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In this paper, we discuss the validity of our earlier derj\'ation of a theory of molecular electron affinities and
ionization potentials. We show how one can improve upon our original derivation, which was not entirely consistent,
by iteratively calculating both the ion and neutral molecule wavefunctions. Most importantly, we demonstrate that
the electron affinities and ionization potentials which are obtained by using our odginal theory are correct through
third order, even though the derivation of this theory contains an inconsistency.

l. Introduction

In recent pubIications (1,2), we demonstrated
how an approximate solution of the Heisenberg
equation of motion [3] (EOM), which has previously
been used to ca]culate molecular electronic excitation
energiesand osciIJatorstrengths [4-10], could be em-
p]oyed to compute molccular e1ectronaffinities, ion-
ization potentials, and first-order density matrices. In
these papers we made the assumption that the ground-
state wavefunction 19)of the neutral molecu]ecould
be adequate]y approximated by using first-order
Rayleigh-Schródinger (RS) perturbation theory [11] #.
Wefelt that, although the RS wavefunction might not
yield a very accurate energy for the neutra] mo]ecu]e,
its use in the calcu]ation of ion-neutra] energy dif-
ferences was s~ronglysupported by McKoy's success
in emp]oying such wavefunctions in his calcu]ationsof
e]ectronic excitation energies.As McKoyand others
have pointed out, the successof these direct-calcu]a-
tion methods is Iinked to the fact that the fuli com-
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# Because we have not allowed for the possibility of singly
excited configurations in Ig>,we are restricted to cIosed-
shell ground states.
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plexity of Ig) is neither disp]ayed nor required in the
computed energy difference. With these reasons in
mind, the RS function was chosen as a well-defined
and computationally tractab]e first approximation to
!g). Of course, it is very natural and important to ask
whether we could devise a scheme for obtaining an
"improved" approximation to Ig),which is fully con-
sistent, in the sense described by McKoy [7], with
the derivation of our theory of e1ectronaffinities and
ionization potentials. In section 2 of this paper, we
show how the necessary components of this consistent
wavefunction Igc) can be obtained in a computationa]-
]y usefu]manner. Wedevelop a rapid]y convergent
iterative procedure which permits the self-consistent
calcu]ation of both Igc) and the excitation operator
n; which generates the negative-ionstate by operating
on Igc)' Finally, we demonstrate that e]ectron affini-
ties which are accurate through third order in the

electron repulsions ri/ can be obtained by using a
simpIifiednon-iterative technique in which Igc) is ap-
proximated by the first-order RS wavefunction IgRs)'
Thus, we have shown that the results of our OTiginal
theory are entirely valid it one is satisfied with cal.
culating aJ]quantities to third order; the self-consistent
computation developed herein is unnecessary. Section
3 contains our concluding remarks.
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2. The calculation of Igc)

In the' EOM theory of electron affinities and ioniza-
tion potentials derived in ref. [1]. the excitation
operator n~, which generatesthe, in principIe exact,
eigenstate IA_) of the negative ion when operating on
the true neutral-molecule ground state Ig),

n~lg) = IA_),

is approximated in terms of the second-quantized
Hartree-Fock orbital creation {ct} and annihilation
{Ci} operators as follows t

n~=L;xi(A)c:+.. ~ Ynam(A)C;CaC~
i m <n,a

+ :E Yamj1(A)C; CmC; .
"ót<j1,m

(2)

Theoperatorct (Ci)creates (destroys) an electron in
the Hartree-Fock spin-orbital ""i' Greek indices a, (3,'Y
label "occupied" Hartree-Fock spin-orbitals, m, n, p,
a label "unoccupied" spin-orbitals,and i,i, k,l label
either set. The Xi (A), Ynam{A), and Yamj1(A) are ex-
pansion coefficients which are determined by making
use of the EOM theory of ref. [I] whose pertinent
aspeets are brietly reviewed below. An analogous ex-

pansion for the operator nil which generates positive-
ion eigenstates # when operating on Ig) is also given in

ref. [I].
By assuming that Ig) and IA_) exaetly obey the

following Sehrbdinger equations

Big) =Elg) , (3a)

and

HlA_)=E;IA_), (3b)

t For a good description ol' the properties ol' such Fermion
creation and annihilation operators, see reI'. [121. The er-
fect ol' il~ on Ig> is relatively easy to understand. The term

Xi(A) ct simply adds, in a weighted manner, an electron to
the spin-orbital .pi; while Y nam(A) C; Ca C!n adds an elec-

tron to .pm and promotes another electron rrom .pa to .pw

Finally, the term Y amj1(A) C~ Cm Cp adds an electron to
.pj1and moves another electron rrom .pm to .pa'

# The conclusions reached in this paper are obtained by eon.

sidering the states ol' the negative ion. Analogous results

can be deduced by carrying through the development with

the positive-ion states illllg>.

\

one immediately obtains the basic equations of motion

[H, n~]lg)=(E;-E)n~lg), (3e)

whichwereusedin ref. [1] to derivethe following
matrix pseudo-eigenvalueproblem involvingthe elec-
tron affinity and the coeffieientsXi{A)

(1) ~ Hi/MA)~{A) =MA Xi(A),, (4)

where MA isE;: -E. This result can be derivedby
usingthe approximationto n~ givenin eq. (2) and
the RSapproximationto Ig)

IgRS)= NO1f2[10>+:E (mnla{3>. m<n,a<j1 €a+€j1-€m-€n

x C~ C;Cj1 Cala>] (5)

in eq. (3c). The coefficients Ynam(A) and Yamj1(A)
have been eliminated by partitioning the resulting
equations. In eq. (5), No is a normalization constant,
€i is the Hartree-Fock energy of spin-orbital""i' and
the (mnl a{3>are antisymmetrized two-electron integrals

over the spin-orbitals ""m' ""n' ""a' and ""{3'The
Hartree-Fock wavefunction of the neutral parent is
represented by 10). The elements of the matrix

Hij(MA)are given in eq. (37) of ref. [1] as

B, t>B~ t>
H..(M ) = A.. + E l,am.. J,am.." A " m

a<j1.m Eaj1+MA

L; Bi,naN+l Bj",aN+l

N+l<n,a E~V+lll-MA

B. B~
L; I,nam "nam

N+l<m<n,a Emn-Ma A
(l-37)

and the quantities appearing in this equation are de-
fined in eqs. (31 d)-(35) of ref. [1] which are repro-
duced here for the sake of completeness

"

A.. =li ..€. +E (ik/jI)F kl '
" " l ki,

(l-31d)
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BjOlm(1 =-(imla(j)-! ~ <imlpq}K~3
p,q

"-

+ ~ [{hlpo:}K;~P - {hlp(j}K:;.;J ,
"(,p

(1.3 ] e)

BjnOlm =<io:lmn}+! ~<io:ló'Y}Kmll, Ó "(
"(ó

+ '" [<ipl'YIl}Kmp - <ipl'Ym} KliP].
'LJ 01"( Ol,,!

"(P

(1.3] f)

F == ~ KPkKPI - ~ KPqKpaki 01(1 01(1 al OIk'
OI«1,p p<q,OI

(1.32)

Emil = E"' + E - E - <amlam}-{o:nlo:n}+{mnlmn},
ol m II Ol

(1.34)

Ef"( =Ep - Eó - E"(- <óplóp) - <'Ypl'Yp}+ <ó'Yló'Y},
(1.35)

and

KPq = <pq la(j}(E +E -E -E )-101(1 Ol (1 P q .
Although the above quantities are rather compli.

cated, it should be l5.eptin mind that a knowledge of
the orbital energies{Ej}and two-electron integrals
<ijlkl)is sufficient to permit the formation of Hjj(!::Ji?J
The physical content of the terms in the above expres.
sion for Hjj(M), which is discussedmore complete]y
in ref. []], can be summarized as follows.

(i) The second sum in eq. (1.37) contributes to
the ion-neutral Hartree-Fock energy difference;
therefore, this term contains the effects of charge re.
distribution on the calculated electron affinities.

(ii) The third sum approximates the correlation
energy of an electron in <PN+linteracting with a))
other electrons.

(iii) The flrst sum givesthe approximate change in
correlation energy of the parent's N electronscaused
by the "extra" electron.

Eq. (4) can be solved iteratively for the coefficients

Xj(g) and the pseudo.eigenvaJueMg which belong to
the ground state of the negative ion. The other solu.
tions Xi (A),M" to eq. (4) correspond to exCited

(1.) 5)
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states of the negative-ion and to positive.ion states :j:.

Once the Xj(g) have been calculated in the manner

discussed above, the YnOlm(g) and YOIm(1(g)can be
obtained from the equations

YOImig)=~ (Mg +E~)-IB;'OIm(1Xj(g)
l

(6a)

and

YIIOIm(g)=~ (Mg-E:;n)-l B;' 1101m Xj(g) ,
l

(6b)

which result from the partitioning of the original
equations ofmotion [eq. (3e)] mentioned above.
Thus, the solution of eq. (4) yields a))the information
needed to describe the excitation operator given in
eq. (2), and, hence, all the information needed to
specify the approximate negative-ionground state
n;lgRS)'

It has been pointed out by McKoy [4] and others
[],9] that the derivation of the working equations of
any EOMtheory are valid only if the excitation
operator (nt) and the parent wavefunction (lg}) are
eonsistent. In the case under consideration here, this
consistency condition is based upon the requirement
that the functions n"lg} should vanish identicaJly#

n"lg}=O, forallA. (7)

That is, it was assumed in the derivation of eq. (4)
that nt and Ig}obey eq. (7). It can easily be shown

:I:It can be shown that eq. (4) yields a complementary set of

expansion coefficients Xj(IJ), y1I00m(IJ),Yam(1(IJ)which
relate Ig) to positive-ion states IIJ+) =nlllg) and that nil

obeys the equation [H, nil) Ig) = (E; -E) nlllg). It can
also be shown that the positive. and negative.ion excitation
operators obey the following important orthogonality rela.

tions: (gln+nAlg)=O,<Klnpn~lg)=O. Because these rela.
tions hold for all negative-ion states lA_)and all positive-ion

states Ip+), they imply that the functions n"lg) and n;lg)
are identically zero. These observations will be used shortly.

# See the last parts of footnote:l:. In deriving the working equa.
tion (4) from the fundamental Heisenberg equation (3c),

the assumption that nAlg) =OaIlowed us to rewrit e
<gln"IH, n~}lg) = AE"<Kln,, n~lg) in a form which gives
a hermitian matrix Hij(AEA) when eq. (2) is substituted
for nA and the Y1I00m(")and YOImp{A)are eliminated by
partitioning. The above rewritinJ\ is given by
<gl{n", IH, n~) }Ig) = AE" <KI'tnA,. n~}lg), where the
anticommutator is defmed as {A,B.t =AB + BA.
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that the flrst-order RS ground state IgRs), which has
been employed in the development of our original
EOMtheory, is not consistent with the excitation
operator given in eq. (2). Thus, there is a shadow of
doubt cast upon the derivation of the working equa-
tions of ref. [1]. In an attempt to remove this incon-
sistency in our derivation and, thus, in the resultant
theory, we herein develop a technique which makes
use of eq. (7) to caIculate a new wavefunction Igc)
which is consistent with the negative-ionexcitation
operator n~ givenin eq. (2). It is shown that, although
Igc) differs from IgRs) in a signiflcant fashion, the
electron affinities and ionization potentials which are
obtained in our original theory remain valid through
third order in the eIectron repulsions.

As an initial step toward overcoming the above in-
consistency, the excitation operator n~ whose ex-
pansion"coefficients Xi(X), Yami3(X),Ynain(X) are
calculated within the (inconsistent) theory of ref. [I]
can be used in eq. (7) to obtain a flrst approximation
for IgC)'This "improved" wavefunction can be used
in the development of a new eq. (4) which, in tum,
will yield new coefficients Xi(X), Yami3(X),Ynam(X)
and, via eq. (7), a new approximation to Igc). The
analog of such a self-consistent determination of n~
and Igc) has been successfullycarried out by McKoy
[6] and by Ostlund and Karplus [9] within an EOM
theory of eIectronic excitation energies. From the
results of his calculations, McKoy [6] has concIuded
both that self-consistencyis usually reached after only
one or two iterations and that the excitation energies
obtained in the initial calculation, when IgRS)is used,
are very cIoseto the converged results. Based upon
these observations and the fact that the self-consistent

determination of the excitation operator and Igc) may
be a time-consumingand costly problem, McKoyhas
decided that the use of I~s) within the non-iterative
EOM theory is reasonably welljustifled.

To investigatewhether these concIusions can be
carried over to our calculations of eIectron affinities,
the excitation operator n~ generated in the theory of
ref. [I] can be used in eq. (7) to solve for theflrst ap-
proximation to Igc). This, of course, is nothing but
the flrst step toward the self-consistent calculation of
n~ and Igc) discussedabove. To carry out the solution
of eq. (7), the wavefunction Igc) is expanded in terms
of the Hartree-Fock Slater determinant 10)and
single-,double-, triple-, etc., excitations relative to 10):

Igc ):: 10) + r; KmC+ C 10)a m a
m,a

+ ~ ~ KmnC+ C+C" C 10)+ ....L.I L.I ai3 m n " a
m<n a<i3

(8)

The expansion coefficients K::'' K::'/, etc., are no
longer taken from RS perturbation theory but are de-
termined from eq. (7). In the remainder of this dis-
cussion, only the single-and double-excitations in
Igc) wilIbe treated; triple and higher excitations can
be shown to not contribute to Hi/AE,.) through third
order:!:.By applying the adjoint of n~ [seeeq. (2)]
to the above Igc) and equating to zero the coeffi-
cients of each independent function, a set of equa-
tions is obtained for the K::', K::'/, etc. For example,
the coefficient of the function CaIO)appearing in
n"lgc) can be set equal to zero to yield

X*(X) + ~ X* {X)Km + ~ ~ Y* (X)Kmn =O .a L.I m a ni3m ai3
m m<n i3 (9)

Similarly, by equating the coeff1cient of C'-:;Ci3Ca 10)
to zero, a second set of equations is obtained:

~ Y* (X)- X*(X)Km +X*(X)Km + z::;X*(X)Knm =O.am i3 i3 a a i3 n a{3
. n'.(lO)

Eqs. (9) and (lO) can be solved for the K::' and K::'/
in terms of the expansion coefficients appearing in
n~ in the manner describedbelow.

If the Xi(X) are thought of as forming a square
matrix {XiA} whose row index is i and whose column
index is X,the coefficient K~; can be extracted
from eq. (10) by multiplying this equation on the

right by (X-1 )~p and summing over the index X

z::; Y* (X) (X-1)* =Kpm
A am{J Ap a{J'

(I I)

In analogous fashion, the coefficients K~ can be ob-

tained by multipIJ'ing eq. (9) on the right by (X-1 )~p
and summing over X.

:t:As in ref. [l], our goal is to obtain results which are valid
through third order; all higher-order terms are neglected.
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KP =- L; L;Kmll L; y* (A) (X-I )
*

( P )a a(J ll(Jm "Ap. -
m<1l (J "A

..
From eq. (6a) one can see that YIl(Jm(A)'is at least
first order in the electron interactions and, thus, that
the contributions of single excitations to jgc> are of

one higher order than the double-excitation coeffi-

cients Kg~~. Because single- and double-excitations
can contribute to our effective hamiltonian m'atrix

Hij(M"A) only through terms involving an additional
factor in the electron repulsions rij I, e.g.,

<OI{Cp' [V,C~]}C;Co:IO>K~,

the coefficients Kg and Kg;! need only be computed
through second order to guarantee our goal of ob-

taining Hi/M'"A) through third order. Through second
order, eqs. (I I) and (12) reduce to

Kpm =<pmlo:~>(€ +€ -€ -€ )
-1

a(J a (J P m

X
[
I - <o:mlo:m>+<~ml~m>-<~IO:~)

]€a +€(J-€p-€m

+ B(2) ( + )
-1

p,am(J €a €(J-€m-€p ,
and

KP = L; L; <ml1lo:~) <pmml1)
o: m<1l (J €o:+€(J-€m-€,,€m +€"-€(J-€p

(13)

(14)

In eq. (I 3), B~~~m(J is the second-order component of
Bp,am(Jwhich is defined in eq. (I-31e).

B(2) =l '" <pmltq><tql~>
p,o:m(J ~/...Jt q

€ +€
(J
-€ -€

,a t q

- L; r <p')'lto:)<mtl~')')
'" t r €(J

+€ -€ -€
" 'Y m t

<p')'lt~) <mtl 0:')') l. (15)
€ +€ -€ €t ]a 'Y m

These final working expressions for Kg and Kg3
provide all the information needed to carry out a self-
consistent calculation of nt and Igc), The expansion
coefficients given in eqs. (13) and (14) can be used to

construct a newHij(AE"A)matrix which will yield new
excitation energiesM"A and new coefficients Xi (A),
YQm(J(A),Yllam(A).

Becausethe iterative calculation outlined above in-
troduces additional complexities into our present
scheme for obtaining molecular electron affinities and
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ionization potentials, it is important to investigate
both the rate of convergenceof the calculation and
the contributions of the second-order terms in Kg3
and Kg to the computed quantities. As was stated
earlier, to obtain Hi/M"A) through third order re-
quires that Kg and Kg3 be computed through second
order only. Therefore, eqs. (I l) and (12) need not be
used in any calculation; the approximate results given
in eqs. (13) and (14) are sufficient. Because the quan-
tities appearing on the right sidesof eqs. (13) and (14)
would not vary from one iteration to the next, Le.,
they are given in terms of the (unchanging) orbital
energiesand two.electron integralsonly, it follows
that the above iterative procedure will converge
(through the order treated here) after one iteration to
a self.consistent n; and Igc)' That is, neither the
Hij(M"A) matrix nor the resultingXi (A),which deter.
mine the consistent Igc>'will change after the first
iteration in which the second.order Igc) is used. This
result implies that the self-consistent calculation de-
scribed here does not compJicateour original theory
to such an extent as to render it computationally in.
tractable. Quite to the contrary, the additional diffi.
culties introduced by this modification are minor
since only a singleiteration is needed.

In addition to this rapid convergenceof the itera-
tive scheme, another equally important characteristic
of aur method should be pointed out. Although the
first.order RS approximation to Ig) isnot consistent
with the excitation operator n~ used in our theory,
it can be shown that the second.order components of
the consistent IgC>do not contribute to the calculated
electron affinities and ionization potentials through
third order. This conclusion is based on the observa-

tion that both IgRs>and n;lgRS> agree with the RS
expansions of the neutral.molecule and negative.ion
wavefunctions through first orded. Thus, by a well.
known theorem of perturbation theory [I l], the ex-
pectation values

(gRSIHlgRs> {(gRslgRS)}-1 =E

and

(16)

(gRslngHn;lgRS>{(gRSlngn;lgRS)}-1 =/::; (17)

* That !1glgRS) is identical to the first.order RS wavefunction
of the negative ion can easily be shown by applying the ex-

citation operator of eq. (2) to the IgRS) of eq. (5).
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are correct through third order. Because the quantity

t:J:.~,which is directly caIculated in our method, can
be shown to be identical to the difference of these
two expectation values through third order:j:

M ==(gRsl{ng' [H,n;]}lgRs)

g (gRS'{ng' n;}lgRS)

(18)= E- - E + fourth-order terms,
g

it follows that our electron affinities are also correct
through third order. That is, the second-order compo-
nents of Igc) and IL), which can be obtained through
the iterative procedure discussedearlier, are not needed
to compute Mg through third order; only the first-
order wavefunctions IgRs) and n;lgRS) are required.
Our final conc\usion, therefore, is that our original
theory which employs the first-order RS approxima-
tion IgRs) is sufficient to guarantee that Mgis given
through third order, even though IgRs) is not consis-
tent with n;.

To add support to the foundations of this result, it
is helpful to point out the connection between the
equations of motion which resulted in eq. (4) and
the variational determination of Ig-). If the operators

n~ depend upon a set of parameters (the Xj, Ylletm'
and YetmJjin our case) which we shall collectively
label as {aj}, the result of extremizing Mg [see
eq. (18)] with respect to these parameters can easily
be stated as follows:

oMg/oaj =(gRsl {ong/oai' [H, n;]} IgRS)

-(gRsl{ong/oaj,n;}lgRS)=O- (19)

By substituting the expression given in eq. (2) for n;
and successivelychoosing Ong/oaj equal to Cj.
Cm C; Cli' and CJjC~ Cet'we arrive at the same start-
ing-equationsas were obtained in ref. [I). Thus, we
see that our final working equations [eq. (4)) can
also be based on a stationary principIe. Recallingthe
connections between perturbation theory and the

:j:Because the proor or eq. (18) is rather involved, it will not
be presented here. sumce it to say that, by using the specir-
ic rorms or ni and IgRS)' it can be shown that the quantity
<gRSI{ng' (H, n;J }lgRS)/<gRSI {ng' n;}lgRS)' which is
shown in rer. (lI to equal 6.Eg' is identical to l:.g- E
through third order.

variational principIe,which are stressed in ref. [II],

it is therefore not surprising thatn;lgRs) agreeswith
the first-order RS negative-ionwavefunction-

Furthermore, if one considers the negative-ion
state Ig-) to be related to Ig) by the transformation

n;,
Ig_)=n;lg), (20)
it can be seen that the basic equation of our theory

(Eg--E) (gl{ng' n;}lg)= (gl{ng, [H, n;]}lg) (21)

is an example ofa hypervirial relation [13]. There are
several interesting and potentially useful theorems
which make connections between the first-order per-
turbation theory approximations to Ig-) and Ig), the
variational extremization of the functional Mg, and
these hypervirial relations. Thus it is also not surpris-
ing that the first-order approximations n;lgRS) and
IgRs) should obey the above eq. (21). It is elear that
there exists a very c\ose connection between the EOM
techniques used in the present work and the elegant
work cited in ref. [13] involvingperturbation theory,
variational principles, and hypervirials.Webelieve
that a great deal of new progresscan be made in the
applications of EOMtheories to chemical problems if
we are able to make use of the numerous resuIts
which are now availablein the areas discussedabove.

3. Coneluding remarks

For the sake of clarityand organization, let us brief-
Iy reviewthe principal resultswhich have been ob-
tained in this paper. After briefly reviewingthe nota-
tion and philosophy of the EOMtheory of molecular
electron affinities developed in ref. [l], we showed
that the first-order RS approximation to Ig), which is
not consistent with our excitation operator n~, could
be replaced by a consistent ground-state wavefunction
of second order by carrying out an iterative caIcula-
tion involving both ni\lg) =O and eq. (4). This self-
consistent determination of Igc) and n~ was shown
to convergeaft~ronlyone iterationif one issatisfied
with computing all of the elements of Hjj(Mi\)
through third order in the electron repulsions. In this
case, elosed expressions for the contributions of both
single-and double-excitations to Igc) were given in
eqs. (13) and (14). Finally, by pointing out that
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n;lgRs) is identicaJ to the RS wavefunction of the
negative ion through first order, we were abJe to
demonstrate that the eJectron affinities calcuJatedin
our originaJEOMtheory using onJy th~first.order

IgRs) are correct through third order in rijl. The
most important, and final, conclusion is that the eJec-
tron affinities and ionization potentiaJs which result
from the application of the theory of ref. [] ] are cor-
rect; the second.order components of Igc) and the
iterative soJutionof eqs. (4) and (7) are /lot needed to
deveJopa third-order theory of moJecuJareJectron af.
finities.
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