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A unitary wave operator exp(G) is used to relate a multiconfigurational reference function ®
to the full, potentially exact, electronic eigenfunction ¥ = exp(G)®. If the reference function
P is of a generalized complete-active-space (CAS) form, then the energy, computed as
(®|exp( — G)H exp(G)|P) is size extensive; here H is the full N-electron Hamiltonian. The
Hausdorff expansion of exp( — G)H exp(G) is truncated at second order as part of our
development. The parameters which appear in the cluster operator G are determined by
making this second-order energy stationary. Applications to the widely studied H,O (at the
double zeta basis level) and lowest and first excited '4, states of BeH, are performed in order
to test this method on problems where “‘exact’ results are known.

I. INTRODUCTION

The use of cluster expansions to describe electron corre-
lation in molecules has become increasingly prevalent in the
field of quantum chemistry and has been the subject of recent
review articles. ' In this paper, we propose a new variant of
the coupled-cluster theory which admits multiconfigura-
tional reference functions of the complete-active-space
(CASSCF) variety, provides a compact size-extensive and
approximately variational description of the electronic ener-
gy, and is capable of incorporating certain aspects of the so-
called unitary group approach (UGA).* Despite recent ad-
vances>® in the theory and application of coupled-cluster
methods involving high excitations from a single determi-
nant reference (e.g., CCSDT and CCSDT-n), progress in
multideterminental-based coupled-cluster theories has been
notably slower. The need for a multideterminental theory is
manifest, especially for studies of potential energy hypersur-
faces on which the configurations which provide the essen-
tial (or qualitative) description of the wave function change
with nuclear coordinates.

Two general classes of solutions to the multideterminen-
tal coupled-cluster problem exist. The earliest multideter-
minental work by Mukherjee and co-workers,” Coester,°
and Kiimmel and co-workers!! specify constraints above
and beyond those used in single configuration coupled-clus-
ter theories by considering the wave functions of related ion-
ized species. As shown by Jeziorski and Monkhorst,'? and by
Bartlett and co-workers,!* the coupled-cluster wave func-
tion for a multideterminental reference wave function can be
determined by calculations similar to, but considerably larg-
er than, those performed in a single-configuration-based CC
treatment.

The alternative, application of a single coupled-cluster
wave operator to the multiconfigurational reference wave
function was pioneered by Lindgren,'* drawing on earlier
work on multireference perturbation theory.'> Mention
should also be made of the additional theoretical work in this
area by Kvasnicka.'® The cluster operators used in our meth-
od are anti-Hermitian combinations of unitary group gener-
ators and products of such generators. Such generators and
generator products were first considered in the context of

J. Chem. Phys. 88 (2), 15 January 1988

0021-9606/88/020993-10$02.10

coupled-cluster by Banerjee and Simons.!” Baker and
Robb'® extended these earlier works to consider anti-Hermi-
tian combinations of external generator products. Here, we
present a method whereby internal and semiinternal gener-
ator products are also considered as well as internal and ex-
ternal operators using the generators themselves.

The exact, correlated, electronic wave function W within
any finite-orbital basis can be related to a so-called reference
wave function ¢ by a unitary transformation U:

¥ = U®, (1.1)

provided the overlap of ® and WV is not zero and ® is normal-
ized to unity. An arbitrary unitary transformation may be
written as the exponential of an anti-Hermitian operator G:

U =-exp(G) (1.2a)
with
G= -G+, (1.2b)

Using a unitary ansatz for the correlated wave function, the
time-independent Schrodinger equation may be written as

e~ °H e = EP. (1.3)
An important yet straightforward consequence of using
such an anti-Hermitian logarithmic wave operator is a vari-
ational principle for the resultant energy functional.’® As
discussed in greater detail in Sec. II A, an anti-Hermitian
total generator also facilitates a Lie algebraic formulation of
the problem in which nonadditively separable contributions
to the energy are eliminated.

The particular form of the theory developed here and
the numerical examples given in this paper incorporate ap-
proximations beyond those absolutely necessary. The excita-
tion space which results from generators and single gener-
ator products acting on our multiconfiguration reference
function may be seen to be identical to that used in a multire-
ference singles and doubles configuration interaction (MR-
CISD) study and in Bartlett and co-workers’ earlier
MR-LCCM studies.”® The effective Hamiltonian
exp( — G)H exp(G) is truncated at second order in the
Hausdorff expansion (cf. Sec. II C). The justification for
this approximation lies in the assumption that the cluster
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amplitudes will be small provided the reference wave func-
tion yields a qualitatively accurate representation of the total
wave function.

In Sec. II of this paper, we develop our UCC theory and
provide explicit formulas for the computational implemen-
tation of its second order approximation (in the energy func-
tional). Then in Sec. III, we examine the results of two illus-
trative calculations. We report agreement with full CI
results within ~ 1 kcal/mol for all geometries of H, O inves-
tigated and essentially exact agreement for BeH, . In Sec. IV,
we compare our UCC development with earlier related
work. The ansatz of a nondegenerate MCSCF reference vs a
quasidegenerate model space is discussed. Finally, Sec. V
contains our conclusions.

Il. THEORY
A. The unitary cluster ansatz

The use of unitary operators in a nonvariational method
was pioneered by Primas®®?*! in his studies of perturbation
theory. Yaris? elucidated the earlier work with emphasis on
the general properties of the generator which maintain the
size extensivity of the method. The present development is
then related to earlier unitary perturbation work in much the
same way as the usual coupled-cluster method, pioneered by
Coester and Kiimmel,? is related to conventional single de-
terminant perturbation theories.” As Primas?! realized, ref-
erence functions ® consisting of arbitrary (antisymmetrized
products of)) one-electron functions (e.g., MCSCF orbitals)
do not give rise to unlinked clusters of Yaris’s first kind*? in
the energy expression which results from projecting Eq.
(1.3) along {®|. Yaris’ analysis further demonstrated that
the only other potential source of unlinked clusters lies ex-
clusively in the functional form of G; these unlinked clusters
of the second kind are explicitly eliminated in an additively
separable form of G. The absence of unlinked clusters is re-
lated to the size extensivity of the resulting energy expres-
sion.

The completeness of the set of all unitary transforma-
tions generated by an additively separable form was dis-
cussed by Yaris for the case of a multiplicatively separable
reference function.?? Application of a later theorem by Dal-
gaard®* ensures the completeness of the same set of unitary
transformations for an essentially arbitrary reference func-
tion. Of course, we cannot, in practice, use the complete set
of such generators, as this would be equivalent to performing
a full configuration interaction (CI) calculation. Neverthe-
less, the completeness of the untruncated set of generators
used in our work allows for systemmatic improvement in a
series of calculations in which larger and larger approxima-
tions to the G operator are utilized.

B. The specific choice of G

The form of the total generator that we choose to use is
given as G =2 ¢t,e,, where ¢, is a so-called cluster ampli-
tude (i.e., a scalar quantity whose value is determined nu-
merically) and e, is expressed in terms of generators e; of
the unitary group U(n) or single products of such genera-
tors (e.g., a two-body product has the form ey, =e; ey

— ey ).*The generators e; = 2,a,;} a;, are given in terms
of orbital excitations out of orthonormal molecular orbital
¢; into orbital ¢,. Thus the a index runs, in principle,
through all nonredundant one-electron generators (e;) and
two-electron generator products (ey;), respectively. In
practice, it is found that this operator list can be further
truncated by a numerical screening procedure described in
the Appendix without significant degradation of the wave
function. We explicitly enforce anti-Hermiticity of G as fol-
lows: If ¢, is included in the operator set, then its adjoint e
must also be included, and their amplitudes are restricted to
obeyt = —1t,.

C. Second-order truncation of the Hausdorff expansion

Since the Hausdorff expansion of the effective Hamilto-
nian e ~ °H ¢ appearing in Eq. (1.3) has an infinite number
of terms, an exact solution to the resulting equations cannot
practically be obtained. Observing that a Hausdorff expan-
sion converges as an exponential, and assuming that & con-
tains all of the essential (i.e., dominant) electronic configu-
rations of ¥, it is reasonable to approximate Eq. (1.3)
through second order in the ¢, amplitudes

{H + [HG] + 12[[HGLGIH®)=E|®). (2.1)

This assumption that ® contains the dominant configura-
tions of ¥ is a crucial feature of our method. In practice, we
satisfy this assumption by employing a multiconfiguration
self-consistent field (MCSCF) wave function for ®. Project-
ing Eq. (2.1) onto the reference (e.g., MCSCF) function &
yields an expression for the total (electronic) energy as a
function of the cluster amplitudes ¢, . Requiring this energy
to be stationary with respect to variations in the cluster am-
plitudes then yields an equation to be solved for the set of
amplitudes. We note parenthetically that this procedure
yields the variational energy for the approximate energy
functional of Eq. (2.1) and not for the full untruncated ener-
gy functional of the Schrédinger equation givenin Eq. (1.3).
The difference in these two variational functionals will be
small if the 7z, amplitudes are small.

D. Evaluation of requisite matrix elements

The matrix elements of the single and double commuta-
tors appearing in Eq. (2.1) must be evaluated to implement
our method. The earlier development of highly efficient al-
gorithms* for computing matrix elements of unitary group
generators and single (but not double and higher!) generator
products between spin-adapted configuration state func-
tions (CSFs) suggests that a computationally attractive for-
mulation for our equations might be obtained by the exclu-
sive use of these matrix elements. In the case of the single
commutator arising from projecting Eq. (2.1) onto the
MCSCEF reference state (®|, we obtain

(P|[HG]|®) =2 F(P|H|P)(P,|G|D). (22)
q

The generalized Brillouin theorem within the configuration

state space, which the MCSCF function obeys,*’ restricts the

summation in Eq. (2.1) to CSFs external to the entire
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MCSCF manifold. Moreover, the action of H on ¢ can pro-
duce excited CSFs in which no more than two spin orbitals in
the CAS MCSCEF virtual orbital space are occupied and no
more than two spin orbitals in the MCSCF core orbital space
are unoccupied. Of course, if we choose to exclude some or
all core or virtual excitations in G for chemical reasons, the

set of expansion CSFs is then further reduced.

A similar procedure involving the identification of those
CSFs which yield nonzero matrix elements can also be ap-
plied to the double commutator term of the energy expres-
sion in Eq. (2.1). After rather tedious algebraic manipula-
tions, we obtain

172(P|[[H,G .G 1|®) = £, 3 {P|G |P,)(D, |G [®) + X '(PIH D, )(P|G|®, ) (P, |G |P)

+ D APH |9} (D, |G |D,) (D, |G |P) — Y (PG |®,)(D,|H|D, ) (P, |G D)

— SU®IG [,)(®, |H |, ) (D, ]G @) —2 3 (@|G D, )(®, |H [®,)(2,|G |®).

(2.3)

In Eq. (2.3) and throughout this work unless otherwise noted, £, denotes the MCSCF reference function’s energy, ¢ is an
index labeling a CSF which has one or two virtual orbitals occupied (e.g., external or semiinternal excitations) or one or two
core orbitals unoccupied (e.g., internal core-to-valence, external, or semiinternal excitations), 7 is an index labeling a CSF
which is contained within the MCSCF reference function’s expansion space (which therefore has no virtual orbitals occu-

pied). A prime on the summation symbol denotes that the summation indices may not take the same value.

E. Simultaneous linear equations for ¢, amplitudes

Differentiating the truncated Schrodinger equation [i.e., Eq. (2.1)], and requiring the energy to be stationary with
respect to variations in the cluster amplitudes ¢, yields a system of simultaneous /inear equations of the form

ZAWtV =B,

24)

where the dimension of the square 4 matrix and of the B vector in Eq. (2.4) is equal to the number of independent cluster
amplitudes. Explicit forms for the 4 and B matrices are most easily obtained by direct differentiation of Egs. (2.3) and (2.2),

respectively. After some algebraic manipulation, we obtain

A, =—2E5S,S,+235, ZH,,S,,V + (@, le, — e |®,)S,,Ho +23 5, S H,S,
r r rg r q

— 2B, Y SpuSp +23 Sp 3 Hpy Sy + TPy le, — e [0, Hyo +2 3 S, ij H,S,
q q q 99 r

+ Z@q leﬂ - e; |¢’)Hq0S’v + 2@’«; leﬂ - e: |q)q’ >H90Sq‘ﬂ
qr 99

and

B,=-2 ZH,,O (D, le, —e |P).
q

The additional notation introduced in Eq. (2.5) is defined as
follows:

H, =(D,|H|D,), H,=(D,|H|PD),
and

S = (D, |e; — e | D),
where, in all of these definitions, the indices # and »’ can
label either a reference CSF (i.e., r or ') or an excited CSF
(i.e.,, g and ¢’). As mentioned earlier, the excited CSFs con-
tain functions in which no more than two virtual orbitals are
occupied and no more than two core orbitals are unoccu-
pied. Nevertheless, this space contains functions which may

be more highly excited than doubly with respect to several of
the dominant CSFs in |P).

(2.5a)

(2.5b)

;. Remarks on computational implementation

Even though we have not yet investigated the relative
computational efficiencies of various formulations of our
theory, a few remarks regarding our present form of its im-
plementation are in order. Even the most elementary algo-
rithm for solving the above simulataneous equations (i.e., an
algorithm which forms A in blocks on peripheral storage
from blocks of the H and S arrays also kept on peripheral
storage, followed by the solution of the simultaneous equa-
tions by an elimination method capable of buffering from
disk) yields a computationally viable formulation for small
operator manifolds (~ 10*) and small MCSCF reference
spaces. There are two factors which contribute to the success
of such straightforward algorithms. First, the number of
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generators {e, } acting on ® required to span the portion of
Hilbert space necessary for a rather good description of the
correlated wave function, may be much less than the number
of CSFs necessary to span the same space (i.e., there may be
redundancies or near redundancies in the {e, {®)} space).
Moreover, most of the numerical operations involved in
solving Eq. (2.5) are matrix multiplications, and hence
eminently computationally tractable. The vectorizability is,
of course, obvious in as much as the constituent matrices are
just modifications of the Hamiltonian used in more conven-
tional configuration interaction (CI) treatments of electron
correlation. Specific chemical examples using the algorithms
mentioned above are presented in Sec. III of this paper.

The proposed theory as outlined above would indeed be
seriously limited if it were not possible to circumvent the
storage and solution by elimination methods of the full A
matrix. Examination of Eq. (2.5) reveals that the most per-
nicious terms (i.e., terms involving (® le, — e |®;)) al-
ways appear in contractions between these terms and the
vector H . It is therefore clear that the step involved in form-
ing 2, H, (P, le, — e |®,) is of the same computational
difficulty as forming the so-called sigma vector in a direct CI
procedure. More explicitly, the cluster amplitudes are analo-
gous to the molecular integrals of the CI case, while the
Hamiltonian projected on the reference is similar to the trial
ClI vector. We are not implying that such an implementation
of our theory is straightforward; indeed the sequencing of
matrix portions in the computer’s core appears formidable.
Nevertheless, we would like to emphasize that such a direct
method is in principle as open ended here as it is in the CI
case.

G. Energy expression

Advantage may be taken of the requirement that the
correlated energy has been made srationary with respect to
variations in the cluster amplitudes. Using the notation in-
troduced in Eq. (2.5), the energy achieved as the projection
of the truncated Schrodinger equation [i.e., Eq. (2.1)] on
the reference function may be written as

E=E,+ Y t,B, +1/2% t,4,,t,
u v
which, after using Eq. (2.4), reduces to

E=E,—1/2 ZB#t,,. (2.6)
}I.

Of course, this result is not surprising; the same functional

form results whenever a variational solution to a quadratic

functional is obtained.

jli. RESULTS

A pilot version of our unitary coupled-cluster method
(UCC) has been implemented using the algorithm de-
scribed in Sec. II F. We have chosen two well-studied mole-
cules on which to test our theory. First, we examine the low-
est two states of '4, symmetry for the C,, insertion of Be into
H,, using a (10s3p/3s1p) Be basis and a (45/2s) H basis.
The contracted Gaussian atomic orbital basis and the partic-
ular nuclear geometries used in this study are exactly those

used previously by Bartlett and co-workers?*%%; and by both
of the authors in previous studies.'”® As our second model
problem, we chose to examine the H, O molecule within a
double zeta (DZ) basis at its equilibrium bond length R,
and with both bonds stretched to 1.5 R, and 2.0 R, . Previous
studies of DZ H, O include the full CI results of Handy and
co-workers,* the many body perturbation theory and earlier
multireference coupled-cluster results of Bartlett and co-
workers,'**! and the multireference CI studies by Shavitt
and co-workers? and by Bartlett and co-workers.'> These
model problems were chosen both because of the availability
of comparative results and because a number of important
aspects of the theory are tested between these two calcula-
tions.

In all applications of our theory, a converged MCSCF
wave function of the complete active space (CAS) variety is
first obtained.*® The orbitals in each of the energy-invariant
subspaces are then rotated to a so-called canonical form. The
core- and virtual-space orbitals are each rotated among
themselves to diagonalize the core Fock matrix**** defined
as

GIF<ly = Gk |y +1/2 iz [2G1k1) — (i iD],
]
(3.1)

where A,, is the MCSCF one-particle density matrix. The
valence orbitals are rotated among themselves to diagonalize
the Lagrangian matrix,***

ey = ; hiklikj “+ 2 Z(ik ;Im)r}kim

kim

3.2)

which also involves the symmetrical two-particle density
matrix I'y,,,. The configuration amplitudes for configura-
tions in which these canonical orbitals appear are then recal-
culated (by performing one final CI calculation) and the
resulting MCSCF wave function is used as the reference for
our unitary coupled-cluster theory.

A. BeH;

The perpendicular C,, insertion of Be into H, (cf. Fig.
1) samples a number of chemical environments, including:
the atom—diatomic environment at which the 1a}20?3a?
configuration (i.e., 153, 1072s%,) dominates, the quaside-
generate ‘“transition state” geometry at which the
143243167 configuration also contributes in an essential
manner and the linear HBeH geometry at which 1a%24% 153
dominates. The atom—diatomic and linear triatomic limits
are or interest since we use abelian point group molecular
orbitals in our program. Hence, potential instabilities due to
the existence of higher symmetries, local in the case of the
separated atom—diatomic and global for the linear triatomic,
are investigated at the end points of this model problem. It is
well known that quasidegeneracy is a serious problem in sin-
gle-reference-configuration perturbation theory and in over-
ly truncated single-reference coupled-cluster expansions.
The region near the transition state tests the ability of our
theory to handle the quasidegeneracy within the MCSCF
reference function. We also examine the lowest excited '4,
state for this perpendicular insertion of Be into H, to investi-
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FIG. 1. Comparison of UCC with FCI energies for the lowest and first ex-
ciated '4, states of BeH, at various geometries (sec the text). The « denote
our UCC results, the solid and dashed lines are cubic spline fits to the FCI
results.

gate the accuracy of our unitary coupled-cluster method in
describing excited states and also to check the relative accu-
racy of our ground and excited states (cf. Fig. 2). This sec-
ond concern definitely deserves attention in any method
such as ours where the operator manifold {e,} varies
between the two states in question because of the use of a
screening procedure (see the Appendix) to eliminate unnec-
essary operators.

The MCSCEF calculation on the reference function may
be described in terms of the orbital occupancy
143 (2a,3a,4a,1b,1b,2b,)*; this procedure yields 37 CSFs.
We should note that a separate MCSCF calculation is per-
formed for the ground and the excited '4, states (i.c., the
excited state is not taken to be the second root of the ground-

o
S
~ ]
< .
3 ]
— o1
0 7
aQ [
% J
o ]
D) ]
E 4
2 o1 AN
L o LIVZR30 L/ /) "= s R B R B L S NS S S B S mat S |
L o]
o -
W R
Q -
E P
o1
Ho e
E <
8 ]
Q3
Q
—
I

Be atom distance (a.u.)

FIG. 2. Comparison of UCC and FCI energy gaps between the lowest and
first excited ', states of BeH, at various geometries. The s denote our UCC
results, the FCI results define the x axis.

state variational problem with optimal ground-state orbi-
tals). For comparison, valence space full-CI (FCI) calcula-
tions were performed in which the four valence electrons
were distributed over all nine valence and excited orbitals
leaving the la, orbital doubly occupied (i.e., frozen core);
this procedure yields 197 CSFs. It should be noted that the
MCSCF energy itself accounts for a subtantial (~90%)
portion of the correlation energy
(Eye — Escr/Ercr — Escr ) in this model problem; none-
theless, the question of the utility of our unitary coupled-
cluster work in describing the remaining correlation energy
is important to consider. The second model problem which
we examined (DZ H, O) represents an example in which the
MCSCEF reference function’s energy recovers a considerably
smaller portion of the electron correlation energy.

At the linear geometry, the '4, ground state of BeH, is
dominated by the single configuration 24716% (i.e.,
20%210%) (C, = 0.986); the first excited state of '4, symme-
try is also dominated by a single configuration 2a; 3a} 1562
(ie., 20, 1, 10%) (with C, = 0.975) and corresponds to a
singlet o - 7 state. Use of a complete valence space reference
function (in which both components of the Be pi orbital are
included and treated equally) ensures that the total elec-
tronic wave function transforms as an irreducible represen-
tative of D_,. Though this guarantee does not extend to a
coupled-cluster wave function using an incomplete operator
manifold formed from this CAS reference; examination of
the dominant cluster amplitudes indicates no propensity to
break symmetry in this model problem. For the ground
state, 46 cluster operators based on the one dominant config-
uration were chosen in our screening procedure. For the ex-
cited state, there were two configurations with amplitudes
larger than 0.1 and the set of cluster operators derived from
consideration of these two CSFs numbered 89. In both cases,
a total of 173 CSFs would be required to span the image of
the entire MCSCEF reference function under the action of all
of the chosen cluster operators. The dominant cluster ampli-
tudes for all three nuclear geometries discussed in detail are
presented in Table 1.

The error (compared to the FCI value) in the ground-
to-excited ', state energy gap for the MCSCF reference
wave function is 1.1 kcal/mol; application of our unitary
coupled-cluster method reduces this to 0.1 kcal/mol (see
Fig. 1). )

At the bent geometry Be (0.0, 0.0,0.0), H (0.0, + 1.62,
2.0a.u.), asecond CSF (2a}3a;}),1512b ] has an amplitude
greater than 0.1 in the ground-state MCSCF reference wave
function. (The subscripted ¢ is used to indicate triplet cou-
pling.*) The number of cluster operators chosen via our
screening process at this geometry then becomes 66. At this
bent geometry, the excited state becomes decidedly multi-
configurational; there are 8 CSFs with amplitudes larger
than 0.1; those with amplitudes larger than 0.2 include
2a33al  (0.647), 2al3allb? (—0.534), 3d%1b2
( —0.260), 247153 (0.254), and 242162 ( — 0.227). The
large number of essential configurations thereby increases
the number of cluster operators chosen through our screen-
ing process to 100. The error in the ground-to-excited state
energy gap at the MCSCEF level at this geometry is 1.6 kcal/
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TABLE 1. Amplitudes of dominant cluster operators® at various geome-
tries of BeH,.

(0.0, + 2.54,0.0)® (0.0, + 1.62,2.0) (0.0, + 0.70,20.0)

14,
162 3b2 0.0246
3a,1b,~5a,3b, e 0.106
3a,1b,-6a,3b, —0.0958
2a,2b,—3b,5a, —0.0946
102 ~20? 0.0483
25 352 0.0433
24,
162352 0.0259
4a,-5a, 0.0582
4a,-6a, 0.0355
2a,4a,— 543 e 0.485
152 542 o 0.220
2a,4a,—3b2 0.212
la.i_,zaz 0.0483

2The symbol ik—jl is used to denote the unitary excitation operator
€kt — itk

® Coordinates refer to positions of hydrogen in a.u., Be is taken to be at the
origin.

mol; the UCC calculation reduces this error to less than 0.1
kcal/mol. In the excited-state calculation three external ex-
citations dominated, but it is interesting to note that two
internal excitations had cluster amplitudes greater than 0.1:

40 -1b2( —0.152) and 2al4a! -2b2( —0.158).

At the nuclear geometry closest to the transition state,
H (0.0, + 1.275, 2.75 a.u.), we find that the wave functions
of the ground and excited states are dominated by the config-
urations 242 3a% and 2a? 1b 3; for the ground state the ampli-
tudes are — 0.600 and 0.722, while for the excited states the
relative magnitudes and signs are reversed, 0.714 and 0.564.
Thus, at this geometry, the lowest excited '4, state is “dou-
bly excited ”’ relative to the ground state. As was pointed out
earlier by one of the authors,'” a number of additional con-
figurations are needed in the qualitative description of the
wave function at this geometry. Both of the configurations
2421b2? and 2a%1b }2b ) are important in both the ground
state (amplitudes 0.108 and 0.161, respectively) and the ex-
cited state (amplitudes — 0.195 and 0.195, respectively).
Three additional CSFs have substantial contributions to the
ground state: (2al3a}),1632b) (—0.154), 2a}3a}1b3
(0.147), and (2a!3a}),1612b} (0.110); while two addi-
tional CSFs have amplitudes greater than 0.1 in the excited
state: 3a¢>1b% ( — 0.186) and 2222b3% ( — 0.144). Cluster
operator screening based on the preceding enumerated con-
figurations yields 82 and 87 operators for the ground and
excited states, respectively. As for the previously examined
nuclear geometries, application of the unitary coupled-clus-
ter method substantially reduces the error in the ground-to-
excited-state energy gap from 2.8 kcal/mol at the MCSCF
level to less than 0.1 kcal/mol.

Examination of the cluster amplitudes for both the
ground and excited states reveals that many of the largest
amplitudes correspond to internal and semiinternal excita-
tions. In particular, of the ten largest cluster amplitudes in

the ground-state calculation, four correspond to semiinter-
nal excitations and one to an internal excitation. Of the ten
largest cluster amplitudes for the excited state, again four are
semiinternal exitations and now two are internal excitations.
This result surprised us since it might be argued that the use
of a rather high quality MCSCF reference function would
preclude the need for further correlation among the valence
orbitals. Apparently, optimal correlation between valence
and virtual orbitals requires significant redistribution of
electron density in the valence region beyond that contained
in the MCSCEF reference.

The last nuclear geometry we examine in detail is the
separated-atom—diatomic molecule limit [i.e., H(0.0,

+ 0.70, 20.0 a.u.) ]. The ground state is described by three

essential configurations, 1022s% (0.954), 1022p” ( — 0.160),
and 25°102 ( — 0.107). In C,, symmetry, three distinct con-
figurations corresponding to 10‘; 2p” (with 2p,, 2p,,and 2p,
included) were observed; these symmetry equivalent config-
urations were indeed found to have coefficients within
1X10™° of one another. The lowest singlet excited state
(2, H, + 'Pg.) is described by two essential configura-
tions, 1032s'2p" (0.994) and 25s'2p'10% ( — 0.111). The er-
ror in the energy gap between the ground and lowest excited
!4, states calculated at the MCSCF level is 0.9 kcal/mol,
and our unitary coupled-cluster method reduces this to
(substantially) less than 0.1 kcal/mol. The number of clus-
ter operators used to describe the ground-state wave func-
tion was 88 and for the lowest excited state the number was
87. A difficulty in our automatic operator selection proce-
dure is highlighted by the excited-state calculation. The lar-
gest resulting ¢, amplitudes ( + 0.742) corresponded to a
pair of excitations which break the degenerate point group:
25'2p' - 3s'10} and 25'2p" - 10, 3s'. We hasten to point out
that this pair cancel each other to 1 X 10~ ! and no breaking
of the overall symmetry was observed. Nonetheless, this il-
lustrates two points: First, our theory is robust enough to
handle hidden additional symmetry; and second, a screening
procedure with knowledge of higher symmetry would com-
plement the straightforward screening procedure which we
presently have in place. Ignoring the above spurious opera-
tor pair, only one cluster operator had a relatively large am-
plitude (0.0483) and corresponded to the excitation
102 —20}.

Summarizing this discussion of our BeH, data, it ap-
pears that the unitary coupled-cluster method is capable of
yielding energy results uniformly accurate to within 0.1
kcal/mol, when the MCSCEF reference is itself reasonably
accurate ( ~ 1 kcal/mol).

B.H,0

The simultaneous symmetric breaking of the two OH
bonds in water has been the subject of several previous stud-
ies.'>3%3! We chose to study this model problem for two
primary reasons: First, an MCSCF description of the wave
function accounts for a modest and variable (with nuclear
geometry) portion of the correlation energy, 35.8% at 1.0
R,, 57.2% at 1.5R,, and 74.8% at 2.0 R,. Second, the core
(i.e., O,,) orbital was included in the full CI study of this
problem,®® as a result of which the number of electrons to
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correlate (10) is considerably larger than the number in the
BeH, study (4).

The orbital and configuration spaces used in our
MCSCEF calculation are identical to those used earlier by
Laidig and Bartlett.'® The energetically lowest two orbitals
of a, symmetry were kept doubly occupied in all reference
MCSCF configurations as was the lone pair orbital (15, ),
although excitations are permitted out of these orbitals by
the coupled-cluster operators e, . The remaining 4 electrons
were distributed in all possible ways consistent with spin-
and space-symmetry restrictions among 2 a, orbitals and 2
b, orbitals to yield a 12 configuration MCSCF reference
function.

Configurations with amplitudes greater than 0.1 (0.06
for the equilibrium bond length) are displayed in Table II.
Consideration of the configurations with amplitudes greater
than 0.06in the 1.0 R, H, O, rather than the 0.1 employed at
other geometries, reduces the error in the absolute energy of
the '4, ground state (compared to the full CI energy) from
1.3 to 1.0 kcal/mol. It is evident that an operator screening
procedure based on the amplitude of a CSF in the reference
function is susceptible to the omission of many small contri-
butions. The importance of such numerous additive contri-
butions was emphasized, for the case of CI calculations, by
Harrison and Handy.3® Possible remedies for this difficulty
include an operator set defined as the union of operator sets
at individual geometries®” or a perturbation-theory-based
operator screening criterion.>® We wish to emphasize two
points here: First, the agreement of our results with the full-
CI result is quite good, even when we use the coarser 0.1
amplitude operator screening criterion; second, the remain-
ing difficulty is not an inherent limitation of the unitary cou-
pled-cluster method, but rather one related to our ancillary
screening procedure which can, and probably should, be im-
proved.

The energies of our unitary coupled cluster calculation
on DZ H, O are plotted in Fig. 3. For comparison, we also
include the (multireference) coupled-cluster results of Lai-
dig and Bartlett,'? as well as multireference CISD,'? and sin-
gle reference CISDTQ results of Handy and co-workers.*
Casual inspection of Fig. 3 shows that all of these methods

TABLE II. Amplitudes of dominant configurations at various geometries
of H;0.

1.0R, 1.5R, 20R,
3a21b2 0.986 0.921 0.716
(3a'4a!),1612b} 0.0798 0.133
3a22b2 —00797  —0.155 —0.247
4a’ 12 —00762  —0.180 —~0.296
(3al4a}),1612b} ~ 00604  —0.192 0.380
3al4a! 152 ~0.116 0.265
3a21b12b! 0.199
40222 0.191
3al4a!2b? —~0.129
4a’1b12b) —0.110

[Te X
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FIG. 3. Comparison of UCC, MR LCCM (Ref. 13), MR CISD (Ref. 13),
and CISDTQ (Ref. 24) with FCI (Ref. 24) electronic energies for DZ H,O
at various nuclear geomertries.

describe the electron correlation at a level of “chemical accu-
racy” ( £1 kcal/mol) at all nuclear geometries, except for
the CISDTQ method at geometries with stretched bonds
where its single configuration reference is inaccurate. The
MR CISD energy is notably flat, indicating that a uniform
error is present; both Bartlett and Laidig’s earlier MR
LCCM and our present UCC have variable accuracies at
different bond lengths, although both yield quite accurate
energies.

To achieve an accurate comparison of our results with
those of other workers, we report here further details of our
calculation. Using 612 cluster operators chosen using the
reference function CSFs with amplitudes greater than 0.06, a
correlated energy of — 76.156 234 hartree was obtained at
the equilibrium geometry. At the 1.5 R, geometry, 612 clus-
ter operators are chosen using our screening process for a
MCSCF amplitude criterion of 0.1. The resulting UCC cor-
related energy is — 76.013 827 hartree. At 2.0 R,, a UCC
correlated energy of — 75.905 141 was calculated using 576
cluster operators with a cutoff criterion of 0.1. At all three
geometries, the dimension of the image of the full MCSCF
reference function under the e, operator manifold (includ-
ing the identity) was 2867, while the dimension of the asso-
ciated second-order CI (SOCI) space was 4141. The largest-
amplitude cluster operators at various bond lengths are
given in Table III.

Summarizing the discussion of our H, O data, it appears
that the absolute accuracy of our UCC method can be quite
good. The relative accuracy (compared to the FCI energy)
varies as a function of geometry more than the relative accu-
racy of the MRCISD method but we feel this is probably due
to variations introduced by our operator screening process.
This point of view is supported by the fact that we achieve a
20.5% reduction in energy error when we expand our opera-
tor manifold further at R, by lowering our CSF amplitude
cutoff from 0.1 to 0.06.
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TABLE III. Amplitudes of dominant cluster operators® at various geomer-
tries of H,O.

10R, 1.5R, 20R,
162 +2b2 0.0583 0.0566 0.0569
16,1b,~2b,2b, —00381  —0.0415
16,3a, ~2b,4a, 0.0376 0.0398
3a,2b,~4a,3b, . 0.0374
4a,1b,~5a,2b, 0.0366 -
24,2b,~3b,4a, - —0.0462
2a,3a,~3b,1b, —0.0455
2a,1b,~3b,3a, —0.0419
2a,4a,~3b,2b, —0.0410

*See footnote a of Table 1.

IV. DISCUSSION
A. Muitideterminental coupled-cluster method

In the preceding sections, we developed the theory of
our unitary coupled-cluster method and presented two illus-
trative examples. We now compare the formal structure of
our work with that of earlier workers. One criterion by
which multideterminental coupled-cluster theories can be
categorized involves whether the reference function is treat-
ed as nondegenerate or quasidegenerate. Earlier works, no-
tably those of Lindgren,'* Monkhorst,'? and Bartlett,'® as-
sume that reference functions are made up of combinations
of configurations which lie “close” in energy (i.e., are quasi-
degenerate).* This ansatz is indeed the only reasonable one
for atomic calculations, which provided the initial focus of
these theories. The notion of a quasidegenerate valence space
also has great utility for diatomic and pi-electron system
polyatomic species. However, the character of “quasidegen-
eracy” is sorely strained when one considers a more typical
polyatomic molecule in which valence orbital interactions
cause Jarge splittings of the resulting molecular orbitals.>®
Nonetheless, a formalism based on a quasidegenerate ansatz
might still work. The alternative ansatz, that of a nondegen-
erate yet multiconfigurational reference, becomes increas-
ingly valid as one considers molecules in which the valence
orbitals span large energy ranges. Works by one of the auth-
ors'” and by Baker and Robb'® have demonstrated the chem-
ical utility of a nondegenerate multiconfiguration reference,
and have even included works on species where a quaside-
generate model space might be more appropriate (e.g., N, ).

Previous nondegenerate (but multideterminental) cou-
pled-cluster methods have been subject to criticism aimed at
their neglect of internal and semiinternal excitations. With
the present work, we are able to include all classes of excita-
tion operators, including the internal and semiinternal exci-
tations. Based on the experience gained in our work and
reported herein, the earlier criticisms are found to have mer-
it; many of the largest-amplitude excitations in our numeri-
cal studies were indeed found to belong to the class of semiin-
ternal excitations.

A legitimate concern about the use of a nondegenerate
reference is the utility of the method for a physically quaside-
generate situation (e.g., near an avoided crossing). As dis-
cussed in greater detail in the previous section, the BeH,

model problem was partially chosen to address such con-
cerns. The results of that study support the adequacy of the
initial assumption and the robustness of our method.

Since our unitary coupled-cluster method is nondegen-
erate, it does not describe (to any useful approximation)
correlation of the orthogonal-complement MCSCF states
beyond that achieved within the MCSCF process itself. As a
result, the number of cluster operators required to achieve a
satisfactory description of the beyond-MCSCF correlation
effects for the one state under investigation is relatively
small. In our study of DZ H, O (cf. Sec. III B), the number
of CSFs in the full CI calculation was 256 473; in the
CISDTQ calculation there were 17 678 CSFs and in the MR
CISD calculation there were 3277 CSFs. Although the exact
number of cluster amplitudes used by Laidig and Bartlett'?
in their MR LCCM treatment was not given, consideration
of their algorithm suggests that a number similar to the num-
ber of CSFs in the MR CISD study was used. As detailed in
the preceding section, we attain results similar in quality to
the above methods using approximately 600 cluster ampli-
tudes. Because the time needed to solve the linear equations
[Eq. (2.4)] varies as the square of the number of cluster
operators, such savings are significant. Since our implemen-
tation of the UCC method is presently at a pilot or rudimen-
tary level, we defer detailed discussion of its computational
efficiency to future publications. Nonetheless, it may be ap-
preciated that a compact description of the correlated wave
function ought to lead to an efficacious description of elec-
tron correlation.

In earlier work, one of the authors!” has shown the utili-
ty of a coupled-cluster energy functional truncated at second
order acting on an MCSCEF reference. In that work, the clus-
ter operators were expressed as undetermined amplitudes
multiplying a generator or generator product of the unitary
group. The resulting exp(G) was not of a unitary type. Spe-
cification of the spin and space symmetry of the correlated
wave function is straightforward in a theory using genera-
tors of the unitary group. Later work by Baker and Robb'®
drawing on this earlier study replaced the cluster operators
by closely related anti-Hermitian operators. This enabled a
stationary condition to be used to determine the cluster am-
plitudes, thereby reducing the requisite equations from qua-
dratic to linear.

We drew upon these earlier works for the functional
form and the definition of the exp(G) operator, but we in-
creased the operator set to admit entire classes not previous-
ly included and we circumvented the computational difficul-
ties of higher order density matrices. As a result, the rate
determining step of our theory is computationally similar to
the rate determining step of a multireference-CI calculation,
namely construction of Hé, where ¢ is a trial vector of the
dimension of the CSF space and H is the CSF-space repre-
sentative of the Hamiltonian H. We, therefore, expect our
theory to be computationally applicable to whatever systems
are accessible to the MR-CISD method.

B. Formal structure

In recent years several authors>***? have compared the
formal structure of single reference nonvariational methods
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with each other and with the configuration interaction meth-
od. Though our UCC method is inherently a multidetermin-
ent-reference theory, certain aspects of the theory may be
directly compared with the other methods. Examination of
Eqgs. (2.2) and (2.3) or, perhaps, more clearly the precursor
of these equations,

-9
0= [2 S(@IH19,)(@,IT(®)

a

+ Eo Y AP T[@,)(P,|T|P)
+ T(P|H D) (D, |T|®,)(D,|T|®)

~ S (@IT|®,)(@, 719,50, TI®)] @

shows that the terms of a CEPA(0) (or L-CPMET) the-
ory*® are present (i.e., the first, second, and fourth terms)
together with an additional term. In Eq. (4.1), we maintain
our convention of using the index ¢ for elements of the exter-
nal state space (cf. Sec. II D), and the indices » and n’ for
unrestricted configuration state functions (or linear combi-
nations thereof) orthogonal to the MCSCF reference func-
tion. A more detailed discussion of the relation of our UCC
theory to an approximate (CEPA-type) theory related to it
is the subject of a forthcoming publication.*?

As was shown by Paldus and co-workers,*° the informa-
tion content which enters in to a CISD calculation and a
L-CPMET calculation is identical (i.e., the Hamiltonian in
the basis of single and double excitations). Examination of
Eq. (4.1) shows that our UCC theory also uses the Hamilto-
nian in the “singles and doubles” basis. The third term of Eq.
(4.1), which is not present in the L-CPMET theory, allows
the clusters to couple directly (i.e., not across the Hamilto-
nian but through (®_|T|®P,)); this direct coupling is not
usually found in theories which are described as “linear.”
Furthermore, using 2 multideterminant-reference function
enables the aforementioned term to include contributions
from what may be described as triple and quadruple excita-
tions relative to the dominant CSFs in the MCSCEF reference.
As was indicated in Sec. II D, the most accurate description
of the level of excitation is a second-order CI space, which
our UCC method fully exploits the information content
thereof.

The primary difference between our present UCC the-
ory and Bartlett and co-workers’ MR-LCCM theory'® was
discussed in the preceding subsection in the context of a qua-
sidegenerate vs nondegenerate reference function. In their
initial reported implementation, Laidig and Bartlett chose to
neglect the cluster operator coupling the external space (i.e.,
Ty in their notation) because of its anticipated unimpor-
tance. Our present theory and implementation includes this
term [in the second line of Eq. (4.1)], which had been ne-
glected in earlier formulations.*

V. CONCLUSIONS

We described the theory of a new multideterminental
coupled-cluster procedure and demonstrated its effective-

ness with two illustrative calculations on species which have
been studied by many earlier workers. Our method uses a
single multiconfigurational-reference wave function and ap-
pears capable of achieving ‘“chemical accuracy” (Sfew
kcal/mol) not only at stationary points on a Born—Oppen-
heimer hypersurface but also at distorted geometries.

Correlated energies calculated using our theory are ad-
ditively separable (i.e., the method is size extensive), pro-
vided the energy of the reference function is also additively
separable. In our opinion, the unitary coupled-cluster meth-
od described in this work is a promising procedure for high
accuracy chemical studies, especially for systems with qual-
itatively different electronic structures in different regions of
interest on the potential energy hypersurface.

Future directions of this work include analyzing algor-
ithms for more effective implementation (especially on vec-
tor processors) and the analytical calculation of molecular
responses to perturbations, including atomic displacements.
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APPENDIX: OPERATOR MANIFOLD SCREENING
PROCESS

The selection of an operator manifold to use in our UCC
method within the list of all single and double excitations is
important for the stability of the simultaneous equations
[Eq. (2.4)] as well as for the overall efficiency of the meth-
od. Heuristically, linear combinations of excited configura-
tions which are coupled in a manner *“similar” to the
MCSCEF reference function interact stronger than an arbi-
trary linear combination of the same CSFs. This observation
has been made for the coupled electron pair approximation
(CEPA) in the form of the self-consistent electron pairs
(SCEP) variant.***¢ Inclusion of excitations from the
MCSCEF reference to the aforementioned arbitrary linear
combinations may have little effect on the energy, yet doing
so is computationally costly. Concomitantly, the simulta-
neous linear equations which must be solved are of larger
dimension and are more ill behaved.

We now describe a screening procedure in detail which
is designed to circumvent the difficulty. Let |/ ) denote an, in
principle, arbitrary CSF in the MCSCEF reference space, and
suppose we have already included some excitations {e, } in
the operator manifold M. In practice, the set of reference
CSFs {|I}} is determined by a numerical dominance crite-
rion (typically, an MCSCF coefficient greater than 0.1).
The screening procedure described here is then applied se-
quentially to the predetermined set in order of dominance.
The reference |1 ) together with the extant operator manifold
M defines a set of configurations—those formed by members
of M acting on |I). Let us assume that we have selected a
subset C of the full set of configurations generated by M
actingon |7 ) such that there is a one-to-one mapping from M
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to C. When screening a “new’’ operator ¢, for potential in-
clusion in our operator set M, we will include this operator
e, in Mif (K |e, |I ) #0forsome |K ) notalready included in
C. Implementation of this algorithm is relatively straightfor-
ward, since the operator manifold M (and the set {|7)}) are
used to determine C, the set of excited configurations, and
not vice versa. In practice, one pass through a so-called for-
mula tape is required for screening each reference CSF.

The propriety of using a single CSF from an MCSCF
function in the screening has been proven by Dalgaard.
Nonetheless, we cannot apply Dalgaard’s Theorem 1 from
Ref. 24 without some modification, as we only have available
generators e, and single products e, of these unitary group
generators. However, it can be seen that the application of
generators and generator products subsequently to other
CSFs within the MCSCF configuration space (i.e., using the
above process for a sequence of |I )s) has much the same
effect as application of higher than single generator products
to any one CSF. We have not rigorously studied the com-
pleteness of this particular set of operators; indeed the point
is somewhat peripheral to our purpose since we desire a trun-
cated set which embodies the essential chemistry.

Our screening procedure can be seen to select excitation
operators which preferentially correlate the dominant CSFs
in the MCSCEF reference space. The set of operators so cho-
sen then constitutes our {e,, } manifold. We must emphasize
that these excitation operators do act on the entire MCSCF
reference function |®),. ), even though they were selected
by considering their effect on individual dominant CSFs |I')
in | Py, ). The selection procedure outlined above is capable
of giving rise to external and semiinternal as well as internal
excitations. We have not encountered particular difficulties
from any class of operators chosen by this screening process
(cf. Sec. IIT).

The screening procedure discussed in this Appendix
may be seen to be a viable, but certainly not unique, prescrip-
tion for choosing a chemically reasonable truncated set of
excitation operators for use in our UCC method.
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