation to |g), which is fully con-
sistent, in the sense described by McKoy [7], with

the derivation of our theory of electron affinities and
ionization potentials. In section 2 of this paper, we
show how the necessary components of this consistent
wavefunction |gc) can be obtained in a computational-
ly useful manner. We develop a rapidly convergent
iterative procedure which permits the self-consistent
calculation of both |g¢) and the excitation operator
.Q; which generates the negative-ion state by operating
on |gc). Finally, we demonstrate that electron affini-
ties which are accurate through third order in the
electron repulsions r,-}l can be obtained by using a
simplified non-iterative technique in which Ig¢) is ap-
proximated by the first-order RS wavefunction |ggg).
Thus, we have shown that the results of our original
theory are entirely valid if one is satisfied with cal-
culating all quantities to third order; the self-consistent
computation developed herein is unnecessary. Section
3 contains our concluding remarks.
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2. The calculation of |g )

In the EOM theory of electron affinities and ioniza-

tion potentials derived in ref. [1], the excitation
operator £, , which generates the, in principle exact,
eigenstate |A_) of the negative ion when operating on
the true neutral-molecule ground state |g?,

QL=D), (1)

is approximated in terms of the second-quantized
Hartree—Fock orbital creation [C;’} and annihilation
{C;} operators as follows £.

R=TXNCG+ T Y,,,0CC,C,
1

m<n,a

B rg e o . )
a<fpm

The operator C;” (C;) creates (destroys) an electron in
the Hartree—Fock spin-orbital ¢;. Greek indices a, §, ¥
label “occupied” Hartree—Fock spin-orbitals, m, n, p,
q label “unoccupied” spin-orbitals, and i, j, k, / label
either set. The X;(A), ¥,y (A), and Y, 5(N) are ex-
pansion coefficients which are determined by making
use of the EOM theory of ref. [1] whose pertinent
aspects are briefly reviewed below. An analogous ex-
pansion for the operator £, which generates positive-
ion eigenstates # when operating on |g) is also given in
ref. [1].

By assuming that |g) and |A_) exactly obey the
following Schrodinger equations

Hig)=Elg), (3a)
and
HIA)=ETIN)), (3b)

¥ For a good description of the properties of such Fermion
creation and annihilation operators, see ref. [12]. The ef-
fect of ni on |g) is relatively easy to understand. The term
X;\) C,-“ simply adds, in a weighted manner, an electron to
the spin-orbital ;; while ¥, .,(A) Gy C, Cpyy adds an elec-
tron to v, and promotes another electron from ¢, to ¢,.
Finally, the term Y .., 5(\) C3 Cppy Cg adds an electron to

wg and moves another electron from g, to .

Tele conclusions reached in this paper are obtained by con-
sidering the states of the negative ion. Analogous results
can be deduced by carrying through the development with
the positive-ion states Q18

#
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one immediately obtains the basic equations of motion
[H, e =(Eg-E)Q1e), (30

which were used in ref. [1] to derive the following
matrix pseudo-eigenvalue problem involving the elec-
tron affinity and the coefficients X;(A)

? Hy(AE) X, = AL, X,(V), ©)

where AE), is ;" — E. This result can be derived by
using the approximation to ) given in eq. (2) and
the RS approximation to |g)

=12 U
lggs = Ng [|0>+ T e

m<na<fa "8 "m n

X Cpy CrCy ca|o>] (5)

in €q. (3¢). The coefficients Y., (A) and ¥,,,,, ()
have been eliminated by partitioning the resulting
equations. In eq. (5), NV, is a normalization constant,
€; is the Hartree—Fock energy of spin-orbital ¢;, and
the (mn|aB) are antisymmetrized two-electron integrals
over the spin-orbitals v, , ¢, ¢,, and y,. The
Hartree—Fock wavefunction of the neutral parent is
represented by |0). The elements of the matrix
Hi;(AE,) are given in eq. (37) of ref. [1] as

Bt.umﬁBj‘o:mﬂ

H.(AE) =4+ 2,
if A if
E:};AEX

a<gm

®
Bl', naV+] Bf,ﬂm\’-l-l

7 N+ln
N+l<n,a Ea _AE?\

*

ik E Lnam ~f,nam (1 3?)
N+1<m<na ED"-AE,

and the quantities appearing in this equation are de-
fined in eqs. (31d)—(35) of ref. [1] which are repro-
duced here for tl;l'e sake of completeness

Ay =8¢ +§ GKIIDF, (1-31d)

1]
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Biamg = —(imlag) — } 2 Gimlpg)KEd
P.q
I‘
+23 [@lpodKP —GylpKIP],  (1-31e)
Y.P
Bf,nam = (o mn) + 4 Za; <fﬂla7)K:f;’
i
+25 [CplyKIP —Gplym)KJPY , (1316)
P :
= k p-pl
Fy= 2 KPRkl 3 kPOKPE,  (132)
a<B,p P<q,a

E;"" = en;' +¢, — €, — (amlam)—(anlan) +{mn|mn),

(1:34)
EP =¢ —e —e_ —{(5plép)— (yplyp) + (67167),
Grta Sl (1-35)
and
ng = (pqlceﬁ)(e;eﬁﬂep—eq)‘l . (1-15)

Although the above quantities are rather compli-
cated, it should be kept in mind that a knowledge of
the orbital energies {€;} and two-electron integrals
Gjlk1) is sufficient to permit the formation of H;(AE)).
The physical content of the terms in the above expres-
sion for Hi;-(AE ), which is discussed more completely
in ref. [1], can be summarized as follows.

(i) The second sum in eq. (1-37) contributes to
the ion—neutral Hartree—Fock energy difference;
therefore, this term contains the effects of charge re-
distribution on the calculated electron affinities.

(ii) The third sum approximates the correlation
energy of an electron in gy, interacting with all
other electrons.

(iii) The first sum gives the approximate change in
correlation energy of the parent’s N electrons caused
by the “extra” electron.

Eq. (4) can be solved iteratively for the coefficients
X;(g) and the pseudo-eigenvalue AE, which belong to
the ground state of the negative ion. The other solu-
tions X;(A), AE, to eq. (4) correspond to excited
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states of the negative-ion and to positive-ion states I.
Once the X;(g) have been calculated in the manner
discussed above, the Y, ,,,(g) and Y, 5(¢) can be
obtained from the equations

Yymg(®) = ? (AE+EM) B} s Xi(8) (62)
and

Yyam(®) =20 (AE~ET"Y'BY, . X,(8),  (6b)

which result from the partitioning of the original
equations of motion [eq. (3¢c)] mentioned above.
Thus, the solution of eq. (4) yields all the information
needed to describe the excitation operator given in
eq. (2), and, hence, all the information needed to
specify the approximate negative-ion ground state

2 lgRs)-

It has been pointed out by McKoy [4] and others
[1, 9] that the derivation of the working equations of
any EOM theory are valid only if the excitation
operator (£23) and the parent wavefunction (|g)) are
consistent. In the case under consideration here, this
consistency condition is based upon the requirement
that the functions 2, |g) should vanish identically #

Q,1g)=0, forallX. )

That is, it was assumed in the derivation of eq. (4)
that £} and |g) obey eq. (7). It can easily be shown

% It can be shown that eq. (4) yields a complementary set of
expansion coefficients Xj(.u). Yno:m{’")’ Yamﬁ(“‘) which
relate g) to positive-ion states |u,) = Q,1g) and that Q,
obeys the equation [H, ©2,]1g) = (E;—E) 2,18 It can
also be shown that the positive- and negative-ion excitation
operators obey the following important orthogonality rela-
tions: (g1925,92,18)=0, (glnuﬂilg} = 0. Because these rela-
tions hold for all negative-ion states |A_) and all positive-ion
states |u,), they imply that the functions 2, |g? and ﬂ;fm
are identically zero. These observations will be used shortly.

# See the last parts of footnote ¥. In deriving the working equa-
tion (4) from the fundamental Heisenberg equation (3c),
the assumption that 2, Ig) = 0 allowed us to rewrite
€192, [H, Q3]1g) = AE, (812, 2318} in a form which gives
a hermitian matrix HE(AEA) when eq. (2) is substituted
for 23 and the Y, (A) and Yamﬂ(l} are eliminated by
partitioning. The above rewriting is given by
@i {a,, (4, 23] lig) = aE, @1 {9,, 03 }1g), where the
anticommutator is defined as {A,B =AB + BA.



Volume 25, number 1

that the first-order RS ground state |ggg), which has
been employed in the development of our original
EOM theory, is not consistent with the excitation
operator given in eq. (2). Thus, there is a shadow of
doubt cast upon the derivation of the working equa-
tions of ref. [1]. In an attempt to remove this incon-
sistency in our derivation and, thus, in the resultant
theory, we herein develop a technique which makes
use of eq. (7) to calculate a new wavefunction |g¢)
which is consistent with the negative-ion excitation
operator Q{ given in eq. (2). It is shown that, although
Ig¢? differs from |gpg) in a significant fashion, the
electron affinities and ionization potentials which are
obtained in our original theory remain valid through
third order in the electron repulsions.

As an initial step toward overcoming the above in-
consistency, the excitation operator Q; whose ex-
pansion coefficients X;(N), Yy, (A, ¥y () are
calculated within the (inconsistent) theory of ref. [1]
can be used in eq. (7) to obtain a first approximation
for |g¢). This “improved” wavefunction can be used
in the development of a new eq. (4) which, in turn,
will yield new coefficients X;(A), ¥, 5(A), ¥ (D)
and, via eq. (7), a new approximation to |gc). The
analog of such a self-consistent determination of Q;
and |gc) has been successfully carried out by McKoy
[6] and by Ostlund and Karplus [9] within an EOM
theory of electronic excitation energies. From the
results of his calculations, McKoy [6] has concluded
both that self-consistency is usually reached after only
one or two iterations and that the excitation energies
obtained in the initial calculation, when |gp ) is used,
are very close to the converged results. Based upon
these observations and the fact that the self-consistent
determination of the excitation operator and |g-) may
be a time-consuming and costly problem, McKoy has
decided that the use of [ggg) within the non-iterative
EOM theory is reasonably well justified.

To investigate whether these conclusions can be
carried over to our calculations of electron affinities,
the excitation operator Q) generated in the theory of
ref. [1] can be used in eq. (7) to solve for the first ap-
proximation to |g¢). This, of course, is nothing but
the first step toward the self-consistent calculation of
Q; and |g¢) discussed above. To carry out the solution
of eq. (7), the wavefunction |g) is expanded in terms
of the Hartree—Fock Slater determinant [0) and
single-, double-, triple-, etc., excitations relative to [0):
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8> =100+ 25 K™ C? C.10)

@ m o
m, o

hidy 2, RTACE OO € 0 .. (®)

m<n a<f

The expansion coefficients K, K 75", etc., are no
longer taken from RS perturbation theory but are de-
termined from eq. (7). In the remainder of this dis-
cussion, only the single- and double-excitations in
Igc? will be treated; triple and higher excitations can
be shown to not contribute to H;;(AE,) through third
order ¥. By applying the adjoint of Q} [see eq. (2)]
to the above |gc) and equating to zero the coeffi-
cients of each independent function, a set of equa-
tions is obtained for the K", ap »€tc. For example,
the coefficient of the function C,|0) appearing in
Q,\Ig@ can be set equal to zero to yield

X+ D X MK+ 25 Y0, (KT =0,
m m<n g (9)

Similarly, by equating the coefficient of Cp, C;C,[0)
to zero, a second set of equations is obtained:

=Y s = XSKT + XK + ? X;(R)K:%’l ;)o.

Eqgs. (9) and (10) can be solved for the K" and K 3"
in terms of the expansion coefficients appearing in
£, in the manner described below.

If the X;()) are thought of as forming a square
matrix {X:‘:\} whose row index is { and whose column
index is X, the coefficient K£g" can be extracted
from eq. (10) by multiplying this equation on the
right by (X‘l);(p and summing over the index A

* -1yx _ ppm
? Yamﬁ()«) X ).\p Kes - (1)
In analogous fashion, the coefficients K2 can be ob-

tained by multiplyjng eq. (9) on the right by (X_l)ip
and summing over A.

% Asin ref. [1], our goal is to obtain results which are valid
through third order; all higher-order terms are neglected.
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Ly DR Ly 0. 0
m<n g A

From eq. (6a) one can see that Y, 5, ()\')" is at least
first order in the electron interactions and, thus, that
the contributions of single excitations to |g¢) are of
one higher order than the double-excitation coeffi-
cients K2§". Because single- and double-excitations
can contnbute to our effective hamiltonian matrix

H;;(AE, ) only through terms involving an additional
faetor in the electron repulsions rj; I eg.,

OI{C,, [V, 11 G, CI0KE

the coefficients KZ and KEg" need only be computed
through second order to guarantee our goal of ob-
taining Hj; (‘3"‘5)\) through third order. Through second
order, eqs (11) and (12) reduce to
Kapg’ = (pmla) (e, +e;—€,— €, b

. [] & <mtam)+<em|ﬁm>-<ae|a3>]

€ +eﬂrep—e
(2) s
t B o me(Cat€s—Em e) (13)
and
5o o) - :;:ﬁlm:ie . (14)
m<nﬁa|36 W TR TR TP

In eq. (13), B‘z) ) mp is the second-order component of

By amg whlch is defined in eq. (1-31e).
(2) (pmltq){1qlof>
Bp.amg 7:' e te— €€,

[ (prlta) (melBy) _ (pyl18)(mtlay) ] (15)
,Hl_eﬁ+e St & te e ¢ ]

t a vy

These final working expressions for K2 and K24
provide all the information needed to carry out a self-
consistent calculation of €23 and |g). The expansion
coefficients given in eqs. (13) and (14) can be used to
construct a new H;(AE, ) matrix which will yield new
excitation energies AE, and new coefficients )&’i()m),
Yo:m ﬁ(k)’ Ynamg)-

Because the iterative calculation outlined above in-
troduces additional complexities into our present
scheme for obtaining molecular electron affinities and
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ionization potentials, it is important to investigate
both the rate of convergence of the calculation and
the contributions of the second-order terms in K gg
and KP? to the computed quantities. As was stated
earlier, to obtain H; (AE ) through third order re-
quires that K? and Kpg be computed through second
order only. Therefore egs. (11) and (12) need not be
used in any calculation; the approximate results given
in egs. (13) and (14) are sufficient. Because the quan-
tities appearing on the right sides of eqgs. (13) and (14)
would not vary from one iteration to the next, i.e.,
they are given in terms of the (unchanging) orbital
energies and two-electron integrals only, it follows
that the above iterative procedure will converge
(through the order treated here) after one iteration to
a self-consistent 5'2; and |gc). That is, neither the
HU(AE,\) matrix nor the resulting X;(A), which deter-
mine the consistent |gc), will change after the first
iteration in which the second-order |g¢) is used. This
result implies that the self-consistent calculation de-
scribed here does not complicate our original theory
to such an extent as to render it computationally in-
tractable. Quite to the contrary, the additional diffi-
culties introduced by this modification are minor
since only a single iteration is needed.

In addition to this rapid convergence of the itera-
tive scheme, another equally important characteristic
of our method should be pointed out. Although the
first-order RS approximation to |g) is not consistent
with the excitation operator £ used in our theory,
it can be shown that the second-order components of
the consistent [gc) do not contribute to the calculated
electron affinities and ionization potentials through
third order. This conclusion is based on the observa-
tion that both |ggg) and Qg |grs) agree with the RS
expansions of the neutral-molecule and negative-ion
wavefunctions through first order ¥. Thus, by a well-
known theorem of perturbation theory [11], the ex-
pectation values

(@gs!Hlggs) {@gsleps} ™ = £ (16)
and

+ + o e, T
(gRslngHQgIgRS}{(gRSIQgQgISRS)} _bg (17)

 That s:t"lgRs) is identical to the first-order RS wavefunction
of the ncgalwe ion can easily be shown by applying the ex-
citation operator of eq. (2) to the Iggg) of eq. (5).
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are correct through third order. Because the quantity
AEg, which is directly calculated in our method, can
be shown to be identical to the difference of these
two expectation values through third order

_(ers! (D, [H, 21} ggs)
£ (sl {9 U Higgg)

= Eg" — E + fourth-order terms , (18)

it follows that our electron affinities are also correct
through third order. That is, the second-order compo-
nents of |gc) and {g_), which can be obtained through
the iterative procedure discussed earlier, are not needed
to compute AE, through third order; only the first-
order wavefunctions |ggs) and Q;IgRs) are required.
Our final conclusion, therefore, is that our original
theory which employs the first-order RS approxima-
tion |ggs) is sufficient to guarantee that AE, is given
through third order, even though |ggg) is not consis-
tent with 2.

To add support to the foundations of this result, it
is helpful to point out the connection between the
equations of motion which resulted in eq. (4) and
the variational determination of |g_). If the operators
Q) depend upon a set of parameters (the X;, ¥ o
and Y, 5 in our case) which we shall collectively
label as {g;}, the result of extremizing &Eg [see
eq. (18)] with respect to these parameters can easily
be stated as follows:

DAE [3a, = (gl (32 /0a;, [H, 1 }Iggs)

—(ggs! (9%, /3a;, U }Hgps) = 0. (19)

By substituting the expression given in eq. (2) for Q;
and successively choosing 352,/da; equal to C;,

Cpn CyCp.and Gy C;, C,, we arrive at the same start-
ing equations as were obtained in ref. [1]. Thus, we
see that our final working equations [eq. (4)] can
also be based on a stationary principle. Recalling the

connections between perturbation theory and the

t Because the proof of eq. (18) is rather involved, it will not
be presented here. Suffice it to say that, by using the specif-
ic forms of F and Iggg), it can be shown that the quantity
@gs! {2, (H, 2§) hegg)/ters! {2, 2gHggs), which is
shown in ref, [1] to equal Afg, is identical to Eg -E
through third order.
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variational principle, which are stressed in ref. [11],
it is therefore not surprising that.Q; lggs? agrees with
the first-order RS negative-ion wavefunction.

Furthermore, if one considers the negative-ion
state |g_) to be related to |g) by the transformation

+
Q.
8= 1), (20)
it can be seen that the basic equation of our theory

- + 24 +
(Eg —-£) @l {%,,82,}Ig)= €l {2, (A, Q‘x 1}g) (21)

is an example of a hypervirial relation [13]. There are
several interesting and potentially useful theorems
which make connections between the first-order per-
turbation theory approximations to [g_»and |g), the
variational extremization of the functional AEg, and
these hypervirial relations. Thus it is also not surpris-
ing that the first-order approximations Q;IgRS) and
lgrs should obey the above eq. (21). It is clear that
there exists a very close connection between the EOM
techniques used in the present work and the elegant
work cited in ref. [13] involving perturbation theory,
variational principles, and hypervirials. We believe
that a great deal of new progress can be made in the
applications of EOM theories to chemical problems if
we are able to make use of the numerous results
which are now available in the areas discussed above.

3. Concluding remarks

For the sake of clarity and organization, let us brief-
ly review the principal results which have been ob-
tained in this paper. After briefly reviewing the nota-
tion and philosophy of the EOM theory of molecular
electron affinities developed in ref. [1], we showed
that the first-order RS approximation to |g), which is
not consistent with our excitation operator £25, could
be replaced by a consistent ground-state wavefunction
of second order by carrying out an iterative calcula-
tion involving both £2,1g}= 0 and eq. (4). This self-
consistent detegmination of lg¢) and 2y was shown
to converge after only one iteration if one is satisfied
with computing all of the elements of H;;(AE))
through third order in the electron repulsions. In this
case, closed expressions for the contributions of both
single- and double-excitations to |g-) were given in
egs. (13) and (14). Finally, by pointing out that
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Qg lggs) is identical to the RS wavefunction of the
negative ion through first order, we were able to
demonstrate that the electron affinities calculated in
our original EOM theory using only thefirst-order
|grs? are correct through third order in r,-“-l. The
most important, and final, conclusion is that the elec-
tron affinities and ionization potentials which result
from the application of the theory of ref. [1] are cor-
rect; the second-order components of |gc) and the
iterative solution of eqs. (4) and (7) are nor needed to
develop a third-order theory of molecular electron af-
finities.
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