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AlIstract. Based on the invariancc undcr translations and rotations or quantum chemical one-
and two-clectron intcgrals, a method for obtaining a complete:set or independent rclations
among third integraI derivatives ispresented. It is shown that the numbcr or dependent integral
derivatives, Which.isequal t,o the numbcr of ind,ependent relatiol!~, canbe straigh!forwardly
detifuuned iiiterms or tlte rt'tnainint third,&Criva'tiveswhich'niustbc'expliCitly calcUlat~i. The
set or soch independent and dependent third integral derivatives ca'n'15ccboscn in~amanncr
wbicb imposes no restrictions on tbe noclcar positions. The specjal casc ot' collincar nucicar
centres is also separatcly anaIyzed. ~
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1. IntroductioD
,.."

The directcomputation of analytical derivatives ofthe electronic~energywith respeCtto
nuclear coordinates bas pr-oved to be a powerful toolbpusejt yi,elds,anjplmediate
sense of the local topography of the eriergysurface. Recently:work'ers (PulayI983;
Simons and J;rgensen 1984; Simonset al 1984) haveextended techniques for
calculating fiest and second derivatives to the calculationof Ilrtharmonicities of the
energysurface., ~

A large number of third integrai derivatives need to be calculated in order 'to
implement a Catculation of the~tliird derivative ofthe'energy 'surface. For example,
considerthe third derivatives of four-centre two-electron integrals}in a calculation
involving n primitive atomicbasis functions. Onecaneasily show tHat thereare 364
third integral derivatives for each of the n4soch integraIs. Jn the fV-centre ca~~there are
(3N) (3N + 1) (3N + 2)/6 third derivatives for each of tlle n4 integraIs. 'i

Use df translational and rotational invariance (or symmetry) bas proved to. be a
~aluable tool in calculating derivatives of the energy surface by r~\lcing tJlepumber of'
integral derivatives that need to be explicitly calculated (Komornicki et al 1977;Dupuis
and King1978;Kahn.l981;;Takada#t a11981;Vin~ntand Schaefer 1983;Vincent et al
1983;Page et ~11984;Sc.hlegelet ~i 1984;Banerjee etaI1985). The goalofthis paper,is to
extend the fórmalism of an earli~~paper (!lanerjee e! al 1985)!o third irit~gral
derivatives.Thepresentworkprovidesa completeanalysisof the invarianceproperties
for third integral derivatives.Weprovide a method for treating the redundancy of
invariance conditions. Soch a treatmeni is absent erom earlier work. Rotational
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invariance conditions are geometry dependent in the sense that poorly chosen
conditions impose many geometrical constraints on the molecule. We present a
systematic method for choosing the conditions in a manner which imposes no
restrictions on the allowable geometries ofthe nuclear positions. In §2 we use
translation and rotation óperators to derive the essential invariarice relations involving
third integral derivatives. In §3we derive a method for finding the independent integriil
derivatives and for explicitly calculating the remaining (dependent) integral derivatives
using symrnetry ,relations:

j

2. Tbeofeti~aldevelopment,

An intt::gr,alI depends upon the gaussian basis functions appearingip' I. Bach of the
gaussians is centred at one of the nuclear positions PK (K = 1,N; N ~ 4)

1= I{GI(PI, fI), Gz(Pz, fz) . . . GN(PN, f N)}' (1)

Bach cartesian gaussian function is parameterized in term~ ór' the centre PK and the
internat coordinate fK as

GK(PK'fK) = A(X -PK,,)n>(Y-PKy)n,(z -PK:)'" exp( -~rn (2)

where A is the normalization constant and the vector R is the lab fixed coordinate with

components X,Y",Z giving the location of the electron relative to the or~gin.

R=PK+fK; K=l,N. (3)

An ()perat()r t that~ involves atranslation of,all .points inspace by a ,.yector ,
t = (t"" ty, tz) canbe written as,

t= exl'{-t.VR} (4)
\ A;

where VR= (%X, iJ!oY,c%Z) defines the gr,adientoperator at allpoints R in space. An
operator,}l ~,hatgenerates a rotationby the angle t/J= (t/J""t/Jy,t/Jz)about aQ axis along
the direction t/J through the lab fixed origin can4 be expressed as

R (t/J) = t:xp {- t/J'I..}, (5)
where

L:;:=RxVR.
~!

, (6)

For two-electron integrals, which depend on' twóelectroriic cóorditrates R and R'.the
VR operator willbe ifuplicitlyassumedto dperatebn both variagles(i.e.,ifis'VR+ V~,).
AIsotrom'lhe formof the gaussianftinction it is'seen that ",

O" 'O ...0

o~ GK(PK' fK) = - oPK'"GK(PK'fK) = OXKGK(PK' Ix)'

The rotation operator R is defined in terms of lab fixed coordinates. To generale
rotations of both the centre and orientation of a gaussian function we mustallow L to
operate bóth on PK and fK' For example, the actionof the Lz componenton a

(7)
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gaussian'is

LzGK(PK, fK) =( X ;y- Ya~ )G(PK' fK)

= {-(PKXO;KY -PKYO:K)+(XKO~K -~"O~K) }G(PK'fK)

=={-Lzit-t:lzdGK(PK, fK)' (8)
'" 7

Thus Lz can be written as the sum of ag gperator LzKwhichacts only on nuclear
coordinates PKand an operator lzkwhich'acts oniy on the interna!coordinate fK'

Since an integral is unchanged when all of its coordinates are translated or rotated,
we can write .

and
I {Gl, G2 . . . } = I{t(Gl> G2 .~: )}

. .. '"

I {Gb G2 . . . }= I {il(Gl> G2 . . .n.

(9)

(10)

Equations (9) and (10)also hold when I is replacedby a fiest derivative Ol/oPKor by a
second derivative 02I/oPKoPJ' The RHsof (9) is then expanded1n a power seriesin t.
The terms of each order in t are separately set to zero yielding through third-order the
relations

N

']'<°1 = L IJa.= o,
J=I
N

']'<2)1 = LIJa.KfJ = O,
JK

(11)

N

']'<3)I ~ L IJa.KfJLy= O, ex,p, "I= x, y, Z,
JKL

where the shorthand notation
\

ol 021
IJa.=op' Iia.KfJ=opoP' etc.Ja. Ja. KfJ

bas been introduced.
There are three ways to generate'relations involving tJ:iirdintegral derivatives erom

the above conditions: .

N

']'<3)1 == L IJa.KfJLY= o,
JKL

,.
(12)

-" .~
N

%P Ly(T(2) I) = LI Ja.KfJLy= O,
JK

(13)

N

02/ oP KfJOPLy(T(1)I) = L I Ja.KfJLy = O.
J=I

(14)

It iseasy to showthat therelations in (l~)can beused to geijerateall therelations in (13)
and (12). Thus weexclude thesefrom furtherconsideration and look only at (14).

Likewise the rotation operator il is substituted into (10) and the RHSexpanded in
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powers of t/J.Again there are three ways to genetate rotational conditions arnongi'third
derivatives:

R(3)1 = LLLI = O, ~ '! i-,i- %'\<~ (15)

a2/aR aR (R(1)/)= i}l/R aR (LI)= o (16)
:i 'JI'. Kv, l I J" ~ ~

iJ/aR)I'(R(2)I)i'~a/aPJI"Lti'ilr= o t (17)

Ii>canbe shown that the relatiorisin"(17)bl1f%be~usedUogerlerate all of the relations in
(1Stand (16). Thus w~Qeed o1)ly lookat Eq:,(17)., ' '" F

"'EQuation '(8) issUbsti1ill~ iint61T7)"t<t y!eia"l~ , :~~
"~l '~. ~ §(iff""""', ,,; ,,;* '" i"~ .!i!'1f!~;'" '~e~,~

N,iI(N,";..,I,,'i. ~;,.~~tm

L LyJIKI'MV = L l;JiKI'MV K, M = C Iv;
J = 1 J = 1

The operator LyJbas beenpulled outsid~ óf th~1nte1~'~I'MV ~Jrl~e(he p J' whic~bYJ

~nvolves,are not integration variabIes."!~ad,~itj.~Jh}t~~ np~t~?n :"'J/KI'Mvha~,~n
Introduced to denote that the 'yJoperator ISapph~d;to the vector r In the gausslanG J

app~ring in;,'!K/lM~'That ili,/IYJIK;J~r:epr~~n!sr~K1A1HlyJG,)\~ "';iJf~;,
Substituting Jh~.gefinitipn~;9f' LyJ a:na,J~;;intq (.~8)';~(f"taenEoDtajni}

n'

""
!/N< ~"

L (R Jml JfiKI'Mv- RJfil JmKI'Mv) ~ I mfiKI'Mv'
J=1

~

(19a)

a.p = xy, yz, zx; K,M = I,N; jl, V =x,y,z;(KJ-l) ~l~v),
where ,

N :!I"*4, ,,1 ,$

ImfiKI'MV= L 'YJIKI'Mv -(jm/lIKfiMv+(jfi/lIKmMI'-(j%~rKI'1/p+Ik~fiv/KI'Mm
J=) ,

a.py = xyz, yzx, zxy. ~t ~.

The ltLIoperator transforms a gaussianinto twogaussians in the,same shell. Using lzJ
as an example we see that ,.,~ ,Ii

(
a a

)
, ,

'zJGAn",n" nz)= xJ~~~Yj~" V
"

.J('!t~ny,l'z)
uYJ uXJ, ~ Jt,

(
2n + 1'

)
1/2 , ,.

;L";'-'~" ,;",;'""""" ,<
, :""'"*,",;JJ, 2" =l,GJ,~n".!ti!l".ny\".I...nz)'

~ ~

(
2n + 1

)
1/2

-n" -l-- l GJ(n" -l"n
, ';+

,
1

,
'
,

n
,
z
"

"

,

)' (20)
2n,,- "'," ',," .~;~ ~

Thus we see that the )ms of (19a) is alinear combination of second derivatives df.
l ' ,,;;i,

lQtegra s. .~ ,,""~ l. ~,

(19b)

3. Implementation

The;.telations in (14) and (19) ate noh.independent;~>A"systematicijmethodmust~,be
developed to,. eliminate the'redundant"'relations"and to besf'utilize the .reniainirrg
(independent) onego 't' (Ji' ""II'" 'i(/1l~
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Asa first,step we rewrite,(14) as
N-I

l NrdCflLy= L l JrdCflLy'
J-I

«, p, '}'==x, y, z;,K, lJ= 1, N -l;,,{KP) ~'(Ly),
N-I

I'NlINflLY = L l NrdCflLy'

K-I '.

'"«p==xy; yz, zx; xx, yy, zz; y='x, y; z;"L = 1, N-l,
N-I

l NlINflNy= L l NlINflLy'
L-I

«py = xxx, xxy, xxz, xyy, xyz, xzz, yyy, yyz, yzz, zzz,

where we have given the centres some arbitrary numbering erom 1 to N. A
straightforwardcalculationshowsthat (21)containJ3(3N -3)(3N -2)/2+ 18(N-1)
+ lO}conditions which relate certain third integrals derivativesto,others.

Thenextstepis to substitute(21)joto the rotational-invariancefrelationsof(19).This
allows allreference to atom N to be remov~ erom the rotational conditions. The
result is .

N-l

L (PJIJI JflK,M. - PJflI JrdC,M.) = III/IKpM.
J=I

«p = 'xy, yz, zx;K,M = l, ]I(-1; Jl,V= x, y, z; (KJl) ~ (Mv),
"' ",,:" '" 'i? ,. ,-

where1'JIJ= PJIJ- PNIJ'Thereare {3(3N,,;-3)(3N..., 2)/2} conditions iIL(22)..pqua!jons
(21) and (22) thus yield atotal of {27N2 -27N + 19} relations among third integral
derivatives.

For an N-centre integrai Jhere are {(3N)(3N + 1)(3N +2)/6} tJtird derivatives
of the integraL We will show that thcrnumber oC,independent third derivatives is
{N' (N' + l)(N' +2)/6} where N' =~3N-6 (3N-5 forco~ear geoll}etries).

Non-collinearcase: "

The total number pCdependent third' integrai derivatives that we expectis
- ";!{I,' ' . ," l' ,<

l{(3N)(3N+ 1)(3N+2t:-(3N-6)<3N -5)(3N ~4)}~= 27N2.-36N +.-20.

Since there ,are {~7N2- 27N + lO}relationsa1nongthe integral derivativesand only
{27N2--36N+20} dependent integral derivatives, {herc musfbe {9N -lO} top maDY"', ,,' ' '!f . -
relations. These excess relations caDbe removed via\vhat we called in an earlier paper
(Banerjee et al 1985) relations among the ~lafions (RAK):It iS'easily scen thaf the
~elations given in (21) are infact independent~'The~dependent relations are tberefore
contained in (22). ~

W~disc?vereda class' oC RAR.of(22)"fof th1rd derivati~\:s given by
N-I

L {PJyEII/IJflKp +PJIJE/lyJflKp - P;'(EII/IJyKP + E/lyJrdCp)} = o,
J= I -

«py = xyz, yzx,f:zxy;i( = 1,'N -1; Jl= x, y:z,-

where EGIIK,M.represents the left- or right-hand side oCa relation in (22) for the given
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values of (l, p, K, Jl.,M, and v. These {9N ~ 9} RARcaD be verified by simple substitution.

In fact, only {9N -lO} of the above RARare indep~ndel!.t. ~ "

Since atom 1and atom N are on differen~tcentres, Pb, Ply, or p h !las to be nonzero.
For easeo(notation wewillassumethat Ply +O.ThecaseswhereflY =O'butPb or
Pl: is nonzero caD be recovered by cyclic permutation af x, y, and z.

If Ply +Othen the {9N -lO} relations that need to be discarded erom (22)are ofthe
fo~ {ExYlzKI"EzxlzK/l' EZXlxK/J(K= 1, N-l; Jl.= x, y, z)}. The rel~!ion Ezxlxlz
appears lwice in ibis list, and therefore there are {9N -lO} unique relations. This list of
relations caDbe obtained by writing (23)in matrix form and then using row operations
to transform the matrix joto a lower-echelon form using care touseonly Ply as pivot
elements.

Equation (22) then transforms joto
N-l

L (PJ«IJfJKI'Mv-PJfJIJ«KI'Mv) = I«fJKI'Mv'
J~I

(24)

K, M = 1, N-l; (lp = xy, yz, zx; Jl.,v = x, y, z; (KJl.)~ (Mv);

(EXY1~M.'Ezx!}M.' EzxlxM.)'

The discarded conditions Exy1zM.'EzxlzMvoEzxlxM. are enclosed in parentheses above.
Equation (24) caD be thought of as a system of linear equations with {(27N~ - 63N
+ 38)/2} independent equations in {(9N3 -18N2 + lIN -2)/2} variabies (third
derivatives).

We divide the variabies joto twa groups, the dependent variabies equal to the number
ofrelationsabove and the independent variabies thatmust be known erom same other
source. It is not possible to arbitrarily choose the dependent and independent variabies
in (24). Since the PJ« are arbitrary (possible zero), a bad choice of dependent variabies
will result in (24) being insoluble.

A non<ollinear integral ~con~ains~t lCEastthree cel!tre~. If P"lYt O then there is a
centre Ksuch that either(PKxPly - PKyPb) +0 Ofi(PKzP1y-PKyP1z) + O.If~acentre
K does not exist such thatone of these isnonzero then the centres are collinear contrary
to assumption. Forthe sake of simplicity we rename centre Kas centre 2; ibis is simply a
convention and bas n<Y'consequences. .

Let us assume for example that (P2ZPly - 1',2yPl:) + Q. Equation (24) cari.then be
written as a matrix equation with the third derivatives as variabies. For the three- and
four<entre cases'we have a!gebraically (Hearn 1984) reduced ibis matrii equation to
echelon form using only,P ly as pivot elements. For three<entre integra.lpthe 10
ind~pe9dent thir~ derivatives are aUthe unique third derivatiyes constrp<;ted erom thi;:
differ,entialelements oPly' OP2y, and§P2z, which are to be explicitly calculated.
Similkrly, the 56 independent derivatixes for the four<entre case caD be constructed
uniquely erom the differential elements fJPly,OP2y, oP2z>oP;",oP3y,and oP3z' For the
above choice or the independent and dependent third derlvatives the additional
assumption (P2ZPly -P2yPl;) =1=Ois requireq since (in addition to ~ly»)hey appear
as the c()rresp"'on~ingc!?eff!cientsof'the dependent derivatives in the'eClielon form.

If instead (P2"P1Y- P2yP1") +, Othen the analysis is similar. For the three<entre case
the independentvariabiesare constructed erom the diffetentialelementsoPly' oP2",
OP2y,and for the four<entre case oPly, oP2", oP1.y,oP3", OP3y,and oP3z'

For a given choice of independent integral derivatives 1'+1>. . In' the remaining
'°
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derivatives 11. . . . I, are calculated straightforwardly erom (24) as a solution of the
simultaneous linear equation

where A contains the r columns of the coefficient matdx of (24) corresponding to be
the dependent derivatives 11 . . . I" wbile 8 contains the corresponding columns for
the n - r independent integrals. The elements of the b vectors correspond to the right-
band side of (24). .

Collinear case:

The total number of dependent third integrai derivatives in this case is

l{(3N)(3N + 1)(3N +2)-(3N -5)(3N -4)(3N -3)}

= (45N2 -45N + 20)/2

Thus we have {(9N2 -9N)/2} excess relations that need to be removed via RAR.
There exists another classof RARgiven by the formula

PhExYJ!'K.+PtxEYZJ!'K.+PlyEzxJ!'K. = O , (26)

J; K = 1. N -I; P. v = x. y, z; (Jp) ~ (Kv).

Equation (26) holds only in the collinear case. There are {(9N2 -15N + 6)/2} RARin
(26).With (23) there are atotal of {(9N2 + 3N-12)/2} RAR.Again there is an excess of
RAR.A detailed analysis shows that as expected there are only {9N2 -9N)/2}
independent RARin (23)and (26);one particular choice is to discard all ofthe relations of
the form {EzxJ"x.and Exy1zJJA(J. K = 1, N -1; P. v = x, y, z)}.

The analysis to find the dependentand independent variabies is similar to that in the
non-collinear case although no assumptions other than P ly 1= Obave to be marle. If the
above conditions are discarded, the independent variabies are all the unique tbird
derivatives tbat caDbe constructed erom the differential element oP ly, oP2,., oP2y, and

oP2z for the three-centre case and oP 1y. oP2,.. OP2y. oP2Z' oP3,., OP3y. and oP3z for the
four-centre case. For the two-centre case the anty third derivative that need be
calculatedis Ilylyl,.

4. Discussionandconclusions

Making a minimum number of choices of the geometry. we bave shown how.to choose
a set of independent third integral derivatives, which needs to be explicitly calculated.
and a set of dependent third integral derivatives that caDbe expressed in terms of the
independent onegoKnowing the values of the independent tbird derivative integrals, it is
possible to solve for the dependent integrai derivatives by using (24) or (23) folIowed
by (21). . .

After a detailed examination of the translational and rotational invariance of third
integral derivatives.we have found that the results are quite analogous to the results for

11 I 1,+1 bl

A(".,) j.:
= -8".(,,_,) + . I (25)

I,' I" b,
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the second derivatives obtained by Banerjee et al (1985). Analogous to (22).we.haveJ9r.
the second derivatives

N-Ir (PJ.IJPKp-PJpIJdcp) = I.flKp
J=I

a.p= xy, yz, ~x;K = l, N-l; Jl= x, y, z.

(27)

From (22) we discard relations of the form {,E",1zKp'E.,,1zKP'EubKI' (K = 1,.N -1;,
Jl = x, y, z)}. For .the secondderivative case we discard tl}.erelations {E",h, EUI,.,
EUlx}."For t~e three-ceq~re case the independent variablesare those third deftva!iyes
tbat can be constructed erom the differentidls oP 17,01',2"oP2z, Inlhe second derivative
case the dependent variabIes are those second derivatives tbat canbe coastructec:l erom
the differentials oPI" oP2" oP2z' We feel tbat the results for fourth derivatives cari'be
possibly written by inspection.
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