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Translational and rotational symmetries in third integral
derivatives
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Abstract. Based on the invariance under translations and rotations of quantum chemical one-
and two-clectron integrals, a method for obtaining a complete set of independent relations
among third integral derivatives is presented. It is shown that the number of dependent integral
derivatives, which is equal to the number of independent relations, can be straightforwardly
determined in terms of the remaining third derivatives which must be explicitly calculated. The
set of such independent and dependent third integral derivatives can be chosen in a manner
which imposes no restrictions on the nuclear positions. The special case of collinear nuclear
centres is also separately analyzed.

Keywords. Translational symmetry; rotational symmetry.

1. Introduction

The direct computation of analytical derivatives of the electronic energy with respect to
nuclear coordinates has proved to be a powerful tool because it yields an immediate
sense of the local topography of the energy surface. Recently, workers (Pulay 1983;
Simons and Jgrgensen 1984; Simons et al 1984) have extended techniques for
calculating first and second derivatives to the calculation of anharmonicities of the
energy surface.

A large number of third integral derivatives need to be calculated in order to
implement a calculation of the third derivative of the energy surface. For example,
consider the third derivatives of four-centre two-electron integrals in a calculation
involving n primitive atomic basis functions. One can easily show that there are 364
third integral derivatives for each of the n* such integrals. In the N-centre case there are
(3N) (3N + 1) (3N +2)/6 third derivatives for each of the n* integrals.

Use of translational and rotational invariance (or symmetry) has proved to be a
valuable tool in calculating derivatives of the energy surface by reducing the number of
integral derivatives that need to be explicitly calculated (Komornicki et al 1977; Dupuis
and King 1978; Kahn 1981; Takada et al 1981; Vincent and Schaefer 1983; Vincent et al
1983; Page et al 1984; Schlegel et al 1984; Banerjee et al 1985). The goal of this paper is to
extend the formalism of an earlier paper (Banerjee et al 1985) to third integral
derivatives. The present work provides a complete analysis of the invariance properties
for third integral derivatives. We provide a method for treating the redundancy of
invariance conditions. Such a treatment is absent from earlier work. Rotational
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invariance conditions are geometry dependent in the sense that poorly chosen
conditions impose many geometrical constraints on the molecule. We present a
systematic method for choosing the conditions in a manner which imposes no
restrictions on the allowable geometries of the nuclear positions. In §2 we use
translation and rotation operators to derive the essential invariance relations involving
third integral derivatives. In §3 we derive a method for finding the independent integral
derivatives and for explicitly calculating the remaining (dependent) integral derivatives
using symmetry relations.

2. Theoretical development

An integral I depends upon the gaussian basis functions appearing in I. Each of the
gaussians is centred at one of the nuclear positions P, (K =1, N; N < 4)

I= I{GI(PI’ r), Gy(Pyr;)... GN(PN') ry) } 1)

Each cartesian gaussian function is parameterized in terms of the centre P, and the
internal coordinate ry as

Gy(Px, 1) = A(X — Py ) (Y= Py )" (Z — Py, Y exp (—ér}), (04
where A is the normalization constant and the vector R is the lab fixed coordinate with
components X, ¥, Z giving the location of the electron relative to the origin.

R=Py+r,; K=1,N. ; 3)

An operator T that involves a translation of all points in space by a vector
t = (t«, t,, t;) can be written as

f‘=exp{—t'Va} @

where Vy, = (0/0X, 0/0Y, 6/0Z) defines the gradient operator at all points R in space. An

operator R that generates a rotation by the angle ¢ = (¢« ¢, ¢.) about an axis along
the direction ¢ through the lab fixed origin can be expressed as

R@)=exp{—¢-L}, 0
where

L=RxV, (6)
For two-electron integrals, which depend on two electronic coordinates R and R/, the

V ; operator will be implicitly assumed to operate on both variables (i.e., it is V4 V).
Also from the form of the gaussian function it is seen that

i} bij
X =5 0k Py, 1¢) = ‘anx

a
Gy (Pg,1x) = KGK (Px, Tg): )
K

The rotation operator R is defined in terms of lab fixed coordinates. To generate
rotations of both the centre and orientation of a gaussian function we must allow L to
operate both on Py and ry. For example, the action of the L, component on 3
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gaussian is

i} i)
L.Gg(Pg, rg) "—"(Xa_y— Yﬁ) G(Pyg, 1)

i) 0 0 i)
= {—-(Pxxgﬁx—y —-Px,.ap—m) + (xxé;; -YK‘é)‘c;)}G(PK' rx)
={— Lk + 1Lk} G (Py, 1g). ®)

Thus L, can be written as the sum of an operator L., which acts only on nuclear
coordinates Py and an operator I, which acts only on the internal coordinate ry.

Since an integral is unchanged when all of its coordinates are translated or rotated,
we can write

1{G,,G, ...} =1{{(G,,G,...)} - ©9)
1{G,G, ...} =I{R(G.,G, . ..)}. (10)

Equations (9) and (10) also hold when I is replaced by a first derivative 1/0P or by a
second derivative 82I/0P, dP,. The rus of (9) is then expanded in a power series in t.
The terms of each order in t are separately set to zero yielding through third-order the
relations

and

N
TOL WY 4 =0, - (11)
J=1
N
TOL =Y Ly =0,
JK

N
oI = Z Lukpry=0, @ By=x1y2
JKL

where the shorthand notation

al [l o Fokd |
aP,.’ T aP, 0Py
has been introduced.

There are three ways to generate relations involving third integral derivatives from
the above conditions:

I = etc.

N
T = Z f.raxm =0, (12)
JKL
N
/0P (TP =31 0 =0, (13)
JK
N
82 /0P 0P (TV1) = 3 Iy, = 0. (14)
J=1

It is easy to show that the relations in (14) can be used to generate all the relations in (13)
and (12). Thus we exclude these from further consideration and look only at (14).
Likewise the rotation operator R is substituted into (10) and the rus expanded in
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powers of ¢. Again there are three ways to generate rotational conditions among third
derivatives:

R®I=LLLI =0, (15)
0*/0P,, 0P (RVI) = 8*/P, 0P, (LI)=0 (16)
0/dP, (R®I) = d/dP, (LLI)=0 17

It can be shown that the relations in (17) can be used to generate all of the relations in
(15) and (16). Thus we need only look at Eq. (17).
Equation (8) is substituted into (17) to yield

N N
Z LyJIerMv= E I)dIK.uMu K! M = 1’ N; »PHYV=XY2Z (]8)
J=1 J=1 ;
The operator L,, has been pulled outside of the integral I, since the P,, which L ,
involves, are not integration variables. In addition, the notation I,JI Kumy Das been
introduced to denote that the I, operator is applied to the vector r in the gaussmn G,
appearing in Iy,,,,. That is, 1,1, represents I .. (L,G,).
Substituting the definitions of L, and [/, into (18) we then obtain

N

Z (P! JBKuMy — P _,,I Jux,.m) =1 afKuMvs (19a)
J=1

af = xy, yz, zx; K,M = 1,N; y,v = x,y,2; (Kp) = (Mv),
where :
N

Iuﬂ(,«Mu =7 Z JrJIK.qu T 6::»‘!(”& + 5}»’1(:“# 2 63‘-1!(»!“3 -+ 63v’KpM¢
i< (19b)
afly = xyz, yzx, zxy.

The [, operator transforms a gaussian into two gaussians in the same shell. Using I,
as an example we see that

a d
I:JGJ("::’ ny, "z) = (xJE—yJa_)GJ (ﬂ,, ny, nz)
J

2n, +1\'72
="y(2:yt1) G,(n:+1,n,—1,n,)

2n,+1\!12 ' .
‘”*(hztl) G,(n,—1,n,+1,n,) (20)

Thus we see that the rus of (19a) is a linear combination of second derivatives of
integrals.

3. Implementation

The relations in (14) and (19) are not independent. A systematic method must be
developed to eliminate the redundant relations and to best utilize the remaining
(independent) ones.
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As a first step we rewrite (14) as

N-1

I nakpry = Z Iyakpiys (21a)
J=1
o B,y=xy2zK, L=1,N-1 (KB) > (Ly),
N-1 ”
I NaNpLy = Z I NaKBLy? (21b)
K=1
af = xy, yz, 2x, xx, yy, 22,y =X, y,z; L=1, N -1,
N-=1
INuNﬁN-; = Z [Nm_up (21c)
L=1

afy = XXX, XXy, XXZ, Xyy, Xyz, X22, Yyy, Yz, yzz, 222,

where we have given the centres some arbitrary numbering from 1 to N. A
straightforward calculation shows that (21) contain {3(3N —3) (3N —2)/2+ 18(N —1)
+ 10} conditions which relate certain third integrals derivatives to others.

The next step is to substitute (21) into the rotational-invariance relations of (19). This
allows all reference to atom N to be removed from the rotational conditions. The
result is

N-1

Z (*6 .ruf JBKuMy — ﬁ .mf J«K;(Mv) =1 afKuMvy (22)
J=1

af = xy, yz, zx; KM =1, N-1; uv = x, y, z; (Kp) = (Mv),

where P, = P;,— Py,. Thereare {3(3N — 3)(3N —2)/2} conditions in (22). Equations
(21) and (22) thus yield a total of {27N% —27N + 10} relations among third integral
derivatives.

For an N-centre integral there are {(3N)(3N +1)(3N +2)/6} third derivatives
of the integral. We will show that the number of independent third derivatives is
{N'(N'+1)(N’ +2)/6} where N' = 3N —6 (3N — 5 for collinear geometries).

Non-collinear case:
The total number of dependent third integral derivatives that we expect is

${BN)BN+1)(3N+2)—(3N —6)(3N — 5)(3N —4)} = 27TN? — 36N +20.

Since there are {27N2 —27N + 10} relations among the integral derivatives and only
{27N? — 36N + 20} dependent integral derivatives, there must be {9N — 10} too many
relations. These excess relations can be removed via what we called in an earlier paper
(Banerjee et al 1985) relations among the relations (RAR). It is easily seen that the
relations given in (21) are in fact independent. The dependent relations are therefore
contained in (22).
We discovered a class of rar of (22) for third derivatives given by
N

L ~ :
2 {PnEusput PraEpypxu— Pip(Engrxut+ Eprax,)} = 0, (23)
1

I=
afy =xyz, yzx, zxy; K =1, N-L,u=x, y, z,
where E 4y, T€presents the left- or right-hand side of a relation in (22) for the given
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values of &, f, K, u, M, and v. These {9N — 9} rAR can be verified by simple substitution.
In fact, only {9N — 10} of the above rAR are independent.

Since atom 1 and atom N are on different centres, P, Py, or P,, has to be nonzero
For ease of notation we will assume that Pl,, # 0. The cases where Pl, = 0 but P,, or
Py, is nonzero can be recovered by cyclic permutation of x, y, and z.

If P,, # Othen the {9N — 10} relations that need to be discarded from (22) are of the
form {E,.cp Eoikp Evasky(K=1, N=L p=x, y, z)}. The relation E,,,,,
appears twice in this list,and therefore there are {9N — 10} unique relations. This list of
relations can be obtained by writing (23) in matrix form and then using row operations
to transform the matrix into a lower-echelon form using care to use only P,, as pivot
elements.

Equation (22) then transforms into

N-1

E (P~ al JBKuMy ‘6 J'ﬂ‘r JaKqu) =1 apKuMv? (24)
J=1 :

K.M=1,N=1af =xy, yz, zx; b, v = X, y, z; (Kp) > (Mv);
(Exyle’v szlev' szlva}‘

The discarded conditions E, ;s E.ci:my0 Ezx1 xmy are enclosed in parentheses above.
Equation (24) can be thought of as a system of linear equations with {(27N? —63N
+38)/2} independent equations in {(9N>—18N?+ 11N —2)/2} variables (third
derivatives).

We divide the variables into two groups, the dependent variables equal to the number
of relations above and the independent variables that must be known from some other
source. It is not possible to arbitrarily choose the dependent and independent variables
in (24). Since the P,, are arbitrary (possible zero), a bad choice of dependent variables
will result in (24) being insoluble.

A non-collinear integral contains at least three centres. If P,, # 0 then there is a
centre K such that either (PKIP,,—— PK,P,,] # 0or (PP, y = Pg,P,,) # 0. If a centre
K does not exist such that one of these is nonzero then the centres are collinear contrary
to assumption. For the sake of simplicity we rename centre K as centre 2; this is simply a
convention and has no consequences.

Let us assume for example that (P,,P,, —P,, Pl,) # 0. Equation (24) can then be
written as a matrix equation with the third derivatives as variables. For the three- and
four-centre cases we have algebraically (Hearn 1984) reduced this matrix equation to
echelon form using only P,, as pivot elements. For three-centre integrals the 10
independent third derivatives are all the unique third derivatives constructed from the
differential elements oP,,, dP,,, and dP,,, which are to be explicitly calculated.
Similarly, the 56 independent derivatives for the four-centre case can be constructed
uniquely from the differential elements éP,,, 0Py, dP;,, 0P3,, 0P3,,and dP3,. For the
above choice of the mdependent and dependent third derivatives the additional
assumption (P, P, y— Pz,, 1z) # 0 is required since (in addition to Pl,,) they appear
as the corresponding coefficients of the dependent derivatives in the echelon form.

Ifinstead (P, P, — szP 1x) # 0 then the analysis is similar. For the three-centre case
the independent variables are constructed from the differential elements 6P, ,, 0P,
8P,y, and for the four-centre case P;,, OP,, OP;,, 0P3x, 0P3y, and 0P;,.

For a given choice of independent integral derivatives I,,,, .. I,, the remaining
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derivatives I,, . . . I, are calculated straightforwardly from (24) as a solution of the
simultaneous linear equation
" 1 " r+1 bl
A[r.l.'r} . = —Dxin-n - + ; (2 5)
I, I, b,

where A contains the r columns of the coefficient matrix of (24) corresponding to be
the dependent derivatives I, . . . I,, while B contains the corresponding columns for
the n —r independent integrals. The elements of the b vectors correspond to the right-
hand side of (24).

Collinear case:
The total number of dependent third integral derivatives in this case is

${3N)(3N +1)(3N +2) — (3N = 5) (3N —4) 3N —3)}
= (45N? —45N +20)2

Thus we have {(9N? —9N)/2} excess relations that need to be removed via RAR.
There exists another class of rar given by the formula

ﬁlenyﬂKv+};lesznKv+ ﬁlysz_;p,x, =0 (26)
J$K= l,N—l;,u,v-—*x, » 2z (J.Iu')?'(Kv)'

Equation (26) holds only in the collinear case. There are {(9N? — 15N +6)/2} RAR in
(26). With (23) there are a total of {(9N% + 3N — 12)/2} rar. Again there is an excess of
RAR. A detailed analysis shows that as expected there are only {IN?—9N)/2}
independent rRAR in (23)and (26); one particular choice is to discard all of the relations of
the form {E_,x, and E, ., J, K =1, N=1; p, v = x, y, 2)}.

The analysis to find the dependent and independent variables is similar to that in the
non-collinear case although no assumptions other than P, , # 0 have to be made. If the
above conditions are discarded, the independent variables are all the unique third
derivatives that can be constructed from the differential element 6P, ,, dP,,, dP,,, and
0P,, for the three-centre case and dP,,, P,,, 0P,,, OP,,, 0P;,, dP,,, and 0P, for the
four-centre case. For the two-centre case the only third derivative that need be
calculated is I ,;,,,.

4. Discussion and conclusions

Making a minimum number of choices of the geometry, we have shown how to choose
a set of independent third integral derivatives, which needs to be explicitly calculated,
and a set of dependent third integral derivatives that can be expressed in terms of the
independent ones. Knowing the values of the independent third derivative integrals, it is
possible to solve for the dependent integral derivatives by using (24) or (23) followed
by (21). :

After a detailed examination of the translational and rotational invariance of third
integral derivatives, we have found that the results are quite analogous to the results for
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the second derivatives obtained by Banerjee et al (1985). Analogous to (22) we have for
the second derivatives
N-1

E U; .rulnx,. == -Jﬁl.fcxy] = Iu.m.
J=1

(27

af=xy,yz,z; K=1,N-1L; u=x, y, z.

From (22) we discard relations of the form {E,, x,, E,.i;xu Epixx, (K=1, N-1;
u=x,y,z)}. For the second derivative case we discard the relations {Ey; ., E;x1x,
E.,.,.}. For the three-centre case the independent variables are those third derivatives
that can be constructed from the differentials 6P, ,, dP,,, 0P,, . In the second derivative
case the dependent variables are those second derivatives that can be constructed from
the differentials P, ,, OP,,, 0P,,. We feel that the results for fourth derivatives can be
possibly written by inspection.

Acknowledgements

The authors wish to acknowledge the National Science Foundation and the us Army
Research Office for their support.

References

Banerjee A, Jensen J O and Simons J 1985 J. Chem. Phys. 82 4566

Dupuis M and King H F 1978 J. Chem. Phys. 68 3998

Hearn A C 1984 Algebraic programming language REDUCE 3-0, implemented on DEC-20 computer, Univ. of
Utah

Kahn L R 1981 J. Chem. Phys. 75 3962

Komornicki A, Ishida K, Morokuma K, Ditchfield R and Conard M 1977 Chem. Phys. Lett. 45 595

Page M, Saxe P, Adams G F and Lengsfield B H 1984 Chem. Phys. Lett. 104 587

Pulay P 1983 J. Chem. Phys. 78 5043

Schiegel H B, Binkley J S and Pople J 1984 J. Chem. Phys. 80 1976

Simons J and J¢rgensen P 1983 J. Chem. Phys. 79 3599

Simons J, Jgrgensen P and Helgaker T U 1984 Chem. Phys. 86 413

Takada T, Dupuis M and King H F 1981 J. Chem. Phys. 75 332

Vincent M A, Saxe P and Schaefer H F III 1983 Chem. Phys. Lett. 94 351

Vincent M A and Schaefer H F III 1983 Theor. Chim. Acta 64 21 :



