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The spectral quantization method which was successfully used previously to study bound state
energies and wave functions of C '4 'DCN is extended to the low-lying metastable states of this
same system. The potential energy surface employed involves the same ab initio calculational
data as was used in our earlier classical trajectory and purely quantal studies. Energies and
wave functions for the metastable states of DCN obtained by spectral quantization are
compared to those achieved in the presumably accurate quantal study. The agreement between
the quantal and spectal quantized wave function is not nearly as pleasing for these metastable

states as it was for the bound states.

I. INTRODUCTION

Systems undergoing unimolecular decomposition are
currently the object of much theoretical and experimental
study. Many of the experimentally interesting systems, how-
ever, are too complex to be studied theoretically using rigor-
ous quantum methods; thus there has been much emphasis
in recent years on developing and testing approximate meth-
ods for studying the internal (vibrational) motion of unsta-
ble molecules. In particular, quasiclassical trajectory
(QCT) methods have been used to study both unimolecular
decomposition’ and reactive scattering,” and the resultant
classical predictions, whenever possible, have been com-
pared with rigorous quantal results. Because there are situa-
tions for which a purely classical approach is inappropriate,
various semiclassical methods have been proposed,®* and
tested on model systems. In early semiclassical studies, the
major emphasis was on determining the energy levels for the
bound states of the systems. More recently, however, there
has been interest in calculating the semiclassical wave func-
tions as well.?

In a recent series of papers, we have studied by both
quantal and semiclassical methods the predissociation dy-
namics of the C'state (‘4 ') DCN molecule.®” Experimental-
ly,? this system shows vibrational predissociative behavior,
with the vibrational state lifetimes being strongly dependent
on the values of the D-CN stretching and bending quantum
numbers (v, and v,, respectively). In Ref. 6, which we here-
after refer to as paper I, we developed a model (with the CN
bond length frozen) for C state DCN predissociation, and
calculated fully quantal energies and wave functions for the
bound and metastable states of this model; the quantal life-
times were compared with QCT lifetimes and with stabiliza-
tion based results. (For a description of the method used in
the quantal studies, and detailed results, the reader should
consult paper I.) In a subsequent study,” which we hereafter
refer to as paper 11, semiclassical wave functions for the
bound states of this model system were generated using a
method closely related to the spectral quantization (SQ)
method of De Leon and Heller.® The SQ method allows one
to obtain both the energy levels and the wave functions for a
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given molecular Hamiltonian using a single classical trajec-
tory; the classical action of the trajectory may or may not be
required to be quantized. In paper II, the SQ wave functions
for the bound vibrational states of the C state DCN model
system were compared with the corresponding quantal wave
functions, and good to excellent agreement was obtained.
The C state electronic potential surface of DCN is a strongly
anharmonic surface, with the bending and stretching modes
highly coupled, hence we were gratified to note that the SQ
method so quantitatively reproduced the quantum wave
functions for this realistic molecular model. Equally encour-
aging was the fact that the quantal/SQ agreement held for a
wide range of energies: from the ground vibrational state, up
to states near the dissociation threshold. For these higher
vibrational states, the D atom samples regions of the poten-
tial surface which are highly mode coupled and very anhar-
monic.

The SQ method, and its modifications, had not pre-
viously been tested for such a challenging potential energy
surface, and the success noted in the studies of paper II en-
couraged us to apply SQ to the metastable states (reson-
ances) of the same model problem. We realized that the res-
onance states presented a much greater challenge to the SQ
method than did the bound states. However, as a first ap-
proximation to the resonance vibrational states, one expects
(or at least hopes) them to be extrapolations of the bound
states: that is, reasonably localized, showing fairly simple
nodal patterns, and with energy level spacings similar to the
spacings of the higher energy bound spectrum. In fact, the
quantal resonance states of our model of DCN did display
such regularity in their energy levels and nodal patterns,®
which encouraged us to extend the SQ method to above
threshold. Although paper II showed a gradual deteriora-
tion in the SQ/quantal agreement at higher (bound) ener-
gies, it still seemed reasonable to expect SQ to give good
qualitative information about the resonance state wave func-
tions and dissociation dynamics.

In the remainder of this paper, we compare SQ wave
functions for the metastable states of our model system with
the earlier quantum mechanical results. Section II describes
how we applied the SQ method to the metastable states of
our model, briefly reviews the quantal results, and summar-
izes the dissociation dynamics of C state DCN. Section III
gives state-by-state comparisons of the SQ and quantal wave
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functions where we observe that the SQ and fully quantal
eigenfunctions are not nearly in as good agreement as for the
bound states. Section IV investigates the causes of the SQ/
quantal discrepancies, and discusses the capabilities of the
SQ method in the study of resonances. In Sec. V, we discuss
the outlook for the SQ method, and other semiclassical wave
packet methods, in the study of metastable states.

1i. HOW DID WE STUDY THESE METASTABLE STATES?
A. Spectral quantization study of resonances

The SQ method is described in paper II and references
therein, hence we will only briefly summarize the procedure
here. The essence of the method is the propagation of a
Gaussian wave packet along a classical trajectory. A time-
evolving wave packet, if propagated fully quantum mechani-
cally, would contain components of the exact eigenstates of
the system; by suitable projection, these exact eigenstates
could be recovered.’ The propagation of a frozen wave pack-
et along a classical trajectory is the most crucial approxima-
tion in the SQ method.

For bound states, we apply the SQ method as follows.
Given the molecular Hamiltonian, we propagate a classical
trajectory having an energy near that of the state we wish to
study until the trajectory closes on itself (i.e., until all co-
ordinates and momenta coincide with the initial coordinates
and momenta to within some small tolerance).'® A Gaussian
“coherent state wave packet” (CSW) is then constructed
and propagated in time along the trajectory.>® The CSW is
“frozen”; that is, it is assumed not to spread or otherwise
distort as it propagates (in fact, for a globally harmonic po-
tential surface, this assumption is exactly satisfied if the sur-
face’s harmonic frequency matches that of the packet).!' A
Fourier energy transform of the overlap of the propagated
CSW with the CSW at ¢ = 0 then gives a power spectrum,
the peaks of which, {E,}, are the semiclassical eigenval-
ues.”® The projection of the desired eigenstate ¥, is then
carried out by repropagating the CSW with its phase modi-
fied by exp (iE;t /#); this usually works best if there is a large
peak in the power spectrum corresponding to the desired
eigenstate’s energy E;.As the phase-shifted wave packet pro-
pagates along the original trajectory, amplitude is built up
and destroyed, depending on the relative phase of the propa-
gated wave packet. This constructive and destructive inter-
ference pattern gives the SQ estimate for the eigenfunction.

Our approach to the SQ study of metastable states is
very similar to that described above; indeed, we use some of
the same bound trajectories. It was noted in paper II that the
power spectra of the higher energy bound trajectories con-
tained peaks corresponding to energies above the dissocia-
tion threshold; in some cases, these were the /argest peaks.'?
This would imply that SQ wave functions for the metastable
states were the major components of these high energy (but
still bound) wave packets. Accordingly, for each resonance
we propagated a CSW along a high energy bound trajectory,
with the phase modified by the factor exp ( IE;t /#i) corre-
sponding to the power spectrum peak E; associated with the
energy (position) of the resonance, and thus obtained the
SQ estimate for the resonance wave function.

One may reasonably ask, why not look for closed trajec-
tories with energies above threshold? Unfortunately, the
vast majority of trajectories above threshold eventually dis-
sociate rather than close. The few closed trajectories we did
find above threshold represented rather specialized motion
(i.e., they sampled a very small fraction of the accessible
phase space); such trajectories are not appropriate for pro-
ducing wave functions, since they do not contain informa-
tion about the wave function amplitude within most of the
energy-allowed potential surface. A further justification for
the use of high energy bound trajectories is that the bound
state SQ wave functions of paper II were seen to depend only
weakly on the particular trajectory used. As long as the clas-
sical trajectory sampled most of the energy-allowed phase
space, displaying motion of the type expected for the particu-
lar quantum state, and was reasonably close to the energy of
the desired state (within about 1000 cm ~ '), the results were
quite similar. Thus the most promising trajectories for
studying metastable states seemed to be those which: (i) had
energies close to threshold and (ii) fairly uniformly sampled
the allowed phase space. Several such trajectories (with
varying amounts of stretching and bending motion) were
used in order to obtain power spectra with major peaks cor-
responding to the several different metastable states in the
energy range of interest (100~1000 cm’ above threshold).

B. Quantal studies: Resonance energies and lifetimes

The bound and metastable states of our model of C state
DCN were studied using the method of complex scaling of
the Hamiltonian, sometimes referred to as “coordinate rota-
tion” (CR).%" In the CR method, one scales the dissocia-
tive coordinate (denoted r) by a complex parameter
7 = ae', and forms the “rotated”” Hamiltonian,

H(r)—H, =H(yr). N

The bound states of the Hamiltonian are invariant to 7. For
0 larger than a critical value 8,, metastable states of the ro-
tated Hamiltonian behave like bound states of a typical
Hamiltonian; that is, their energies are stationary with re-
spect to changes in the variational parameters, and their
wave functions are square integrable. The latter property
permits the study of the resonances by expansion in standard
bound-state basis sets. The complex energy of a resonance is
stable with respect to changesin @ for 8 > 6, and is written as

E=E. —il/2 (2)

Here, E, is the position of the resonance; I' is the width of
the resonance, and is related to the lifetime by

T=*#/T. (3)

A more detailed discussion of the CR method is out of
place here, and the reader is referred to several excellent
reviews on the subject.!>'* In this paper, we treat CR as an
established method capable of giving accurate results for the
resonances of our model.’* Our CR estimates for the reso-
nance positions and widths are listed in Table I.1®

As noted in paper I, our radial basis is only adequate to
accurately represent resonances in the energy range of 150~
1000 cm™!; thus the (v, = 1, v, = 3) resonance lying about
100 cm ! above threshold is not as well described as the
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TABLE L. CR estimates for the resonance positions and widths.

(v,0;) E.* re Ter” Toct (%)°
(470) —20¢ 0 © []e
(1,3) < 100; 10-20° 0.35° 0.52 [ 90]
(0,6) 220-225 5-10 0.71 0.85 [100]
3,1) 3508 > 100" <0.05" 0.35[ 34)
(2,2) 380-390 15-20 0.30 0.14 [ 55]
(1,4) 680-690 2040 0.18 0.18 [ 89]
0,7) 860-870 20-25 0.24 0.21 [100}
(3,2) 9508 > 100* <0.05" 0.14[ 32]

*From CR calculations, E = E_, — iT'/2; energy incm™".

*rer = #/T; units of ps (10~ '25).

°r as calculated by slow-channel QCT method (see the Appendix); (value)
is the percentage of slow-channel trajectories.

9The state (4,0) is bound, according to the CR calculations; hence I is zero
and the state’s lifetime is infinite.

°No QCT calculations were carried out for the (4,0) state.

" A range of energies is reported to indicate the approximate computational
uncertainties; the value reported for 7y is obtained using the mean value
of I".

% No resonance was located by CR calculations (see the text); the position
given is from extrapolation of the bound state energy spacings.

" Lower bound for the width and upper bound for the lifetime, based on
capabilities of the basis (see the text).

other resonances. We also note that as @ is increased beyond
6., the resonance wave functions (in contrast to the reso-
nance energies) do change; oscillations develop in their radi-
al-coordinate dependence.'” Our square-integrable radial
basis cannot describe very rapid oscillations, and is inade-
quate for © greater than about 0.030 rad. According to the
original CR theorems, this restriction to small § means that
very broad resonances cannot be described by our basis. A
rough estimate is that resonances with lifetimes of less than
0.05 ps (10~ '25) will be indistinguishable from continuum
states.

We were unable to locate a resonance for (v, =3,
v, = 1) in the CR calculations, and we thus assume that this
state’s lifetime is less than 0.05 ps. It is possible that some
defect in our basis caused us to grossly underestimate the
lifetime of the (3,1) state, but this seems unlikely inasmuch
as the states (3,0), (4,0), and (2,2) were adequately de-
scribed by the basis. The (3,2) state is presumably even more
shortlived than the (3,1) state, hence we did not attempt to
locate the (3,2) resonance.

C. The quantal dynamics of C state predissociation

We conclude Sec. II by examining the predissociation
dynamics of C state DCN. Our two-dimensional potential
energy surface is shown in Fig. 1; Fig. 2 shows a plot of the
localized component of the wave function amplitude for the
state (v, = 0, v, = 6), which is a typical narrow resonance.
The plot has been scaled to show the large r behavior, thus
the peaks of the small r part of the wave function have been
“chopped off,” but one can easily see the characteristic high-
bending-state nodal pattern—seven peaks arranged in an
arc. Note the low wave function amplitude at large 7 in re-
gions of the potential surface which possess barriers; that is,
some tunneling behavior may be occurring, but not much.
The majority of the large r density is in the barrier-free re-

gion, and corresponds to classically allowed escape.

Close examination of the arc of peaks indicates that: (i)
the peaks “bulge” out beyond the bottom of the potential
well; (ii) near the endpoints of the arc, movement across a
node (between peaks) actually involves D-CN stretching as
well as bending motion—that is, there is coupling of the
stretching (v,) and bending (v,) modes; and (iii) the high-
est amplitude peak is at linear geometry—6 = 180°. (The
other resonance wave functions are shown in Sec. III; the
predissociation dynamics is qualitatively the same, although
the extent of tunneling, mode coupling, etc., varies from
state to state.)

As noted above, tunneling contributes only slightly to
the predissociation. We do not expect tunneling to be at all
well reproduced by SQ wave functions, since they are based
on classical motion. The observed relative unimportance of
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FIG. 1. (a) Potential energy surface of C state ('A’) DCN; plane polar
coordinates (r,0) shown. Each contour represents an increase of 0.0031
hartree; the minimum lies at r = 3.29 bohr and © = 157°, and the origin is
the center of mass of the C-N bond. (The surface shown is ¥, ; see Sec. IV
A 1 and Fig. 5.) (b) Enlargement of the inset area of Fig. (1a); each con-
tour represents 0.0023 hartree.
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FIG. 2. Quantal wave function for the state (v, =0, v, = 6). A larger area
of the potential energy surface is shown than in Figs. 3 and 4, and the plot
has been scaled to demonstrate the large r behavior.

tunneling in the DCN predissociation dynamics makes this
system more favorable for SQ studies. Intermode energy ex-
change is the dominant mechanism of predissociation; the
degree of bend/stretch coupling primarily determines the
decay rates (lifetimes) of the resonance states. Since our
application of the SQ method is based on high energy trajec-
tories which sample the coupled areas of the potential sur-
face, it seems reasonable to expect SQ wave functions to
show evidence of intermode coupling (i.e., bulge and bend/
stretch distortion). Our implementation of SQ, of course,
cannot be expected to show classical escape, since we use
bound trajectories. We now examine some SQ wave func-
tions for the metastable states, and compare them with the
quantal wave functions.

lll. OVERVIEW OF THE QUANTAL/SEMICLASSICAL
COMPARISON

In Figs. 3 and 4, contour plots of the resonance wave
functions are shown for the SQ and quantal descriptions,
respectively (also included are a few bound state wave func-
tions for comparison). There are no quantal wave functions
shown for the states (3,1) and (3,2) since no quantal reson-
ances were located for those states. The positive quantity
plotted in each case is the amplitude 4 of the wave function
written as

V(r,0) = A(r,0)e? " (4)

Here r is the distance from the D atom to the CN center of
mass, and @ is the angle between 7 and the CN bond axis; 180°
corresponds to linear DCN. (For viewing convenience, all
figures are labeled by x and y, wherex = r cos 8,y = rsin 6.)
The lifetimes predicted by the QCT method®'® (described in
the Appendix) are listed with the quantal lifetimes in Table
I; for comparison, the bending and stretching periods of
DCN are about 0.05 and 0.02 ps, respectively. The positions
given for the resonances are the CR estimates; as implemen-
ted here, SQ does not give estimates for the positions (see

paper IT). The agreement is reasonable, except for the (3,1)
and (3,2) states, for which the classical lifetimes are appar-
ently much too long, judging from our failure to locate these
states in our quantal studies. In calculations closely related
to the QCT method used here, Moiseyev recently obtained
resonance lifetimes which were a factor of 4-7 too long."®
Bosanac has also cast doubt on the applicability of classical
trajectory methods in predicting resonance state lifetimes.?’
Thus the good QCT/CR agreement for most of the lifetimes
reported here may be fortuitous.

An analysis of the causes for the discrepancies between
the quantal and SQ results will be given in Sec. IV; we merely
note here the areas of agreement and disagreement. (i) The
SQ resonance wave functions are qualitatively correct in the
regions sampled by the trajectories. The nodal structure al-
lows easy identification of the vibrational quantum numbers
of the resonance states. (ii) The amount of distortion of the
SQ wave functions does not agree well with that seen in the
quantal wave functions. The SQ wave functions show nodal
patterns which are too regular, and they do not bulge out
beyond the potential well as much as do the quantal wave
functions. (iii) The quantal wave functions show a pro-
nounced density buildup near linear geometry (y = 0); the
SQ wave functions show this to a lesser extent. (iv) The
details of the predissociation dynamics are not very well re-
produced by the SQ wave functions; as expected, the SQ
wave functions do not infer tunneling (i.e., they do not show
much density outside the classically allowed energy enve-
lope). (v) Our inability to locate quantal resonances for the
(3,1) and (3,2) states implies that the wave functions for
these states should be very diffuse; however, well-localized
SQ wave functions corresponding to large peaks in the power
spectrum were obtained for these states.

V. DISCUSSION

As noted in Sec. III, there are a number of differences
betwen the fully quantal and the SQ wave functions for the
metastable states of C state DCN. Here we address possible
causes of these differences, and suggest modifications of the
SQ method which should make it more suitable for the study
of metastable systems.

A. Causes of the SQ quantal wave function
discrepancies

1. Potential energy surface differences

Before we compare the quantal and SQ wave functions,
it is important to note that the potential energy surfaces used
in the two studies, while very similar, were not the same
surface. The quantal studies required that the potential sur-
face be expressed in a particular form,®

Vnum(r’e) =2V1(")PI(COS 6)’ (5)
]

where P, is the / th-order Legendre polynomial, and ¥V, (r)
was numerically determined to optimize the fit to ¥, [see
Eq. (6) below]. The SQ studies were based on earlier classi-
cal trajectory studies'® which used a polynomial fit to the
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FIG. 3. Semiclassical (SQ) vibrational wave functions for C state DCN; plotted as contour diagrams showing the magnitude 4 of the wave functions [see Eq.

(4)]. The contours are evenly spaced, but the division between contours is not the same in all the figures. (a) (v, = 1, v, = 1), a medium-energy bound state.
(b) (0,5), a high-energy bound state. (c)—(i) are the SQ wave functions for the metastable states in order of increasing energy; the state labels (v,,v,) are
shown in the upper left-hand corner. (A slightly larger area of the potential surface is shown for the metastable states than for the two bound states. )
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FIG. 3. (continued.)

ab initio potential surface,?!
Vool (1,8) = ¥ C,,, 7" (cos 6)", (6)

where (m, n) are integer exponents, and the C,,, are deter-
mined by a least squares procedure. ¥, agreed to within
about 40 cm~ ! with the ab initio energies?! over a wide range
of (r,6), and was used for the SQ studies reported here ex-
cept where specifically noted otherwise.

The two surfaces, V,,, and ¥V, , are reproduced as
contour plots in Figs. 5(a) and 5(b), respectively. They are
seen to be very similar. However, it was noted that use of
Vaum in the SQ computer routines led to a great increase in
computer time, thus complicating the search for suitable
closing trajectories. Test calculations were carried out, com-
paring SQ wave functions obtained using V., designated

noms With those obtained using ¥, 53, . No significant
differences were noted, and we concluded that it was appro-
priate to use V,,,, in further SQ wave function calculations.

Unfortunately, the above conclusion is far less valid for

4 T T 1
32

3 =
£
s 2 i
>

= -

0 1 1 1

-5 -4 -3 -2 -1

resonance wave functions, and even for high energy bound
state wave functions. In Fig. 5 it is seen that the differences
between the two surfaces occur in regions of the high energy
contours. Because our early test calculations used relatively
low energy trajectories, the significantly different parts of
the surfaces did not contribute appreciably to the wave func-
tions. Note that: (i) V,,,, has a shallower, broader approach
to the saddle point region at 180% (ii) ¥,,,, has a narrower
escape path at the equilibrium angle of 157°; and (iii) the
“side barriers” on ¥V, (ataboutx= —2,y= + 3) are
smoother than those on V,,,, (which suddenly get much
steeper for x> — 1.5). Dynamically, the first difference re-
sults in high energy trajectories on ¥, being much more
prone to cross the saddle. This explains one of the discrepan-
cies of Sec. III: the smaller wave function amplitude at 180°
noted for the SQ wave functions is due to the fact that the
classical trajectories which generate them do not cross the
saddle. The lower distortion of ¢33, relative to the quantal
wave functions SR, is not so easily explained, but it might
be due to the different side barrier shapes of the two surfaces.
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FIG. 4. Quantal (CR) vibrational wave functions for the same states as shown in Fig. 3; the state labels (v,,,) are shown in the upper left-hand corner. Note

that there are no Figs. 4(e) or 4(i) since the quantal calculations indicate that the corresponding states, (3,1) and (3,2), are continuum rather than
metastable states.
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FIG. 4. (continued.)

The smaller amount of bulge in the SQ wave functions can-
not be due to the surface differences, as the broader escape
channel in ¥V, would favor bulge. This is instead a quan-
tum effect: the semiclassical wave functions do not “know”
about tunneling and classical escape, both of which cause
bulge.

Upon discovering the surface differences, we attempted
to calculate high energy ¥, wave functions. However, the
surface ¥V, evidently has a very small fraction of phase
space which is regular for higher energies, and we were un-
able to locate suitable quasiperiodic trajectories at high ener-
gyon V... (The power spectrum Fourier analysis method
used in SQ is meaningless unless the trajectory very nearly
repeats its motion after closing—that is, it must be quasiper-
iodic.) Chaotic trajectories do not generally close; due to the
exponential propagation of numerical errors in chaotic tra-
jectories, those which do appear to close are not meaningful
for SQ. A few saddle-crossing regular trajectories were found
for ¥, , but they did not sample most of the energy-accessi-
ble phase space [they looked, e.g., like Fig. 2(f) of Ref. 7.]
Such trajectories cannot be used to generate good wave func-
tions for the entire coordinate space.

A more systematic search for regular, high energy tra-
jectories on ¥V, was made using surface-of-section analy-
sis. The results indicate that short-term quasiperiodic behav-
ior does occur (“vague tori”?? were found), but that the
regular region is exceedingly small—probably vanishingly
small above threshold. There have been recent studies which
indicate that the amount of energy in the bending mode of a
triatomic molecule correlates more closely with the onset of
chaotic behavior than does the toal vibrational energy of the
triatomic.?® Our results seem to confirm this, as it is regular
trajectories which cross the saddle (bend a lot) which are so
difficult to locate.

To close this discussion, we note that the question of
how accurate SQ wave functions are for resonance states
cannot be definitively answered by these studies, due to the
surface differences. This points out one limitation of our ver-
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FIG. 5. Comparison of the two functional fits of the potential energy sur-
face. In both plots, the division between contours is 0.0030 hartree.
(a) Voum (CR studies); (b) V,;, (SQ studies).

sion of SQ: appropriate closing trajectories for use in obtain-
ing the power spectrum will be difficult to locate in multidi-
mensional systems with many bending degrees of freedom.
Indeed, for such systems, the problem will arise in the study
of bound states as well as resonances.

2. Nonquantization of trajectory action

It is conceivable that in failing to quantize the action of
the trajectories we have introduced error. However, pre-
vious studies which did quantize the action have sometimes
yielded SQ wave functions for high energy bound states
which were likewise “too regular.””® Neglecting to quantize
the action causes errors in the energy E,, and only secondar-
ily errors in the wave functions [ via the phase factor exp (iE;
t /#i) 1. We do not obtain the energy (position) of the reso-
nance by the usual SQ algorithm,”® however, so not quantiz-
ing the action is probably not a significant contributor to

errors in ¥,3, .
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3. Extrapolation errors

By using bound trajectories, we must necessarily obtain
our resonance wave functions from power spectrum peaks
which are 100-1000 cm ™! above the energy of the propagat-
ing trajectory. In paper II, we noted that the further from the
energy of the trajectory one extrapolated, the less reliable
were the SQ wave functions obtained.”** For the resonance
states, we are not only extrapolating to states which sample
higher energy regions of the potential energy surface, we are
also extrapolating to different kinds of motion (from the
quasiperiodic regime, to dissociative motion). In this sense,
we are forced to extrapolate much further than in the studies
of paper II, and this is probably a significant source of error
in 433, -

4. Wave packet spreading and scattering

In the SQ method as implemented here, the wave packet
is not allowed to spread or otherwise distort as it propagates
along the classical trajectory. This restriction causes no er-
rors for a harmonic potential whose frequency matches that
of the packet, but the wave packet would actually spread and
distort for our very anharmonic surface (in fact, it is only for
a harmonic potential that the wave packet center exactly
follows a classical path).* Studies which allow the Gaussian
packet to distort (but still propagate it along a single classi-
cal trajectory) indicate that this improvement is still not ade-
quate for reactive scattering situations.?® Instead, the wave
packet should be allowed to split (scatter) on encountering
inflection points of the potential surface, as would a quantal-
ly propagated wave packet.?*° This is not feasible within the
semiclassical formalism used here (but see below).

B. Changes in SQ required for study of resonances

Since the calculations reported here were completed, a
number of workers have suggested variations on the semi-
classical wave packet methods. We discuss below those
which sound promising for our system, including a few ideas
of our own.

1. Expansion to many packets

It has been suggested that one should expand the origi-
nal wave packet as a sum of wave packets whenever the prop-
agating trajectory encounters pathological (strongly anhar-
monic or inflection point) regions of the potential energy
surface.?>?" These several wave packets would then be pro-
pagated independently (or, as a better approximation, cou-
pled to each other)*’‘® along their own trajectories, which
would tend to diverge with time. If the original trajectory
had an energy above threshold, some branches might even-
tually dissociate. For our problem, this would include cou-
pling to the continuum via the dissociating trajectories.
There are two objections to this, however. First, this scheme
likely would become computationally intractable, unless one
were able to ignore or combine most of the packets at each
branch. Second, if slight perturbations of the original trajec-
tory lead to qualitatively different kinds of behavior (i.e.,
some branches dissociate, others do not), then as discussed
by Percival*® the original trajectory is not really suitable

for EBK quantization. We do not have answers to these ob-
jections as yet, but by analogy with quantal studies of time-
dependent wave packets, this scheme is appealing.

2. Rejection of power spectrum peaks

Asnoted at the end of Sec. III, the SQ method apparent-
ly predicts spurious resonances for the (3,1) and (3,2)
states. However, criteria may exist for rejecting certain
peaks in the power spectra. One possible criterion is that
before associating a power spectrum peak with a resonance
state, the peak must appear in the power spectra from several
different trajectories sampling the same region of phase
space (the trajectories should not resemble each other very
closely). De Leon and Heller successfully solved a similar
problem in their SQ study?; in that case, certain peaks of the
power spectrum corresponded to negative quantum
numbers.?® Judicious choice of initial conditions decreased
the amplitude of these “ghost peaks”’; there may be an analo-
gous way of eliminating the peaks corresponding to our
spurious resonances.

3. Semiclassical stabilization

This suggestion stems from a desire to include dissocia-
tive and other chaotic trajectories. Quantally, the stabiliza-
tion method is implemented by systematically changing the
basis set in a variational calculation, and associating reson-
ances with those eigenvalues above threshold which are sta-
ble with respect to the basis set variation. In a proposed semi-
classical stabilization method, one augments the potential
surface with an infinite barrier at some value 7,, and propa-
gates an essentially arbitrary classical trajectory at an energy
above threshold. The barrier reflects the dissociated frag-
ment back into the interaction region, and eventually the
trajectory closes to some tolerance. One then applies the SQ
algorithm of the present paper, and obtains a power spec-
trum (presumably, the fundamental frequencies of the sys-
tem will be reflected in the pseudoperiodic motion of the
dissociating fragment ). The entire procedure is repeated, us-
ing a slightly different value of r, (or, alternatively, slightly
changed initial conditions), and the resulting power spec-
trum is compared with the first one. Any large peaks which
occur in both spectra (more generally, those which persist
for many power spectra) would be candidates for reson-
ances. (These postulated persistent peaks are reminiscent of
the “scars” noted by Heller in the wave functions for the
stadium billiards problem.?®) Unfortunately, this may be an
untestable conjecture, as the desired trajectories would cover
a huge amount of phase space, and have an extremely long
closing time. It might be feasible, however, to test this meth-
od on the collinear scattering problem, A + BC—AB + C,
by placing a similar barrier in the reactive exit channel.

4. Adiabatic switching

Recently there has been great interest in the fact that, for
a sufficiently slowly switched on perturbation, the action
variables of a system are conserved.*? One generally starts
with a separable system for which the actions are easily cal-
culated, and specifies the initial conditions so that the ac-
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tions are the correct EBK values. One then slowly switches
on the perturbation, which need not be small; when it is fully
“turned on,” the actions are still the correct EBK values,
and the energy is the EBK energy. This procedure is repeat-
ed for various initial conditions, and the results are averaged.
It has been discovered by computational experiment that
this method can tolerate some chaos.*' For our DCN prob-
lem using ¥V, as the unperturbed Hamiltonian, and adiaba-
tically switching to V.. one should be able to obtain semi-
classical estimates for the resonance energies. This might
allow rejection of the spurious resonances (3,1) and (3,2).
Of course, the unperturbed problem on ¥, would be con-
siderably more difficult than the uncoupled oscillator start-
ing point used by Skodje ez al.?' Furthermore, this represents
a considerable departure from our simple SQ method.

5. Time-dependent variational principle (TDVP)

The SQ method represents a rather specialized evolu-
tion of the original wave packet method, which had its inspi-
ration in the Dirac-Frenkel-McLachlan time-dependent
variational principle.>® Since a single frozen wave packet
propagated on a classical path does not seem adequate for
this problem, it seems appropriate to return to the TDVP
and consider using more than one wave packet. Several
workers have performed TDVP calculations using multiple
packets, with a reasonable effort-to-results ratio.>*** There
are also possibilities for the single-packet approach, in which
the constraint of motion along a classical path is removed;
Skodje and Truhlar have explored this possibility.*®> Other
workers have suggested one- or few-packet approaches in
which the Gaussians are premultiplied by time-dependent
polynomial factors, which could better describe a scattered
wave packet. These ideas are being pursued in our laboratory
and elsewhere.

6. Distributed Gaussian basis sets

Recently, Hamilton and Light*® constructed a vibra-
tional basis set of real Gaussian functions with their centers
distributed uniformly over the energy-accessible coordinate
space. These functions were then used in a variational calcu-
lation for a two-dimensional vibrational problem. For a po-
lyatomic molecule, the number of functions required would
be prohibitively large, unfortunately. Davis and Heller*’ ear-
lier formulated a similar basis set using complex Gaussians
(i.e., wave packets) distributed throughout phase space, and
performed variational calculations. They placed the func-
tions along classical orbits; the resulting eigenfunctions were
quite accurate for eigenvalues close to the energy of the clas-
sical orbit.

The advantage of placing the functions along a trajec-
tory is, of course, the great reduction in the number of func-
tions required. The trajectory places the Gaussians in the
important regions of phase space by its dynamics. (Of
course, several trajectories, hence several basis sets, are
needed to describe all the dynamics and energetics of the
system.) Note that a variational calculation is performed,
and the coefficients (i.e., the phases) of the Gaussians are
determined by quantum mechanics. The usual semiclassical
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wave packet approach* determines the phases from the tra-
jectory action.

As a hybrid procedure, one can form linear combina-
tions of Gaussian wave packets, determining the relative
phase semiclassically by SQ or TDVP, and use these con-
tractions as basis functions in a relatively small variational
calculation. This has been done for the bound states of the
Henon-Heiles potential, using Gaussians placed along a tra-
jectory and semiclassically contracted in various ways; the
results so far are promising.*® Such an approach can be as
quantal or as semiclassical as the system requires; one mere-
ly changes the number of functions included or the extent of
contraction of the basis. This technique could be used to
study the resonances of DCN, e.g., by using as a basis the
bound SQ wave functions of paper II supplemented with
trajectory-based TDVP-contracted Gaussians outside the
potential well, and performing stabilization calculations.
Work along these lines is being carried out by this research
group and by other workers.*®

V. SUMMARY

In conclusion, the SQ method of paper II, while very
successful at generating wave functions for the bound states
of a highly anharmonic system, does not seem to be appro-
priate for the study of predissociating states of the same sys-
tem. While a rigorous quantum/semiclassical comparison
has not been made, it appears that this particular version of
SQ cannot be applied to our surface at energies above thresh-
old. However, the resonance wave functions generated by
this algorithm for a very similar surface are at least qualita-
tively correct, with the exception of the “spurious reso-
nance” wave functions. Semiclassical wave packet scattering
calculations by other workers have successfully reproduced
quantal results, and thus we are still optimistic that a method
closely related to SQ will prove efficient and accurate in lo-
cating and describing nuclear motion resonances in unstable
systems such as C state DCN.
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APPENDIX

Since there is no lifetime information in current formu-
lations of the SQ wave packet method, we have used the
slow-channel QCT method of paper I to calculate the reso-
nance widths.*'® Briefly, this involves running an ensemble
of trajectories whose initial conditions are weighted accord-
ing to a simple quantal wave function (e.g., one can use the
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square of the SQ wave functions to generate the initial condi-
tion ensemble). Either quantal or SQ predictions for the po-
sitions of the resonances should be used for the trajectory
initial energies. One propagates the classical trajectories,
notes how long each trajectory survives before dissociating,
and then plots the fraction of surviving molecules as a func-
tion of time. The resulting curve is then fit by a double expo-
nential,

F(t) =Crexp( —t/7;) + C, exp( — t/7,), (A1)

where F(0) is normalized to unity. The constant 7, is rela-
tively insensitive to (v,, v,), and is of the order of one D-CN
stretching (v,) vibrational period. C; increases with v,
(hence C; decreases); 7, depends on both v, and v,. The
trajectories associated with 7, are referred to as “fast chan-
nel” trajectories, and we have equated these with an underly-
ing continuum at the energy of the resonance.'® The “slow-
channel” lifetime 7, we have associated with the resonance
lifetime, and it is these slow channel results that are listed in
Table I above.

The above scheme runs into difficulties, however, for
continuum states. By associating the slow-channel trajector-
ies with the resonance states, we are requiring that there be
no slow-channel trajectories in an ensemble of initial condi-
tions corresponding to a continuum state, which may be un-
realistic. Any QCT ensemble based on a reasonable, local-
ized zeroth-order estimate of the wave function will most
likely “accidentally” include some regions of phase space
leading to long-lived (slow-channel) trajectories.

We can state this more quantitatively by postulating the
existence of “residual slow-channel trajectories” (RSCTs):
at any energy, there may always be a certain number of slow-
channel trajectories which have nothing to do with reso-
nance behavior (see also Ref.20). We rewrite the slow-chan-
nel part of Eq. (A1) as

C, = C,7(v,0,) + C g (E). (A2)
C, r corresponds to the slow-channel trajectories which are
“true” slow-channel trajectories; it would be zero for values
of (v,,0,) corresponding to continuum (directly dissociat-
ing) states. C,z corresponds to RSCTs, and in our DCN
model system it probably decreases slowly with increasing
energy of the system (it also depends somewhat on how one
models the initial conditions). For the true resonance
states,C, is typically 0.5 to 1.0, and even a fairly large value
of C, x merely causes Eq. (A1) to overestimate 7,. For con-
tinuum states, however, C, ;. is zero, and a nonzero value of
C,x (=0.3, see Table I) leads to the spurious long-lived
states (3,1) and (3,2).

The reader may object that the above is not a very satis-
fying answer: it does not really place the true slow-channel
QCT lifetime method on firm theoretical grounds, and it
does not tell us how to calculate C, - (or even predict when
C, x cannot be ignored). These are valid objections, and we
no longer feel that the slow-channel QCT method is a defen-
sible way to predict the existence of resonances. However,
there is some justification for using this method to calculate
approximate relative lifetimes of states known (e.g., from
quantal calculations or from experiments) to be narrow re-
sonances.
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